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For a monic polynomial f(T ) ∈ Z[T ], Gauss’s lemma says that f(T ) is irreducible in Z[T ]
if and only if f(T ) is irreducible in Q[T ]. There are several standard tests for determining
when such a polynomial is irreducible:

• If deg(f) = 2 or 3, then f(T ) is irreducible in Q[T ] if and only if f(T ) has no root
in Q. This is usually combined with the rational root theorem, to narrow down the
possible roots of f(T ).
• If f(T ) is irreducible mod p for some prime p, then f(T ) is irreducible in Q[T ].
• If f(T ) satisfies the Eisenstein condition for some prime p, then f(T ) is irreducible

in Q[T ].

We will give an example of a polynomial f(T ) ∈ Z[T ] where all of these tests fail, yet f(T )
is irreducible nonetheless.

Proposition 1. Let f(T ) = T 4 − 10T 2 + 1. Then f(T ) is irreducible in Q[T ].

Proof. By the rational root theorem, the only possible roots of f(T ) are ±1, and clearly
neither of these work. Therefore if f(T ) is reducible, it must factor as a product of quadratics.
By Gauss’s lemma, if f(T ) has a factorization in Q[T ], then it admits such a factorization
in Z[T ] as well. Write T 4 − 10T 2 + 1 = (T 2 + aT + b)(T 2 + cT + d) = T 4 + (a + c)T 3 +
(ac + b + d)T 2 + (ad + bc)T + bd for some a, b, c, d ∈ Z. Comparing coefficients, we have
a + c = 0, ac + b + d = −10, ad + bc = 0, bd = 1. The first equation says that a = −c, so
plugging this in says that c2 − 10 = b + d, c(b − d) = 0, and bd = 1. The last equation
says that b = d = 1 or b = d = −1 (which means the second equation is automatically
satisfied). Therefore, we must have either c2 = 12, or c2 = 8, neither of which are solvable
in the integers. Therefore, no such factorization exists, so f(T ) is irreducible in Q[T ]. �

The first of our listed irreducibility tests obviously does not apply to f(T ), because
deg(f) = 4. Eisenstein’s criterion can’t apply either, because the constant term of f(T )
is 1. However, we’ve seen that even if the condition doesn’t apply to f(T ) directly, it’s
sometimes possible to apply the test to a translate of f(T ) to show irreducibility.

Example 0.1. The Eisenstein criterion cannot apply to the polynomial f(T ) = T 2 +T + 1,
because the coefficients are all 1. However, the polynomial f(T+1) = T 2+3T+3 is Eisenstein
(at the prime 3), and therefore irreducible. Since a factorization f(T ) = g(T )h(T ) would give
rise to a factorization f(T + 1) = g(T + 1)h(T + 1), this means that f(T ) is also irreducible.

Definition 0.2. Let f(T ) ∈ Z[T ]. If the polynomial f(T+c) satisfies the Eisenstein criterion
for some prime p and some c ∈ Z, we say that f(T ) has an Eisenstein translate at c.

Proposition 2. The polynomial f(T ) = T 4 − 10T 2 + 1 has no Eisenstein translate.

Proof. For any c ∈ Z, we compute that f(T + c) = T 4 + 4cT 3 + (6c2− 10)T 2 + (4c3− 20)T +
(c4 − 10c2 + 1). Suppose that f(T + c) is Eisenstein at some prime p. Then p | 4c means
p = 2 or p | c. First, suppose that p = 2. In this case, c4 − 10c2 + 1 ≡ 0 mod 2 means that
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c ≡ 1 mod 2. Therefore, c ≡ 1, 3 mod 4. In either case, we have c4 − 10c2 + 1 ≡ 0 mod 4, so
that 4 | c4− 10c2 + 1. This contradicts that f(T + c) is Eisenstein at 2. This means that we
must have p | c. We then see that c4 − 10c2 + 1 ≡ 1 6≡ 0 mod p, so that p - c4 − 10c2 + 1,
again contradicting that f(T + c) is Eisenstein at p. Therefore, f(T ) has no Eisenstein
translate. �

Proposition 3. The polynomial f(T ) = T 4 − 10T 2 + 1 is reducible mod p for all primes p.

Proof. First, we handle the case p = 2: then f̄(T ) ∈ (Z/2Z)[T ] factors as (T + 1)4. Now,
let p be an odd prime, and consider f̄(T ) in (Z/pZ)[T ]. By the factor theorem, f̄(T ) has a
root in Z/pZ if and only if f̄(T ) is divisible by a linear factor. Suppose that c ∈ Z/pZ is a
root of f̄(T ). Then c satisfies c4− 10c2 + 1 = 0 in Z/pZ, so u = c2 satisfies u2− 10u+ 1 = 0
in Z/pZ. Since p is odd, 2 is invertible in Z/pZ, so the quadratic formula says the roots
of the polynomial T 2 − 10T + 1 in (Z/pZ)[T ] are given by 5 ± 2

√
6. In particular, this

says that if f̄(T ) has a linear factor, then
√

6 ∈ Z/pZ, and if
√

6 ∈ Z/pZ, we have
f̄(T ) = (T 2 − 5− 2

√
6)(T 2 − 5 + 2

√
6) says that f̄(T ) is reducible.

Now, assume that
√

6 6∈ (Z/pZ)[T ], so that f̄(T ) has no linear factors. Therefore if f̄(T )
factors in (Z/pZ)[T ], it must be a product of two quadratics. Since f̄(T ) is monic, we may
assume it’s a product of monic quadratics: T 4 − 10T 2 + 1 = (T 2 + aT + b)(T 2 + cT + d)
in (Z/pZ)[T ]. From the work in proposition 1, we see that such a factorization is possible
if c2 = 12 or c2 = 8 in Z/pZ. We can rewrite this condition as (c/2)2 = 3 or (c/2)2 = 2,
so that this is is the same as saying

√
2 or

√
3 ∈ Z/pZ. As it so turns out, at least one

of
√

2,
√

3,
√

6 ∈ Z/pZ for any p. Since we assumed
√

6 6∈ Z/pZ, one of the other two are,
which is what we needed. �

To explain the last line of the proof, we need to know a little bit about the structure of
Z/pZ.

Theorem 0.3. Let p be a prime. There is g ∈ (Z/pZ)× such that for any x ∈ (Z/pZ)×,
x = gk for some k ≥ 0. In other words, (Z/pZ)× is a cyclic group.

The proof is a counting argument that relies on the fact that a polynomial of degree d
over a field has at most d roots. We won’t prove this theorem, but it can be found in any
abstract algebra textbook. Once we know this, we can easily prove the following, which is
what we need:

Corollary 0.4. Let a, b ∈ (Z/pZ)×. Then at least one of a, b, ab must be a square in Z/pZ.
Proof. By the above theorem, we can write a = gn and b = gm for some n,m ∈ Z and some
g ∈ (Z/pZ)×. Then ab = gm+n. At least one of the integers m,n,m + n must be even. �

Applying this to our specific case says for p odd, at least one of 2, 3, 6 must be a square
in Z/pZ.

Remark 0.5. Using algebraic number theory, one can actually say quite a lot about how the
polynomial f̄(T ) = T 4 − 10T 2 + 1 factors in (Z/pZ)[T ]. It turns out there are four possible
different types of factorization: f̄(T ) can factor into a product of four distinct linear factors,
a product of two irreducible distinct quadratic factors, a square of an irreducible quadratic
factor, or a fourth power of a linear factor. These factorization types are witnessed by
p = 23, 5, 3, 2 respectively. The last two types only happen for p = 3, 2 and the former two
occur for infinitely many primes p.


