POLYNOMIAL MODULAR ARITHMETIC

TIM SMITS

1. THE CONSTRUCTION OF F[T]/(p(T))

Our goal is to mimic to construction of Z/nZ in the setting of polynomial rings. Through-
out this handout, F' will denote a field and p(7) a non-constant monic polynomial.

Definition 1.1. Let p(T") € F[T]. Define a relation ~,) on F[T] by f(T) ~pry g(T) if
p(T) | J(T) = g(T).

Proposition 1. The relation ~yr) is an equivalence relation on F[T.
Proof. Exercise. O

Definition 1.2. For p(T') € F[T], define F[T]/(p(T)) = {[f(T)] : f(T) € F[T]}, the set of
equivalence classes under the relation ~ .

Since we have a division algorithm in F[T], we know that for any f(7T) € F[T], that
f(T) = p(T)q(T) + r(T) for some unique r(T") € F[T] with 7(T") = 0 or deg(r) < deg(p).
This means f(T") ~p) 7(T). Then as a set, F[T]/(p(T)) consists of equivalence classes of
the possible remainders, that is, [f(7')] where deg(f) < deg(p).

Example 1.3. Let p(T) = T? + T + 1 in (Z/2Z)[T). Then (Z/2Z)[T|/(T* + T + 1) =
{[0], [1], [T], [T+ 1]}.

Example 1.4. Let p(T) = T? + 1 in R[T]. Then R[T]/(T? +1) = {[a + VT] : a,b € R}.

Note that the previous example highlights one of the major differences between Z/nZ and
F[T)/(p(T)): the first set is finite, while the latter need not be. Indeed, we see that the only
way F[T]/(p(T)) can be finite is if F' is finite, since F[T]/(p(T")) always contains elements
of the form [a] for a € F.

The same story that happens for the integers mod n also happens for F[T| mod p(T):

Definition 1.5. Define addition and multiplication operations on F[T]/(p(T)) by [f(T)] +
l9(T)] = [f(T) + g(T)] and [f(T)] - [9(T)] = [f(T)g(T)]-

Proposition 2. The operations of addition and multiplication above make F[T]/(p(T)) into
a commutative ring with additive identity [0] and multiplicative identity [1].

Proof. Left as an exercise — very similar to the proof in Z/nZ. O

Like before, we'll often write f(7") = ¢g(T') mod p(T) to mean that f(T") ~pr)y g(T'), or
equivalently, that [f(T)] = [¢(T)] in F[T]/(p(T)). Arithmetic in this ring plays out very

much like how arithmetic in Z/nZ works out.
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Example 1.6. In (Z/2Z)[T)/(T?* + T + 1), we have [T* 4+ T + 1] = [0], so solving for [T"]
says [T?] = [T +1],i.e. T> =T +1 mod T?+ T + 1. If we compute some other powers of [T,
wefind T3 =T -T*°=T*4+T=1modT>+T+1,and T = (T*)?> = (T+1)*=T*+1=
(T+1)+1=TmodT?+T + 1.

Example 1.7. (Z/3Z)[T]/(T? + 1) has 9 elements: the equivalence classes [a + bT| with
a,b € Z/37Z. Since [T? + 1] = [0], this tells us that [T?] = [2]. We have (2T + 1)+ (T +2) =
0mod 7% + 1, and (2T + 1)(T +2) = 2T? + 5T + 2 = 2T mod T? + 1.

Example 1.8. In Q[T]/(T? — 1), we have [T? — 1] = [0]. Since T? —1 = (T + 1)(T — 1),
this means [(T' + 1)][(T — 1)] = [0], so that Q[T']/(T? — 1) is not an integral domain.

2. THE STRUCTURE OF F[T]/(p(T))

Positive integers in Z are analogous to monic polynomials in F[T], and primes in Z are
analogous to monic irreducibles in F'[T]. Like in the integers, the structure will depend on
if p(T') is irreducible or not.

Theorem 2.1. [f(T)] € F[T]/(p(T)) is a unit if and only if (f(T),p(T)) =1 in F[T].

Proof. The proof is basically identical to how it worked in Z/nZ: suppose that [f(T)] €
F[T]/(p(T)) is a unit, so there is [¢(T)] € F[T]/(p(T)) such that [f(T")][g(T)] = [1]. This
means that f(T)g(T) = 1 mod p(T), so there is h(T) € F[T] such that f(T)g(T) = 1+
p(T)h(T). This says that f(T7)g(T) — p(T)h(T) = 1, so that (f(T),p(T)) = 1. Conversely,
suppose that (f(T),p(T)) = 1. By Bezout’s lemma, there are polynomials g(T'), h(T) € F[T]
such that f(T)g(T) + p(T)h(T) = 1. Taking this equation mod p(T') says that f(T)g(T) =
1 mod p(T), i.e. that [f(T)][g(T)] = [1]. This says that [f(T")] has multiplicative inverse
[g(T)], so it’s a unit. O

Corollary 2.2. F[T]/(p(T)) is a field if and only if p(T) is irreducible in F[T).

Proof. Any element of F[T']/(p(T)) is of the form [f(T)] for some polynomial f(7") of degree
strictly smaller than that of p(T"). If p(7T') is irreducible, we must have that (f(7),p(T)) =1
for any non-zero f(T") for degree reasons. This means that [f(7)] is invertible in F[T']/(p(T)).
If p(T') is reducible, we may write p(T') = f(T)g(T) for some non-constant f(T'), g(T) € F[T].
This says that [f(T")][g(T)] = [0] in F[T]/(p(T)), so that [f(T)] is a zero divisor. Since fields
have no zero divisors, this means that F'[T]/(p(T)) is not a field. O

Example 2.3. Since (T + 2,7% — 1) = 1 in Q[T], we have that [T + 2] is invertible in
Q[T]/(T?* —1). To find a multiplicative inverse, we first find a Q[T]-linear combination of
T+2 and T?—1 that gives 1. By the division algorithm, we have T? —1 = (T +2)(T —2) + 3,
s0 3(T?—1)+(T+2)(3(2—T)) = 1. Taking this mod 7% — 1 says that [T+2]* = [3(2—T)].

Example 2.4. Since T?+ T +1 is irreducible in (Z/2Z)[T], the ring (Z/2Z)[T]/(T*+T +1)
is actually a field. The elements in this field are [0],[1],[T], [T + 1], and [T]™* = [T + 1]
because [T] - [T + 1] = [T? + T] = [1].

3. FIELD EXTENSIONS

The above result tells us that modding out by irreducible polynomials in F[T] lets us
construct new fields. We start with a motivating example.
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Example 3.1. Since T2+ 1 is irreducible in R[T], R[T]/(T?+1) is a field. There is a natural
inclusion map ¢ : R — R[T]/(T?+1) given by a — [a] for any a € R. This map is an injective
field homomorphism, so Im(¢) is an isomorphic copy of R living inside of R[T]/(T?+1). Since
[T?] = [—1], this says that [T] is a solution to the equation z? + 1 in R[T|/(T? + 1), i.e. this
is a field containing the real numbers that also contains a square root of —1. At this point,
one might “recognize” R[T]/(T?+1) as C (in fact, one might take this as the definition of C!)

Explicitly, I claim that the map f : C — R[T]/(T? + 1) given by f(a + bi) = [a + bT] is
a field isomorphism. Note that f(1) = [1]. For z = a + bi and w = ¢ + di € C, we have
f(z4w) = f((a+c)+(b+d)i) = [(a+c)+(b+d)T] = [a+bT]+[c+dT] = f(2z)+f(w). Similarly,
we have f(zw) = f((ac—bd)+(ad+bc)i) = [(ac—bd)+ (ad+bc)T| = [ac+ (ad+be)T+bdT?] =
a4+ 0T)[c+dT] = f(2)f(w). This says that f is a field homomorphism. The map is clearly
surjective, since [a+bT"] is mapped to by a+ bi, and from homework 4, field homomorphisms
are automatically injective. Therefore, f is an isomorphism.

Definition 3.2. Let F' be a field. We call a field K a field extension of F' if K contains a
subfield that’s isomorphic to F'.

Example 3.3. We showed above that R[T|/(T*+1) is a field extension of R that’s isomorphic
to C.

Given a field F', we can always construct a field extension of F' that contains solutions to
polynomial equations.

Theorem 3.4. Let p(T') be an irreducible polynomial. Then F[T]/(p(T)) is a field extension
of F where p(T') has a root.

Proof. Let v : F'— F[T]/(p(T)) be the natural inclusion map defined by a — [a] for a € F.
Then ¢ is an injective field homomorphism, so Im(:) = F is a subfield of F[T']/(p(T)), meaning
F[T]/(p(T)) is a field extension of F'. We now show that p(T") has a root in F[T|/(p(T)).
Write p(T') =T™ + ...+ ap. We have [0] = [T" +...4+ao] = [T]" + ...+ [ao]. This says that
a = [T] is a root of of the polynomial 7" + ...+ ag in F[T]/(p(T)) as desired. O

Corollary 3.5. Let p(T') € F[T] be a non-constant polynomial. Then there is a field exten-
sion K of F' such that K contains a root of p(T).

Proof. Let m(T') be an irreducible factor of p(T) in F[T]. Then by the above, K = F[T']/(w(T))
is a field extension of F' where 7(T") has a root a. Since 7(7T') | p(7T'), this means that p(a) =0
in K, so that p(T") has a root in K. O

Definition 3.6. Let K be a field extension of F, and let € K. The smallest subfield
of K that contains both F' and « is denoted as F(«), and is called the extension of F
generated by a.

Theorem 3.7. Let p(T) € F[T] be an irreducible polynomial. Let K be a field extension of
F where p(T) has a root a. Then F(«) = F[T]/(p(T)).

Proof. Consider the evaluation at aw map ev,, : F[T]/(p(T)) — F(«) defined by e, ([p(T)]) =
p(a). I claim that this is a field isomorphism. First, we should check that this map is well
defined. If [f(T)] = [¢(T)] in F[T]/(p(T)), this means that f(T) = g(T') + p(T)h(T) for
some h(T) € F[T]. In K, we then have that f(a) = g(a) + p(a)h(a) = g(a) because « is
a root of p(T) in K. This says that ev, is well defined. It’s quite easy to see that ev, is
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a field homomorphism. We get injectiveness for free, because ev, is a field homomorphism,
so F[T]/(p(T)) = Im(ev,) is a subfield of K. Since F' C Im(ev,) and a € Im(ev,) (it’s
the image of T'), as F(«) is the smallest subfield of K with this property, we must have
Im(ev,) = F(a), so that ev, is surjective and therefore an isomorphism. O

Note that this theorem says that any field extension of F' where p(7") has a root contains
a copy of F[T]/(p(T')) and that up to isomorphism, this is the smallest such subfield with
this property.

Example 3.8. Let p(T) = T? + T + 1 and write Z/2Z = Fy. Then Fo[T|/(T? + T + 1) is
a field extension of Fy where p(T') has a root, which we’ll denote as «, and we can write
Fo[T]/(T? + T + 1) = Fy(a). From our earlier example, we know the elements of Fo(a) are
0,1,a,a + 1. The two roots of T? + T + 1 in Fy(a) are given by o and a + 1.

Example 3.9. The polynomial T2 — 2 is irreducible in Q[T7], because v/2 is not rational.
In R, we have that v/2 is a root of p(T), so Q[T']/(T? — 2) = Q(+/2), given by the map
[f(T)] — f(+/2). Since elements of Q[T]/(T? — 2) are of the form [a + bT] for some a,b € Q,
this says that as a set, Q(v/2) = {a + bv2 : a,b € Q}, which is consistent with how we
defined this before.

Note that —/2 is also a root of T? — 2 in R, so we also have Q(—+/2) = Q[T]/(T? — 2).
This says that Q(v/2) = Q(—+/2). In otherwords, the roots of an irreducible polynomial are
algebraically indistinguishable, in the sense that the field constructed by adjoining any root
gives the same field extension. The way one differentiates between /2 and —+/2 in R is that
one is positive and one is negative, using the extra structure of the ordering of real numbers.

Example 3.10. The polynomial p(T) = T? — 3T7? 4 3T — 3 is irreducible in Q[T] by Eisen-
stein’s criterion. Let a be a root of p(T) in R. Then Q(a) = Q[T]/(T? — 3T? + 3T — 3). As
a set, we have Q[T]/(T? —3T?+ 3T —3) = {a+bT + cT? : a,b,c € Q} so elements of Q(«)
are of the form a + ba + ca? with a,b,c € Q. How does the arithmetic in Q(a) work?

Let’s say we wanted to find the multiplicative inverse of 1+a+a? € Q(a). We can do this
as follows: passing through the isomorphism of Q[T']/(T? —3T?+3T —3) and Q(«), this says
we're trying to find the inverse of [1+T+7?] in Q[T /(T3—3T?+3T—3), which is equivalent to
finding polynomials f(T), g(T) € Q[T] such that (1+T+T2) f(T)+(T?—-3T*+3T—3)g(T) =
1. Using WolframAlpha, one finds that (1+74772)(5;(67% — 197 4 16)) + (T — 3T% 43T —
3)(37(—6T — 5)) = 1, so the inverse of [1 + T + T?] is [5;(67% — 19T + 16)]. Passing back
through the isomorphism, this says that ---— in Q(a) is given by 3;(6a* — 19a + 16).



