Polynomial Rings Tim Smits

- 1. (a) Prove that $\mathbb{Z}[T]$ and $\mathbb{Q}[T]$ are not isomorphic as rings.
 - (b) Let R be a non-zero ring. Prove that R[T] is not a field.
- 2. Compute the greatest common divisor of $T^4 + 2T^2 + 2T + 2$ and $T^4 + 2T^3 + T^2 + 2$ in $(\mathbb{Z}/3\mathbb{Z})[T]$.
- 3. Let F be a field. Prove there are infinitely many monic irreducible polynomials in F[T].
- 4. Let $f \in \mathbb{Z}[T]$ be monic. Suppose that $a \in \mathbb{Q}$ is a root of f. Prove that $a \in \mathbb{Z}$.
- 5. Factor the following polynomials:
 - (a) $T^3 + T + 1$ in $(\mathbb{Z}/3\mathbb{Z})[T]$
 - (b) $T^4 + 1$ in $(\mathbb{Z}/5\mathbb{Z})[T]$
- 6. Find all irreducible polynomials of degree ≤ 4 in $(\mathbb{Z}/2\mathbb{Z})[T]$.
- 7. Prove the following polynomials are irreducible in $\mathbb{Q}[T]$:

(a)
$$f(T) = 7T^4 + 6T^2 + 4T + 6$$

(b) $f(T) = \frac{T^p - 1}{T - 1} = 1 + T + \dots + T^{p-1}$, for p prime. (Hint: look at $f(T + 1)$)

- 8. Let R be a commutative ring.
 - (a) Prove that $f \in R[T]$ is idempotent if and only if f(T) = a, where a is an idempotent in R.
 - (b) Prove that $f \in R[T]$ is nilpotent if and only if all coefficients of f are nilpotent in R.

Solutions

- 1. (a) One of many different ways to see this: note that $\mathbb{Z}[T]$ has finitely many units (namely, ± 1) while $\mathbb{Q}[T]$ has infinitely many units (namely, $a \neq 0 \in \mathbb{Q}$). An isomorphism between these rings would induce a bijection on their units, which is impossible.
 - (b) Suppose that R[T] was a field. Then T would have an inverse, say $p(T) \in R[T]$. So Tp(T) = p(T)T = 1. Plugging in T = 0 would say that 0 = 1 in R, so that R is the 0 ring, a contradiction.
- 2. Run the Euclidean algorithm:

$$T^{4} + 2T^{2} + 2T + 2 = (T^{4} + 2T^{3} + T^{2} + 2) \cdot 1 + (T^{3} + T^{2} + 2T)$$

$$T^{4} + 2T^{3} + T^{2} + 2 = (T^{3} + T^{2} + 2T)(T + 1) + (T^{2} + T + 2)$$

$$T^{3} + T^{2} + 2T = (T^{2} + T + 2)(T) + 0$$

So the greatest common divisor is $T^2 + T + 2$.

- 3. Suppose there were finitely many monic irreducibles, say $\pi_1, \ldots, \pi_k \in F[T]$. Consider $\pi = \pi_1 \cdots \pi_k + 1$. Then π must have an irreducible factor, since it's non-constant (which can be made monic by rescaling). However, notice that π is not divisible by any of π_i , since it leaves remainder of 1 upon division by π_i . This means there is a monic irreducible polynomial not on our list, a contradiction. Therefore, there are infinitely many monic irreducibles in F[T].
- 4. Let $f(T) = T^n + \ldots + a_0 \in \mathbb{Z}[T]$ and suppose $a = \frac{r}{s}$ is a root of f(T) in \mathbb{Q} . By the rational root theorem, $s \mid 1$ means $s = \pm 1$, so $a \in \mathbb{Z}$.
- 5. (a) $T^3 + T + 1$ is irreducible in $(\mathbb{Z}/3\mathbb{Z})[T]$ because it's a degree 3 polynomial with no root in $\mathbb{Z}/3\mathbb{Z}$.
 - (b) Note that T⁴ + 1 has no roots in Z/5Z, so it has no linear factors. Therefore, it if factors, we can write T⁴ + 1 = (T² + aT + b)(T² + cT + d) as a product of two irreducible quadratics, so we have T⁴ + 1 = T⁴ + (a + c)T³ + (ac + b + d)T² + (ad + bc)T + bd. Comparing coefficients, we have a + c = 0, ac + b + d = 0, ad + bc = 0, and bd = 1. This means c² = b + d, c(b d) = 0, and bd = 1. The last equation says b = d = 1 or b = d = 4, so the second equation is always satisfied and therefore we have c² = 2 or c² = 3 in Z/5Z. Neither of these are possible, so no such factorization exists. Therefore, T⁴ + 1 is irreducible in (Z/5Z)[T].
- 6. If $f(T) \in (\mathbb{Z}/2\mathbb{Z})[T]$ is irreducible, it must have a constant term of 1 (otherwise it's divisible by T), and an *odd* number of non-zero terms. This is because if you have an *even* number of terms, then f(1) = 0 so $T + 1 \mid f(T)$.

degree 1: Any degree one polynomial is irreducible: T, T + 1.

degree 2: There is a single choice of polynomial that satisfies the conditions: $T^2 + T + 1$. degree 3: There are two choices of polynomials that satisfy our criterion: $T^3 + T^2 + 1$, $T^3 + T + 1$. degree 4: There are four polynomials that could possibly work: $T^4 + T^3 + 1$, $T^4 + T + 1$, $T^4 + T^2 + T + 1$, $T^4 + T^2 + T + 1$, $T^4 + T^2 + 1$. Our criteria has ruled out having a linear factor, so we need to check if we have an irreducible quadratic factor. There is only one irreducible quadratic, and we see that $(T^2 + T + 1)^2 = T^4 + T^2 + 1$. Therefore, the irreducible degree 4 polynomials are $T^4 + T^3 + 1$, $T^4 + T + 1$, $T^4 + T^3 + T^2 + T + 1$.

7. (a) f(T) is Eisenstein at 2, so is irreducible in $\mathbb{Q}[T]$.

(b) We have
$$f(T+1) = \frac{1}{T}((T+1)^p - 1)$$
. By the binomial theorem, we have $(T+1)^p = \sum_{k=0}^p \binom{p}{k} T^k$, so $f(T+1) = \sum_{k=1}^p \binom{p}{k} T^{k-1}$. Note that $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ is an integer

that's divisible by p for $1 \le k \le p-1$, because none of factorials in the denominator contain a factor of p, since $1 \le k, p - k < p$. The constant term of f(T+1) is p, so by the Eisenstein criterion, f(T+1) and therefore f(T) are irreducible in $\mathbb{Q}[T]$.

8. (a) Suppose that $f(T) = a_n T^n + \ldots + a_0$ is idempotent. Then squaring says $f(T)^2 = f(T)$. By comparing the constant terms, we find that $a_0^2 = a_0$ so that a_0 is idempotent in R. By the way polynomial multiplication works, we can write $f(T)^2 = \sum_{k=0}^{2n} d_k T^k$ where

 $d_k = \sum_{i=1}^{k} a_i a_{k-i}$. Looking at the coefficient of T, we find $2a_0 a_1 = a_1$. Multiplying by

 a_0 and using that $a_0^2 = a_0$, we get $2a_0a_1 = a_0a_1 \implies a_1a_0 = 0$. This means $a_1 = 0$. Looking at the coefficient of T^2 , we have $d_2 = 2a_0a_2 + a_1^2 = a_2$, so $2a_0a_2 = a_2$ and the same argument shows that $a_2 = 0$. Now suppose that $a_k = 0$ for all $1, 2, \ldots, i$. Then $a_{k+1} = d_{k+1} = 2a_0a_{k+1}$, and repeating the argument says that $a_{k+1} = 0$. Therefore by induction, $a_n = 0$ for $n \ge 1$, so that $f(T) = a_0$ is a constant polynomial with a_0 idempotent in R. The backwards direction is obvious, so we're done.

(b) Suppose that $f(T) = a_n T^n + \ldots + a_0$ is nilpotent. Then $f(T)^N = 0$ for some N. We have

 $f(T)^N = \sum_{k=0}^{nN} d_k T^k$ where $d_k = \sum_{i=0}^k a_i a_{k-i}$. The leading term of $f(T)^N$ is $a_n^N T^{nN}$, which equals 0, so $a_n^N = 0$ says a_n is nilpotent. Now consider $f(T) - a_n T^n$. Then $f(T) - a_n T^n$. is still nilpotent, because the difference of nilpotents is nilpotent, and $f(T) - a_n T^n$ has strictly smaller degree than f(T). By inductively applying the above argument, we can conclude that a_{n-1}, \ldots, a_0 are all nilpotent. Conversely, suppose that a_0, \ldots, a_n are nilpotent. Then clearly $a_0, a_1T, \ldots, a_nT^n$ are all nilpotent, and since sums of nilpotents are nilpotent, this says that $a_0 + \ldots + a_n T^n$ is nilpotent, so we're done.