RINGS

TIM SMITS

Rings are objects which abstract the nice properties that addition and multiplication have
in the integers.

1. BASIC DEFINITIONS AND EXAMPLES

Definition 1.1. A ring is a set R with binary operations +, - called addition and multipli-
cation that satisfy the following axioms for all a,b,c € R:

l.a+b=b+a.

a+ (b+c)=(a+b)+cand (ab)c = a(bc).

a(b+¢) = ab+ ac and (a + b)c = ac + be.

There is an element 0 € R with the property a + 0 = a.

For any a, there is an element —a € R such that a 4+ (—a) = 0.
There is an element 1 € R such that a -1 = a.
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Note that the definition of a ring does mot require that multiplication be commutative. A
ring that satisfies ab = ba for all a,b € R is called a commutative ring.

Some algebra textbooks do not require that a ring have a multiplicative identity, and
instead call our definition a “ring with identity”. This is very bad — for various reasons, it
ends up being better to think of not having an identity element as something missing from
a ring instead of something added to a ring. There are a few arguments for not including a
multiplicative identity as part of the definition of a ring, but at the end of the day, objects
that behave like rings without identity are much better labeled under different terms. See
for example, [I] or [2] for a more in depth discussion.

Definition 1.2. A subring of a ring R is a subset S C R such that the operations +, - of
R make S a ring with multiplicative identity the same as that of R.

Rings are defined in such a way that make all the basic arithmetic properties of the integers
carry over.

Proposition 1. Let R be a ring.

1. a0 =0a =0 for alla € R.

2. (—a)b = a(—b) = —(ab) for all a,b € R.
3. (—a)(=b) = ab for all a,b € R.

4. —a = (—1)a for all a € R.

Proof. Exercise. 0

We'll start off by listing a standard collection of rings that we’ll be using to later to
illustrate the differences that can arise in ring structures.

Example 1.3. We've already studied two examples of a ring in depth: the integers Z are

the most basic example of a commutative ring, and the integers mod n, Z/nZ, also form
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a commutative ring for any n > 1. Note that neither Z nor Z/nZ have any non-trivial
subrings: any subset of Z that contains 1 and is also closed under addition contains all
positive integers. Since a subring also contain inverses, it contains all negative integers as
well, and must contain 0, and therefore such a subset is actually all of Z. Similarly, any
subset of Z/nZ that contains [1] and is closed under addition contains [1], [2],...,[n — 1], [n]
which gives us all of Z/nZ.

Example 1.4. The trivial ring (or zero ring) is the set {0} with operations defined by
04+0=0and 0-0=0. Note that in this ring, the additive and multiplicative identity are
equal!

Example 1.5. The rational numbers QQ, and the real numbers R are both familiar commu-
tative rings. More generally, if F' is any field, then F' is also a commutative ring.

Example 1.6. If R is any ring, then the set of polynomials with coefficients in R and the
variable T, R[T], has a ring structure given by the usual addition and multiplication of
polynomials. The additive identity is the zero polynomial p(7") = 0 and the multiplicative
identity is the polynomial p(T) = 1. Note that R[T] is commutative if and only if R is
commutative.

Example 1.7. If R is any ring, then the set of formal power series with coefficients in R
and the variable T', R[[T]], has the structure of a ring. Here, a typical element of R[[T]] is an
expression of the form f(7T") = Y > a,T". The sum of two power series f(T) = " a,T"
and ¢(T) = 3277 b, T™ is defined by (f +¢)(T) = 32,2 (an +b,)T™ and the product is given

by (£9)(T) = 52 ( Shoambs )T

Example 1.8. If R is any ring, then the set M, (R) of n X n matrices with coefficients in R
with the usual addition and multiplication of matrices forms a ring. Here the additive identity
is the zero matrix, and the multiplicative identity the identity matrix (hence the names).
M, (R) is our first interesting example of a non-commutative ring: if F;; is the matrix with
(i, 7)-th entry equal 1 and 0 everywhere else, then F1;FEy = 0, while Ey Eyq = Eoy.

Example 1.9. Let C(R) denote the set of functions f : R — R that are continuous.
Then with operations given by pointwise addition and multiplication of functions, then
C(R) has the structure of a commutative ring with zero element the function f(x) =0 and
multiplicative identity f(z) = 1.

Example 1.10. For any squarefree integer D, let Z[v/D] = {a+bV/D : a,b € Z}. Then with
operations given by (a+bv/D)+(a'+b'vV/D) = (a+a')+(b+V)V'D and (a+bv'D)(d'+b'/D) =
(aa’ 4+ bb'd) + (ab’ + ba')\/D, we have that Z[v/D] forms a commutative ring with additive
and multiplicative identity elements given by 0 and 1 respectively. We see that Z[v/D] is a
subring of C. In the particular case that D = —1, the ring Z][] is called the ring of Gaussian
integers. The Gaussian integers are a subring of the field Q(i) = {a + bi : a,b € Q} that
have a role analogous to the usual integers Z sitting inside of Q.

We’ll now give an easy criterion for determining when a subset of a ring forms a subring.

Proposition 2 (Subring test). Let S C R be a subset such that:

1.1e€S.
2.a—be S foralla,be S.
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3.abe S foralla,be§.
Then S is a subring of R.

Proof. We have a —a = 0 € S. Since 1 € S, we then have 0 — 1 = —1 € S. As S is
closed under multiplication, we have a - —1 = —a € S for all a € S. Therefore, we have
a—(=b)=a-+be S forall a,b €S, which says that S is closed under - and +. We're now
done, because the relevant expressions in axioms 1,2, 3 live not only in S, but in R, where
we know they satisfy the axioms. 0

Example 1.11. Given two rings R, S, the product ring R x S is defined as a set by
R xS ={(r,s) :r € R,s € S} with operations of addition and multiplication performed
component-wise. The additive identity is given by (0g,0g) and the multiplicative identity is
given by (1g, 1g). If R is ring and A, B C R are two subrings, then using the subring test
one can check that A N B is another subring of R.

There’s no axiom that says an element in a ring must have a multiplicative inverse. Indeed,
we've seen that in Z/nZ that it’s possible to have non-zero elements [a] with [a][b] = [0],
which we called zero divisors. We carry this terminology over to the general ring setting.

Definition 1.12. Let R be a ring. A non-zero element a € R is called a unit if it has a
multiplicative inverse, i.e. there is a non-zero element b € R with ab = ba = 1. The set of
all units of R is denoted R*. A non-zero element a € R is called a zero divisor if there is
a non-zero element b € R with ab = 0.

In the definition of unit above, it’s important to remember that a unit is an element with
a two-sided inverse. If a has both a left and right inverse, then necessarily they are the same:
if ab =1 and ca = 1, then multiplying by ¢ says b = ¢. It’s possible for an element to have
a right sided inverse but no left sided inverse, but we don’t want to call these things units.
Also, note that it’s not possible for an element a # 0 of a ring R to be both a zero divisor
and a unit: if ab = 1 for some b € R and ac = 0 for some ¢ € R, multiplying the second
equation by b says that a = 0, a contradiction. When a ring has no zero divisors, we give it
a special name:

Definition 1.13. A commutative ring R is called an integral domain if R has no zero
divisors. That is, for a,b € R, ab= 0 means a =0 or b = 0.

Integral domains are nice because they are rings in which the cancellation property holds.

Proposition 3. Let R be an integral domain. Then if ab = ac for some a,b,c € R with
a # 0, we have b = c.

Proof. ab = ac means a(b — ¢) = 0. Since a # 0 and R is an integral domain, we must have
b—c=0,1ie b=c. 0

Example 1.14. Z is an integral domain, and Z* = {—1, 1}, as these are the only integers a
that have ax = 1 solvable in Z. Note that every non-zero integers ¢s a unit inside the larger
ring @, which says that being a unit is a property of which ring the element is viewed as
living in.

Example 1.15. We've seen that (Z/nZ)* = {[a] : (a,n) = 1}. In particular, we've also
seen that every element of Z/nZ is either a unit or a zero divisor. Therefore, Z/nZ is an
integral domain if and only if n is prime, because this is equivalent to saying that (a,n) =1
forl<a<n-1.
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Example 1.16. A unit in M, (R) is a non-zero matrix A with AB = BA = I,, for some
non-zero matrix B, i.e. an invertible matrix. The set of units in M,,(R) is denoted GL, (R).
When R = F is a field, linear algebra tells us that a matrix is invertible if and only if it’s
determinant is non-zero. Also recall that if AB = I, for some matrices A, B then actually
BA = I, as well, so having a one-sided inverse is the same as having a two-sided inverse.
Note that our previous example says that Ey; is a zero divisor for n > 1.

Example 1.17. In Z[i], let a + bi be non-zero. Then notice that (a + bi)(a — bi) = a* + b,

and that a® 4+ b* # 0. The inverse of a + bi inside the field Q(7) is then given by a‘;jr’;;. Now,
the multiplicative inverse of an element must be unique, and the inverse of a + bi inside Z|i]
is still a multiplicative inverse in Q(7). This means that a 4 bi is a unit in Z[7] if and only

if a‘éjr% lives in Z[i]. Since a < a® +b? and b < a® + b?, we see the only way that b

and ﬁ are integers is when a? + b? = 1. This equation has integer solutions given by
(a,b) = (£1,0), (0, £1), so that Z[i]* = {—1,1, —i,i}.

The following result is sometimes useful.
Proposition 4. Let R be a finite, integral domain. Then R is a field.

Proof. Let a € R be non-zero. Define a function f : R — R by f(z) = ax. I claim that f
is injective. Suppose that f(z) = f(y) for some x,y € R. Then ax = ay, so a(x —y) = 0.
Since R is an integral domain and a # 0, the cancellation property says that x —y = 0, i.e.
x = y. Since f is an injective map from a finite set to itself, f must be bijective, and in
particular, surjective. Then by definition of surjectivity, there is some element b € R such
that f(b) =1, i.e. ab= 1. Since R is commutative, ba = 1, so we are done. 0

2. RING HOMOMORPHISMS
In order to study rings, we must study structure preserving maps between them.

Definition 2.1. Let R and S be rings. A ring homomorphism f : R — S is a map
satisfying the following:

(i) f(1r) =1s
(i) fl(x+y) = f(x)+ f(y) forall z,y € R
(iii) f(zy) = f(x)f(y) for all z,y € R.
A bijective ring homomorphism is called an isomorphism. If there is an isomorphism
between two rings R and S we say that R and S are isomorphic and write R = S.

Attached to a ring homomorphism are two special subsets of R and S:

Definition 2.2. Let f : R — S be a ring homomorphism. The kernel of f, ker(f) is defined
by ker(f) = {z € R: f(x) = 0}. The image of f, Im(f), is defined by Im(f) = {f(z) : z €
R}.

Proposition 5. Let f: R — S be a ring homomorphism. Then Im(f) is a subring of S. If
[ is injective, then R = Im(f).

Proof. Note that f(1g) = 1g so 1g € Im(f). Now suppose that =,y € Im(f). Then we can
write x = f(a) and y = f(b) for some a,b € R. We then see that t—y = f(a)—f(b) = f(a—b),
soz—y € Im(f) and zy = f(a)f(b) = f(ab) because f is a ring homomorphism. The subring
test then says that Im(f) is a subring of S. If f is injective, then by restricting the co-domain
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we can consider f as a map f: R — Im(f) instead. This map is now obviously a bijective
ring homomorphism, so R = Im(f). OJ

The image of f is a subring of .S, but the kernel of f is not a subring of R, because the
definition requires that f(1g) = 1g, so 1z & ker(f). Part of our reason for requiring that
rings have a multiplicative identity is because we don’t want kernels to be subrings — they
are an example of a different type of object, called an ideal, which we will study more in
depth later.

Example 2.3. Let f : Z — Z be a ring homorphism. Since n = n -1 and f(1) = 1 by
definition, we have f(n) = nf(1) = n, i.e. f is the identity map. The identity map is
obviously a ring homomorphism, so this says there is a single ring homomorphism from 7Z
to Z. More generally, there is a single ring homorphism from Z to any ring R: if f : Z — R
is a homomorphism, we again have f(1) = 1z so f(n) = n - 1g, where the latter denotes
repeated addition of 1z a total of n times. It’s once more fairly easy to see that this map
actually is a ring homomorphism, so there is is a unique ring homorphism from Z into any
ring.

Example 2.4. Let f : Z — 7Z/nZ be the unique ring homomorphism from Z to Z/nZ. This
is defined by f(n) = n-[1] = [n]. This map is called the natural projection map. f is
clearly surjective, so Im(f) = Z/nZ. The kernel of f is all integers n with [n] = [0] € Z/nZ,
i.e. ker(f)={nk:keZ}.

Example 2.5. Let f : R — R[x] be defined by f(r) = r for r € R, where the latter is viewed
as the constant polynomial p(z) = r € R[x]. It’s easy to see that f is a ring homomorphism,
with ker(f) = {0}. In general, if R C S is a subring, then the map f : R — S given by
f(r) = r is a ring homomorphism called the natural inclusion.

Example 2.6. Let ¢ € R and define f, : R[z] — R by f.(p(z)) = p(c). This is a ring
homomorphism: if p(z) = 1, then f.(p(z)) = p(c) = 1, and for p,q € R[x] we have
fe((pa)(z)) = (pa)(c) = p(c)qlc) = fe(p(z))fe(q(z)) and [fe((p + ¢)(z)) = (p + ¢)(c) =
p(c) + q(c) = fo(p(x)) + f.(¢(x)) because of how polynomial addition and multiplication is
defined. This homomorphism is called the evaluation map. Note that f is surjective, so
Im(f.) = R, and ker(f.) = {p(z) € R[z] : p(c) = 0} is the set of all polynomials that vanish
at c.

Example 2.7. Let f : R — S be a ring homomorphism, and let z € R*. Then by definition,
there is y € R with vy — yz — 1n, so f(x)f(y) = f(zy) = f(1r) = [(yz) = F(y)F(x) = 1g
says that f(z) € S*. That is, units map to units under ring homomorphisms. This is
hopefully unsurprising, because homomorphisms preserve ring structure — if r € R satisfies
some sort of algebraic relation in terms of + and -, then so must f(r) € Sl

Example 2.8. Our first example tells us the ring homomorphism 7 : Z — Q is the inclusion
map, but there is no ring homomorphism f : Q — Z. To see this, note f(1) =1,s0 f(n) =n
for any n € Z. Then 1 = 2- %, sol=f(1)=f(2- %) = 2f(%), which is obviously impossible
in 7Z.

Example 2.9. A ring endomorphism is a ring homomorphism f : R — R for a ring R.
The set of ring endomorphisms of R is denoted End(R). Then End(R) has the structure
of a ring under the operations (f + g)(z) = f(z) + g(x) and (fg)(z) = f(g(x)) for x € R,
i.e. addition is pointwise and multiplication is composition (you should verify that the
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composition of two homomorphisms is still a homomorphism!). Our first example shows
that End(Z) = {idz} is a ring with 1 element, i.e. End(Z) = {0}.

There’s an easy way to check if a ring homomorphism is injective or surjective by trans-
lating these set theoretic statements into the language of images and kernels:

Proposition 6. Let f : R — S be a ring homomorphism. Then f is injective if and only if
ker(f) = {0}. Similarly, f is surjective if and only if Im(f) = S.

Proof. First, suppose that f is injective. Since f(0) = 0, if x € ker(f) we have f(z) =0 =
f(0), so the injectivity of f says that x = 0. Now suppose that ker(f) = {0}, and that
f(z) = f(y). Since f is a ring homomorphism, this says f(x —y) = 0, so that z —y € ker(f).
This then means that x —y = 0, so that x = y, which proves that f is injective. The latter
statement is obvious, since the image of f in the ring theoretic sense is the same as in the

set theoretic sense. d
Example 2.10. The complex number i satisfies the algebraic relation 2> = —1. In the ring
Ms(R), there is a matrix A = (_01 [1)) with the property that A% = —I,. We can naturally

associate any real number a to a diagonal matrix in Ms(R), so this suggests we define a map

f:C— MyR) by fla+bi)=a ((1) (1)) +0b (_01 (1)) = ( ab 2) One can verify that f

is an injective ring homomorphism, so that C = Im(f) can be identified with a subring of
Ms(R)!.
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