
EXAMPLES OF THE GALOIS CORRESPONDENCE

TIM SMITS

Galois proved the following theorem (at the age of 18!), providing a link between field
theory and group theory (although historically, the latter was not developed until after
Galois had proven his theorem).

Theorem 0.1 (Galois). Let K/F be a Galois extension, and let G = Gal(K/F ). There is
a bijection between the set {L : F ⊂ L ⊂ K} of intermediate extensions of K and the set
{H ≤ G} of subgroups of G given by L 7→ Gal(K/L) and KH ←[ H. This bijection has the
following properties:

(1) (Inclusion reversing) If L1, L2 are intermediate fields with associated subgroups H1, H2

then L1 ⊂ L2 ⇐⇒ H2 ≤ H1.
(2) [K : L] = |H| and [L : F ] = [G : H].
(3) For two subfields L,L′ we have L ∼= L′ ⇐⇒ H,H ′ are conjugate subgroups in G. In

particular, Gal(K/σ(L)) = σGal(K/L)σ−1 for σ ∈ Gal(K/F ).
(4) L/F is Galois ⇐⇒ H E G, in which case the restriction map σ 7→ σ|L from

Gal(K/F )→ Gal(L/F ) is surjective with kernel Gal(K/L), and so gives an isomor-
phism G/H ∼= Gal(L/F ).

Note that since K/F is Galois (and therefore separable), L/F is separable so in property
(4) saying L/F is Galois is equivalent to saying that L/F is normal (hence, the terminol-
ogy!). The subgroup structure of the Galois group gives us immediate information about the
number/degrees of intermediate extensions, but that doesn’t necessarily mean that finding
all intermediate extensions is an easy task. Our goal is to explicitly work out examples of
the correspondence.

Example 0.2. Consider Q(
√

2,
√

3), which is the splitting field of (x2 − 2)(x2 − 3), so it’s
Galois. The polynomial x2 − 2 is irreducible in Q[x] because it it has no rational root, so
Q(
√

2)/Q has degree 2, and one can show that x2− 3 is irreducible in Q(
√

2)[x] by checking
that there is no element of Q(

√
2) that squares to 3. Therefore, Q(

√
2,
√

3)/Q is a degree
4 extension, so the Galois group has order 4. Any automorphism σ ∈ Gal(Q(

√
2,
√

3)/Q)
is determined by it’s action on the generators

√
2 and

√
3. Since σ must map elements to

roots of their minimal polynomials, we see that σ(
√

2) ∈ {±
√

2} and σ(
√

3) ∈ {±
√

3}, so
there are at most 2 · 2 = 4 possible automorphisms. Since there are exactly 4, all of these
choices must work.

Let σ ∈ Gal(Q(
√

2,
√

3)/Q) be the automorphism defined by
√

2 7→ −
√

2 and
√

3 7→
√

3,
and τ ∈ Gal(Q(

√
2,
√

3)/Q) be the automorphism defined by
√

2 7→
√

2 and
√

3 7→
√

3.
Then one can check that {1, σ, τ, στ} is a set of four distinct automorphisms, so it must be
all of them. This tells us that Gal(Q(

√
2,
√

3)/Q) ∼= Z/2Z×Z/2Z. The four automorphisms
and their values on the generators are listed in the table below. We’ll need to know later
what σ does to

√
6, so it’s listed for convenience.
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1 σ τ στ√
2
√

2 −
√

2
√

2 −
√

2√
3
√

3
√

3 −
√

3 −
√

3√
6
√

6 −
√

6 −
√

6
√

6

The lattice of subgroups of Z/2Z×Z/2Z (identified with Gal(Q(
√

2,
√

3)/Q)) is as follows:

Z/2Z× Z/2Z

〈σ〉 〈στ〉 〈τ〉

1

which corresponds to the diagram of intermediate extensions

Q

? ? ?

Q(
√

2,
√

3)

with three degree 2 extensions.

Let’s figure out what they are. To do so, we need to compute the fixed fields of the
three different subgroups. Any element α ∈ Q(

√
2,
√

3) looks like a + b
√

2 + c
√

3 + d
√

6
for some a, b, c, d ∈ Q. Suppose that α is fixed by σ. Since σ fixes Q, we have σ(α) =
a − b

√
2 + c

√
3 − d

√
6 using the values from the table. In particular, saying α = σ(α)

means that 2b
√

2 + 2d
√

6 = 0, so that b = d = 0 because
√

2,
√

6 are linearly independent
over Q, being part of a Q-basis of Q(

√
2,
√

3)/Q. This says that Q(
√

2,
√

3)〈σ〉 = {a +
c
√

3 : a, c ∈ Q} = Q(
√

3). A similar computation shows that Q(
√

2,
√

3)〈τ〉 = Q(
√

2) and
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Q(
√

2,
√

3)〈στ〉 = Q(
√

6). Therefore, the complete diagram of intermediate extensions is
given below:

Q

Q(
√

3) Q(
√

6) Q(
√

2)

Q(
√

2,
√

3)

Example 0.3. Let f(x) = x3−2. Then f(x) is irreducible because it’s Eisenstein at 2. The
roots of f(x) are 3

√
2, ζ3

3
√

2, ζ23
3
√

2 where ζ3 is a primitive cube root of unity, and so we see
that the splitting field of f(x) is given by Q( 3

√
2, ζ3). The extension Q( 3

√
2)/Q has degree 3

because f(x) is irreducible, and note that ζ3 6∈ Q( 3
√

2) because this is a subfield of R. Since
ζ3 is a root of x2 + x+ 1, this tells us that Q( 3

√
2, ζ3)/Q has degree 6. Therefore, the Galois

group is a group of order 6. What group is it? Any automorphism σ ∈ Gal(Q( 3
√

2, ζ3)/Q)
is determined by it’s action on the generators 3

√
2 and ζ3. Since these must be mapped

to roots of their respective minimal polynomials, we see σ( 3
√

2) ∈ { 3
√

2, ζ3
3
√

2, ζ23
3
√

2} and
σ(ζ3) ∈ {ζ3, ζ23}. This says there are at most 3 · 2 = 6 possible choices for an automorphism,
and because we have exactly 6 automorphisms, all of these choices must work.

Let σ be the automorphism defined by 3
√

2 7→ ζ3
3
√

2 and ζ3 7→ ζ3, and let τ be the
automorphism defined by 3

√
2 7→ 3

√
2 and ζ3 7→ ζ23 . Then one can check that στ 6= τσ, so

Gal(Q( 3
√

2, ζ3)/Q) ∼= S3 must be the non-abelian group of order 6. The six automorphisms
and their values on the generators are listed in the table below.

1 σ σ2 τ τσ τσ2

3
√

2 3
√

2 ζ3
3
√

2 ζ23
3
√

2 3
√

2 ζ23
3
√

2 ζ3
3
√

2
ζ3 ζ3 ζ3 ζ3 ζ23 ζ23 ζ23

To make our isomorphism explicit, we can do the following. Label the three roots ζ i3
3
√

2
for i = 0, 1, 2 of x3−2 as 1, 2, 3 respectively. Then σ is identified with the permutation (123)
and τ is identified with the permutation (23), so there is an explicit isomorphism between
Gal(Q( 3

√
2, ζ3)/Q) and S3 given by σ 7→ (123) and τ 7→ (23) (because S3 = 〈(123), (23)〉).

The lattice of subgroups of S3 (identified with Gal(Q( 3
√

2, ζ3)/Q)) is given below:
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S3

〈τ〉 〈τσ〉 〈τσ2〉

1

〈σ〉

which corresponds to the diagram of intermediate fields:

Q

? ? ?

Q( 3
√

2, ζ3)

?

with one degree 2 extension and three degree 3 extensions.

We now need to compute the fixed field of each subgroup. First, let’s find the quadratic
extension. This is quite easy to see by inspection: Q( 3

√
2, ζ3) obviously contains Q(ζ3)

which has degree two over Q, and therefore it must equal Q( 3
√

2, ζ3)
〈σ〉. From the table, we

note that τ fixes 3
√

2, and therefore this says that Q( 2
√

3) ⊂ Q( 3
√

2, ζ3)
〈τ〉. Since Q( 3

√
2)/Q

has degree 3, they must be equal. Similarly, we see that Q( 3
√

2, ζ3)
〈τσ〉 = Q(ζ3

3
√

2) and

Q( 3
√

2, ζ3)
〈τσ2〉 = Q(ζ23

3
√

2) (both of these fields have degree 3 because they’re constructed
by adjoining a root of of the irreducible polynomial x3 − 2 to Q). This says the complete
diagram of intermediate fields is given below:
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Q

Q( 3
√

2) Q(ζ3
3
√

2) Q(ζ23
3
√

2)

Q( 3
√

2, ζ3)

Q(ζ3)

Example 0.4. Let f(x) = x4 − 2x2 − 2 ∈ Q[x]. Then f(x) is irreducible over Q because
it’s Eisenstein at 2. Writing f as a quadratic in x2 and using the quadratic formula, one

finds that the roots of f are ±
√

1±
√

3. Let α =
√

1 +
√

3, β =
√

1−
√

3, so the roots are

±α,±β. We have αβ = i
√

2, and so β = i
√
2

α
. We see that f(x) splits in Q(α, i

√
2) and since

the splitting field of f contains ±α,±β, in particular it contains i
√

2 so the splitting field is
Q(α, i

√
2). Since f(x) is irreducible, Q(α)/Q is a degree 4 extension, and because Q(α) is a

subfield of R, the polynomial x2 + 2 is irreducible over Q(α) because it’s roots ±i
√

2 are not
real. Therefore, Q(α, i

√
2)/Q has degree 8. What is it’s Galois group? The Galois group is

a group of order 8 because the extension has degree 8. For any σ ∈ Gal(Q(α, i
√

2)/Q), σ is
completely determined by it’s action on the generators α and i

√
2. Since σ fixes Q, σ must

map α, i
√

2 to a root of their respective minimal polynomials. Therefore, σ(α) ∈ {±α,±β}
and σ(i

√
2) ∈ {±i

√
2}. This says there are at most 4 · 2 = 8 possible different choices of

automorphisms, and since we know there are exactly 8 automorphisms, all of these choices
must work.

We now need to narrow down what the Galois group is. There are five groups of order 8:
Z/8Z,Z/2Z×Z/4Z, Z/2Z×Z/2Z×Z/2Z, D8, and Q8. Let σ denote the automorphism that
sends α 7→ β and i

√
2 7→ −i

√
2, and let τ denote the automorphism that sends α 7→ α and

i
√

2 7→ −i
√

2. First, one can check that στ 6= τσ, because (στ)(α) = β while (τσ)(α) = −β.
Therefore, it’s either D8 or Q8. Next, note that σ2 and τσ are two distinct elements of order
2, so our Galois group is D8. We can write down all the elements of the Galois group by
filling out the table below. It will be needed later to know what the automorphisms do to
β, so we will also add in this row now for convenience.

1 σ σ2 σ3 τ τσ τσ2 τσ3

α α β −α −β α −β −α β

i
√

2 i
√

2 −i
√

2 i
√

2 −i
√

2 −i
√

2 i
√

2 −i
√

2 i
√

2
β β −α −β α −β −α β α
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For the sake of making our isomorphism explicit, check that σ4 = τ 2 = 1 and τστ = σ3, so
that there’s a group isomorphism D8

∼= Gal(Q(α, i
√

2)/Q) given by r 7→ σ and s 7→ τ , re-
calling that D8 = 〈r, s|r4 = s2 = 1, srs = r3〉. The lattice of subgroups of Gal(Q(α, i

√
2)/Q)

is given below:

D8

〈τ, τσ2〉 〈σ〉 〈τσ, τσ3〉

〈τ〉 〈τσ2〉 〈σ2〉 〈τσ〉 〈τσ3〉

1

and so this corresponds to the diagram of intermediate fields:

Q

? ? ?

? ? ? ? ?

Q(α, i
√

2)

with three degree 2 extensions and five degree 4 extensions.

In order to find the intermediate fields, we need to compute the fixed fields of each subgroup
of Gal(Q(α, i

√
2)/Q). There are a few subfields we can quite easily fill in by inspection. Let’s

start with the quadratic ones. Firstly, Q(i
√

2) must be on our list. Also observe that since

α =
√

1 +
√

3, that α2− 1 =
√

3, so Q(
√

3) is on our list. Finally, note that i
√

2 ·
√

3 = i
√

6
and so Q(i

√
6) must be on our list. We’ve written down three quadratic extensions, and I

claim they’re actually all distinct, so they must be the only quadratic extensions. To do so,
we just need to show that each subfield is fixed by distinct subgroups of Gal(Q(α, i

√
2)/Q),

so that they’re distinct fields via the correspondence. From the table, we see that i
√

2 is
fixed by τσ and τσ3, so Q(i

√
2) ⊂ Q(α, i

√
2)〈τσ,τσ

3〉. Since both extensions are quadratic,
they must therefore be equal. To compute the action of an element of the Galois group
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on
√

3 and i
√

6, we must write these in terms of α and i
√

2. We have
√

3 = α2 − 1 and
i
√

6 = (α2 − 1)i
√

2, and so we can use the corresponding values in the table to see what

happens. Doing so, one sees that Q(
√

3) = Q(α, i
√

2)〈τ,τσ
2〉 and Q(i

√
6) = Q(α, i

√
2)〈σ〉.

Therefore, we’ve found all the quadratic extensions.

We can also find some quartic extensions by inspection. We saw earlier that Q(α) is one
such extension. For the same reason, Q(β)/Q also has degree 4, and Q(α) 6= Q(β) because β
is not real while α is. To get another extension, we just take a compositum of two quadratic
extensions: Q(

√
3, i
√

2)/Q has degree 4. Now once more, we can show that this is distinct
from the other two fields by just checking that each field is fixed by a different subgroup of
the Galois group. Using the table, Q(α) ⊂ Q(α, i

√
2)〈τ〉 and so they’re equal because they

have the same degree. Similarly, Q(β) = Q(α, i
√

2)〈τσ
2〉, and Q(

√
3, i
√

6) = Q(α, i
√

2)〈σ
2〉.

So far, we’ve filled out this much of the diagram:

Q

Q(
√

3) Q(i
√

6) Q(i
√

2)

Q(α) Q(β) Q(
√

3, i
√

6) ? ?

Q(α, i
√

2)

There are two more missing quartic extensions on our list that we need to find, corre-
sponding to the fixed fields of 〈τσ〉 and 〈τσ3〉 respectively. It now appears as if we’ve hit a
wall: if you write down an arbitrary element of Q(α, i

√
2), it looks like c0 + c1α + c2α

2 +
c3α

3 + c4i
√

2 + c5αi
√

2 + c6α
2i
√

2 + c7α
3i
√

2 for ci ∈ Q. Unfortunately, τσ and τσ3 map α
to ±β and we don’t have an expression for β in terms of this basis. One could go write it
down, but it’s not very nice. Instead, we’ll do the following.

We know that Q(α, i
√

2) is the splitting field of x4−2x2−2, so in particular, Q(α, i
√

2) =
Q(±α,±β). An element of Gal(Q(α, i

√
2)/Q) is then also determined by it’s actions on

±α,±β, which must map to one of the four roots of x4 − 2x2 − 2. If we label the four
roots α,−α, β,−β as 1, 2, 3, 4 respectively, we may view Gal(Q(α, i

√
2)/Q) as a subgroup

of S4 by writing our different automorphisms as permutations. We see from the table that
τσ = (14)(23) and τσ3 = (13)(24) as permutations. In other words, τσ swaps roots 1, 4 and
2, 3. Therefore, the element α−β, corresponding to the sum of roots 1 and 4, is fixed by τσ!
This says Q(α−β) ⊂ Q(α, i

√
2)〈τσ〉. Similarly, Q(α+β) ⊂ Q(α, i

√
2)〈τσ

3〉. To show equality,
we need to compute the degrees of these extensions. To do so, we need to compute the orbits
of α− β and α+ β under the action of the Galois group. Using our table one last time, the
different values that we obtain by hitting each of α−β and α+β by the various elements of
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the Galois group are ±α± β, so that their minimal polynomial has degree 4. This says the
extensions have degree 4, so we’re done! The complete diagram of intermediate extensions
is then as follows:

Q

Q(
√

3) Q(i
√

6) Q(i
√

2)

Q(α) Q(β) Q(
√

3, i
√

6) Q(α− β) Q(α + β)

Q(α, i
√

2)

Remark 0.5. One might wonder why we didn’t write our extension as Q(α, β) to begin
with, if in the end this is what we needed to find the last two extensions. The reason is
simply because we wouldn’t be able to immediately get the correct bound for the size of the
Galois group: α, β must map to roots of x4−2x2−2 (and they can’t map to the same thing),
so there would be at most 4 · 3 = 12 choices for σ. Obviously this doesn’t help, because we
know there are exactly 8, so some of the choices won’t work! To cut down the bound, note
that α + β 6= 0, and therefore σ(β) 6= −σ(α). Since we already require σ(β) 6= σ(α), this
gives at most 4 · 2 = 8 automorphisms, and therefore we can write them down. Working
with the basis {1, α, α2, α3, β, αβ, α2β, α3β} of Q(α, β)/Q, you can then explicitly determine
what the fixed fields are by computing the Galois action of each of the 8 automorphisms in
the table on an arbitrary element of Q(α, β), and seeing what conditions on the coefficients
have to hold for it to be fixed. You can check yourself as an exercise that you’ll get the
following diagram, now with all the generators expressed in terms of α and β.

Q

Q(α2) Q(α3β − αβ) Q(αβ)

Q(α) Q(β) Q(α2, αβ) Q(α− β) Q(α + β)

Q(α, β)


