
POLYNOMIAL RINGS

TIM SMITS

Polynomial rings serve as class of familiar rings with interesting properties. In particular,
polynomial rings over a field will have many analogous properties to the integers. Under-
standing why this happens will be key to abstracting their important properties.

1. Basic definitions

Definition 1.1. Let R be a ring. The polynomial ring R[T ] in the indeterminate T with
coefficients in R is the set of all formal sums anT

n + . . .+a1T +a0 with n ≥ 0 and ai ∈ R. If
an 6= 0, then the polynomial is said to have degree n. A polynomial is called monic if an = 1.
We’ll usually write a polynomial in R[T ] as either f(T ), or dropping the indeterminate, just
f if it’s clear from the context.

Addition of polynomials is defined “component wise”, by the rule
n∑

i=0

aiT
i +

n∑
i=0

biT
i =

n∑
i=0

(ai + bi)T
i

and multiplication is defined by( n∑
i=0

aiT
i

)( m∑
i=0

biT
i

)
=

n+m∑
k=0

( k∑
i=0

aibk−i

)
T i

Note that we interpret ak = 0 for k > n and bk = 0 for k > m. The operations above
make R[T ] into a ring, and R[T ] inherits many of the properties of the ring R. For example,
we have the following:

Proposition 1. Let R be an integral domain. Then R[T ] is an integral domain.

Proof. We prove the product of non-zero polynomials is non-zero, which is equivalent to
showing that R[T ] is an integral domain. Suppose that f, g 6= 0 ∈ R[T ]. We can write
f(T ) = anT

n + . . . a0 and b(T ) = bmT
m + . . . + b0 for some ai, bi where an 6= 0 and bm 6= 0.

Then fg = anbmT
n+m + lower degree terms. Since R is an integral domain and an, bm 6= 0,

this says anbm 6= 0 so that fg 6= 0. �

Corollary 1.2. Let R be an integral domain, and let f, g ∈ R[T ] be non-zero polynomials.
Then deg(fg) = deg(f) + deg(g).

Proof. This follows immediately from the above proof. �

Note that the above really does require that R is an integral domain. For example, in
(Z/4Z)[T ], we have (2T ) · (2T + 1) = 2T . The terms on the left hand side both have degree
1, which is the same as the term on the right hand side. Therefore, in order for the degree
of a polynomial to have any value to us, most of our theory of polynomial rings will require
that R be an integral domain. In fact, we’ll generally assume that R is a field – the reason
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for doing so will become more clear in the next section. Before doing so however, it will be
useful to know what the units of a polynomial ring are.

Theorem 1.3. Let R be a commutative ring. A polynomial f(T ) = anT
n + . . .+ a0 in R[T ]

is a unit if and only if a0 ∈ R× and ai are nilpotent for 1 ≤ i ≤ n.

Proof. First, we prove that if a0 is a unit and ai are nilpotent for 1 ≤ i ≤ n, that f is a
unit. Since ai are nilpotent, clearly aiT

i are nilpotent. Since a sum of nilpotent elements are
nilpontent, we see that a1T+. . .+anT

n is nilpotent, so a0+. . .+anT
n = a0+(a1T+. . .+anT

n)
is a unit plus a nilpotent, and therefore is a unit.

Conversely, suppose that f = a0 + . . .+anT
n is a unit in R[T ], and let g = b0 + . . .+ bmT

m

be it’s inverse, so fg = 1 in R[T ]. By the way polynomial multiplication works, we can

write fg =
∑n+m

k=0 dkT
k where dk =

∑k
i=0 akbk−i. Since fg = 1, in particular, by comparing

coefficients of both sides this says that d0 = a0b0 = 1 and dk = 0 for k ≥ 1. Note that
a0b0 = 1 says a0 (and b0) are units.

We now analyze the other coefficients. We have dm+n = anbm = 0. We also have dm+n−1 =
am−1bm + anbm−1 = 0. Multiplying this by an, and using that dm+n = 0, we find that
a2nbm−1 = 0. By multiplying each step by the correct power of an, and using the previous
equations, we get the following chain of reasoning:

anbm = 0

an−1bm + anbm−1 = 0 =⇒ a2nbm−1 = 0

an−2bm + an−1bm−1 + anbm−2 = 0 =⇒ a3nbm−2 = 0

...

. . .+ an−2b2 + an−1b1 + anb0 = 0 =⇒ am+1
n b0 = 0

Since b0 is a unit, this says that am+1
n = 0, so that an is nilpotent, and anT

n is nilpotent.
We then have f − anT n is a unit plus a nilpotent, which says that f − anT n = a0 + a1T +
. . .+ an−1T

n−1 is a unit with strictly smaller degree. If we inductively apply this argument,
we then find that a1, . . . , an are all nilpotent.

�

Corollary 1.4. Let R be an integral domain. Then f ∈ R[T ] is a unit if and only if f(T ) = a
for some a ∈ R×.

Example 1.5. In (Z/4Z)[T ], the polynomial f(T ) = 1 + 2T is a unit, because 22 = 0 says
2 is nilpotent. The inverse can be computed by analyzing the formal power series of 1

1+2T
.

From basic calculus, we have 1
1+2T

=
∑∞

k=0(−1)k2kT k = 1−2T +4T 2− . . . = 1−2T because
all the higher powers of 2 die off in the sum. Indeed, one can check that (1+2T )(1−2T ) = 1,
so this is in fact the inverse.

2. Analogies between F [T ] and Z

In this section, we assume that F is a field and restrict our attention to the polynomial
ring F [T ]. The reason for doing so is that this ring bears a striking resemblance to the
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integers in many ways. The key to this lies in the fact that polynomial rings over a field
have a division algorithm. This is not generally true in R[T ] if R is just an integral domain.

Example 2.1. In Z[T ], there is no way to make sense of division of 2T 2+1 by 3T +2. If you
try to use the long division algorithm you’re familiar with from high school, you’ll quickly
see the obstruction is that there is no solution to the equation 3x = 2 in Z, i.e. 3 is not a
unit.

Of course, over a field, all non-zero elements have a multiplicative inverse, and this is no
longer something we have to worry about.

Theorem 2.2 (Division algorithm). Let f(T ), g(T ) ∈ F [T ] with g(T ) 6= 0. Then there
exist unique polynomials q(T ), r(T ) ∈ F [T ] with f(T ) = g(T )q(T ) + r(T ) with r(T ) = 0 or
0 ≤ deg(r) < deg(g).

Proof. The proof will be analogous to the proof of the division algorithm in the integers. The
idea will be to use the well ordering principle on the degree of the remainder term, but some
care will be needed since the inequalities with the integers we get in the proof in Z don’t
carry over as nicely. First, note the theorem is obvious if g(T ) = c is a non-zero constant:
f(T ) = (c)(1

c
f(T )) + 0. Now suppose that deg(g) > 0 and let A = {f(T ) − g(T )q(T ) :

q(T ) ∈ F [T ]} and S = {deg(p(T )) ≥ 0 : p(T ) ∈ A}. Notice that S 6= ∅, because
f(T ) ∈ A. By the well-ordering principle, S contains a least element d, so there is a polyno-
mial r(T ) ∈ A with deg(r) = d. This means we can write r(T ) = f(T )− g(T )q(T ) for some
q(T ) ∈ F [T ], so that f(T ) = g(T )q(T ) + r(T ). Suppose that r(T ) 6= 0, then we’ll show that
0 ≤ deg(r) < deg(g). Suppose otherwise, that deg(r) ≥ deg(g). Let’s let deg(g) = k. Then
we may write r(T ) = rdT

d + lower degree terms, and g(T ) = gkT
k + lower degree terms. We

then see that g(T )(rd/gkT
d−k) = rdT

d + lower degree terms, so r(T ) − g(T )(rd/gkT
d−k) =

(f(T )−g(T )q(T ))−g(T )(rd/gkT
d−k) = f(T )−g(T )(q(T )+ rd/gkT

d−k) is a polynomial in A
of strictly smaller degree than d. This contradicts the definition of d. Therefore, if r(T ) 6= 0,
we must have 0 ≤ deg(r) < deg(g). This proves the existence of such q(T ) and r(T ). It
remains to prove uniqueness.

Suppose that we may write f(T ) = g(T )q1(T ) + r1(T ) and f(T ) = g(T )q2(T ) + r2(T )
for some q1, q2, r1, r2 satisfying the conditions of the theorem. This says that g(T )(q1(T ) −
q2(T )) = r2(T ) − r1(T ). If we assume that both q1(T ) − q2(T ) and r1(T ) − r2(T ) are both
non-zero, then taking degrees, this says deg(g(T ))+deg(q1(T )−q2(T )) = deg(r2(T )−r1(T )).
From the degree bounds on r1, r2, the right hand side must be at most deg(g) (if it’s non-
zero), which gives a contradiction. Therefore, either q1(T )− q2(T ) = 0 or r1(T )− r2(T ) = 0.
In either case, once one of these is true it’s immediately clear that the other is true as well.
This gives r1(T ) = r2(T ) and q1(T ) = q2(T ) as desired. �

Example 2.3. In Q[T ], we have 2T 2 + 1 = (3T + 2)(2
3
T − 4

9
) + 17

9
.

Where in the proof of the division algorithm did we actually use that F was a field? It was
used exactly twice. First, we had to divide by the leading coefficient of g(T ). Second, we
used that a field is an integral domain, in order to use the fact that the degree of a product is
the sum of their degrees. This means that in an arbitrary integral domain R, we still have a
division algorithm in R[T ] as long as we divide by a polynomial where the leading coefficient
is a unit. We’ll state this as a theorem for emphasis:
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Theorem 2.4. Let R be an integral domain. Let f(T ) ∈ R[T ] and g(T ) 6= 0 in R[T ]
such that the leading coefficient of g(T ) is a unit. Then there exist unique polynomials
p(T ), q(T ) ∈ R[T ] such that f(T ) = g(T )q(T ) + r(T ) with r(T ) = 0 or 0 ≤ deg(r) < deg(g).

Example 2.5. In (Z/4Z)[T ], we have 2T 2 + 1 = (3T + 2)(2T ) + 1.

Once we’ve obtained a division algorithm, it makes sense to talk about division in F [T ].

Definition 2.6. Let f(T ), g(T ) ∈ F [T ]. We say that f(T ) divides g(T ) and write f(T ) |
g(T ) if there is a non-zero polynomial h(T ) ∈ F [T ] such that g(T ) = f(T )h(T ).

Example 2.7. In Q[T ], we see that T + 1 | T 2 − 1, since T 2 − 1 = (T + 1)(T − 1). For any
c 6= 0 ∈ Q, we have c | T 2 − 1 since T 2 − 1 = 1

c
(T 2 − 1) · c.

Definition 2.8. A non-constant polynomial π(T ) ∈ F [T ] is called irreducible1 if it has
no divisors d(T ) with 1 ≤ deg(d(T )) < deg(π(T )). A polynomial that is not irreducible is
called reducible.

Example 2.9. The polynomial T 2 + 1 is irreducible in R[T ]. However, this polynomial is
reducible in C[T ]: we may write T 2 + 1 = (T − i)(T + i). This means that reducibility is an
algebraic property of the field where you view the coefficients as living in.

Our definitions of divisors and irreducible polynomials should feel very familiar to how
we defined divisors and primes in the integers. In fact, several quantities in Z and F [T ] are
analogous to each other:

Z F [T ]
±1 non-zero constants
|n| deg(f)

positive monic
prime irreducible

In the integers, ±1 play the role of the units, and we’ve seen the units in F [T ] are the non-
zero constant polynomials. We have a notion of “size” in the integers, namely the absolute
value of an integer, which lets us “compare” integers. Similarly, the right way of “com-
paring” polynomials is by their degree. Any non-zero integer can be turned into a positive
integer by multiplying by a unit (namely, −1 if it’s negative). Any non-zero polynomial can
be turned into a monic polynomial by multiplying by the inverse of the leading coefficient.
Prime integers have no non-trivial divisors, and irreducible polynomials have no non-trivial
divisors.

In the integers, we had the following chain of reasoning:

Division algorithm =⇒ Bezout’s lemma =⇒ Euclid’s lemma =⇒ Unique factorization.

This told us that any positive integer could be factored uniquely into a product of primes.
Since we have just determined that F [T ] has a division algorithm, we will have an analogous
chain of reasoning:

Division algorithm =⇒ Bezout’s lemma =⇒ Euclid’s lemma =⇒ Unique factorization.

1The definition of irreducibility in R[T ] for an arbitrary integral domain R is slightly more subtle: f(T ) ∈
R[T ] with f(T ) 6= 0 or a unit is called irreducible if f(T ) = g(T )h(T ) means that g(T ) or h(T ) is a unit in
R[T ].
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This will tell us that any monic polynomial can be factored uniquely into a product of monic
irreducible polynomials. All that we need to do is to make sure that all the relevant terms
in the statements in Z are replaced with their analogues in F [T ], and the proofs will be
essentially identical. Before doing so, we’ll list some analogous properties of divisibility that
polynomials have that are similar to the integers.

Proposition 2. Let f, g, h ∈ F [T ].

1. If f | g and g | h then f | h.
2. If f | g and f | h then f | pg + qh for any p, q ∈ F [T ].
3. If f | g then deg(f) ≤ deg(g).

Before giving a statment of Bezout’s lemma, we have to give a definition of the greatest
common divisor of two polynomials.

Definition 2.10. Let f, g ∈ F [T ]. The greatest common divisor of f and g is the monic
polynomial d(T ) of largest degree such that:

1. d | f and d | g.
2. If h | f and h | g for some h(T ) ∈ F [T ], then deg(h) ≤ deg(g).

We of course write gcd(f, g) or (f, g) to denote the greatest common divisor, and if (f, g) = 1
we say that f and g are relatively prime.

As before, the greatest common divisor is well-defined because of property 3 above, and
the monic condition forces it to be unique. If f = 0, then for any g ∈ F [T ] we have (0, g) = g̃,
where g̃ is the monic rescaling of g(T ), and again we have that (0, 0) is undefined.

Example 2.11. In (Z/3Z)[T ] we have that gcd(T 3 + T 2 + 2T + 2, T 2 + T ) = T + 1 which
can easily be found by factoring.

Theorem 2.12 (Bezout’s lemma). Let f, g ∈ F [T ]. There exist polynomials p, q ∈ F [T ]
such that f(T )p(T ) + g(T )q(T ) = d(T ), where d = gcd(f, g).

Proof. In the integers, we looked at the set of all positive linear combinations of two integers
and used the well ordering principle. In F [T ], we’ll look at the set of all monic non-constant
linear combinations of f and g and then use the well ordering principle.

The theorem is obvious if one of f, g are zero, so assume that both f, g 6= 0. Let
A = {f(T )p(T )+g(T )q(T ) monic : p, q ∈ F [T ]} and let S = {deg(h(T )) : h(T ) ∈ A}. Notice
that S 6= ∅, because the monic rescalings of both f and g are elements of A. By the well order-
ing principle, there is a minimal element of S, say k, which corresponds to a monic polynomial
d0 ∈ A with deg(d(T )) = k. Since d0(T ) ∈ A, we can write d0(T ) = f(T )p(T ) + g(T )q(T )
for some p(T ), q(T ) ∈ F [T ]. We will show that d0(T ) = d(T ).

Since d(T ) | f(T ) and d(T ) | g(T ) by definition, we have d(T ) | f(T )p(T ) + g(T )q(T )
so d(T ) | d0(T ). This means that deg(d(T )) ≤ deg(d0(T )). Next, we show that d0(T )
divides every element of A. Let s(T ) ∈ A, and write s(T ) = f(T )p0(T ) + g(T )q0(T ) for
some p0, q0 ∈ F [T ]. By the division algorithm, we may write s(T ) = d0(T )b(T ) + r(T ) for
unique b(T ), r(T ) ∈ F [T ] with r(T ) = 0 or 0 ≤ deg(r) < deg(d0). Suppose that r(T ) 6= 0.
Then 0 ≤ deg(r) < deg(d0). We have r(T ) = s(T )− d0(T )b(T ) = f(T )p0(T ) + g(T )q0(T )−
(f(T )p(T )+g(T )q(T ))b(T ) = f(T )(p0(T )−p(T )b(T ))+g(T )(q0(T )−q(T )b(T )). By rescaling
r(T ) to be monic, we see that r(T ) is an element of A with strictly smaller degree than d0,
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a contradiction to the definition of d0. Therefore, r(T ) = 0 so d0(T ) | s(T ). Since the
monic rescalings of f and g are in A, we see that d0(T ) must divide both f and g. By
definition of the greatest common divisor, this says that deg(d0(T )) ≤ deg(d(T )), so that
deg(d0(T )) = deg(d(T )). Since d(T ) | d0(T ), and d0(T ),d(T ) are both monic polynomials of
the same degree, this forces d(T ) = d0(T ) as desired. �

Corollary 2.13. Let f, g, h ∈ F [T ] with f | gh and (f, h) = 1. Then f | g.

Proof. By Bezout, there are polynomials p, q ∈ F [T ] such that fp+ hq = 1. Multiplying by
g says that fpg + hqg = g. Since f | fpg and f | hqg, this says f | g. �

Proposition 3 (Euclid’s lemma). Let π ∈ F [T ]. Then π is irreducible if and only if for any
polynomials f, g ∈ F [T ], π | fg =⇒ π | f or π | g.

Proof. First, suppose that π is irreducible in F [T ], and suppose that π | fg. Assume that
π - f . Then because π has no non-trivial divisors, this says that (π, f) = 1. By the previous
result, this means that π | g. Conversely, suppose that π ∈ F [T ] is a polynomial with the
property that π | fg =⇒ π | f or π | g. Let d ∈ F [T ] be a monic divisor of π. Then we
may write π(T ) = d(T )h(T ) for some h(T ) ∈ F [T ]. We then have that π | dh, so π | d or
π | h by assumption. This means that deg(π) ≤ deg(d) or deg(π) ≤ deg(h). However, since
0 ≤ deg(d), deg(h) ≤ deg(π) and deg(π) = deg(d) + deg(h), the only way this is possible is if
deg(d) = 0 and deg(h) = deg(π) or deg(d) = deg(π) and deg(h) = 0, i.e. π is irreducible. �

Theorem 2.14 (Unique factorization). Let f(T ) ∈ F [T ] be a monic, non-constant polyno-
mial. Then there exist unique monic irreducible polynomials π1(T ), . . . , πk(T ) ∈ F [T ] and
unique positive integers e1, . . . , ek such that f(T ) = π1(T )e1 · · · πk(T )ek . That is, every non-
constant monic polynomial has a unique factorization into a product of monic irreducible
polynomials.

Proof. The proof has two parts: we first show that every monic polynomial can be written
as a product of some monic irreducible polynomials, and then we show that such a choice
of irreducibles is unique. Both parts will use strong induction on the degree of f .

Existence:
If deg(f) = 1, then f is irreducible by definition, so any monic degree 1 polynomial is a
product of monic irreducibles. Now, suppose that we know for any monic polynomial p(T )
of degree ≤ k that p(T ) can be written as a product of monic irreducible polynomials. Let
f(T ) be a monic polynomial of degree k + 1. If f(T ) is irreducible, we’re done. Otherwise,
it has a non-trivial divisor, so we may write f(T ) = g(T )h(T ) for some g(T ), h(T ) ∈ F [T ]
with 1 ≤ deg(g), deg(h) < deg(f). Now g(T ) and h(T ) might not be monic, but we can
easily fix this: if g(T ) has leading coefficent a and h(T ) has leading coefficient b, then since
f(T ) is monic, this forces ab = 1. Then f(T ) = ab( 1

a
g(T ))(1

b
h(T )) = ( 1

a
g(T ))(1

b
h(T )) and

now 1
a
g(T ) and 1

b
h(T ) are monic. Therefore without loss of generality, we may assume that

g(T ), h(T ) are monic. By induction hypothesis, both g(T ) and h(T ) may be written as
the product of monic irreducible polynomials, and therefore so can f(T ). By induction, any
non-constant monic polynomial can be written as a product of monic irreducible polynomials.

Uniqueness:
If deg(f) = 1, we noted that f is irreducible, so if f is monic and has degree 1, it’s a product
of monic irreducibles in a unique way. Now suppose we know for k that any monic polynomial
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of degree ≤ k has a factorization using a unique set of monic irreducibles. Let f(T ) be a
monic polynomial of degree k+ 1. If f(T ) is irreducible, we’re done. Otherwise, suppose we
can write f(T ) = π1(T ) · · · πm(T ) = q1(T ) · · · q`(T ) as a product of monic irreducibles πi, qj
in two ways. Then π1(T ) | q1(T ) · · · q`(T ), so by inductively applying Euclid’s lemma, we see
that π1(T ) | qj(T ) for some j. Since πi and qj are all monic, this says that π1(T ) = qj(T )
for some j. By re-ordering the factors as necessary, we may assume that π1(T ) = q1(T ).
Canceling π1(T ) from both sides, this says that a(T ) = π2(T ) · · · πm(T ) = q2(T ) · · · q`(T ).
However, deg(a(T )) < k+1, so by our induction hypothesis, this says that a(T ) has a unique
factorization. This forces m = ` and πi = qi (again, up to reordering) for 1 ≤ i ≤ m. Since
f(T ) = π1(T )a(T ) and we deduced that π1(T ) = q1(T ), this says that f(T ) actually had a
unique factorization as well. By induction, this says that any monic polynomial has a unique
factorization into monic irreducible polynomials. Collecting terms of the same irreducible
polynomial together gives the form as stated in the theorem, and the uniqueness of the
exponents is immediate. �

We stated unique factorization for monic polynomials so that we actually get uniqueness
of irreducibles in the factorization. If you don’t require this condition, then an irreducible
factorization is only unique up to unit multiple of the factors. Of course, everything still
works out if you drop this condition.

3. Computations in F [T ]

Since F [T ] has a division algorithm, we also get a Euclidean algorithm:

Theorem 3.1 (Euclidean Algorithm). Let f, g ∈ F [T ] be non-zero polynomials. Repeatedly
carry out the division algorithm as follows:

f(T ) = g(T )q1(T ) + r1(T ) r1(T ) = 0 or 0 ≤ deg(r1) < deg(q1)

g(T ) = r1(T )q2(T ) + r2(T ) r2(T ) = 0 or 0 ≤ deg(r2) < deg(r1)

r1(T ) = r2(T )q3(T ) + r3(T ) r3(T ) = 0 or 0 ≤ deg(r3) < deg(r2)

...

There is some integer n such that rn(T ) = 0. The last non-zero remainder is the greatest
common divisor of f and g (after rescaling to be monic).

Like before, having a Euclidean algorithm then allows us to find an explicit F [T ]-linear
combination in Bezout’s lemma. The computations are all pretty much identical to their
integer counterparts: they just become slightly more annoying to deal with, because polyno-
mial division is harder to do mentally. Since everything works over an arbitrary field F , it’s
a little more flexible, and one just needs to take care of how to interpret the division that’s
happening in F .

Example 3.2. In (Z/2Z)[T ], let f(T ) = T 3 + T 2 + 1 and g(T ) = T 2 + T + 1. We have:
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T 3 + T 2 + 1 = (T 2 + T + 1)(T ) + (T + 1)

T 2 + T + 1 = (T + 1)T + 1

T + 1 = 1 · (T + 1) + 0

Which says that (T 3 + T 2 + 1, T 2 + T + 1) = 1. To find which F [T ]-linear combination of
f(T ) and g(T ) give us 1 we perform back substitution:

1 = (T 2 + T + 1) + T (T + 1)

1 = (T 2 + T + 1) + T ((T 3 + T 2 + 1) + T (T 2 + T + 1))

= (T 2 + T + 1)(T 2 + 1) + (T 3 + T 2 + 1)(T )

This says that with p(T ) = T 2 + 1 and q(T ) = T we have f(T )p(T ) + g(T )q(T ) = 1.

4. Irreducibility tests

Since (monic) irreducble polynomials are the building blocks of F [T ], it’s rather important
to know when a polynomial π(T ) ∈ F [T ] is irreducible. In the integers, there’s an easy to
check if an integer n is prime: any composite integer n has a factor m with 1 < m ≤

√
n.

This is true because if n = ab is composite and both a, b >
√
n, then ab > n. One can

then check if n is divisible by any integer in this range. This doesn’t generalize at all to
F [T ], because there are usually infinitely many irreducible polynomials of a given degree.
Fortunately, polynomial rings have extra structure that the integers do not: a polynomial
f(T ) ∈ F [T ] can be thought of as a function f : F → F ! Most irreducibility tests will rely
on this extra structure.

Definition 4.1. A root of a polynomial f(T ) ∈ F [T ] is an element r ∈ F such that f(r) = 0,
where f : F → F is viewed as a function.

Our first goal is to determine when is an element of F a root of f(T ).

Theorem 4.2 (Factor theorem). Let f(T ) ∈ F [T ], and let a ∈ F . Then a is a root of f(T )
if and only if T − a is a factor of f(T ) in F [T ].

Proof. By the division algorithm, we may write f(T ) = (T − a)q(T ) + r(T ) with r(T ) = 0
or deg(r) = 0. We then see that a is a root of f(T ) if and only if f(a) = r(a) = 0, i.e.
r = 0. �

The factor theorem gives us the following key result:

Theorem 4.3. Let f(T ) ∈ F [T ] be a non-zero polynomial of degree n. Then f(T ) has at
most n roots in F .

Proof. We induct on the degree of f . If deg(f) = 0 and f 6= 0, then f has no roots, which
is consistent with the theorem. Now suppose that any polynomial of degree k has at most
k roots in F . Let f(T ) be a polynomial of degree k + 1. If f(T ) has no roots in F , we’re
done. Otherwise, f(T ) has a root in F , say a, so by the factor theorem, we may write
f(T ) = (T − a)g(T ) for some g(T ) ∈ F [T ]. Since deg(g) = k, this means that g(T ) has at
most k roots in F . Let’s say that g has r roots, c1, . . . , cr. Then the factor theorem says that
T − ci | g, for all i, and since T − ci are all relatively prime, we have (T − c1) . . . (T − cr) | g.
Therefore, we may write g(T ) = (T − c1) . . . (T − cr)h(T ) for some h(T ), where h(T ) has no
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roots in F . This says that f(T ) = (T −a)(T −c1) . . . (T −cr)h(T ). Any root of f(T ) distinct
from a, c1, . . . , cr would then necessarily have to be a root of h(T ), which means that these
are all the roots of f(T ). This says f(T ) has a total of r + 1 ≤ k + 1 roots in F , which is
what we wanted. By induction, we’re done. �

It’s worth pointing out that nowhere in the above proof we needed that F was a field.
The same proof would still go through if we replaced F [T ] with R[T ] where R is an integral
domain. However, this is definitely required:

Example 4.4. In (Z/8Z)[T ], the polynomial T 2 − 1 has roots [1], [3], [5], [7].

The above theorem gives us our first useful irreducibility test.

Theorem 4.5. Let f(T ) ∈ F [T ] be a polynomial of degree 2 or 3. Then f(T ) is irreducible
if and only if f(T ) has no roots in F [T ].

Proof. We’ll show that f(T ) is reducible if and only if f(T ) has a root in F [T ]. The backwards
direction is immediate by the factor theorem. Now suppose that f(T ) is reducible. By
definition, we can write f(T ) = g(T )h(T ) for some g, h ∈ F [T ] with 1 ≤ deg(g), deg(h) <
deg(f). Since deg(g)+deg(h) = deg(f), we see that deg(g)+deg(h) = 2 or deg(g)+deg(h) =
3. The bounds mean that either g or h has degree 1. Without loss of generality, we’ll assume
that g(T ) = aT + b is a degree 1 divisor of f(T ), so f(T ) = (aT + b)q(T ) for some q(T ).
Plugging in − b

a
says f(− b

a
) = 0, so that f has a root in F . �

Note that in this proof, we did use that F was a field! We needed to be able to divide by
an arbitrary element a ∈ F . Being an integral domain is not enough:

Example 4.6. The polynomial f(T ) = 3(T 2 +1) is reducible in Z[T ], but f(T ) has no roots
in Z.

Example 4.7. The polynomial T 3 + T + 1 ∈ (Z/5Z)[T ] is irreducible, because manually
plugging in the different equivalence classes shows it has no roots.

Our next few irreducibility tests will be for polynomials with rational coefficients. We’ll
later be able to generalize a few of these to an arbitrary polynomial ring R[T ] for an integral
domain R, but we need the language of ideals to do so.

Theorem 4.8 (Rational root test). Let f(T ) = anT
n + . . .+ a0 ∈ Z[T ]. If r

s
∈ Q (in lowest

terms) is a root of f(T ), then r | a0 and s | an.

Proof. Suppose that f( r
s
) = 0. This says that an

(
r
s

)n
+ . . . + a0 = 0. Multiplying through

by sn, we have anr
n + an−1r

n−1s + . . . + a0s
n = 0. Every term after the first in the sum is

divisible by s, so this means s | anrn. Since (r, s) = 1, this means s | an. Similarly, every
term except the last contains an r, so this means r | a0sn. Since (r, s) = 1, we have r | a0. �

Example 4.9. Let f(T ) = T 3+4T 2+T −1 ∈ Q[T ]. Then the only possible rational roots of
f(T ) are ±1. It’s clear neither of these are roots, which then tells us that f(T ) is irreducible
since f(T ) is a degree 3 polynomial in Q[T ] with no roots.

Example 4.10. The rational root test can be used to give a slick proof that
√

2 is not
rational. If it were, it would be a root of the polynomial T 2 − 2 ∈ Q[T ]. The rational root
theorem says the only possible rational roots are ±1,±2, and it’s clear none of these are
roots. This says f(T ) has no rational roots, which gives a contradiction.
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Since the rational numbers are built from ratios of integers, it might not be surprising to
hear that there is a connection between irreducibility in Z[T ] and irreducibility in Q[T ]. To
describe this, we make the following definition:

Definition 4.11. A polynomial f(T ) = anT
n + . . . + a0 ∈ Z[T ] is called primitive if

gcd(a0, a1, . . . , an) = 1.

Example 4.12. The polynomial f(T ) = 3T 2+2T+5 ∈ Z[T ] is primitive because gcd(3, 2, 5) =
1. Any monic polynomial is automatically primitive.

The key to our next few results will be the following basic fact:

Lemma 4.13. Let p be a prime. Then the map ϕ : Z[T ] → (Z/pZ)[T ] defined by ϕ(a0 +
. . .+ anT

n) = [a0] + . . .+ [an]T n is a ring homomorphism.

Proof. Exercise. �

The map above is usually referred to as “reduction mod p”. The polynomial ϕ(f) in
(Z/pZ)[T ] will usually be denoted as f̄(T ).

Theorem 4.14 (Gauss’s lemma). Let f(T ) be a non-constant primitive polynomial. Then
f(T ) ∈ Z[T ] is irreducible if and only if f(T ) ∈ Q[T ] is irreducible.

Proof. We’ll prove that f(T ) is reducible in Z[T ] if and only if f(T ) is reducible in Q[T ].
Clearly if f(T ) = g(T )h(T ) is a non-trivial factorization into polynomials in Z[T ], it’s also a
factorization into polynomials in Q[T ]. The subtly however, is that f(T ) being reducible in
Z[T ] means f(T ) can be written as the product of two non-units in Z[T ], and because the
units of Z[T ] and Q[T ] are not the same, a non-trivial factorization in Z[T ] might not remain
non-trivial in Q[T ]. We’re clearly fine if both deg(g), deg(h) > 0, so we only have to worry
about what happens if one of the factors is a constant. The point is that if f(T ) = g(T )h(T )
in Z[T ] and say, deg(g) = 0, then this would mean we could write f(T ) = ch(T ) for some
constant c. By multiplying each coefficient of h(T ) by c, we’d find that f(T ) is not primitive,
unless c = ±1. This means the only possible degree 0 factors of f(T ) are ±1, which means
there are no non-trivial factorizations of f(T ) in Z[T ] with a degree 0 factor. Therefore a
non-trivial factorization of f(T ) in Z[T ] remains non-trivial in Q[T ].

Conversely, suppose that f(T ) = g(T )h(T ) is a factorization in Q[T ]. Let c, d be integers
such that cg(T ) and dh(T ) are polynomials with integer coefficients. These can be chosen
by taking c, d to be the least common multiple of the denominators that appear in the co-
efficients of g(T ) and h(T ) respectively. Then cdf(T ) = (cg(T ))(dh(T )) is a factorization of
cdf(T ) in Z[T ]. Let p be a prime dividing cd. Since cdf(T ) = (cg(T ))(dh(T )), applying the
reduction mod p map ϕ to both sides says that ϕ(cg(T ))ϕ(dh(T )) = 0 in (Z/pZ)[T ]. Since
Z/pZ is a field, (Z/pZ)[T ] is an integral domain, so either ϕ(cg(T )) = 0 or ϕ(dh(T )) = 0 in
(Z/pZ)[T ]. The only way this is possible is if all coefficients of the reduced polynomial are
[0] in Z/pZ, i.e. all coefficients of either cg(T ) or dh(T ) are divisible by p.

What we’ve just show is that if p | cd, then p must divide all the coefficients of either
cg(T ) or dh(T ). Therefore, we can safely cancel p from both sides of the equality cdf(T ) =
(cg(T ))(dh(T )). Running the same argument as above, we may keep canceling prime factors
of cd from both sides until eventually, we are left with ±f(T ) on the left hand side, and a
product of integer polynomials on the right hand side. �
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Example 4.15. We’ll show that f(T ) = T 4−10T 2+1 is irreducible in Q[T ]. By the rational
root theorem, the only possible roots of f(T ) are ±1, and it’s clear neither of these work.
Therefore if f(T ) is reducible, it must factor as a product of two quadratics, and by dividing
through by the leading coefficients if necessary, we may assume said quadratics are monic.
Since f(T ) is primitive, we may write T 4− 10T 2 + 1 = (T 2 + aT + b)(T 2 + cT + d) for some
a, b, c, d ∈ Z. Expanding says T 4−10T 2+1 = T 4+(a+c)T 3+(ac+b+d)T 2+(ad+bc)T+bd.
Comparing coefficients says a = −c, b + d = c2 − 10, c(b − d) = 0, and bd = 1. The last
equation means b = d = 1 or b = d = −1, so the second equation means c2 = 12 or c2 = 8,
both of which are not possible to solve in the integers. This means no such factorization is
possible, and therefore f(T ) is irreducible.

An easy application of Gauss’s lemma is the following irreducibility criterion:

Theorem 4.16 (Eisenstein’s criterion). Let f(T ) = anT
n + . . . + a0 ∈ Z[T ]. Suppose there

is a prime p such that:

(i) p | ai for 0 ≤ i < n.
(ii) p - an

(iii) p2 - a0
Then f(T ) is irreducible in Q[T ].

Proof. Let c = gcd(a0, . . . , an). We may write f(T ) = cf̃(T ), where f̃(T ) = 1
c
f(T ) ∈ Z[T ]

is primitive. Note that the conditions in the theorem mean that (p, c) = 1, and therefore

this means that f̃ is now a primitive polynomial that satisfies the same hypothesis as f(T ).
Therefore, we’ll assume that f(T ) is primitive. Suppose that f(T ) = g(T )h(T ) is reducible
in Q[T ], where g(T ) = g0 + . . .+gmT

m and h(T ) = h0 + . . .+h`T
`. Then by Gauss’s lemma,

we may assume that g(T ), h(T ) ∈ Z[T ]. Reducing mod p, this says that ḡ(T )h̄(T ) = [an]T n

in (Z/pZ)[T ], where ḡ(T ) and h̄(T ) denote the images of g and h inside (Z/pZ)[T ] under
the reduction map. Since Z/pZ is a field, (Z/pZ)[T ] has unique factorization. Therefore,
we must have ḡ(T ) = [gm]Tm and h̄(T ) = [h`]T

`. In particular, this means both [g0] and
[h0] equal [0] in Z/pZ, so p divides both g0 and h0. However, the constant term of f(T ) is
the product g0h0, and since p divides both factors this would mean p2 | a0, a contradiction.
Therefore, f(T ) is irreducible in Q[T ].

�

Eisenstein’s criterion is useful for producing examples of irreducible polynomials. However
in practice, it’s not that useful: the “typical” f(T ) ∈ Z[T ] will not satisfy Eisenstein’s
criterion for any prime p!.

Example 4.17. For any n ≥ 2, Eisenstein’s criterion says that T n − 2 is Eisenstein at the
prime 2, and therefore is irreducible in Q[T ]. That is to say, n

√
2 is irrational for all n ≥ 2.

Example 4.18. Let f(T ) = T 4 − 4T 3 + 6T 2 − 2T + 1. We can’t directly apply Eisenstein’s
criterion, but we can do the following: set g(T ) = f(T + c) for any c ∈ Q. Saying f(T ) =
a(T )b(T ) for some a, b ∈ Q[T ] is the same as saying that g(T ) = a(T+c)b(T+c). Conversely,
if g(T ) = a(T )b(T ) for some a, b ∈ Q then f(T ) = a(T − c)b(T − c) is a factorization of
f(T ). Therefore, f(T ) and g(T ) are either both irreducible, or both reducible. We notice
that f(T + 1) = T 4 + 2T + 2 which is Eisenstein at 2, so f(T ) is irreducible in Q[T ].

Theorem 4.19. Let f(T ) ∈ Z[T ]. Suppose there is a prime p with deg(f̄) = deg(f) in
(Z/pZ)[T ]. If f̄(T ) is irreducible in (Z/pZ)[T ], then f(T ) is irreducible in Q[T ].
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Proof. We prove the contrapositive, that if f(T ) is reducible in Q[T ], that f̄(T ) is reducible
in (Z/pZ)[T ]. First, assume that f(T ) is primitive and suppose that f(T ) = g(T )h(T ) in
Q[T ]. Then by Gauss’s lemma, we may assume that g(T ), h(T ) ∈ Z[T ], and since f(T ) is
reducible, this means that deg(g), deg(h) ≥ 1. Reducing mod p says that f̄(T ) = h̄(T )ḡ(T )
in (Z/pZ)[T ]. Since deg(f̄) = deg(f), this means that deg(ḡ) = deg(g) and deg(h̄) =
deg(h) because (Z/pZ)[T ] is an integral domain, i.e. f̄(T ) has a non-trivial factorization in
(Z/pZ)[T ].

If f is not primitive, then instead look at the primitive polynomial f̃(T ) = 1
c
f(T ) ∈ Z[T ],

where c is the greatest common divisor of the coefficients of f . Running the same argument
says that if f̃ is reducible in Q[T ], then f̃ is reducible in (Z/pZ)[T ]. The degree condition

forces (c, p) = 1, so [c] 6= [0] in Z/pZ. The point is then if f̃(T ) = a(T )b(T ) is a non-trivial

factorization of f̃ , we have f(T ) = cf̃(T ) = ca(T )b(T ) is a non-trivial factorization of f(T )
in Q[T ] and then reducing mod p gives a non-trivial factorization of f̄(T ) in (Z/pZ)[T ]. �

Example 4.20. The polynomial f(T ) = T 3 − 4T 2 + 3T + 1 is irreducible in Q[T ] because
f̄(T ) = T 3 + T + 1 ∈ (Z/2Z)[T ] is irreducible (it has no root in Z/2Z).

5. Repeated roots of polynomials

Given a polynomial f(T ) ∈ C[T ], the factor theorem says that a root of f(T ) corresponds
to a linear factor of f(T ). How can we check for divisibility of a polynomial by a repeated
linear factor?

Definition 5.1. A number c ∈ C is called a repeated root of f(T ) ∈ C[T ] if (T−c)k | f(T )
for some k ≥ 2. The multiplicity of c is the largest number k such that (T − c)k | f(T )
and (T − c)k+1 - f(T ).

Example 5.2. The polynomial f(T ) = T 2 − 2T + 1 = (T − 1)2 has a repeated root at 1 of
multiplicity 2.

It turns out, there is a surprisingly easy criterion in terms of the derivative of the polyno-
mial f(T ). The derivative of a polynomial makes sense in the more general context of fields,
even where calculus does not.

Definition 5.3. For a field F , the derivative f ′(T ) ∈ F [T ] of the polynomial f(T ) =
anT

n + . . .+ a1T + a0 is defined by f ′(T ) = nanT
n−1 + . . .+ a1.

The derivative still has the familiar properties you would want it to from calculus, which
can just be verified by an easy computation.

Proposition 4. Let f(T ), g(T ) ∈ F [T ]. Then the following hold:

(a) (Linearity) (af + bg)′(T ) = af ′(T ) + bg′(T ) for any a, b ∈ F .
(b) (Product rule) (fg)′(T ) = f ′(T )g(T ) + f(T )g′(T ).
(c) (Chain rule) (f ◦ g)′(T ) = f ′(g(T ))g′(T ).

Proof. Exercise. �

We will state our result for polynomials with rational coefficients, which relies on the
fundamental theorem of algebra:

Theorem 5.4. If f(T ) ∈ C[T ] is non-constant, then f(T ) = (T−r1)e1 . . . (T−rk)ek for some
r1, . . . , rk ∈ C and some ei with e1 + . . . + ek = deg(f). That is to say, every non-constant
polynomial in C[T ] splits completely into linear factors.
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Corollary 5.5. Let f(T ) ∈ Q[T ] and c ∈ C. Then c is a root of f(T ) of multiplicity k if
and only if f(c) = f ′(c) = . . . = f (k−1)(c) = 0 and f (k)(c) 6= 0.

Proof. Assume the derivative conditions hold. By the fundamental theorem of algebra, we
may choose e maximal such that we may write f(T ) = (T − c)eh(T ) for some h(T ) ∈ C[T ]

with (T − c) - h(T ). Setting g(T ) = (T − c)e, we have f (k)(T ) =
∑k

i=0

(
k
i

)
g(i)(T )h(k−i)(T )

by repeatedly applying the product rule. In particular, we have (T − c)e−k | f (k)(T ), so
because f (k)(c) 6= 0, this means that e ≤ k. If e < k, then examining f (e)(T ) says f (e)(T ) =∑e

i=0

(
e
i

)
g(i)(T )h(e−i)(T ). Plugging in c says 0 = f (e)(c) = e!h(c), so h(c) = 0, i.e. (T − c) |

h(T ), a contradiction. Therefore, e = k. It’s clear from the above derivative computation
that if c is a root of multiplicity k that f(c) = f ′(c) = . . . = f (k−1)(c) = 0 and f (k)(c) 6= 0,
so we’re done. �

Given a root of a polynomial, the above easily lets us determine it’s multiplicity. However,
finding roots of a polynomial is a very hard problem. In most applications, one only cares
about if a polynomial has some repeated root or not. Once this is determined, if one cares
about the multiplicity of the root, other methods can be used to locate it. The following
criterion allows us to check for a repeated root without having to know anything about what
the roots are!

Theorem 5.6. Let f(T ) ∈ Q[T ]. Then f(T ) has no repeated root (in C) if and only if
(f(T ), f ′(T )) = 1 in Q[T ].

Proof. The proof relies on the following fact: two polynomials being coprime does not de-
pend over what field (Q or C) we view them as living in!. What we’ll first show is that
(f, f ′) = 1 in Q[T ] if and only if (f, f ′) = 1 in C[T ]. Suppose that (f, f ′) = 1 in Q[T ]. Then
there are polynomial p, q ∈ Q[T ] such that fp + f ′q = 1. Since Q[T ] ⊂ C[T ], we’ve found
a C[T ]-linear combination of polynomials that give 1, so (f, f ′) = 1 in C[T ]. Conversely,
suppose that (f, f ′) = 1 in C[T ]. If d(T ) ∈ Q[T ] is a divisor of both f(T ) and f ′(T ), then
d(T ) ∈ C[T ] is still a common divisor, and therefore must divide 1, so that (f, f ′) = 1 in Q[T ].

Now that we have this, the proof is fairly straightforward. We’ll prove that f(T ) has a
repeated root if and only if (f, f ′) 6= 1 in Q[T ]. Suppose that f(T ) has a repeated root in
C, so (T − a)k | f(T ) in C[T ] for some a ∈ C and k ≥ 2. We can write f(T ) = (T − a)kg(T )
for some g(T ) ∈ C[T ]. Taking a derivative, f ′(T ) = k(T − a)k−1g(T ) + (T − a)kg′(T )
says that (T − a)k−1 | f and (T − a)k−1 | f ′, so (T − a)k−1 | (f, f ′) in C[T ], so that
(f, f ′) 6= 1 in Q[T ]. Conversely, suppose that (f, f ′) = d(T ) 6= 1 in Q[T ]. Let π(T ) be
any irreducible factor of d(T ). Then we can write f(T ) = π(T )g(T ) and f ′(T ) = π(T )h(T )
for some g(T ), h(T ) ∈ Q[T ]. Taking a derivative, this says f ′(T ) = π′(T )g(T ) + π(T )g′(T ),
so π′(T )g(T ) + π(T )g′(T ) = π(T )h(T ). This means that π(T ) | π′(T )g(T ). Since π(T ) is
irreducible, for degree reasons we must have (π(T ), π′(T )) = 1. This means that π(T ) | g(T ),
so π(T )2 | f(T ). Now, by the fundamental theorem of algebra, π(T ) has a root c ∈ C, so
T − c | π(T ) in C[T ]. This means that (T − c)2 | f(T ) in C[T ], so f(T ) has c as a repeated
root in C. �

Example 5.7. The polynomial f(T ) = T 3−4T 2+5T−2 has derivative f ′(T ) = 3T 2−8T+5.
Note that f(1) = f ′(1) = 0, so (T −1)2 | f(T ). One then easily finds f(T ) = (T −1)2(T −2).

Example 5.8. If f(T ) ∈ Q[T ] is irreducible, we must have (f, f ′) = 1 because f ′ has smaller
degree, and f ′(T ) 6= 0 (constant polynomials cannot be irreducible – this is important!).
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This means that any irreducible polynomial in Q[T ] has distinct roots in C[T ]. For example,
f(T ) = T 7 − 48T + 24 is Eisenstein at 3, so it is irreducible in Q[T ] , and therefore splits
into a product of distinct linear factors in C[T ].
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