
POLYNOMIAL MODULAR ARITHMETIC

TIM SMITS

1. The construction of F [T ]/(p(T ))

Our goal is to mimic to construction of Z/nZ in the setting of polynomial rings. Through-
out this handout, F will denote a field and p(T ) a non-constant monic polynomial.

Definition 1.1. Let p(T ) ∈ F [T ]. Define a relation ∼p(T ) on F [T ] by f(T ) ∼p(T ) g(T ) if
p(T ) | f(T )− g(T ).

Proposition 1. The relation ∼p(T ) is an equivalence relation on F [T ].

Proof. Exercise. □

Definition 1.2. For p(T ) ∈ F [T ], define F [T ]/(p(T )) = {[f(T )] : f(T ) ∈ F [T ]}, the set of
equivalence classes under the relation ∼p(T ).

Since we have a division algorithm in F [T ], we know that for any f(T ) ∈ F [T ], that
f(T ) = p(T )q(T ) + r(T ) for some unique r(T ) ∈ F [T ] with r(T ) = 0 or deg(r) < deg(p).
This means f(T ) ∼p(T ) r(T ). Then as a set, F [T ]/(p(T )) consists of equivalence classes of
the possible remainders, that is, [f(T )] where deg(f) < deg(p).

Example 1.3. Let p(T ) = T 2 + T + 1 in (Z/2Z)[T ]. Then (Z/2Z)[T ]/(T 2 + T + 1) =
{[0], [1], [T ], [T + 1]}.

Example 1.4. Let p(T ) = T 2 + 1 in R[T ]. Then R[T ]/(T 2 + 1) = {[a+ bT ] : a, b ∈ R}.

Note that the previous example highlights one of the major differences between Z/nZ and
F [T ]/(p(T )): the first set is finite, while the latter need not be. Indeed, we see that the only
way F [T ]/(p(T )) can be finite is if F is finite, since F [T ]/(p(T )) always contains elements
of the form [a] for a ∈ F .

The same story that happens for the integers mod n also happens for F [T ] mod p(T ):

Definition 1.5. Define addition and multiplication operations on F [T ]/(p(T )) by [f(T )] +
[g(T )] = [f(T ) + g(T )] and [f(T )] · [g(T )] = [f(T )g(T )].

Proposition 2. The operations of addition and multiplication above make F [T ]/(p(T )) into
a commutative ring with additive identity [0] and multiplicative identity [1].

Proof. Left as an exercise – very similar to the proof in Z/nZ. □

Like before, we’ll often write f(T ) ≡ g(T ) mod p(T ) to mean that f(T ) ∼p(T ) g(T ), or
equivalently, that [f(T )] = [g(T )] in F [T ]/(p(T )). Arithmetic in this ring plays out very
much like how arithmetic in Z/nZ works out.
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Example 1.6. In (Z/2Z)[T ]/(T 2 + T + 1), we have [T 2 + T + 1] = [0], so solving for [T 2]
says [T 2] = [T +1], i.e. T 2 ≡ T +1 mod T 2+T +1. If we compute some other powers of [T ],
we find T 3 = T · T 2 ≡ T 2 + T ≡ 1 mod T 2 + T + 1, and T 4 = (T 2)2 ≡ (T + 1)2 ≡ T 2 + 1 ≡
(T + 1) + 1 ≡ T mod T 2 + T + 1.

Example 1.7. (Z/3Z)[T ]/(T 2 + 1) has 9 elements: the equivalence classes [a + bT ] with
a, b ∈ Z/3Z. Since [T 2 + 1] = [0], this tells us that [T 2] = [2]. We have (2T + 1)+ (T + 2) ≡
0 mod T 2 + 1, and (2T + 1)(T + 2) = 2T 2 + 5T + 2 ≡ 2T mod T 2 + 1.

Example 1.8. In Q[T ]/(T 2 − 1), we have [T 2 − 1] = [0]. Since T 2 − 1 = (T + 1)(T − 1),
this means [(T + 1)][(T − 1)] = [0], so that Q[T ]/(T 2 − 1) is not an integral domain.

2. The structure of F [T ]/(p(T ))

Positive integers in Z are analogous to monic polynomials in F [T ], and primes in Z are
analogous to monic irreducibles in F [T ]. Like in the integers, the structure will depend on
if p(T ) is irreducible or not.

Theorem 2.1. [f(T )] ∈ F [T ]/(p(T )) is a unit if and only if (f(T ), p(T )) = 1 in F [T ].

Proof. The proof is basically identical to how it worked in Z/nZ: suppose that [f(T )] ∈
F [T ]/(p(T )) is a unit, so there is [g(T )] ∈ F [T ]/(p(T )) such that [f(T )][g(T )] = [1]. This
means that f(T )g(T ) ≡ 1 mod p(T ), so there is h(T ) ∈ F [T ] such that f(T )g(T ) = 1 +
p(T )h(T ). This says that f(T )g(T ) − p(T )h(T ) = 1, so that (f(T ), p(T )) = 1. Conversely,
suppose that (f(T ), p(T )) = 1. By Bezout’s lemma, there are polynomials g(T ), h(T ) ∈ F [T ]
such that f(T )g(T ) + p(T )h(T ) = 1. Taking this equation mod p(T ) says that f(T )g(T ) ≡
1 mod p(T ), i.e. that [f(T )][g(T )] = [1]. This says that [f(T )] has multiplicative inverse
[g(T )], so it’s a unit. □
Corollary 2.2. F [T ]/(p(T )) is a field if and only if p(T ) is irreducible in F [T ].

Proof. Any element of F [T ]/(p(T )) is of the form [f(T )] for some polynomial f(T ) of degree
strictly smaller than that of p(T ). If p(T ) is irreducible, we must have that (f(T ), p(T )) = 1
for any non-zero f(T ) for degree reasons. This means that [f(T )] is invertible in F [T ]/(p(T )).
If p(T ) is reducible, we may write p(T ) = f(T )g(T ) for some non-constant f(T ), g(T ) ∈ F [T ].
This says that [f(T )][g(T )] = [0] in F [T ]/(p(T )), so that [f(T )] is a zero divisor. Since fields
have no zero divisors, this means that F [T ]/(p(T )) is not a field. □
Example 2.3. Since (T + 2, T 2 − 1) = 1 in Q[T ], we have that [T + 2] is invertible in
Q[T ]/(T 2 − 1). To find a multiplicative inverse, we first find a Q[T ]-linear combination of
T +2 and T 2−1 that gives 1. By the division algorithm, we have T 2−1 = (T +2)(T −2)+3,
so 1

3
(T 2−1)+(T +2)(1

3
(2−T )) = 1. Taking this mod T 2−1 says that [T +2]−1 = [1

3
(2−T )].

Example 2.4. Since T 2+T +1 is irreducible in (Z/2Z)[T ], the ring (Z/2Z)[T ]/(T 2+T +1)
is actually a field. The elements in this field are [0], [1], [T ], [T + 1], and [T ]−1 = [T + 1]
because [T ] · [T + 1] = [T 2 + T ] = [1].

3. field extensions

The above result tells us that modding out by irreducible polynomials in F [T ] lets us
construct new fields. We start with a motivating example.
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Example 3.1. Since T 2+1 is irreducible in R[T ], R[T ]/(T 2+1) is a field. There is a natural
inclusion map ι : R → R[T ]/(T 2+1) given by a → [a] for any a ∈ R. This map is an injective
field homomorphism, so Im(ι) is an isomorphic copy of R living inside of R[T ]/(T 2+1). Since
[T 2] = [−1], this says that [T ] is a solution to the equation x2 + 1 in R[T ]/(T 2 + 1), i.e. this
is a field containing the real numbers that also contains a square root of −1. At this point,
one might “recognize” R[T ]/(T 2+1) as C (in fact, one might take this as the definition of C!)

Explicitly, I claim that the map f : C → R[T ]/(T 2 + 1) given by f(a + bi) = [a + bT ] is
a field isomorphism. Note that f(1) = [1]. For z = a + bi and w = c + di ∈ C, we have
f(z+w) = f((a+c)+(b+d)i) = [(a+c)+(b+d)T ] = [a+bT ]+[c+dT ] = f(z)+f(w). Similarly,
we have f(zw) = f((ac−bd)+(ad+bc)i) = [(ac−bd)+(ad+bc)T ] = [ac+(ad+bc)T+bdT 2] =
[a+ bT ][c+ dT ] = f(z)f(w). This says that f is a field homomorphism. The map is clearly
surjective, since [a+bT ] is mapped to by a+bi, and from homework 4, field homomorphisms
are automatically injective. Therefore, f is an isomorphism.

Definition 3.2. Let F be a field. We call a field K a field extension of F if K contains a
subfield that’s isomorphic to F .

Example 3.3. We showed above that R[T ]/(T 2+1) is a field extension of R that’s isomorphic
to C.

Given a field F , we can always construct a field extension of F that contains solutions to
polynomial equations.

Theorem 3.4. Let p(T ) be an irreducible polynomial. Then F [T ]/(p(T )) is a field extension
of F where p(T ) has a root.

Proof. Let ι : F → F [T ]/(p(T )) be the natural inclusion map defined by a → [a] for a ∈ F .
Then ι is an injective field homomorphism, so Im(ι) ∼= F is a subfield of F [T ]/(p(T )), meaning
F [T ]/(p(T )) is a field extension of F . We now show that p(T ) has a root in F [T ]/(p(T )).
Write p(T ) = T n + . . .+ a0. We have [0] = [T n + . . .+ a0] = [T ]n + . . .+ [a0]. This says that
α = [T ] is a root of of the polynomial T n + . . .+ a0 in F [T ]/(p(T )) as desired. □
Corollary 3.5. Let p(T ) ∈ F [T ] be a non-constant polynomial. Then there is a field exten-
sion K of F such that K contains a root of p(T ).

Proof. Let π(T ) be an irreducible factor of p(T ) in F [T ]. Then by the above,K = F [T ]/(π(T ))
is a field extension of F where π(T ) has a root α. Since π(T ) | p(T ), this means that p(α) = 0
in K, so that p(T ) has a root in K. □
Definition 3.6. Let K be a field extension of F , and let α ∈ K. The smallest subfield
of K that contains both F and α is denoted as F (α), and is called the extension of F
generated by α.

Theorem 3.7. Let p(T ) ∈ F [T ] be an irreducible polynomial. Let K be a field extension of
F where p(T ) has a root α. Then F (α) ∼= F [T ]/(p(T )).

Proof. Consider the evaluation at α map evα : F [T ]/(p(T )) → F (α) defined by eα([p(T )]) =
p(α). I claim that this is a field isomorphism. First, we should check that this map is well
defined. If [f(T )] = [g(T )] in F [T ]/(p(T )), this means that f(T ) = g(T ) + p(T )h(T ) for
some h(T ) ∈ F [T ]. In K, we then have that f(α) = g(α) + p(α)h(α) = g(α) because α is
a root of p(T ) in K. This says that evα is well defined. It’s quite easy to see that evα is
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a field homomorphism. We get injectiveness for free, because evα is a field homomorphism,
so F [T ]/(p(T )) ∼= Im(evα) is a subfield of K. Since F ⊂ Im(evα) and α ∈ Im(evα) (it’s
the image of T ), as F (α) is the smallest subfield of K with this property, we must have
Im(evα) = F (α), so that evα is surjective and therefore an isomorphism. □

Note that this theorem says that any field extension of F where p(T ) has a root contains
a copy of F [T ]/(p(T )) and that up to isomorphism, this is the smallest such subfield with
this property.

Example 3.8. Let p(T ) = T 2 + T + 1 and write Z/2Z = F2. Then F2[T ]/(T
2 + T + 1) is

a field extension of F2 where p(T ) has a root, which we’ll denote as α, and we can write
F2[T ]/(T

2 + T + 1) ∼= F2(α). From our earlier example, we know the elements of F2(α) are
0, 1,α,α + 1. The two roots of T 2 + T + 1 in F2(α) are given by α and α + 1.

Example 3.9. The polynomial T 2 − 2 is irreducible in Q[T ], because
√
2 is not rational.

In R, we have that
√
2 is a root of p(T ), so Q[T ]/(T 2 − 2) ∼= Q(

√
2), given by the map

[f(T )] → f(
√
2). Since elements of Q[T ]/(T 2− 2) are of the form [a+ bT ] for some a, b ∈ Q,

this says that as a set, Q(
√
2) = {a + b

√
2 : a, b ∈ Q}, which is consistent with how we

defined this before.

Note that −
√
2 is also a root of T 2 − 2 in R, so we also have Q(−

√
2) ∼= Q[T ]/(T 2 − 2).

This says that Q(
√
2) ∼= Q(−

√
2). In otherwords, the roots of an irreducible polynomial are

algebraically indistinguishable, in the sense that the field constructed by adjoining any root
gives the same field extension. The way one differentiates between

√
2 and −

√
2 in R is that

one is positive and one is negative, using the extra structure of the ordering of real numbers.

Example 3.10. The polynomial p(T ) = T 3 − 3T 2 + 3T − 3 is irreducible in Q[T ] by Eisen-
stein’s criterion. Let α be a root of p(T ) in R. Then Q(α) ∼= Q[T ]/(T 3 − 3T 2 + 3T − 3). As
a set, we have Q[T ]/(T 3 − 3T 2 + 3T − 3) = {a+ bT + cT 2 : a, b, c ∈ Q} so elements of Q(α)
are of the form a+ bα + cα2 with a, b, c ∈ Q. How does the arithmetic in Q(α) work?

Let’s say we wanted to find the multiplicative inverse of 1+α+α2 ∈ Q(α). We can do this
as follows: passing through the isomorphism of Q[T ]/(T 3−3T 2+3T −3) and Q(α), this says
we’re trying to find the inverse of [1+T+T 2] inQ[T ]/(T 3−3T 2+3T−3), which is equivalent to
finding polynomials f(T ), g(T ) ∈ Q[T ] such that (1+T+T 2)f(T )+(T 3−3T 2+3T−3)g(T ) =
1. Using WolframAlpha, one finds that (1+T +T 2)( 1

31
(6T 2−19T +16))+(T 3−3T 2+3T −

3)( 1
31
(−6T − 5)) = 1, so the inverse of [1 + T + T 2] is [ 1

31
(6T 2 − 19T + 16)]. Passing back

through the isomorphism, this says that 1
1+α+α2 in Q(α) is given by 1

31
(6α2 − 19α + 16).


