
THE INTEGERS

TIM SMITS

In a linear algebra course, one develops the theory of linear equations by interpreting them
as matrix equations of the form Ax = b, which means understanding linear equations is the
same as thing as understanding matrices. By abstracting the key properties of Euclidean
space and matrices, one comes up with the notions of vector spaces and linear transforma-
tions, allowing the theory of linear algebra to work in a more general setting. This is a
common theme throughout algebra: start with key examples of objects, and then study gen-
eral objects that have wanted properties. Before we study rings, our prototypical example
will be the integers.

1. The key properties of Z

The set Z of integers comes with two binary operations, addition (+) and multiplication
(·), meaning that for any a, b ∈ Z we get well-defined integers a + b and a · b. We will take
the construction of the integers and the formal definition of these operations for granted,
but these operations satisfy the following properties for any a, b, c ∈ Z:

1. (Commutativity) a + b = b + a and ab = ba.
2. (Associativity) a + (b + c) = (a + b) + c and a(bc) = (ab)c.
3. (Distributivity) a(b + c) = ab + ac.
4. (Zero) There exists 0 ∈ Z such that a + 0 = a.
5. (Negatives) There exists −a ∈ Z such that a + (−a) = 0.
6. (One) There exists 1 ∈ Z such that a · 1 = a.

More compactly, addition and multiplication are both associative and commutative, multi-
plication distributes over addition, and there are special elements 0 and 1 that don’t “change”
an integer a with respect to the relevant operation. Addition has the extra property that
integers have additive inverses. The elements of Z can also be placed in order. We have a
relation < defined by a < b if a and b differ by a positive integer. More formally, this can be
stated as follows.

There is a non-empty subset P ⊂ Z with the following properties:

1. For any a, b ∈ P , a + b ∈ P .
2. For any a, b ∈ P , a · b ∈ P .
3. 0 6∈ P .
4. (Trichotomy) For all a ∈ Z, exactly one of the following holds: a ∈ P , 0 ∈ P , or
−a ∈ P .

This subset P is of course, the positive integers. The ordering of the integers gives rise to
a familiar property:
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Proposition 1 (Zero product property). Let a, b ∈ Z with ab = 0. Then a = 0 or b = 0.

Proof. We prove the contrapositive, that if a 6= 0 and b 6= 0 then ab 6= 0. First suppose
that b > 0. Since multiplication of integers is defined via repeated addition, i.e. a · b =
a + a + . . . + a︸ ︷︷ ︸

b times

, then ab ≥ a or ab ≤ a depending on the sign of a. If b < 0, do the same

thing with (−a)(−b). �

The integers are very special, because not only can they be ordered, but they can be
well-ordered.

Theorem 1.1 (Well-ordering principle). Let S ⊂ Z+ be non-empty. Then S contains a
smallest positive element.

The well-ordering principle will be very important for proving key theorems that hold in
the integers. Perhaps surprisingly, the well-ordering principle is equivalent to mathematical
induction. We leave the proof in the appendix. The last key property of the integers that
we are all familiar with is the notion of unique factorization. As we learn in grade school,
any positive integer can be factored into prime numbers.

2. Divsibility

In the integers, we can perform division with remainder.

Theorem 2.1 (Division Algorithm). Let a and b be integers with b > 0. Then there exist
unique integers q and r such that a = bq + r with 0 ≤ r < b.

Proof. Let S = {a − bq > 0 : q ∈ Z}. Then S is non-empty: this is clear if a > 0, and if
a < 0, then a − (a − 1)b = a(1 − b) + b > 0. By the well-ordering principle, S contains a
smallest positive element, say r, which we can write as a−bq = r for some q. This then gives
a = bq + r. First we show that 0 ≤ r < b. If r > b, then r = b + (r − b), and (r − b) > 0. so
a = b(q + 1) + (r− b) with 0 < r− b < r. This contradicts the minimality of r, so 0 ≤ r < b.
This proves the existence of such q and r, so it remains to show the uniqueness of q and r.

Suppose that a = bq + r and a = bq′ + r′ with 0 ≤ r < b and 0 ≤ r′ < b. Without loss of
generality, suppose that r ≤ r′. Then from bq + r = bq′ + r′ we get b(q− q′) = (r′− r). This
says (r′ − r) is a multiple of b, and since 0 ≤ r′ − r < b this says r′ − r = 0, i.e. r = r′. It’s
then immediate that q = q′ so uniqueness follows. �

The division algorithm can be extended to all integers in the following form:

Theorem 2.2 (Extended division algorithm). Let a, b ∈ Z with b 6= 0. Then there exist
unique integers q, r such that a = bq + r and 0 ≤ r < |b|.

Proof. Exercise. �

Definition 2.3. We say for integers a, b that a divides b if there is an integer k such that
b = ak, and write this as a | b.

Example 2.4. We have 2 | 10, because 102 · 5, (−7) | 49, because 49 = (−7) · (−7), and
5 | 0 because 0 = 5 · 0. Clearly ±1 | n for any integer n, however, 0 - n for any non-zero
integer n, because there is no integer k with 0 · k = n.

From the definition of divisibility, we have the following basic properties:
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Proposition 2. Let a, b, c ∈ Z.
1. If a | b then a | b` for any ` ∈ Z.
2. If a | b and b | c, then a | c.
3. If a | b and a | c then a | bx + cy for any x, y ∈ Z.
4. If a | b for b 6= 0, then |a| ≤ |b|.

Proof. These follow more or less immediately from the definition and are left as an exercise.
�

Definition 2.5. The greatest common divisior of two integers a and b is the largest
positive integer d such that:

1. d | a and d | b
2. If c | a and c | b, then c ≤ d.

We write gcd(a, b) or (a, b) to denote the greatest common divisor. If (a, b) = 1, we say that
a and b are relatively prime.

If d is any divisor of an integer a, then property 4 above says there are only finitely many
possibilities for d, so it makes sense to speak of a greatest one. If a = 0, then obviously all
integers are divisors of a, so (0, a) = |a|. Note that (0, 0) is therefore undefined.

Example 2.6. The greatest common divisor of a = 315 and b = 195 is d = 15, which is
easily found by factoring.

The greatest common divisor of two integers a and b has the important property that it’s
an integer linear combination of a and b:

Theorem 2.7 (Bezout’s lemma). Let a, b ∈ Z and set d = gcd(a, b). Then there exist
integers x and y such that ax + by = d.

Proof. Let S = {ax+ by > 0 : x, y ∈ Z}, the set of all integer linear combinations of a and b
that are positive. Notice that S is non-empty, because either a or −a is positive and a ∈ S.
By the well-ordering principle, S has a least positive element, say d′, so there are integers x
and y such that ax + by = d′. We will show that d = d′.

Since d | a and d | b by definition, d | (ax + by) so d | d′, and therefore d ≤ d′. To show
that d′ ≤ d, we will show that d′ divides every element of S. Let s ∈ S, so s = ax′ + by′ for
some x′, y′ ∈ Z. By the division algorithm, we can write s = d′q + r for unique q and r with
0 ≤ r < d′. Then r = s − d′q = ax′ + by′ − (ax + by)q = a(x′ − xq) + b(y′ − yq). However,
r < d′ and d′ is the smallest positive element of S, so this forces r = 0. Therefore, s = d′q
so d′ | s for any s ∈ S. In particular, a, b ∈ S so d′ | a and d′ | b, so d′ is a common divisor
of a and b, so d′ ≤ d by definition of d. �

Note that we not only proved that the greatest common divisor is an integer linear com-
bination of a and b, but that it’s the smallest positive integer linear combination of a and b.
As a consequence, we get the following important result:

Corollary 2.8. Let a, b, c ∈ Z with a | bc and (a, c) = 1. Then a | b.

Proof. Since (a, c) = 1, by Bezout’s lemma there are integers x, y such that ax + cy = 1.
Multiplying by b says abx + bcy = b. Since a | bc, then a | abx + bcy, i.e. a | b. �
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3. The Euclidean Algorithm

In the example in the previous section, it was very easy to factor the given numbers to
compute their greatest common divisior. In general, factoring is a very hard problem.

Example 3.1. Let a = 1002001 and b = 379427895. Then a = 72 · 112 · 132 and b =
34 · 5 · 7 · 11 · 233, so we have gcd(a, b) = 7 · 11 = 77.

This example would already be hard to do by hand, and if the integers are large enough,
even a computer will have trouble factoring them. The following algorithm (of Euclid!) is a
significantly more efficient way of doing this computation:

Theorem 3.2 (Euclidean algorithm). Let a, b be non-zero integers. Repeatedly carry out the
division algorithm as follows:

a = bq1 + r1, 0 ≤ r1 < |b|
b = r1q2 + r2, 0 ≤ r2 < r1

r1 = r2q3 + r3, 0 ≤ r3 < r2
...

The sequence of remainders r1, r2, r3, . . . is strictly decreasing, and therefore eventually be-
come 0. The last non-zero remainder is the greatest common divisor of a and b.

We omit the proof, but will give a few examples of how to carry out the algorithm.

Example 3.3. Let a = 75 and b = 45. We have

75 = 45 · 1 + 30

45 = 30 · 1 + 15

30 = 15 · 2 + 0

So that (75, 45) = 15.

Example 3.4. Let a = 517 and b = 89. We have

517 = 89 · 5 + 72

89 = 72 · 1 + 17

72 = 17 · 4 + 4

17 = 4 · 4 + 1

4 = 4 · 1 + 0

So that (517, 89) = 1.

Example 3.5. Let a = 379427895 and b = 1002001. We have
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379427895 = 1002001 · 378 + 671517

1002001 = 671517 · 1 + 330484

671517 = 330484 · 2 + 10549

330484 = 10549 · 31 + 3465

10549 = 3465 · 3 + 154

3465 = 154 · 22 + 77

154 = 77 · 2 + 0

So that (379427895, 1002001) = 77.

The Euclidean algorithm is not only useful for computing the greatest common divisor;
we can use it to tell us what integer linear combination of a and b to take to get the greatest
common divisor!

Example 3.6. Let a = 517 and b = 89. We have

517 = 89 · 5 + 72

89 = 72 · 1 + 17

72 = 17 · 4 + 4

17 = 4 · 4 + 1

Which tells us that (517, 89) = 1. We now back substitute to solve for 1 in terms of the
previous lines. We have

1 = 17− 4 · 4
= 17− 4 · (72− 17 · 4) = 17 · 17− 4 · 72

= 17 · (89− 72 · 1)− 4 · 72 = 89 · 17− 72 · 21

= 89 · 17− (517− 89 · 5) · 21 = 89 · 122− 517 · 21

This says the integers we are looking for in Bezout’s lemma are x = −21 and y = 122.

4. Unique factorization

Definition 4.1. An integer p > 1 is called prime if the only positive divisors of p are 1 and
p.

The sequence of prime numbers starts off as 2, 3, 5, 7, 11, . . .. Primes are the “building
blocks” of the integers, in the sense that all integers are constructed from primes.

Prime numbers have the following property:

Proposition 3. Let p > 1. Then p is prime if and only if for any integers a, b, p | ab =⇒
p | a or p | b.

Proof. First, suppose that p is prime. Let p | ab, and suppose that p - a. Then (a, p) = 1 by
definition of p being prime, so by Bezout’s lemma, there are integers x, y with px + ay = 1.
Multiplying by b says pbx + aby = b, and since p | ab, we have p | pbx + aby, so p | b.

Conversely, suppose that p > 1 is an integer with the property that p | ab =⇒ p | a or
p | b. Let d be a positive divisor of p. Then we can write p = dk for some positive integer k.
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Certainly, p | p, so p | dk means that p | d or p | k. However, since 1 ≤ d, k ≤ p, the only way
this is possible is if d = 1 or d = p, so that the only positive divisors of p are 1 and p. �

This property will be the key to proving unique factorization.

Theorem 4.2 (Fundamental theorem of arithmetic). Let n > 1 be an integer. Then there
exist unique primes p1, . . . , pk and unique positive integers e1, . . . , ek such that n = pe11 · · · p

ek
k .

That is, every integer has a unique factorization (up to order of factors) into a product of
primes.

Proof. There are two parts to the proof. First, we show that we can write every integer n > 1
as some product of prime numbers, and then we will show that such a choice of primes are
unique. Both of these statements will be proven using strong induction.

Existence:
Note that n = 2 is a prime. Now suppose for some k that the integers 2, 3, . . . , k can

be written as a product of primes. Consider the integer k + 1: if it is prime, we are done.
Otherwise, k + 1 is not prime, so by definition it has a non-trivial positive divisor. Write
k + 1 = ab for some integers a and b. Necessarily, 1 < a, b < k + 1, so in particular a and
b are integers between 2 and k. By induction hypothesis, both a and b can be written as a
product of primes, and therefore k + 1 is a product of primes as well. By induction, we then
see that every integer n > 1 is a product of primes.

Uniqueness:
Note that 2 is a prime so it’s a product of primes in a unique way. Now suppose that for

some k, we have that 2, 3, . . . , k all have a factorization using a unique set of primes. If k+ 1
is prime, again we are done. Otherwise, suppose that we can write k+1 = p1 · · · pm = q1 · · · q`
for some primes pi and qj. Then p1 | q1 · · · q`, so by inductively applying Euclid’s lemma,
one finds p1 | qj for some j, and since qj are prime, this says p1 = qj for some j. By
reordering the factors as necessary, assume p1 = q1. Cancelling p1 from both sides, we have
a = p2 · · · pm = q2 · · · q`. However, 1 < a < k so by assumption, a has unique factorization,
i.e. m = ` and pi = qi for all 2 ≤ i ≤ m (after reordering if necessary). Since k + 1 = ap1,
and p1 = q1, this shows k + 1 has unique factorization as desired. By induction, every n > 1
has unique factorization. Collecting terms of the same prime together shows that n is of the
form listed in the statement and the uniqueness of the exponents is immediate. �

Note that for any two integers a and b, we can factor them into a common set of primes by
allowing the exponents to be 0. This leads to another computation of the greatest common
divisor (useful for small integers):

Proposition 4. Let a = pe11 · · · p
ek
k and b = pf11 · · · p

fk
k be prime factorizations of a and b into

a common set of primes. Then (a, b) = p
min{e1,f1}
1 · · · pmin{ek,fk}

k

Proof. Let d = (a, b). Then since d divides both a and b, we can write d = pt11 · · · p
tk
k for

some non-negative integers ti where ti ≤ ei and ti ≤ fi. Therefore, ti ≤ min{ei, fi} for all i.
It’s clear that setting ti = min{ei, fi} for all i gives us a divisor of a and b, which is therefore
the greatest common divisor because the size of each exponent has been maximized. �

5. Appendix

The most common statement of mathematical induction may be stated as follows:
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Theorem 5.1. (Principle of Mathematical Induction) For n ∈ N, let P (n) be a statement
such that

1. P (n0) is true for some n0

2. P (k) is true implies P (k + 1) is true for all k ≥ n0.

Then P (n) is true for all n ≥ n0.

There is also a “stronger” version of induction:

Theorem 5.2. (Principle of Strong Induction) For n ∈ N, let P (n) be a statement such that

1. P (n0) is true for some n0

2. P (n0), . . . , P (k) is true implies P (k + 1) is true for all k ≥ n0.

Then P (n) is true for all n ≥ n0.

It’s not terribly hard to show that these two forms of induction are equivalent to each
other. More interestingly, is that both forms of induction are equivalent to the well-ordering
principle!

Theorem 5.3. The principle of strong induction is equivalent to the well-ordering principle.

Proof. Suppose that the principle of strong induction holds. Let S ⊂ Z+ be a non-empty
subset. We wish to show that S has a least positive element. For sake of contradiction,
suppose that S does not have a least positive element. Then 1 6∈ S, because 1 is the smallest
positive integer. From this we see that 2 6∈ S, because 1 6∈ S and 2 is the next positive
integer after 1. Continuing this train of thought, we see that if 1, 2, . . . , k 6∈ S for some k,
then we must have k + 1 6∈ S . By induction, we must then have n 6∈ S for alln ≥ 1, which
says that S is empty, a contradiction. Therefore, if we assume strong induction holds, then
the well-ordering principle holds.

Now suppose that the well-ordering principle holds, and let P be a statement about integers
such that P (n0) is true for some n0 and P (n0), . . . , P (k) true implies that P (k+1) is true for
all k ≥ n0. We wish to show that P (n) is true for all n ≥ n0. Suppose otherwise, that there
is some m ≥ n0 such that P (m) is false. Let S = {n ∈ Z+ : P (n) is false}. By assumption
S is non-empty, so by the well-ordering principle, S has a smallest positive element, say k.
Since P (n0) is true, we must have that k > n0. Now by definition of k, P (k − 1) must be
true. Similarly, P (n0), P (n0 + 1), . . . , P (k − 1) must all be true. By strong induction, this
then says that P (k) is true, which is a contradiction. Therefore if the well-ordering principle
holds, then strong induction holds, so we are done. �

We have shown that induction and the well-ordering principle are equivalent, but we
haven’t shown that either one of these statements are actually true. In fact, we can’t! Any
construction of the integers (e.g. the Peano construction) must take either the well-ordering
principle or mathematical induction as an axiom.


