POLYNOMIAL MODULAR ARITHMETIC

TIM SMITS

1. The construction of F[T]/(p(T))

Our goal is to mimic to construction of $\mathbb{Z}/n\mathbb{Z}$ in the setting of polynomial rings. Throughout this handout, F will denote a field and p(T) a non-constant monic polynomial.

Definition 1.1. Let $p(T) \in F[T]$. Define a relation $\sim_{p(T)}$ on F[T] by $f(T) \sim_{p(T)} g(T)$ if $p(T) \mid f(T) - g(T)$.

Proposition 1. The relation $\sim_{p(T)}$ is an equivalence relation on F[T].

Proof. Exercise.

Definition 1.2. For $p(T) \in F[T]$, define $F[T]/(p(T)) = \{[f(T)] : f(T) \in F[T]\}$, the set of equivalence classes under the relation $\sim_{p(T)}$.

Since we have a division algorithm in F[T], we know that for any $f(T) \in F[T]$, that f(T) = p(T)q(T) + r(T) for some unique $r(T) \in F[T]$ with r(T) = 0 or $\deg(r) < \deg(p)$. This means $f(T) \sim_{p(T)} r(T)$. Then as a set, F[T]/(p(T)) consists of equivalence classes of the possible remainders, that is, [f(T)] where $\deg(f) < \deg(p)$.

Example 1.3. Let $p(T) = T^2 + T + 1$ in $(\mathbb{Z}/2\mathbb{Z})[T]$. Then $(\mathbb{Z}/2\mathbb{Z})[T]/(T^2 + T + 1) = \{[0], [1], [T], [T+1]\}.$

Example 1.4. Let $p(T) = T^2 + 1$ in $\mathbb{R}[T]$. Then $\mathbb{R}[T]/(T^2 + 1) = \{[a + bT] : a, b \in \mathbb{R}\}.$

Note that the previous example highlights one of the major differences between $\mathbb{Z}/n\mathbb{Z}$ and F[T]/(p(T)): the first set is *finite*, while the latter need not be. Indeed, we see that the only way F[T]/(p(T)) can be finite is if F is finite, since F[T]/(p(T)) always contains elements of the form [a] for $a \in F$.

The same story that happens for the integers mod n also happens for $F[T] \mod p(T)$:

Definition 1.5. Define addition and multiplication operations on F[T]/(p(T)) by [f(T)] + [g(T)] = [f(T) + g(T)] and $[f(T)] \cdot [g(T)] = [f(T)g(T)]$.

Proposition 2. The operations of addition and multiplication above make F[T]/(p(T)) into a commutative ring with additive identity [0] and multiplicative identity [1].

Proof. Left as an exercise – very similar to the proof in $\mathbb{Z}/n\mathbb{Z}$.

Like before, we'll often write $f(T) \equiv g(T) \mod p(T)$ to mean that $f(T) \sim_{p(T)} g(T)$, or equivalently, that [f(T)] = [g(T)] in F[T]/(p(T)). Arithmetic in this ring plays out very much like how arithmetic in $\mathbb{Z}/n\mathbb{Z}$ works out.

TIM SMITS

Example 1.6. In $(\mathbb{Z}/2\mathbb{Z})[T]/(T^2 + T + 1)$, we have $[T^2 + T + 1] = [0]$, so solving for $[T^2]$ says $[T^2] = [T+1]$, i.e. $T^2 \equiv T + 1 \mod T^2 + T + 1$. If we compute some other powers of [T], we find $T^3 = T \cdot T^2 \equiv T^2 + T \equiv 1 \mod T^2 + T + 1$, and $T^4 = (T^2)^2 \equiv (T+1)^2 \equiv T^2 + 1 \equiv (T+1) + 1 \equiv T \mod T^2 + T + 1$.

Example 1.7. $(\mathbb{Z}/3\mathbb{Z})[T]/(T^2+1)$ has 9 elements: the equivalence classes [a+bT] with $a, b \in \mathbb{Z}/3\mathbb{Z}$. Since $[T^2+1] = [0]$, this tells us that $[T^2] = [2]$. We have $(2T+1) + (T+2) \equiv 0 \mod T^2 + 1$, and $(2T+1)(T+2) = 2T^2 + 5T + 2 \equiv 2T \mod T^2 + 1$.

Example 1.8. In $\mathbb{Q}[T]/(T^2-1)$, we have $[T^2-1] = [0]$. Since $T^2-1 = (T+1)(T-1)$, this means [(T+1)][(T-1)] = [0], so that $\mathbb{Q}[T]/(T^2-1)$ is **not** an integral domain.

2. The structure of F[T]/(p(T))

Positive integers in \mathbb{Z} are analogous to monic polynomials in F[T], and primes in \mathbb{Z} are analogous to monic irreducibles in F[T]. Like in the integers, the structure will depend on if p(T) is irreducible or not.

Theorem 2.1. $[f(T)] \in F[T]/(p(T))$ is a unit if and only if (f(T), p(T)) = 1 in F[T].

Proof. The proof is basically identical to how it worked in $\mathbb{Z}/n\mathbb{Z}$: suppose that $[f(T)] \in F[T]/(p(T))$ is a unit, so there is $[g(T)] \in F[T]/(p(T))$ such that [f(T)][g(T)] = [1]. This means that $f(T)g(T) \equiv 1 \mod p(T)$, so there is $h(T) \in F[T]$ such that f(T)g(T) = 1 + p(T)h(T). This says that f(T)g(T) - p(T)h(T) = 1, so that (f(T), p(T)) = 1. Conversely, suppose that (f(T), p(T)) = 1. By Bezout's lemma, there are polynomials $g(T), h(T) \in F[T]$ such that f(T)g(T) + p(T)h(T) = 1. Taking this equation mod p(T) says that $f(T)g(T) \equiv 1 \mod p(T)$, i.e. that [f(T)][g(T)] = [1]. This says that $[f(T)][g(T)] \equiv [1]$. This says that [f(T)] has multiplicative inverse [g(T)], so it's a unit.

Corollary 2.2. F[T]/(p(T)) is a field if and only if p(T) is irreducible in F[T].

Proof. Any element of F[T]/(p(T)) is of the form [f(T)] for some polynomial f(T) of degree strictly smaller than that of p(T). If p(T) is irreducible, we must have that (f(T), p(T)) = 1for any non-zero f(T) for degree reasons. This means that [f(T)] is invertible in F[T]/(p(T)). If p(T) is reducible, we may write p(T) = f(T)g(T) for some non-constant $f(T), g(T) \in F[T]$. This says that [f(T)][g(T)] = [0] in F[T]/(p(T)), so that [f(T)] is a zero divisor. Since fields have no zero divisors, this means that F[T]/(p(T)) is not a field.

Example 2.3. Since $(T + 2, T^2 - 1) = 1$ in $\mathbb{Q}[T]$, we have that [T + 2] is invertible in $\mathbb{Q}[T]/(T^2 - 1)$. To find a multiplicative inverse, we first find a $\mathbb{Q}[T]$ -linear combination of T+2 and T^2-1 that gives 1. By the division algorithm, we have $T^2-1 = (T+2)(T-2)+3$, so $\frac{1}{3}(T^2-1)+(T+2)(\frac{1}{3}(2-T)) = 1$. Taking this mod T^2-1 says that $[T+2]^{-1} = [\frac{1}{3}(2-T)]$.

Example 2.4. Since $T^2 + T + 1$ is irreducible in $(\mathbb{Z}/2\mathbb{Z})[T]$, the ring $(\mathbb{Z}/2\mathbb{Z})[T]/(T^2 + T + 1)$ is actually a field. The elements in this field are [0], [1], [T], [T + 1], and $[T]^{-1} = [T + 1]$ because $[T] \cdot [T + 1] = [T^2 + T] = [1]$.

3. FIELD EXTENSIONS

The above result tells us that modding out by irreducible polynomials in F[T] lets us construct new fields. We start with a motivating example.

Example 3.1. Since $T^2 + 1$ is irreducible in $\mathbb{R}[T]$, $\mathbb{R}[T]/(T^2 + 1)$ is a field. There is a natural inclusion map $\iota : \mathbb{R} \to \mathbb{R}[T]/(T^2+1)$ given by $a \to [a]$ for any $a \in \mathbb{R}$. This map is an injective field homomorphism, so $\operatorname{Im}(\iota)$ is an isomorphic copy of \mathbb{R} living inside of $\mathbb{R}[T]/(T^2+1)$. Since $[T^2] = [-1]$, this says that [T] is a solution to the equation $x^2 + 1$ in $\mathbb{R}[T]/(T^2+1)$, i.e. this is a field containing the real numbers that also contains a square root of -1. At this point, one might "recognize" $\mathbb{R}[T]/(T^2+1)$ as \mathbb{C} (in fact, one might take this as the definition of \mathbb{C} !)

Explicitly, I claim that the map $f : \mathbb{C} \to \mathbb{R}[T]/(T^2 + 1)$ given by f(a + bi) = [a + bT] is a field isomorphism. Note that f(1) = [1]. For z = a + bi and $w = c + di \in \mathbb{C}$, we have f(z+w) = f((a+c)+(b+d)i) = [(a+c)+(b+d)T] = [a+bT]+[c+dT] = f(z)+f(w). Similarly, we have $f(zw) = f((ac-bd)+(ad+bc)i) = [(ac-bd)+(ad+bc)T] = [ac+(ad+bc)T+bdT^2] = [a+bT][c+dT] = f(z)f(w)$. This says that f is a field homomorphism. The map is clearly surjective, since [a+bT] is mapped to by a+bi, and from homework 4, field homomorphisms are automatically injective. Therefore, f is an isomorphism.

Definition 3.2. Let F be a field. We call a field K a **field extension** of F if K contains a subfield that's isomorphic to F.

Example 3.3. We showed above that $\mathbb{R}[T]/(T^2+1)$ is a field extension of \mathbb{R} that's isomorphic to \mathbb{C} .

Given a field F, we can always construct a field extension of F that contains solutions to polynomial equations.

Theorem 3.4. Let p(T) be an irreducible polynomial. Then F[T]/(p(T)) is a field extension of F where p(T) has a root.

Proof. Let $\iota: F \to F[T]/(p(T))$ be the natural inclusion map defined by $a \to [a]$ for $a \in F$. Then ι is an injective field homomorphism, so $\operatorname{Im}(\iota) \cong F$ is a subfield of F[T]/(p(T)), meaning F[T]/(p(T)) is a field extension of F. We now show that p(T) has a root in F[T]/(p(T)). Write $p(T) = T^n + \ldots + a_0$. We have $[0] = [T^n + \ldots + a_0] = [T]^n + \ldots + [a_0]$. This says that $\alpha = [T]$ is a root of the polynomial $T^n + \ldots + a_0$ in F[T]/(p(T)) as desired. \Box

Corollary 3.5. Let $p(T) \in F[T]$ be a non-constant polynomial. Then there is a field extension K of F such that K contains a root of p(T).

Proof. Let $\pi(T)$ be an irreducible factor of p(T) in F[T]. Then by the above, $K = F[T]/(\pi(T))$ is a field extension of F where $\pi(T)$ has a root α . Since $\pi(T) \mid p(T)$, this means that $p(\alpha) = 0$ in K, so that p(T) has a root in K.

Definition 3.6. Let K be a field extension of F, and let $\alpha \in K$. The smallest subfield of K that contains both F and α is denoted as $F(\alpha)$, and is called the **extension of** F **generated by** α .

Theorem 3.7. Let $p(T) \in F[T]$ be an irreducible polynomial. Let K be a field extension of F where p(T) has a root α . Then $F(\alpha) \cong F[T]/(p(T))$.

Proof. Consider the evaluation at α map $ev_{\alpha} : F[T]/(p(T)) \to F(\alpha)$ defined by $e_{\alpha}([p(T)]) = p(\alpha)$. I claim that this is a field isomorphism. First, we should check that this map is well defined. If [f(T)] = [g(T)] in F[T]/(p(T)), this means that f(T) = g(T) + p(T)h(T) for some $h(T) \in F[T]$. In K, we then have that $f(\alpha) = g(\alpha) + p(\alpha)h(\alpha) = g(\alpha)$ because α is a root of p(T) in K. This says that ev_{α} is well defined. It's quite easy to see that ev_{α} is

a field homomorphism. We get injectiveness for free, because ev_{α} is a field homomorphism, so $F[T]/(p(T)) \cong \operatorname{Im}(ev_{\alpha})$ is a subfield of K. Since $F \subset \operatorname{Im}(ev_{\alpha})$ and $\alpha \in \operatorname{Im}(ev_{\alpha})$ (it's the image of T), as $F(\alpha)$ is the *smallest* subfield of K with this property, we must have $\operatorname{Im}(ev_{\alpha}) = F(\alpha)$, so that ev_{α} is surjective and therefore an isomorphism. \Box

Note that this theorem says that any field extension of F where p(T) has a root contains a copy of F[T]/(p(T)) and that up to isomorphism, this is the *smallest* such subfield with this property.

Example 3.8. Let $p(T) = T^2 + T + 1$ and write $\mathbb{Z}/2\mathbb{Z} = \mathbb{F}_2$. Then $\mathbb{F}_2[T]/(T^2 + T + 1)$ is a field extension of \mathbb{F}_2 where p(T) has a root, which we'll denote as α , and we can write $\mathbb{F}_2[T]/(T^2 + T + 1) \cong \mathbb{F}_2(\alpha)$. From our earlier example, we know the elements of $\mathbb{F}_2(\alpha)$ are $0, 1, \alpha, \alpha + 1$. The two roots of $T^2 + T + 1$ in $\mathbb{F}_2(\alpha)$ are given by α and $\alpha + 1$.

Example 3.9. The polynomial $T^2 - 2$ is irreducible in $\mathbb{Q}[T]$, because $\sqrt{2}$ is not rational. In \mathbb{R} , we have that $\sqrt{2}$ is a root of p(T), so $\mathbb{Q}[T]/(T^2 - 2) \cong \mathbb{Q}(\sqrt{2})$, given by the map $[f(T)] \to f(\sqrt{2})$. Since elements of $\mathbb{Q}[T]/(T^2 - 2)$ are of the form [a + bT] for some $a, b \in \mathbb{Q}$, this says that as a set, $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$, which is consistent with how we defined this before.

Note that $-\sqrt{2}$ is also a root of $T^2 - 2$ in \mathbb{R} , so we also have $\mathbb{Q}(-\sqrt{2}) \cong \mathbb{Q}[T]/(T^2 - 2)$. This says that $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(-\sqrt{2})$. In otherwords, the roots of an irreducible polynomial are algebraically indistinguishable, in the sense that the field constructed by adjoining any root gives the same field extension. The way one differentiates between $\sqrt{2}$ and $-\sqrt{2}$ in \mathbb{R} is that one is positive and one is negative, using the extra structure of the ordering of real numbers.

Example 3.10. The polynomial $p(T) = T^3 - 3T^2 + 3T - 3$ is irreducible in $\mathbb{Q}[T]$ by Eisenstein's criterion. Let α be a root of p(T) in \mathbb{R} . Then $\mathbb{Q}(\alpha) \cong \mathbb{Q}[T]/(T^3 - 3T^2 + 3T - 3)$. As a set, we have $\mathbb{Q}[T]/(T^3 - 3T^2 + 3T - 3) = \{a + bT + cT^2 : a, b, c \in \mathbb{Q}\}$ so elements of $\mathbb{Q}(\alpha)$ are of the form $a + b\alpha + c\alpha^2$ with $a, b, c \in \mathbb{Q}$. How does the arithmetic in $\mathbb{Q}(\alpha)$ work?

Let's say we wanted to find the multiplicative inverse of $1 + \alpha + \alpha^2 \in \mathbb{Q}(\alpha)$. We can do this as follows: passing through the isomorphism of $\mathbb{Q}[T]/(T^3 - 3T^2 + 3T - 3)$ and $\mathbb{Q}(\alpha)$, this says we're trying to find the inverse of $[1+T+T^2]$ in $\mathbb{Q}[T]/(T^3 - 3T^2 + 3T - 3)$, which is equivalent to finding polynomials $f(T), g(T) \in \mathbb{Q}[T]$ such that $(1+T+T^2)f(T)+(T^3 - 3T^2 + 3T - 3)g(T) =$ 1. Using WolframAlpha, one finds that $(1+T+T^2)(\frac{1}{31}(6T^2 - 19T + 16)) + (T^3 - 3T^2 + 3T - 3)(\frac{1}{31}(-6T - 5)) = 1$, so the inverse of $[1 + T + T^2]$ is $[\frac{1}{31}(6T^2 - 19T + 16)]$. Passing back through the isomorphism, this says that $\frac{1}{1+\alpha+\alpha^2}$ in $\mathbb{Q}(\alpha)$ is given by $\frac{1}{31}(6\alpha^2 - 19\alpha + 16)$.