
RINGS

TIM SMITS

Rings are objects which abstract the nice properties that addition and multiplication have
in the integers.

1. Basic definitions and examples

Definition 1.1. A ring is a set R with binary operations +, · called addition and multipli-
cation that satisfy the following axioms for all a, b, c ∈ R:

1. a + b = b + a.
2. a + (b + c) = (a + b) + c and (ab)c = a(bc).
3. a(b + c) = ab + ac and (a + b)c = ac + bc.
4. There is an element 0 ∈ R with the property a + 0 = a.
5. For any a, there is an element −a ∈ R such that a + (−a) = 0.
6. There is an element 1 ∈ R such that a · 1 = a.

Note that the definition of a ring does not require that multiplication be commutative. A
ring that satisfies ab = ba for all a, b ∈ R is called a commutative ring.

Some algebra textbooks do not require that a ring have a multiplicative identity, and
instead call our definition a “ring with identity”. This is very bad – for various reasons, it
ends up being better to think of not having an identity element as something missing from
a ring instead of something added to a ring. There are a few arguments for not including a
multiplicative identity as part of the definition of a ring, but at the end of the day, objects
that behave like rings without identity are much better labeled under different terms. See
for example, [1] or [2] for a more in depth discussion.

Definition 1.2. A subring of a ring R is a subset S ⊂ R such that the operations +, · of
R make S a ring with multiplicative identity the same as that of R.

Rings are defined in such a way that make all the basic arithmetic properties of the integers
carry over.

Proposition 1. Let R be a ring.

1. a0 = 0a = 0 for all a ∈ R.
2. (−a)b = a(−b) = −(ab) for all a, b ∈ R.
3. (−a)(−b) = ab for all a, b ∈ R.
4. −a = (−1)a for all a ∈ R.

Proof. Exercise. �

We’ll start off by listing a standard collection of rings that we’ll be using to later to
illustrate the differences that can arise in ring structures.

Example 1.3. We’ve already studied two examples of a ring in depth: the integers Z are
the most basic example of a commutative ring, and the integers mod n, Z/nZ, also form
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a commutative ring for any n > 1. Note that neither Z nor Z/nZ have any non-trivial
subrings: any subset of Z that contains 1 and is also closed under addition contains all
positive integers. Since a subring also contain inverses, it contains all negative integers as
well, and must contain 0, and therefore such a subset is actually all of Z. Similarly, any
subset of Z/nZ that contains [1] and is closed under addition contains [1], [2], . . . , [n− 1], [n]
which gives us all of Z/nZ.

Example 1.4. The trivial ring (or zero ring) is the set {0} with operations defined by
0 + 0 = 0 and 0 · 0 = 0. Note that in this ring, the additive and multiplicative identity are
equal!

Example 1.5. The rational numbers Q, and the real numbers R are both familiar commu-
tative rings. More generally, if F is any field, then F is also a commutative ring.

Example 1.6. If R is any ring, then the set of polynomials with coefficients in R and the
variable T , R[T ], has a ring structure given by the usual addition and multiplication of
polynomials. The additive identity is the zero polynomial p(T ) = 0 and the multiplicative
identity is the polynomial p(T ) = 1. Note that R[T ] is commutative if and only if R is
commutative.

Example 1.7. If R is any ring, then the set of formal power series with coefficients in R
and the variable T , R[[T ]], has the structure of a ring. Here, a typical element of R[[T ]] is an
expression of the form f(T ) =

∑∞
n=0 anT

n. The sum of two power series f(T ) =
∑∞

n=0 anT
n

and g(T ) =
∑∞

n=0 bnT
n is defined by (f +g)(T ) =

∑∞
n=0(an +bn)T n and the product is given

by (fg)(T ) =
∑∞

n=0

(∑n
k=0 akbn−k

)
T n.

Example 1.8. If R is any ring, then the set Mn(R) of n× n matrices with coefficients in R
with the usual addition and multiplication of matrices forms a ring. Here the additive identity
is the zero matrix, and the multiplicative identity the identity matrix (hence the names).
Mn(R) is our first interesting example of a non-commutative ring: if Eij is the matrix with
(i, j)-th entry equal 1 and 0 everywhere else, then E11E21 = 0, while E21E11 = E21.

Example 1.9. Let C(R) denote the set of functions f : R → R that are continuous.
Then with operations given by pointwise addition and multiplication of functions, then
C(R) has the structure of a commutative ring with zero element the function f(x) = 0 and
multiplicative identity f(x) = 1.

Example 1.10. For any squarefree integer D, let Z[
√
D] = {a+b

√
D : a, b ∈ Z}. Then with

operations given by (a+b
√
D)+(a′+b′

√
D) = (a+a′)+(b+b′)

√
D and (a+b

√
D)(a′+b′

√
D) =

(aa′ + bb′d) + (ab′ + ba′)
√
D, we have that Z[

√
D] forms a commutative ring with additive

and multiplicative identity elements given by 0 and 1 respectively. We see that Z[
√
D] is a

subring of C. In the particular case that D = −1, the ring Z[i] is called the ring of Gaussian
integers. The Gaussian integers are a subring of the field Q(i) = {a + bi : a, b ∈ Q} that
have a role analogous to the usual integers Z sitting inside of Q.

We’ll now give an easy criterion for determining when a subset of a ring forms a subring.

Proposition 2 (Subring test). Let S ⊂ R be a subset such that:

1. 1 ∈ S.
2. a− b ∈ S for all a, b ∈ S.
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3. ab ∈ S for all a, b ∈ S.

Then S is a subring of R.

Proof. We have a − a = 0 ∈ S. Since 1 ∈ S, we then have 0 − 1 = −1 ∈ S. As S is
closed under multiplication, we have a · −1 = −a ∈ S for all a ∈ S. Therefore, we have
a− (−b) = a + b ∈ S for all a, b ∈ S, which says that S is closed under · and +. We’re now
done, because the relevant expressions in axioms 1, 2, 3 live not only in S, but in R, where
we know they satisfy the axioms. �

Example 1.11. Given two rings R, S, the product ring R × S is defined as a set by
R × S = {(r, s) : r ∈ R, s ∈ S} with operations of addition and multiplication performed
component-wise. The additive identity is given by (0R, 0S) and the multiplicative identity is
given by (1R, 1S). If R is ring and A,B ⊂ R are two subrings, then using the subring test
one can check that A ∩B is another subring of R.

There’s no axiom that says an element in a ring must have a multiplicative inverse. Indeed,
we’ve seen that in Z/nZ that it’s possible to have non-zero elements [a] with [a][b] = [0],
which we called zero divisors. We carry this terminology over to the general ring setting.

Definition 1.12. Let R be a ring. A non-zero element a ∈ R is called a unit if it has a
multiplicative inverse, i.e. there is a non-zero element b ∈ R with ab = ba = 1. The set of
all units of R is denoted R×. A non-zero element a ∈ R is called a zero divisor if there is
a non-zero element b ∈ R with ab = 0.

In the definition of unit above, it’s important to remember that a unit is an element with
a two-sided inverse. If a has both a left and right inverse, then necessarily they are the same:
if ab = 1 and ca = 1, then multiplying by c says b = c. It’s possible for an element to have
a right sided inverse but no left sided inverse, but we don’t want to call these things units.
Also, note that it’s not possible for an element a 6= 0 of a ring R to be both a zero divisor
and a unit: if ab = 1 for some b ∈ R and ac = 0 for some c ∈ R, multiplying the second
equation by b says that a = 0, a contradiction. When a ring has no zero divisors, we give it
a special name:

Definition 1.13. A commutative ring R is called an integral domain if R has no zero
divisors. That is, for a, b ∈ R, ab = 0 means a = 0 or b = 0.

Integral domains are nice because they are rings in which the cancellation property holds.

Proposition 3. Let R be an integral domain. Then if ab = ac for some a, b, c ∈ R with
a 6= 0, we have b = c.

Proof. ab = ac means a(b− c) = 0. Since a 6= 0 and R is an integral domain, we must have
b− c = 0, i.e. b = c. �

Example 1.14. Z is an integral domain, and Z× = {−1, 1}, as these are the only integers a
that have ax = 1 solvable in Z. Note that every non-zero integers is a unit inside the larger
ring Q, which says that being a unit is a property of which ring the element is viewed as
living in.

Example 1.15. We’ve seen that (Z/nZ)× = {[a] : (a, n) = 1}. In particular, we’ve also
seen that every element of Z/nZ is either a unit or a zero divisor. Therefore, Z/nZ is an
integral domain if and only if n is prime, because this is equivalent to saying that (a, n) = 1
for 1 ≤ a ≤ n− 1.
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Example 1.16. A unit in Mn(R) is a non-zero matrix A with AB = BA = In for some
non-zero matrix B, i.e. an invertible matrix. The set of units in Mn(R) is denoted GLn(R).
When R = F is a field, linear algebra tells us that a matrix is invertible if and only if it’s
determinant is non-zero. Also recall that if AB = In for some matrices A,B then actually
BA = In as well, so having a one-sided inverse is the same as having a two-sided inverse.
Note that our previous example says that E11 is a zero divisor for n > 1.

Example 1.17. In Z[i], let a + bi be non-zero. Then notice that (a + bi)(a− bi) = a2 + b2,
and that a2 + b2 6= 0. The inverse of a+ bi inside the field Q(i) is then given by a−bi

a2+b2
. Now,

the multiplicative inverse of an element must be unique, and the inverse of a+ bi inside Z[i]
is still a multiplicative inverse in Q(i). This means that a + bi is a unit in Z[i] if and only
if a−bi

a2+b2
lives in Z[i]. Since a ≤ a2 + b2 and b ≤ a2 + b2, we see the only way that a

a2+b2

and b
a2+b2

are integers is when a2 + b2 = 1. This equation has integer solutions given by

(a, b) = (±1, 0), (0,±1), so that Z[i]× = {−1, 1,−i, i}.

The following result is sometimes useful.

Proposition 4. Let R be a finite, integral domain. Then R is a field.

Proof. Let a ∈ R be non-zero. Define a function f : R → R by f(x) = ax. I claim that f
is injective. Suppose that f(x) = f(y) for some x, y ∈ R. Then ax = ay, so a(x − y) = 0.
Since R is an integral domain and a 6= 0, the cancellation property says that x− y = 0, i.e.
x = y. Since f is an injective map from a finite set to itself, f must be bijective, and in
particular, surjective. Then by definition of surjectivity, there is some element b ∈ R such
that f(b) = 1, i.e. ab = 1. Since R is commutative, ba = 1, so we are done. �

2. Ring homomorphisms

In order to study rings, we must study structure preserving maps between them.

Definition 2.1. Let R and S be rings. A ring homomorphism f : R → S is a map
satisfying the following:

(i) f(1R) = 1S

(ii) f(x + y) = f(x) + f(y) for all x, y ∈ R
(iii) f(xy) = f(x)f(y) for all x, y ∈ R.

A bijective ring homomorphism is called an isomorphism. If there is an isomorphism
between two rings R and S we say that R and S are isomorphic and write R ∼= S.

Attached to a ring homomorphism are two special subsets of R and S:

Definition 2.2. Let f : R→ S be a ring homomorphism. The kernel of f , ker(f) is defined
by ker(f) = {x ∈ R : f(x) = 0}. The image of f , Im(f), is defined by Im(f) = {f(x) : x ∈
R}.

Proposition 5. Let f : R→ S be a ring homomorphism. Then Im(f) is a subring of S. If
f is injective, then R ∼= Im(f).

Proof. Note that f(1R) = 1S so 1S ∈ Im(f). Now suppose that x, y ∈ Im(f). Then we can
write x = f(a) and y = f(b) for some a, b ∈ R. We then see that x−y = f(a)−f(b) = f(a−b),
so x−y ∈ Im(f) and xy = f(a)f(b) = f(ab) because f is a ring homomorphism. The subring
test then says that Im(f) is a subring of S. If f is injective, then by restricting the co-domain



RINGS 5

we can consider f as a map f : R → Im(f) instead. This map is now obviously a bijective
ring homomorphism, so R ∼= Im(f). �

The image of f is a subring of S, but the kernel of f is not a subring of R, because the
definition requires that f(1R) = 1S, so 1R 6∈ ker(f). Part of our reason for requiring that
rings have a multiplicative identity is because we don’t want kernels to be subrings – they
are an example of a different type of object, called an ideal, which we will study more in
depth later.

Example 2.3. Let f : Z → Z be a ring homorphism. Since n = n · 1 and f(1) = 1 by
definition, we have f(n) = nf(1) = n, i.e. f is the identity map. The identity map is
obviously a ring homomorphism, so this says there is a single ring homomorphism from Z
to Z. More generally, there is a single ring homorphism from Z to any ring R: if f : Z→ R
is a homomorphism, we again have f(1) = 1R so f(n) = n · 1R, where the latter denotes
repeated addition of 1R a total of n times. It’s once more fairly easy to see that this map
actually is a ring homomorphism, so there is is a unique ring homorphism from Z into any
ring.

Example 2.4. Let f : Z→ Z/nZ be the unique ring homomorphism from Z to Z/nZ. This
is defined by f(n) = n · [1] = [n]. This map is called the natural projection map. f is
clearly surjective, so Im(f) = Z/nZ. The kernel of f is all integers n with [n] = [0] ∈ Z/nZ,
i.e. ker(f) = {nk : k ∈ Z}.

Example 2.5. Let f : R→ R[x] be defined by f(r) = r for r ∈ R, where the latter is viewed
as the constant polynomial p(x) = r ∈ R[x]. It’s easy to see that f is a ring homomorphism,
with ker(f) = {0}. In general, if R ⊂ S is a subring, then the map f : R → S given by
f(r) = r is a ring homomorphism called the natural inclusion.

Example 2.6. Let c ∈ R and define fc : R[x] → R by fc(p(x)) = p(c). This is a ring
homomorphism: if p(x) = 1, then fc(p(x)) = p(c) = 1, and for p, q ∈ R[x] we have
fc((pq)(x)) = (pq)(c) = p(c)q(c) = fc(p(x))fc(q(x)) and fc((p + q)(x)) = (p + q)(c) =
p(c) + q(c) = fc(p(x)) + fc(q(x)) because of how polynomial addition and multiplication is
defined. This homomorphism is called the evaluation map. Note that f is surjective, so
Im(fc) = R, and ker(fc) = {p(x) ∈ R[x] : p(c) = 0} is the set of all polynomials that vanish
at c.

Example 2.7. Let f : R→ S be a ring homomorphism, and let x ∈ R×. Then by definition,
there is y ∈ R with xy = yx = 1R, so f(x)f(y) = f(xy) = f(1R) = f(yx) = f(y)f(x) = 1S

says that f(x) ∈ S×. That is, units map to units under ring homomorphisms. This is
hopefully unsurprising, because homomorphisms preserve ring structure – if r ∈ R satisfies
some sort of algebraic relation in terms of + and ·, then so must f(r) ∈ S!.

Example 2.8. Our first example tells us the ring homomorphism i : Z→ Q is the inclusion
map, but there is no ring homomorphism f : Q→ Z. To see this, note f(1) = 1, so f(n) = n
for any n ∈ Z. Then 1 = 2 · 1

2
, so 1 = f(1) = f(2 · 1

2
) = 2f(1

2
), which is obviously impossible

in Z.

Example 2.9. A ring endomorphism is a ring homomorphism f : R → R for a ring R.
The set of ring endomorphisms of R is denoted End(R). Then End(R) has the structure
of a ring under the operations (f + g)(x) = f(x) + g(x) and (fg)(x) = f(g(x)) for x ∈ R,
i.e. addition is pointwise and multiplication is composition (you should verify that the
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composition of two homomorphisms is still a homomorphism!). Our first example shows
that End(Z) = {idZ} is a ring with 1 element, i.e. End(Z) ∼= {0}.

There’s an easy way to check if a ring homomorphism is injective or surjective by trans-
lating these set theoretic statements into the language of images and kernels:

Proposition 6. Let f : R→ S be a ring homomorphism. Then f is injective if and only if
ker(f) = {0}. Similarly, f is surjective if and only if Im(f) = S.

Proof. First, suppose that f is injective. Since f(0) = 0, if x ∈ ker(f) we have f(x) = 0 =
f(0), so the injectivity of f says that x = 0. Now suppose that ker(f) = {0}, and that
f(x) = f(y). Since f is a ring homomorphism, this says f(x−y) = 0, so that x−y ∈ ker(f).
This then means that x− y = 0, so that x = y, which proves that f is injective. The latter
statement is obvious, since the image of f in the ring theoretic sense is the same as in the
set theoretic sense. �

Example 2.10. The complex number i satisfies the algebraic relation i2 = −1. In the ring

M2(R), there is a matrix A =

(
0 1
−1 0

)
with the property that A2 = −I2. We can naturally

associate any real number a to a diagonal matrix in M2(R), so this suggests we define a map

f : C → M2(R) by f(a + bi) = a

(
1 0
0 1

)
+ b

(
0 1
−1 0

)
=

(
a b
−b a

)
. One can verify that f

is an injective ring homomorphism, so that C ∼= Im(f) can be identified with a subring of
M2(R)!.
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