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Polynomial Rings

Tim Smits

(a) Prove that Z[T] and Q[T] are not isomorphic as rings.
(b) Let R be a non-zero ring. Prove that R[T] is not a field.

Compute the greatest common divisor of T4 4+272 427 +2 and T* 4273 +T%+2 in (Z/3Z)[T).
Let F be a field. Prove there are infinitely many monic irreducible polynomials in F'[T].

Let f € Z[T] be monic. Suppose that a € Q is a root of f. Prove that a € Z.

Factor the following polynomials:

(a) T* + T+ 1 in (Z/3Z)[T)
(b) T* + 1 in (Z/5Z)[T)]

. Find all irreducible polynomials of degree < 4 in (Z/2Z)[T].

Prove the following polynomials are irreducible in Q[T

(a) f(T)="7T*+6T*+4T +6

7 —1

(b) f(T)= T = L+T+...+ TP for p prime. (Hint: look at f(T + 1))

. Let R be a commutative ring.

(a) Prove that f € R[T] is idempotent if and only if f(T) = a, where a is an idempotent in
R.

(b) Prove that f € R[T] is nilpotent if and only if all coefficients of f are nilpotent in R.



Solutions

1.

7.

(a) One of many different ways to see this: note that Z[T] has finitely many units (namely,
+1) while Q[T has infinitely many units (namely, a # 0 € Q). An isomorphism between
these rings would induce a bijection on their units, which is impossible.

(b) Suppose that R[T] was a field. Then T would have an inverse, say p(T) € R[T]. So
Tp(T) = p(T)T = 1. Plugging in T = 0 would say that 0 = 1 in R, so that R is the 0
ring, a contradiction.

. Run the Euclidean algorithm:

T4+ 2T? + 2T 4+ 2 = (T* + 2T + T? +2) - 1 + (T* + T2 + 2T))
T 4213 + T2+ 2= (TP + T+ 2T) (T + 1) + (T? + T + 2)
T3+ T? 42T = (T* + T +2)(T) +0

So the greatest common divisor is T2 + T + 2.

. Suppose there were finitely many monic irreducibles, say 71,...,m € F[T]. Consider 7 =

mp -7 + 1. Then 7 must have an irreducible factor, since it’s non-constant (which can be
made monic by rescaling). However, notice that 7 is not divisible by any of ;, since it leaves
remainder of 1 upon division by ;. This means there is a monic irreducible polynomial not
on our list, a contradiction. Therefore, there are infinitely many monic irreducibles in F[T].

. Let f(T)=T"+ ...+ ao € Z[T] and suppose a = " is a root of f(T) in Q. By the rational
s

root theorem, s | 1 means s = £1, so a € Z.

(a) T® + T + 1 is irreducible in (Z/37Z)[T] because it’s a degree 3 polynomial with no root
in 7,/37.

(b) Note that T +1 has no roots in Z/5Z, so it has no linear factors. Therefore, it if factors,
we can write T* + 1 = (T? 4 aT + b)(T? + ¢T + d) as a product of two irreducible
quadratics, so we have 7% + 1 = T* + (a + ¢)T® + (ac + b + d)T? + (ad + be)T + bd.
Comparing coefficients, we have a + ¢ =0, ac+ b+ d = 0, ad + bc = 0, and bd = 1.
This means ¢ = b+d, c¢(b—d) = 0, and bd = 1. The last equation says b = d = 1 or
b = d = 4, so the second equation is always satisfied and therefore we have ¢> = 2 or
c? = 3in Z/5Z. Neither of these are possible, so no such factorization exists. Therefore,
T* +1 is irreducible in (Z/5Z)[T).

. If f(T) € (Z/2Z2)[T) is irreducible, it must have a constant term of 1 (otherwise it’s divisible

by T), and an odd number of non-zero terms. This is because if you have an even number of
terms, then f(1) =0so T+ 1| f(T).

degree 1: Any degree one polynomial is irreducible: T, T + 1.

degree 2: There is a single choice of polynomial that satisfies the conditions: T2 + T + 1.
degree 3:There are two choices of polynomials that satisfy our criterion: T3+T%41, T3 +T+1.
degree 4: There are four polynomials that could possibly work: T4 +7T2 +1,T*+T +1,T* +

T34+ T?+T+1,T*+T? +1. Our criteria has ruled out having a linear factor, so we need to
check if we have an irreducible quadratic factor. There is only one irreducible quadratic, and
we see that (T2 + T + 1)% = T* + T2 + 1. Therefore, the irreducible degree 4 polynomials are
T+ T3+ 1, T*+T+1,T*+ T3 +T? +T + 1.

(a) f(T) is Eisenstein at 2, so is irreducible in Q[T7].

1
(b) We have f(T + 1) = T((T + 1)? — 1). By the binomial theorem, we have (T + 1)? =

P p |
Z (i)Tk7 so f(I'+1) = ’; <Z)T’“_1. Note that (i) = ﬁ is an integer

k=0 1



that’s divisible by p for 1 < k < p — 1, because none of factorials in the denominator
contain a factor of p, since 1 < k,p — k < p. The constant term of f(T + 1) is p, so by
the Eisenstein criterion, f(T + 1) and therefore f(7T') are irreducible in Q[T7].

Suppose that f(T) = a,T" + ...+ ag is idempotent. Then squaring says f(T)* = f(T).
By comparing the constant terms, we find that ag = ag so that ag is idempotent in

2n
R. By the way polynomial multiplication works, we can write f(T)* = Z dT* where
k=0
k
di = Zaiak,i. Looking at the coefficient of T', we find 2aga; = a;. Multiplying by
i=0

ap and using that a% = ag, we get 2apa; = aga; = ajag = 0. This means a; = 0.
Looking at the coefficient of T27 we have dy = 2agas + a% = a9, SO 2apay = as and the
same argument shows that as = 0. Now suppose that ax = 0 for all 1,2,...,i. Then
a1 = dp+1 = 2apak+1, and repeating the argument says that a1 = 0. Therefore
by induction, a, = 0 for n > 1, so that f(T) = a¢ is a constant polynomial with ag
idempotent in R. The backwards direction is obvious, so we’re done.

Suppose that f(T) = a,T"+...+ag is nilpotent. Then f(T)" = 0 for some N. We have
k

niN
F(N = Z dT* where dy = Z a;a—i. The leading term of f(T)V is aNT™N, which
k=0 1=0

equals 0, so a’ = 0 says a,, is nilpotent. Now consider f(T) — a,T". Then f(T)—a,T"
is still nilpotent, because the difference of nilpotents is nilpotent, and f(T) — a,, 7" has
strictly smaller degree than f(7). By inductively applying the above argument, we can
conclude that a,_1,...,a9 are all nilpotent. Conversely, suppose that ag,...,a, are
nilpotent. Then clearly ag, a7, ...,a,T™ are all nilpotent, and since sums of nilpotents
are nilpotent, this says that ag + ...+ a,T" is nilpotent, so we're done.



