Selected Solutions to Homework 2 Tim Smits

2.1.22

- (a) Give an example to show that the following statement is false: If $ab \equiv ac \mod n$ and $a \not\equiv 0 \mod n$, then $b \equiv c \mod n$.
- (b) Prove that the statement is true when (a, n) = 1.

Solution:

- (a) $2 \cdot 0 \equiv 2 \cdot 2 \mod 4$, but $2 \not\equiv 0 \mod 4$.
- (b) Suppose $ab \equiv ac \mod n$. This says $n \mid a(b-c)$. Since (a, n) = 1, this means $n \mid (b-c)$, so $b \equiv c \mod n$.

2.2.14 Solve the following equations:

- (a) $x^2 + x = [0]$ in $\mathbb{Z}/5\mathbb{Z}$.
- (b) $x^2 + x = [0]$ in $\mathbb{Z}/6\mathbb{Z}$.
- (c) $x^2 + x = [0]$ in $\mathbb{Z}/p\mathbb{Z}$ where p is prime.

Solution: For the first two, just plug in the different congruences classes and see which ones work.

- (a) x = [0], [4].
- (b) x = [0], [2], [3], [5].
- (c) Suppose that x(x+[1]) = [0] in $\mathbb{Z}/p\mathbb{Z}$. Since p is prime, $\mathbb{Z}/p\mathbb{Z}$ is a field, so it has no zero divisors. This means that either x = [0], or x + [1] = [0], i.e. x = [p-1].

2.3.10 Prove that every non-zero element of $\mathbb{Z}/n\mathbb{Z}$ is either a unit or a zero divisor, but not both.

Solution: If $[a] \in \mathbb{Z}/n\mathbb{Z}$ is not a unit, then (a, n) = d > 1, write a = dk and $n = d\ell$ for some integers k, ℓ . We then see that $n \mid a\ell$, so $[a][\ell] = [0]$ in $\mathbb{Z}/n\mathbb{Z}$, so that [a] is a zero-divisor. [a] cannot be both a unit and zero divisor, because if so, then we have [a][x] = [1] and [a][b] = [0] for some $[x], [b] \neq [0] \in \mathbb{Z}/n\mathbb{Z}$. Multiplying the second equation by [x] says [b] = [0], contradicting that [a] is a zero divisor.

General comments

Presumably, you want feedback on your homework. Make you sure leave enough space between problems for me to write comments, please!

- When you define a variable, you *must* declare where it lives otherwise it is meaningless. Similarly, do not forget to quantify your variables (e.g. a = nk for some $k \in \mathbb{Z}$).
- If you are claiming that something is true, you have to justify it. If you are using a theorem, make this clear. In particular, you need to mention *where* in your proof the hypotheses are being used.
- Make sure you double check your computations. A few of you gave an example in 2.1.22*a*) with $a \equiv 0 \mod n$. Similarly, a few of you forgot solutions in 2.2.14*a*, *b*).
- In 2.1.22b), the condition that (a, n) = 1 does not mean that n is prime. It's also important to note that (a, n) = 1 is a *stronger* condition that just saying that $n \nmid a$. It was commonly written that "since $n \mid a(b-c)$ and (a, n) = 1, then $n \nmid a$ so $n \mid (b-c)$ " The latter is not the point! If you drop the relatively prime condition, part a) says this statement is *false*.
- A general confusion among the problems is the difference between an integer $a \in \mathbb{Z}$ and the equivalence class $[a] \in \mathbb{Z}/n\mathbb{Z}$. The latter is a *set*, so it's nonsense to write things like " $p \mid [a]$ " or "suppose (a, n) = 1 for $a \in \mathbb{Z}/n\mathbb{Z}$ ". This was particularly common in 2.2.14c) where x is written to mean an element of $\mathbb{Z}/n\mathbb{Z}$ and not an integer. To avoid these sorts of issues, write something like "let $x \in \mathbb{Z}/n\mathbb{Z}$ with x = [a] for some $a \in \mathbb{Z}$ ".
- In 2.3.10, you should really be proving exercise 9 as part of your proof.