
Rings
Tim Smits

We assume that rings have a multiplicative identity.

1. An element a ∈ R is called nilpotent if an = 0 for some integer n ≥ 0. Prove that if a is
nilpotent, then 1− a is a unit in R (Hint: think about a certain power series).

2. A ring R is called a Boolean ring if a2 = a for all a ∈ R.

(a) Prove that every Boolean ring is commutative and 2a = 0 for all a ∈ R.

Let X be any non-empty set and let P(X) be the set of all subsets of X. Define addition and
multiplication on P(X) by A + B = (A \B) ∪ (B \A) and A ·B = A ∩B.

(b) Prove that the operations above make P(X) into a boolean ring.

3. An element e ∈ R is called idempotent if e2 = e.

(a) Prove that if f : R→ S is a ring homomorphism and e is an idempotent in R, then f(e)
is idempotent in S.

(b) Compute the units and idempotents in Z/2Z× Z/6Z and Z/3Z× Z/4Z.

(c) Prove that Z/2Z× Z/6Z and Z/3Z× Z/4Z are not isomorphic rings.

4. Let R be a finite, non-zero ring with no zero divisors. Show that R is a division ring, i.e. r is
a unit for all r 6= 0 ∈ R.

5. Let S =

{(
m n
2n m

)
: m,n ∈ Z

}
. Prove that S is a subring of M2(Z), and that Z[

√
2] ∼= S.

6. Find all the possible ring homomorphisms f : Z× Z→ Z.
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Solutions

1. First we prove the identity that (1−x)(1+x+ . . .+xN ) = 1−xN+1 for any x ∈ R and N ≥ 1.
This is obvious for N = 1, so suppose it’s true for some integer k. Then (1−x)(1+x+. . .+xk+
xk+1) = (1−xk+1)+(xk+1−xk+2) = 1−xk+2. By induction, it’s therefore true for all N ≥ 1.
If an = 0, then using the above says that (1−a)(1+a+ . . .+an−1) = 1−an = 1. Similarly, we
find (1+a+. . .+an−1)(1−a) = 1−an = 1, so 1−a is a unit with (1−a)−1 = 1+a+. . .+an−1.

2. (a) Let a ∈ R. First, we show that 2a = 0. We have 4a = 4a2 = (2a)2 = 2a, so 2a = 0.
Now for any a, b ∈ R we have a + b = (a + b)2 = a2 + ab + ba + b2 = a + ab + ba + b, so
ab + ba = 0. This says ab = ab + (ab + ba) = 2ab + ba = ba as desired.

(b) It’s pretty clear that if A ∈ P(X) that A ·A = A, so once we prove P(X) is a ring, we’ve
proven it’s a Boolean ring. To that end, we just need to verify the 6 ring axioms.

The additive identity is the empty set, and the multiplicative identity is X. The additive
inverse of a set A must be itself (by part a), this is the only candidate and it’s obvious
that it does work). Addition being commutative is clear. Distributivity and associativity
follow from basic facts about sets (it’s quite easy to see if you draw a picture, but I leave
the details to you if you want to formally check this).

3. (a) We have f(e)2 = f(e2) = f(e) since e is idempotent and f is a homomorphism.

(b) (Z/2Z× Z/6Z)× = {([1], [1]), ([1], [5])}.
Idempotents: {([0], [0]), ([0], [1]), ([0], [3]), ([0], [4]), ([1], [0]), ([1], [1]), ([1], [3]), ([1], [4])}.

(Z/3Z× Z/4Z)× = {([1], [1]), ([1], [3]), ([2], [1]), ([2], [3])}.
Idempotents: {([0], [0]), ([0], [1]), (([1], [0]), ([1], [1])}.

(c) Suppose there was an isomorphism f : Z/2Z×Z/6Z→ Z/3Z×Z/4Z. Then part a) says
this would induce a bijection on the idempotents of these rings. However the first ring
has 8 idempotents while the latter ring has 4 idempotents, a contradiction. Alternatively,
one could run the same argument but with units instead.

4. For r 6= 0 ∈ R, consider the map f : R→ R given by f(x) = rx. Then I claim f is injective:
if f(x) = f(y) for some x, y ∈ R, we have r(x − y) = 0. Since r is not a zero divisor, this
says x = y. Since R is finite and f is injective, it’s surjective, so there exists b 6= 0 ∈ R with
rb = 1. This says brb = b, so (br− 1)b = 0. Again using that R has no zero divisors, this says
br − 1 = 0, so that br = 1, i.e. r is a unit.

5. It’s clear that 0, I2 ∈ S. For A,B ∈ S, we need to check that AB ∈ S and A − B ∈ S.

For the first, write A =

(
m n
2n m

)
and B =

(
m′ n′

2n′ m′

)
for some n,m, n′,m′ ∈ Z. Then

A+B =

(
m + m′ n + n′

2(n + n′) m + m′

)
and AB =

(
mm′ + 2nn′ mn′ + nm′

2(m′n + mn′) 2nn′ + mm′

)
, both of which are

clearly elements of S. By the subring test, S is a subring of M2(Z).

Now, define a map f : Z[
√

2] → M2(Z) by f(a + b
√

2) =

(
a b
2b a

)
. Note that f(1) = I2.

For x, y ∈ Z[
√

2], we may write x = a + b
√

2 and y = a′ + b′
√

2 for some a, b, a′, b′ ∈ Z.

We have x + y = (a + b) + (a′ + b′)
√

2 by definition, so f(x + y) =

(
a + b a′ + b′

2(a′ + b′) a + b

)
=(

a b
2b a

)
+

(
a′ b′

2b′ a′

)
= f(x) + f(y). Similarly, one can check that f(xy) = f(x)f(y). This

says that f is a ring homomorphism. It’s clear from the definition that f is surjective. To
check that f is injective, we show that ker(f) = {0}. If x = a + b

√
2 ∈ ker(f), this says(

a b
2b a

)
=

(
0 0
0 0

)
, so a = b = 0 says x = 0. Therefore, f is bijective, and so is an

isomorphism.
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6. Let f : Z×Z→ Z be a ring homomorphism. We can write any (a, b) ∈ Z×Z as a(1, 0)+b(0, 1),
so f((a, b)) = af((1, 0)) + bf((0, 1)) because f is a ring homomorphism. Therefore, we need
only to determine the possible images of (1, 0) and (0, 1). Since (1, 0) and (0, 1) are both
idempotent, they must map to idempotents in Z, i.e. 0 or 1. This says there are at most
4 possible maps. Since f is a ring homomorphism, we must have that f((1, 1)) = 1, so in
particular, (1, 0) and (0, 1) cannot both simultaneously map to 0. This also says that they
cannot both map to 1 simultaneously, because otherwise this would say f((1, 1)) = 1 + 1 =
2 6= 1. This leaves two possibilities: f((a, b)) = a or f((a, b)) = b. It’s hopefully quite clear
that both of these maps are ring homomorphisms, so these are the only two possibilities.
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