
gr be the coefficients of xr in f (x) and g(x ) , respectively (one of which is nonzero 
by definition of r). Then U'..f, + U'..g, = U'..dr for some nonzero d, E Q1 (cf. Exercise 14 
in Section 2.4). Prove that there is  a polynomial d(x) E Qi[x] that is  a g.c.d. of f(x) 
and g(x) in Ql[x] and whose term of minimal degree is d,x' . 

(b) Prove that f(x) = d(x)qt (x) and g(x) = d(x)qz (x) where q1 (x) and qz(x) arc 
elements of the subring R of Qi[x] .  

(c) Prove that d(x) = a(x)f(x) + b(x)g (x) for polynomials a(x) ,  b(x) in R. [The 
existence of a(x) ,  b(x) in the Euclidean Domain Ql[x] is immediate. Use Exercise 1 1  
in Section 2 to show that a(x) and b(x) can be chosen to lie in R.] 

(d) Conclude from (a) and (b) that Rf(x) + Rg(x) = Rd(x) in Ql[x] and use this to prove 
that R is a Bezout Domain (cf. Exercise 7 in Section 8.2) . 

(e) Show that (d), the results of the previous exercise, and Exercise 1 1  of Section 8.3 
imply that R must contain ideals that are not principal (hence not finitely generated). 
Prove that in fact I = xQI[ x] is an ideal of R that is not finitely generated. 

9.4 IRREDUCIBILITY CRITERIA 

If R is a Unique Factorization Domain, then by Corollary 8 a polynomial ring in any 
number of variables with coefficients in R is also a Unique Factorization Domain. It 
is of interest then to determine the irreducible elements in such a polynomial ring, 
particularly in the ring R[x ]. In the one-variable case, a non constant monic polynomial 
is irreducible in R[x] if it cannot be factored as the product of two other polynomials of 
smaller degrees. Determining whether a polynomial has factors is frequently difficult to 
check, particularly for polynomials of large degree in several variables. The purpose of 
irreducibility criteria is to give an easier mechanism for determining when some types 
of polynomials are irreducible. 

For the most part we restrict attention to polynomials in one variable where the 
coefficient ring is a Unique Factorization Domain. By Gauss' Lemma it suffices to 
consider factorizations in F[x] where F is the field of fractions of R (although we 
shall occasionally consider questions of irreducibility when the coefficient ring is just 
an integral domain). The next proposition considers when there is a factor of degree 
one (a Linear factor). 

Proposition 9. Let F be a field and let p (x) E F[x ]. Then p(x) has a factor of degree 
one if and only if p(x) has a root in F, i.e., there is an a E F with p(a) = 0. 

Proof' If p (x) has a factor of degree one, then since F is a field, we may assume 
the factor is monic, i.e., is of the form (x - a) for some a E F.  But then p(a) = 0. 
Conversely, suppose p(a) = 0. By the Division Algorithm in F[x] we may write 

p(x) = q(x) (x - a) + r 

where r is a constant. Since p(a) = 0, r must be 0, hence p(x) has (x - a) as a factor. 

Proposition 9 gives a criterion for irreducibility for polynomials of small degree: 

Sec. 9.4 I rreducib i l ity Criteria 307 



Proposition 10. A polynomial of degree two or three over a field F is reducible if and 
only if it has a root in F. 

Proof" This follows immediately from the previous proposition, since a polynomial 
of degree two or three is reducible if and only if it has at least one linear factor. 

The next result limits the possibilities for roots of polynomials with integer coef­
ficients (it is stated for /Z[x] for convenience although it clearly generalizes to R[x], 
where R is any Unique Factorization Domain). 

Proposition 11. Let p(x) = anxn + an-1Xn-1  + . . . + ao be a polynomial of degree 
n with integer coefficients. If r Is E <Ql is in lowest terms (i.e., r and s are relatively 
prime integers) and r Is is a root of p(x ), then r divides the constant term and s divides 
the leading coefficient of p (x) :  r I ao and s I an . In particular, if p(x) is a monic 
polynomial with integer coefficients and p(d) "I 0 for all integers d dividing the constant 
term of p(x ), then p(x) has no roots in <Ql. 

Proof" By hypothesis, p(r Is) = 0 = an (r ls)n + an- 1 (r ls)n-l  + · · · + ao . Multi­
plying through by sn gives 

Thus anrn = s(  -an-t rn- 1 - · · · - aosn- 1  ) , so s divides anrn . By assumption, s is 
relatively prime to r and it follows that s I an . Similarly, solving the equation for aosn 
shows that r I a0. The last assertion of the proposition follows from the previous ones. 

Examples 

(1) The polynomial x3 - 3x - l is irreducible in Z[x] .  To prove this, by Gauss' Lemma 
and Proposition 10 it suffices to show it has no rational roots. By Proposition 1 1  the 
only candidates for rational roots are integers which divide the constant term 1 ,  namely 
± 1 .  Substituting both 1 and - 1  into the polynomial shows that these are not roots. 

(2) For p any prime the polynomials x2 - p and x3 - p are irreducible in Q[x] .  This is 
because they have degrees ::<::: 3 so it suffices to show they have no rational roots. By 
Proposition 1 1  the only candidates for roots are ± 1 and ± p, but none of these give 0 
when they are substituted into the polynomial. 

(3) The polynomial x2 + 1 is reducible in Z/2Z[x] since it has 1 as a root, and it factors 
as (x + 1 )2 . 

(4) The polynomial x2 + x + I  is irreducible in Z/2Z[x] since it does not have a root in 
Zf2Z : o2 + 0 + 1 = 1 and 12 + 1 + I  = I .  

(5} Similarly, the polynomial x3 + x + 1 is irreducible in Z/2Z[x] .  

This technique is limited to polynomials of low degree because it relies on the 
presence of a factor of degree one. A polynomial of degree 4, for example, may be 
the product of two irreducible quadratics, hence be reducible but have no linear factor. 
One fairly general technique for checking irreducibility uses Proposition 2 above and 
consists of reducing the coefficients modulo some ideal. 
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Proposition 12. Let I be a proper ideal in the integral domain R and let p(x) be a 
nonconstant monic polynomial in R[x] . If the image of p(x) in (R/ I)[x] cannot be 
factored in (Rj I) [x] into two polynomials of smaller degree, then p(x) is irreducible 
in R[x].  

Proof" Suppose p(x) cannot be factored in (Rji) [x] but that p(x) is reducible 
in R[x] . As noted at the end of the preceding section this means there are monic, 
nonconstant polynomials a (x) and b(x) in R[x] such that p(x) = a (x)b(x) . By 
Proposition 2, reducing the coefficients modulo I gives a factorization in (Rj I) [x] 
with nonconstant factors, a contradiction. 

This proposition indicates that if it is possible to find a proper ideal I such that 
the reduced polynomial cannot be factored, then the polynomial is itself irreducible. 
Unfortunately, there are examples of polynomials even in Z[x] which are irreducible 
but whose reductions modulo every ideal are reducible (so their irreducibility is not 
detectable by this technique). For example, the polynomial x4 + 1 is irreducible in 
Z[x] but is reducible modulo every prime (we shall verify this in Chapter 14) and the 
polynomial x4 - 72x2 + 4 is irreducible in Z[x] but is reducible modulo every integer. 

Examples 

(1) Consider the polynomial p(x) = x2 +x + 1 in Z[x] .  Reducing modulo 2, we see from 
Example 4 above that p(x) is irreducible in Z[x] .  Similarly, x3 + x + 1 is irreducible 
in Z[x] because it is irreducible in Z/2Z[x] .  

(2) The polynomial x2 + 1 is irreducible in Z[x] since it is irreducible in Z/3Z[x] (no 
root in Zj3Z), but is reducible mod 2. This shows that the converse to Proposition 12 
does not hold. 

(3) The idea of reducing modulo an ideal to determine irreducibility can be used also 
in several variables, but some care must be exercised. For example, the polynomial 
x2 + xy + 1 in Z[ x ,  y] is irreducible since modulo the ideal (y) it is x2 + 1 in Z[ x ], 
which is irreducible and of the same degree. In this sort of argument it is necessary to 
be careful about "collapsing." For example, the polynomial xy + x + y + 1 (which 
is (x + 1 ) (y + 1 ) )  is reducible, but appears irreducible modulo both (x) and (y) . The 
reason for this is that non unit polynomials in Z[ x, y] can reduce to units in the quotient. 
To take account of this it is necessary to determine which elements in the original ring 
become units in the quotient. The elements in .Z[x, y] which are units modulo (y), for 
example, are the polynomials in .Z[x , y] with constant term ± 1  and all nonconstant 
terms divisible by y. The fact that x2 + xy + 1 and its reduction mod (y) have the 
same degree therefore eliminates the possibility of a factor which is a unit modulo (y ) ,  
but not a unit in Z[x ,  y] and gives the irreducibility of this polynomial. 

A special case of reducing modulo an ideal to test for irreducibility which is fre­
quently useful is known as Eisenstein 's Criterion (although originally proved earlier by 
Schonemann, so more properly known as the Eisenstein-Schonemann Criterion): 

Proposition 13. (Eisenstein 's Criterion) Let P be a prime ideal of the integral domain 
R and let f(x) = xn +an-IX

n- I + · · · +a1x +ao be a polynomial in R[x] (here n � 1) . 
Suppose an-I ,  . . .  , a1 , ao are all elements of P and suppose ao is not an element of P2 • 
Then f(x) is irreducible in R[x]. 
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Proof" Suppose f(x) were reducible, say f(x) = a(x)b(x) in R[x], where a(x) 
and b(x) are nonconstant polynomials. Reducing this equation modulo P and using 

the assumptions on the coefficients of f(x) we obtain the equation xn = a(x)b(x) in 
(R/ P) [x], where the bar denotes the polynomials with coefficients reduced mod P. 

Since P is a prime ideal, Rj P is an integral domain, and it  follows that both a(x) and 

b(x) have 0 constant term, i.e., the constant terms of both a (x) and b(x) are elements 
of P .  But then the constant term ao of f(x) as the product of these two would be an 
element of P2 , a contradiction. 

Eisenstein's Criterion is most frequently applied to Z[x] so we state the result 
explicitly for this case: 

Corollary 14. (Eisenstein 's Criterion for Z[x]) Let p be a prime in Z and let 
j(x) = xn + an- JXn-J + · · · + a1x + ao E Z[x], n � 1 .  Suppose p divides ai 
for all i E {0, 1 ,  . . .  , n- 1 }  but that p2 does not divide a0 • Then j(x) is irreducible in 
both Z[x] and <Q[x] . 

Proof" This is simply a restatement of Proposition 13 in the case of the prime ideal 
(p) in Z together with Corollary 6. 

Examples 

(1) The polynomial x4 + lOx + 5 in Z[x] is irreducible by Eisenstein's Criterion applied 
for the prime 5. · 

(2) If a is any integer which is divisible by some prime p but not divisible by p2, then xn -a 
is irreducible in Z[x] by Eisenstein's Criterion. In particular, xn - p is irreducible for 
all positive integers n and so for n :=:: 2 the nth roots of p are not rational numbers (i.e . •  
this polynomial has no root in <Ql). 

(3) Consider the polynomial f(x) = x4 + 1 mentioned previously. Eisenstein's Criterion 
does not apply directly to f(x).  The polynomial g(x) = f(x + 1) is (x + 1 )4 + 1 ,  i.e., 
x4 + 4x3 + 6x2 + 4x + 2, and Eisenstein's Criterion for the prime 2 shows that this 
polynomial is irreducible. It follows then that f (x) must also be irreducible, since any 
factorization for f (x) would provide a factorization for g (x) (just replace x by x + 1 
in each of the factors). This example shows that Eisenstein's Criterion can sometimes 
be used to verify the irreducibility of a polynomial to which it does not immediately 
apply. 

(4) As another example of this, let p be a prime and consider the polynomial 

xP - 1  
rJ>p (x) = -- = xp-J + xP-2 + · · · + x + 1 ,  

x - 1 
an example of a cyclotomic polynomial which we shall consider more thoroughly in 
Part IV. Again, Eisenstein's Criterion does not immediately apply, but it does apply 
for the prime p to the polynomial 

(x + 1)P - 1 2 p(p - 1)  
rJ>p (x + 1 )  = = xp-J + pxP- + · · · + x + p E Z[x] 

X 2 
since all the coefficients except the first are divisible by p by the Binomial Theorem. 
As before, this shows rJ>p (x) is irreducible in Z[x].  

(5) As an example of the use of the more general Eisenstein's Criterion in Proposition 13 
we mimic Example 2 above. Let R = <Ql[x] and let n be any positive integer. Consider 
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