Selected Solutions to Homework 5 Tim Smits

4.1.12 If $f, g \in R[T]$ and $f + g \neq 0$, prove that $\deg(f + g) \leq \max\{\deg(f), \deg(g)\}$.

Solution: Write $f(T) = a_n T^n + \ldots + a_0$ and $g(T) = b_m T^m + \ldots + b_0$, with $a_n, b_m \neq 0$. If $n \neq m$, then it's clear that $\deg(f + g) = \max\{\deg(f), \deg(g)\}$. If n = m, the leading coefficient of f + g is $a_n + b_n$. If this is non-zero, $\deg(f + g) = n = \max\{\deg(f), \deg(g)\}$. Otherwise if it is zero, $\deg(f + g) < n = \max\{\deg(f), \deg(g)\}$. Putting this all together says $\deg(f + g) \leq \max\{\deg(f), \deg(g)\}$.

4.2.14 Let $f, g \in F[T]$ with (f, g) = 1. Prove that if $f \mid h$ and $g \mid h$ for some $h \in F[T]$, that $fg \mid h$.

Solution: Since (f,g) = 1, we can write fp + gq = 1 for some $p, q \in F[T]$ by Bezout's lemma. Multiplying by h says fhp + ghq = h. Since $g \mid h$, the first term is divisible by fg. Since $f \mid h$, the second term is divisible by fg. Therefore, $fg \mid h$.

4.3.14 Show that $T^2 + T \in (\mathbb{Z}/6\mathbb{Z})[T]$ can be factored in two ways in $(\mathbb{Z}/6\mathbb{Z})[T]$ as a product of non-constant polynomials that are not units, and not associates of T or T + 1.

Solution: We want to write $T^2 + T = (aT + b)(cT + d)$ for some $a, b, c, d \in (\mathbb{Z}/6\mathbb{Z})$, i.e. $T^2 + T = acT^2 + (ad + bc)T + bd$. Comparing coefficients, this says ac = 1, ad + bc = 1, and bd = 0. The units of $\mathbb{Z}/6\mathbb{Z}$ are 1 and 5, so either a = c = 1 or a = c = 5. In the first case, this says b + d = 1 and bd = 0, so d = 1 - b gives $b = b^2$. The idempotents in $\mathbb{Z}/6\mathbb{Z}$ are 0, 1, 3, 4. Since we don't want to allow b = 0, 1 we get that b = 3, 4. Therefore, one such possible factorization is $T^2 + T = (T+3)(T+4)$. If a = c = 5, we get 5(b+d) = 1 and bd = 0. This says d = b - 5, so $b^2 = 5b$. This has solutions b = 0, 2, 3, 5. Since we don't want any associates of T, T + 1 we can't have b = 0, 5 so b = 2, 3 are possible. This gives the factorization $T^2 + T = (5T + 2)(5T + 3)$. Note that none of the linear polynomials we have found are units or associates of T, T + 1 because none of the constant terms are units.

General comments

- In 4.3.14, you must be careful with your factorizations. It was very commonly written that the two factorizations were (T+3)(T+4) and (T-3)(T-2). However, in $(\mathbb{Z}/6\mathbb{Z})$, 3 = -3 and -2 = 4 so these factorizations are the same!
- In 4.3.14, you have to actually check that your factorizations you wrote satisfy the conditions listed in the problem, i.e. that the polynomials are not units and not associates of T, T + 1. This is not obvious, because we're not working in a domain!