
MODULAR ARITHMETIC

TIM SMITS

The integers Z are our first example of a ring. Our goal is to now construct a finite ring
of size n for any n > 1, Z/nZ.

Some set theory

Before beginning the construction, we’ll first review some set theory.

Definition 0.1. A (binary) relation R between sets X and Y is is a subset of X × Y . If
X = Y we say that R is a relation on X. If (x, y) ∈ R, we write x ∼ y and say that x relates
to y.

The way to interpret the relation is that R is the set of values where x ∼ y is true.

Example 0.2. Let X = Y = {0, 1, 2, 3}. Define the relation R = {(0, 0), (1, 1), (2, 2), (3, 3)}.
This is the relation =, e.g. since 1 = 1 we have (1, 1) ∈ R.

Example 0.3. With R = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}
and X = Y = {0, 1, 2, 3} as above, then R is the relation ≤.

Definition 0.4. Let ∼ be a relation on a set S. Then ∼ is called an equivalence relation
if the following conditions hold:

1. (Reflexive) x ∼ x for all x ∈ S
2. (Symmetric) For all x, y ∈ S, if x ∼ y then y ∼ x
3. (Transitive) For all x, y, z ∈ S, if x ∼ y and y ∼ z then x ∼ z.

A relation ∼ is called reflexive, symmetric, or transitive if it satisfies the respective con-
ditions above. Familiar examples of equivalence relations include = on R, and similarity of
matrices in Mn(F ) for a field F .

Definition 0.5. Let ∼ be a relation on S. The conjugacy class of an element a ∈ S, de-
noted [a] (or a), is defined by [a] = {b ∈ S : b ∼ a}. An element a′ is called a representative
of [a] if a′ ∈ [a].

Equivalences relations are nice because they give a partition of S into the different conju-
gacy classes under ∼.

Proposition 1. Let ∼ be an equivalence relation on S. For two conjugacy classes [a] and
[b], either [a] = [b] or [a] ∩ [b] = ∅.

Proof. Note that because ∼ is reflexive, for any a ∈ S, [a] is non-empty. Pick conjugacy
clases [a] and [b] of S. First, suppose that a ∼ b. If x ∈ [a] by definition x ∼ a, and since
a ∼ b we have x ∼ b by transitivity. Therefore x ∈ [b], giving [a] ⊆ [b]. Similarly, [b] ⊆ [a] so
[a] = [b]. Now if a 6∼ b, suppose for contradiction that [a] ∩ [b] 6= ∅. Then pick x ∈ [a] ∩ [b],
so by definition x ∼ a and x ∼ b, so a ∼ b by symmetry and transitivity, a contradiction.
Therefore, [a] ∩ [b] = ∅. �
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Proposition 2. Let ∼ be an equivalence relation on S. Then S =
⋃

a∈S[a].

Proof. Let s ∈ S. Then s ∼ s by reflexivity, so s ∈ [s] ⊆
⋃

a∈S[a]. Therefore, S ⊆
⋃

a∈S[a]. If
s ∈

⋃
a∈S[a], then s ∈ [a] for some a ∈ S. However, [a] ⊂ S, so s ∈ S giving

⋃
a∈S[a] ⊆ S. �

It’s worth pointing out that since two conjugacy classes [a] and [b] are either equal or
disjoint, we can refine the above union to a disjoint union by just taking it over the distinct
conjugacy classes.

Construction of Z/nZ

The key to our construction will be the fact that the integers have division with remainder.

Theorem 0.6 (Division algorithm). Let a and b be integers with b > 0. Then there exist
unique integers q and r such that a = bq + r with 0 ≤ r < b.

Fix an integer n > 1 and define a relation on Z as follows: a ∼n b ⇐⇒ n | (a− b).

Proposition 3. The relation ∼n as defined above is an equivalence relation on Z.

Proof. For a ∈ Z, we have a ∼n a because n | 0. If a ∼n b, then n | (a − b) so n | (b − a),
because b − a = (−1)(a − b) giving b ∼n a. If a ∼n b and b ∼n c, then n | (a − b) and
n | (b − c). We then have that n | (a − b) + (b − c) = a − c, so a ∼n c, so that ∼n is an
equivalence relation as desired.

�

The set theory above says that ∼n gives a partition of the integers into disjoint sets, and
for an integer a we have [a] = {. . . , a−2n, a−n, a, a+n, a+ 2n, . . .}, the set of integers that
differ from a by a multiple of n. The division algorithm tells us that any integer a is of the
form a = qn + r with 0 ≤ r ≤ n− 1, i.e. that a ∼ r for some r with 0 ≤ r ≤ n− 1. In other
words, Z =

⊔n−1
i=0 [i].

Let Z/nZ = {[0], . . . , [n − 1]} be the set of equivalence classes under ∼n. We define
addition and multiplication operations on Z/nZ by [a] + [b] = [a + b] and [a] · [b] = [ab].
Notationally, we use the convention that the conjugacy class [a] is written as a mod n, and
if a ∼n b then we write a ≡ b mod n. Using this new notation, the above operations are
(a mod n) + (b mod n) = (a + b) mod n and (a mod n) · (b mod n) = ab mod n. We’ll use
both notations fairly often, so make sure both make sense!

Proposition 4. The operations + and · as defined above are well defined, i.e. do not depend
on the choice of representative in the conjugacy class.

Proof. To check the operation is well defined, we must show that if a mod n = a′ mod n and
b mod n = b′ mod n, then a + b mod n = a′ + b′ mod n. Translating this into a statement
using the definition of ∼n, we want to show that if a ≡ a′ mod n and b ≡ b′ mod n, that
a + b mod n ≡ a′ + b′ mod n. If a ≡ a′ mod n, then by definition we have n | (a − a′), and
similarly we have n | (b − b′). Then a′ = a + kn and b′ = b + `n for some integers k and
`. Adding shows that a′ + b′ = a + b + n(k + `), so a + b ≡ a′ + b′ mod n. Similarly for
multiplication, we have a′b′ = (a+kn)(b+n`) = ab+n(a`+bk+nk`), so a′b′ ≡ ab mod n. �

Definition 0.7. The set Z/nZ with the operations of + and · as defined above is called the
integers modulo n.
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The proposition above says that addition and multiplication do not depend on the choice
of representatives for the conjugacy classes of Z/nZ. We may as well take the integers
0, 1, . . . , n − 1 to be representatives of the conjugacy classes of 0 mod n, . . . , n − 1 mod n,
although we’ll see in a little bit that sometimes it’s more convenient to pick different rep-
resentatives. As the operations of addition and multiplication are very closely tied to the
usual addition and multiplication of integers, it should be fairly unsurprising that many of
the same properties carry over to Z/nZ:

Proposition 5. The operations + and · on Z/nZ satisfy the following properties for any
a, b, c ∈ Z:

1. a + b ≡ b + a mod n and ab ≡ ba mod n.
2. (a + b) + c ≡ a + (b + c) mod n and a(bc) ≡ (ab)c mod n.
3. a(b + c) ≡ ab + ac mod n.
4. a + 0 ≡ a mod n.
5. a + (n− a) ≡ 0 mod n.
6. a · 1 ≡ a mod n.

Proof. Exercise. �

Arithmetic in Z/nZ

Before doing anything else, it will be helpful to familiarize ourselves with how arithmetic
in Z/nZ works.

Example 0.8. a ≡ 0 mod n, is equivalent to saying that n | a, i.e. a = nk for some integer
k.

Example 0.9. In Z/6Z, we have 20 ≡ 2 mod 6 because 20 = 2 + 3 · 6. In Z/11Z, −20 ≡
13 mod 11 because −20 = 13− 3 · 11. Similarly, 13 mod 11 ≡ 2 mod 11.

Example 0.10. In Z/17Z, 15 + 7 mod 17 ≡ 22 mod 17 ≡ 5 mod 17 because 22 = 1 · 17 + 5.
We have 15 · 7 mod 17 ≡ 105 mod 17 ≡ 3 mod 17 because 105 = 6 · 17 + 3.

Example 0.11. To compute a mod n, add or subtract multiples of n to a (since this does not
affect the value of a mod n) until you reduce to something you can handle. For example, to
compute −533 mod 7, add 700 to −533 and then subtract 140 from 167 to get −533 mod 7 ≡
167 mod 7 ≡ 27 mod 7 ≡ 6 mod 7.

Example 0.12. For every integer n, we have n ≡ 0 mod 2 or n ≡ 1 mod 2. Saying n ≡
0 mod 2 is the same as saying n = 2k for some k, i.e. n is even and n ≡ 1 mod 2 is the same
as saying n = 2` + 1 for some `, i.e. n is odd. Notice that a ≡ b mod 2 if and only if a and
b have the same parity.

Example 0.13. To carry out arithmetic quickly, it may be helpful to change the representa-
tives of conjugacy classes. In Z/7Z, we have 16·3 mod 7 ≡ 48 mod 7 ≡ −1 mod 7 ≡ 6 mod 7.
One could first reduce 16 mod 7 ≡ 2 mod 7 to conclude 16 ·3 mod 7 ≡ 2 ·3 mod 7 ≡ 6 mod 7.

Example 0.14. To compute 104 mod 19, instead of computing 104 and then reducing
mod 19, it’s easier to compute success powers and reduce as you go along: 104 mod 19 ≡
(100)2 mod 19 ≡ 52 mod 19 ≡ 6 mod 19.
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Solving ax ≡ b mod n

Perhaps one of the most basic questions we can ask about Z/nZ is how to solve linear
equations of the form [a][x] = [b]. This is a subtle question however, since the structure of
Z/nZ is different for different values of n.

Example 0.15. In Z/4Z, we have 2 · 2 ≡ 0 mod 4, however 2 6≡ 0 mod 4. This says that
Z/nZ does not have the zero product property.

Example 0.16. In Z/5Z, every non-zero element has a multiplicative inverse: 1 · 1 ≡
1 mod 5, 2 · 3 ≡ 3 · 2 ≡ 1 mod 5, and 4 · 4 ≡ 1 mod 5. This says that Z/5Z is a field!

We introduce some new terminology to talk about the structural differences:

Definition 0.17. An element [a] ∈ Z/nZ is called a unit if [a] has a multiplicative inverse,
i.e. there is [b] ∈ Z/nZ such that [a][b] = [1]. An element [a] ∈ Z/nZ is called a zero divisor
if [a] 6= [0] and there is non-zero [b] ∈ Z/nZ such that [a][b] = [0]. The set of units in Z/nZ
is denoted by (Z/nZ)×.

Notice that because every element of Z/5Z has a multiplicative inverse, if [a][b] = [0] in
Z/5Z, multiplying by said inverse says that [b] = [0], i.e. [a] is not a zero divisor. We can
then distinguish Z/5Z from Z/4Z (apart from the obviously different number of elements)
by noting that Z/4Z has zero divisors, while Z/5Z does not. Our first order of business is
to figure out what the possible units of Z/nZ are.

Theorem 0.18. Let [a] ∈ Z/nZ. Then [a] is a unit if and only if (a, n) = 1.

Proof. The proof is largely just understanding what the above statement actually means.
Saying that [a] is a unit in Z/nZ is the same thing as saying that [a][b] = [1] for some
[b] ∈ Z/nZ. By definition, this means that ab ≡ 1 mod n, so that there is some integer k
with nk = ab − 1. This says that ab + n(−k) = 1, so clearly this means that (a, n) = 1.
Conversely, if (a, n) = 1 then by Bezout’s lemma there are integers x, y with ax + ny = 1.
Taking this equation modn says that ax ≡ 1 mod n, i.e. [a][x] = [1] in Z/nZ. �

This theorem is rather simple, but it has important consequences:

Corollary 0.19. Z/nZ is a field if and only if n is prime. In particular, Z/nZ has the zero
product property if and only if n is prime.

Proof. Z/nZ satisfies all but one of the field axioms by construction, the exception being all
non-zero elements having a multiplicative inverse. This happens if and only if all non-zero
elements are units, i.e. (a, n) = 1 for 1 < a < n. This happens if and only if n is prime. If n
is a prime, then [a][b] = [0] says [b] = [0] after multiplying by [a]−1. If n is composite, write
n = ab for some integers a, b so that [a][b] = [0] in Z/nZ, so that Z/nZ does not have the
zero product property. �

By classifying all the units of Z/nZ, we’ve determined the special linear equation [a][x] =
[1] in Z/nZ has a solution if and only if [a] is invertible in Z/nZ. This then says the (unique)
solution is given by [x] = [a]−1. The general case is very similar:

Theorem 0.20. Let d = (a, n). The equation [a][x] = [b] is solvable in Z/nZ if and only if
d | b. The solutions are of the form [x0 +kn/d] for 0 ≤ k ≤ d−1, where [x0] is any solution.
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Proof. Saying that [a][x] = [b] in Z/nZ is the same as saying that ax ≡ b mod n, i.e. there
is some integer ` with n` = ax − b, or that ax + n(−`) = b. Certainly for this to be true,
we must have that d | b. Now suppose that d | b. By Bezout, we can write ax + by = d for
some integers x, y. Suppose that b = dm for some integer m. Then multiplying this equation
by m says that a(mx) + n(my) = b, so taking this mod n says that [a][mx] = [b], i.e. the
equation is solvable.

We now classify the solutions. Suppose that [x0] is a solution to [a][x] = [b]. Then
[x0+kn/d] for 0 ≤ k ≤ d−1 is also a solution, because [a][x0+kn/d] = [ax0+akn/d] = [ax0]
because n | akn/d. Now we show that any such solution has this form. Let [x0] be a solution
and [x] any other solution. Then [a][x] = [a][x0] says that [a(x−x0)] = [0], i.e. a(x−x0) = n`
for some integer `. Dividing out by d says that a

d
(x − x0) = `n

d
, and because (a

d
, n
d
) = 1,

this says that n
d
| x − x0, i.e. x = x0 + tn

d
for some integer t. The final observation is that

if t ≡ k mod d for some 0 ≤ k ≤ d − 1, then tn
d
≡ k n

d
mod n, so that x ≡ x0 + k n

d
mod n,

where 0 ≤ k ≤ d− 1, i.e. [x] = [x0 + k n
d
] for some 0 ≤ k ≤ d− 1. �

As the above theorem shows, once we find a single solution, we know what all solutions
are. To find an initial solution, we can run the Euclidean algorithm backwards.

Example 0.21. Suppose we want to solve [72][x] = [1] in Z/89Z. It’s clear that (72, 89) = 1,
so that the unique solution is given by [x] = [72]−1. To compute the inverse, running the
Euclidean algorithm backwards says that 1 = 89 · 17 + 72 · (−21), so taking this mod 89 says
72 · (−21) ≡ 1 mod 89. Since −21 ≡ 68 mod 89, we see that [72]−1 = [68] is the solution.

Example 0.22. Suppose we want to solve [42][x] = [12] in Z/78Z. We see that (42, 78) = 6,
so there are a total of 6 different solutions, which we can list once we have found one.
Saying that [42][x] = [12] in Z/78Z is the same thing as finding integers x, y such that
42x+ 78y = 12. Running the Euclidean algorithm backwards says that 6 = 42 ·2 + 78 · (−1),
so 12 = 42 · 4 + 78 · (−2). Taking this mod 78 says that 42 · 4 ≡ 12 mod 78, so that [4] is a
solution. We then find that the solutions are [4], [17], [30], [43], [56], [69].

Systems of congruence equations

Now that we know how to solve linear equations in Z/nZ, the next natural question is how
to solve systems of linear equations in Z/nZ. From linear algebra, we know that a system
of k linear equations in m variables in Z/nZ is the same thing as a matrix equation of the
form Ax = b where A ∈ Mk×m(Z/nZ) and x, b ∈ (Z/nZ)k. If n = p is a prime, then the
theory of abstract linear algebra over fields tells us all we need to know about how to solve
such equations, and therefore how to solve systems of linear equations in Z/pZ. When n is
not prime, Z/nZ is not a field, and the theory of linear algebra breaks down completely. In
general, solving systems of equations in Z/nZ is quite hard.

The next best thing we can do is work with systems of congruences, where instead of trying
to solve k linear equations in m unknowns in Z/nZ we try and solve k linear equations in
one unknown by varying the modulus.

Theorem 0.23. Let (m,n) = 1. Then the system of congruences

x ≡ a mod m

x ≡ b mod n
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has a unique solution in Z/mnZ.

Proof. Suppose a solution exists. Since x ≡ a mod m, we can write x = a + mk for some
integer k. Plugging this into the second equation, a + mk ≡ b mod n says that mk ≡
b − a mod n. Since (m,n) = 1, we have that [m] is a unit mod n so k ≡ t(b − a) mod n,
where t is a representative of [m]−1. Translating back into a statement about integers, we
have k = t(b− a) + n` for some `, so that x = a + m(t(b− a) + n`) = a + mt(b− a) + nm`,
so that x ≡ a + mt(b − a) mod mn. This says any solution must look like this, and note
that this certainly is a solution to the above system of congruences, so now we need only
show there is a single solution of this type. Since a, b,m are fixed, the only thing to do is
to check that our choice of t doesn’t matter. If t′ is any other representative of [m]−1, then
t′ = t + ny for some integer y, so running the same argument with t′ instead of t says that
x = a + m(t + ny)(b− a) + nm`, which still gives x ≡ a + mt(b− a) mod mn, so this is the
only solution modulo mn. �

Note that this proof explicitly tells us the solution!

Example 0.24. Suppose we wish to solve the system of congruences

x ≡ 5 mod 6

x ≡ 3 mod 35

The above theorem tells us that there is a unique solution in Z/210Z, given by x ≡
5 − 12t mod 210, where t is a representative of [6]−1 in Z/35Z. By inspection, we see that
[6]−1 = [6], so we may choose t = 6 to get x ≡ −67 mod 210 ≡ 143 mod 210 as the solution.

Of course, trying to remember a formula to solve a system is not a very good technique.
Let’s see how you would solve this by hand, in practice. The first equation says x =
5 + 6k for some k ∈ Z. Plugging into the second equation, we have 5 + 6k ≡ 3 mod 35,
so 6k ≡ 33 mod 35. Since 6 is invertible mod 35 with inverse given by 6 mod 35, we see
k ≡ 33 · 6 ≡ 23 mod 35, so k = 23 + 35` for some ` ∈ Z. Plugging back in, we find
x = 5 + 6(23 + 35`) = 143 + 210`, i.e. x ≡ 143 mod 210.

In more algebraic language, we can restate the above theorem as follows:

Theorem 0.25. Let (m,n) = 1. There is a bijection Z/mnZ → Z/mZ × Z/nZ given by
x mod mn → (x mod m,x mod n). The inverse map is given by (a mod m, b mod n) →
a + mt(b− a) mod mn where t is any representative of [m]−1 in Z/nZ.

The map above is stronger than just a bijection. If we let ϕ denote the map from Z/mnZ→
Z/mZ × Z/nZ, then ϕ has the property that ϕ([x] + [y]) = ϕ([x]) + ϕ[y]) and ϕ([x][y]) =
ϕ([x])ϕ([y]), so that it preserves the additive and multiplicative structure of both sides. This
is our first example of a ring isomorphism, which will be one of our basic objects of study
when we discuss arbitrary rings. By factoring n = pe11 · · · p

ek
k into a product of primes, we

get the following more general result:

Theorem 0.26 (Chinese Remainder Theorem). Write n = pe11 · · · p
ek
k as a product of primes.

Then Z/nZ ∼= Z/pe11 Z×· · ·×Z/pekk Z via the ring isomorphism x mod n→ (x mod pe11 , . . . , x mod
pekk ).

Proof. Theorem 0.25 says the map f : Z/mnZ → Z/mZ × Z/nZ is a bijection. It’s easy
to see that f is also a ring homomorphism (and therefore an isomorphism), because of the
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definitions of addition and multiplication in the product ring. To prove the Chinese Re-
mainder Theorem, we induct on the number of distinct prime factors k of n. If k = 1,
there is nothing to show. Now suppose that the theorem is true for any integer with k − 1
prime factors. Note that pe11 · · · p

ek
k = pe11 (pe22 · · · p

ek
k ), so Z/nZ ∼= Z/pe1Z× Z/pe22 · · · p

ek
k Z via

the map x mod n → (x mod pe11 , x mod pe22 · · · p
ek
k ) by applying theorem 0.25. By induction

hypothesis, Z/pe22 · · · p
ek
k Z ∼= Z/pe22 Z× . . .× Z/pekk Z via the map x mod pe22 · · · p

ek
k → (x mod

pe22 , . . . , x mod pekk ). The composition of ring isomorphisms x mod n → (x mod pe11 , x mod
pe22 · · · p

ek
k ) → (x mod pe11 , (x mod pe22 , . . . , x mod pekk )) → (x mod pe11 , . . . , x mod pekk ) is the

map x mod n→ (x mod pe11 , . . . , x mod pekk ). This is still an isomorphism because the com-
position of isomorphisms remains an isomorphism. Therefore, the theorem is true for any in-
teger with k prime factors as well. By induction, it’s therefore true for all integers n > 1. �

In the language of congruences, this says there is a unique solution in Z/nZ to the system
of congruences x ≡ ai mod peii for 1 ≤ i ≤ k.

Example 0.27. Suppose we wish to solve the system of congruences

x ≡ 1 mod 8

x ≡ 3 mod 9

x ≡ 2 mod 5

We solve the system by solving it in pairs. First, we solve the system x ≡ 1 mod 8 and
x ≡ 3 mod 5. This has solution given by x ≡ 57 mod 72 using the method from before.
We then need to solve the system x ≡ 57 mod 72 and x ≡ 2 mod 5, which has solution
x ≡ 57 mod 360.

The Chinese Remainder Theorem has very important number theoretic consequences:
understanding the ring Z/nZ is the same thing as understanding the rings Z/peii Z where
n = pe11 · · · p

ek
k . Therefore, one really only needs to understand the structure of the rings

Z/peZ for p prime and e ≥ 1. Often times, one can deduce facts about Z/peZ by first
working in Z/pZ and then inductively working up to Z/peZ, therefore making Z/pZ the
“most important” one of these rings to study.

There is a very important philosophy in number theory, the so called “local-global princi-
ple”, based on the idea that if one knows information mod p for all primes p, then the Chinese
Remainder Theorem should allow one to “glue” this information to gain information back
in Z. the simplest illustration is the following:

Proposition 6. Suppose that x ∈ Z and x ≡ 0 mod p for all prime p. Then x = 0.

Proof. If x 6= 0, then we can write x = pe11 . . . pekk as a product of primes. Then for p 6= pi,
we have x 6≡ 0 mod p, a contradiction. �

The next example is too difficult to prove with the tools that we will have available to
use, but still illustrates the principle nicely:

Theorem 0.28. Let x ∈ Z and suppose that [x] is a square in Z/pZ for all prime p. Then
x is a square in Z.


