A POLYNOMIAL RESISTANT TO IRREDUCIBILITY TESTS

TIM SMITS

For a monic polynomial f(T') € Z[T], Gauss’s lemma says that f(7') is irreducible in Z[T]
if and only if f(T') is irreducible in Q[T]. There are several standard tests for determining
when such a polynomial is irreducible:

o If deg(f) = 2 or 3, then f(7T) is irreducible in Q[T] if and only if f(7') has no root
in Q. This is usually combined with the rational root theorem, to narrow down the
possible roots of f(T).

e If f(T) is irreducible mod p for some prime p, then f(7') is irreducible in Q[T7].

o If f(T) satisfies the Eisenstein condition for some prime p, then f(7") is irreducible
in Q[T7].

We will give an example of a polynomial f(T') € Z[T] where all of these tests fail, yet f(T')
is irreducible nonetheless.

Proposition 1. Let f(T) =T* —10T% + 1. Then f(T) is irreducible in Q[T].

Proof. By the rational root theorem, the only possible roots of f(7') are 1, and clearly
neither of these work. Therefore if f(7') is reducible, it must factor as a product of quadratics.
By Gauss’s lemma, if f(T") has a factorization in Q[T], then it admits such a factorization
in Z[T] as well. Write T* — 10T?* + 1 = (T* + aT + b)(T* + T +d) = T* + (a + ¢)T? +
(ac + b+ d)T? + (ad + be)T + bd for some a,b,c,d € Z. Comparing coefficients, we have
a+c=0ac+b+d= —10,ad + bc = 0,bd = 1. The first equation says that a = —c, so
plugging this in says that ¢ — 10 = b+ d, ¢(b — d) = 0, and bd = 1. The last equation
says that b = d = 1 or b = d = —1 (which means the second equation is automatically
satisfied). Therefore, we must have either ¢ = 12, or ¢ = 8, neither of which are solvable
in the integers. Therefore, no such factorization exists, so f(7') is irreducible in Q[T]. O

The first of our listed irreducibility tests obviously does not apply to f(7'), because
deg(f) = 4. Eisenstein’s criterion can’t apply either, because the constant term of f(7)
is 1. However, we've seen that even if the condition doesn’t apply to f(7') directly, it’s
sometimes possible to apply the test to a translate of f(T') to show irreducibility.

Example 0.1. The Eisenstein criterion cannot apply to the polynomial f(T) =T?*+T +1,
because the coefficients are all 1. However, the polynomial f(T+1) = T?+3T+3 is Eisenstein
(at the prime 3), and therefore irreducible. Since a factorization f(T") = g(T)h(T") would give
rise to a factorization f(T'+ 1) = g(T' 4+ 1)h(T + 1), this means that f(7') is also irreducible.

Definition 0.2. Let f(T') € Z[T]. If the polynomial f(T+c) satisfies the Eisenstein criterion
for some prime p and some ¢ € Z, we say that f(7') has an Eisenstein translate at c.

Proposition 2. The polynomial f(T) = T* —10T? + 1 has no Eisenstein translate.

Proof. For any ¢ € Z, we compute that f(T +c) = T* +4c¢T? + (6¢* — 10)T? + (4¢> — 20)T +
(¢* — 10c* + 1). Suppose that f(T + c¢) is Eisenstein at some prime p. Then p | 4c means

p=2or p|c First, suppose that p = 2. In this case, ¢* — 10c¢* + 1 = 0 mod 2 means that
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¢ = 1 mod 2. Therefore, ¢ = 1,3 mod 4. In either case, we have ¢* — 10c¢?> + 1 = 0 mod 4, so
that 4 | ¢* — 10¢® + 1. This contradicts that f(T + c) is Eisenstein at 2. This means that we
must have p | c. We then see that ¢* — 10c¢> +1 = 1 # 0 mod p, so that p { ¢! — 10¢* + 1,
again contradicting that f(7T + c¢) is Eisenstein at p. Therefore, f(7') has no Eisenstein
translate. U

Proposition 3. The polynomial f(T) = T* — 10T% + 1 is reducible mod p for all primes p.

Proof. First, we handle the case p = 2: then f(T) € (Z/2Z)[T)] factors as (T + 1)*. Now,
let p be an odd prime, and consider f(T) in (Z/pZ)[T]. By the factor theorem, f(T) has a
root in Z/pZ if and only if f(T) is divisible by a linear factor. Suppose that ¢ € Z/pZ is a
root of f(T). Then c satisfies ¢* — 10c? + 1 = 0 in Z/pZ, so u = ¢ satisfies u> — 10u+1=0
in Z/pZ. Since p is odd, 2 is invertible in Z/pZ, so the quadratic formula says the roots
of the polynomial 7% — 10T + 1 in (Z/pZ)[T] are given by 5 4 2v/6. In particular, this
says that if f(T) has a linear factor, then /6 € Z/pZ, and if V6 € Z/pZ, we have
f(T) = (T? — 5 —2V6)(T? — 5+ 21/6) says that f(T) is reducible.

Now, assume that /6 & (Z/pZ)[T], so that f(T) has no linear factors. Therefore if f(T)
factors in (Z/pZ)[T), it must be a product of two quadratics. Since f(T) is monic, we may
assume it’s a product of monic quadratics: T% — 107? + 1 = (T? + aT + b)(T? + ¢T + d)
in (Z/pZ)|T). From the work in proposition 1, we see that such a factorization is possible
if =12 or ¢ = 8 in Z/pZ. We can rewrite this condition as (¢/2)? = 3 or (¢/2)? = 2,
so that this is is the same as saying V2 or V3 € Z/pZ. As it so turns out, at least one
of V/2,V/3,V6 € Z/pZ for any p. Since we assumed /6 ¢ Z/pZ, one of the other two are,
which is what we needed. 0

To explain the last line of the proof, we need to know a little bit about the structure of
Z7./pZ.

Theorem 0.3. Let p be a prime. There is g € (Z/pZ)* such that for any x € (Z/pZ)*,
x = g~ for some k > 0. In other words, (Z/pZ)* is a cyclic group.

The proof is a counting argument that relies on the fact that a polynomial of degree d
over a field has at most d roots. We won’t prove this theorem, but it can be found in any
abstract algebra textbook. Once we know this, we can easily prove the following, which is
what we need:

Corollary 0.4. Let a,b € (Z/pZ)*. Then at least one of a,b,ab must be a square in Z/pZ.

Proof. By the above theorem, we can write a = ¢" and b = ¢™ for some n,m € Z and some
g € (Z/pZ)*. Then ab = g™*™. At least one of the integers m,n, m + n must be even. [

Applying this to our specific case says for p odd, at least one of 2, 3,6 must be a square
in Z/pZ.

Remark 0.5. Using algebraic number theory, one can actually say quite a lot about how the
polynomial f(T) = T* — 10T? + 1 factors in (Z/pZ)[T]. It turns out there are four possible
different types of factorization: f(T') can factor into a product of four distinct linear factors,
a product of two irreducible distinct quadratic factors, a square of an irreducible quadratic
factor, or a fourth power of a linear factor. These factorization types are witnessed by
p = 23,5,3,2 respectively. The last two types only happen for p = 3,2 and the former two
occur for infinitely many primes p.



