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Introduction

These notes arose from many years of being a teaching assistant, and later an instructor for,
math 31B at UCLA. The content covers the core topics that one usually sees in a second
semester calculus course on integration techniques and infinite series. At UCLA, such a
course also contains some topics in differential calculus. The intention is to provide a large
collection of examples of various levels of difficulty: not just “easy” examples like one might
see in a calculus textbook. By including some “hard” examples, the hope is that the reader
sharpens their problem solving skills by seeing how more complicated problems can be broken
down. There may be many typos. Let me know if any are found!
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Chapter 1

Infinite Series

Definition 1.0.1. A sequence is a function f : N→ R, where N is the set of non-negative
integers.

We usually write an to denote the value f(n) of the function f , because we like to think of
sequences as different types of objects than functions. Often times, it’s useful to think about
a sequence as it’s set of values {an}, and we typically write {an} to refer to the sequence
instead of f .

Example 1.0.2. We can think of the sequence an = 1
n2 as either being some object explicitly

defined by the above formula, or as the list of values {1, 1
4
, 1
9
, 1
16
, . . .}.

Example 1.0.3. Define a sequence by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥
3. This is an example of a recursive sequence, a sequence where the value at some
given n depends on the previous terms. Explicitly, the first few terms of this sequence are
1, 1, 2, 3, 5, 8, 13, 21, 34, . . .. This sequence is called the Fibonacci sequence.

Since sequences are functions, all the usual operations you’re used to doing with functions
make sense for sequences: addition/subtraction, multiplication/division, taking limits, etc.
Ultimately, our goal is to understand how calculus works in the discrete world, with sequences
taking the role of functions. Below are the analogies between calculus in R and discrete
calculus that should be kept in mind to strengthen conceptual understanding.

Calculus in R Discrete calculus
Functions f : R→ R Sequences {an}
Derivative: d

dx
f(x) Forward difference: ∆an = an+1 − an

Anti-derivative:
∫
f(x) dx Partial sum:

∑N
n=1 an

Definite integral:
∫ b
a
f(x) dx Sum:

∑b
n=a an

Improper integral:
∫∞
1
f(x) dx Infinite series:

∑∞
n=1 an

1.1 Basic Definitions

Definition 1.1.1. Given a sequence {an}, define a new sequence {SN} by SN = a1 + a2 +
. . . + aN =

∑N
n=1 an. The sequence {SN} is called the sequence of partial sums of {an}.
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An infinite series is an expression of the form
∑∞

n=1 an, i.e. addition of infinitely many
terms of some sequence (for convenience the starting index is 1, but it does not matter).

As is usual in calculus, to try and understand something “infinite”, we have to take limits
of “finite” things that we understand. Analogously to how we define

∫∞
1
f(x) dx through

limits of definite integral limR→∞
∫ R
1
f(x) dx, we will define an infinite series by taking a

limit of its partial sums.

Definition 1.1.2. We say
∑∞

n=1 an converges if limN→∞ SN is finite, and if limN→∞ SN =
L, we say

∑∞
n=1 an = L. The infinite series

∑∞
n=1 an diverges if limN→∞ SN does not exist.

Series can be confusing at first because of the different types of objects involved. A series
is a formal infinite expression of the form a1+a2+. . .. A series can be assigned a value, which
is obtained by taking a limit of a sequence (the sequence of partial sums). In particular,
don’t mix up sequences with series: series have a value, sequences are functions.

Example 1.1.3. Set an = 1
n
, so that SN =

∑N
n=1

1
n
. The first few terms of the sequence SN

are given by 1, 3
2
, 11

6
, 25
12
, 137

60
, . . .. The series

∑∞
n=1

1
n

is called the harmonic series. It turns
out that

∑∞
n=1

1
n

diverges (which is not at all obvious).

Example 1.1.4. Set an = n. Then the sequence of partial sums {SN} has terms given by

SN =
∑N

n=1 n = N(N+1)
2

. Since limN→∞ SN =∞, the series
∑∞

n=1 n diverges.

Example 1.1.5. Let {an} be a sequence such that the N -th partial sum is given by SN =
3 − 1

N2 . Since limN→∞ SN = 3, this says
∑∞

n=1 an converges, and we have
∑∞

n=1 an = 3.
Notice we know nothing about the actual terms in the sequence {an} – the definition of
convergence or divergence of an infinite series depends only on the partial sums.

Example 1.1.6. With SN = 3− 1
N2 as above, we can recover what the general term of the

sequence is. Taking a forward difference, we have ∆SN = SN+1−SN =
∑N+1

n=1 an−
∑N

n=1 an =
aN+1, so aN+1 = 1

N2 − 1
(N+1)2

. Re-indexing, we find an = 1
(n−1)2 −

1
n2 for n ≥ 2, and

S1 = a1 = 2. This process is analogous to how a function can be recovered from knowledge
of it’s anti-derivative by differentiating.

1.2 Geometric and Telescoping Series

Definition 1.2.1. A geometric series is an infinite series of the form
∑∞

n=M arn for some
non-zero real numbers a and r, and some starting index M .

Geometric series are “simple” series in the sense that we can classify their behavior
completely:

Theorem 1.2.2 (Classification of geometric series). If |r| < 1, then
∑∞

n=M arn con-

verges, and
∑∞

n=M arn = arM

1−r . Otherwise if |r| ≥ 1, then
∑∞

n=M arn diverges.

Example 1.2.3. The series
∑∞

n=1 5(1
2
)n is a geometric series with a = 5, r = 1

2
, and M = 1.

We see
∑∞

n=1 5(1
2
)n = 5/2

1−1/2 = 5.
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Example 1.2.4. Consider the infinite series
∑∞

n=0
3·22n−2+(−1)n5n+1

6n
. Splitting this up, we can

write this as
∑∞

n=0
3·22n−2

6n
+
∑∞

n=0(−1)n 5n+1

6n
. Using exponent rules to write each sum as a

geometric series, we find
∑∞

n=0
3·22n−2+5n+1

6n
=
∑∞

n=0
3
4
(4
6
)n +

∑∞
n=0 5(−5

6
)n = 3/4

1−2/3 + 5
1+5/6

=
219
44

using the above formula.

Definition 1.2.5. A telescoping series is an infinite series of the form
∑∞

n=1(an+1 − an)
for some sequence {an}.

The name telescoping comes from writing down the summation of the terms in the series
– they cancel out and “collapse” like a telescope. The N -th partial sum of a telescoping series
is SN =

∑N
n=1(an+1−an) = (a2−a1)+(a3−a2)+(a4−a3)+. . .+(aN−aN−1)+(aN+1−aN) =

aN+1 − a1, so taking a limit gives the following:

Theorem 1.2.6 (Discrete FTC). Suppose that limn→∞ an = L. Then
∑∞

n=1(an+1− an) =
L− a1.

Writing the above statement using the forward difference operator, the theorem says∑∞
n=1 ∆an = L−a1 where L = limn→∞ an. The analogue is the statement that

∫∞
1
f ′(x) dx =

L−f(1) where L = limx→∞ f(x), which is just the fundamental theorem of calculus (applied
to improper integrals).

Example 1.2.7. The series
∑∞

n=1
1

n(n+1)
is a telescoping series. To see this, using partial

fractions we can write 1
n(n+1)

= 1
n
− 1

n+1
, and we then see

∑∞
n=1(

1
n
− 1

n+1
) is a telescoping

series with an = − 1
n
, and limn→∞ an = 0, so that

∑∞
n=1(

1
n
− 1

n+1
) = 1.

Example 1.2.8. Consider the series
∞∑
n=1

ln( (n+1)n

n(n+1) )

n(n+ 1)
. Using log rules, we can write this as

∑∞
n=1

n ln(n+1)−(n+1) ln(n)
n(n+1)

=
∑∞

n=1

(
ln(n+1)
n+1

− ln(n)
n

)
. This is a telescoping series with an = ln(n)

n
.

As limn→∞
ln(n)
n

= 0, we find
∑∞

n=1

ln(
(n+1)n

n(n+1)
)

n(n+1)
= 0.

Unlike with integration where we have many different techniques and rules for explicitly
computing anti-derivatives, finding a sequence bn with ∆bn = an is in general, very hard.
Therefore, it’s generally not very obvious if a series telescopes or not! Because this process is
so difficult, it’s not very easy to go through the definition of an infinite series to determine if
it converges or diverges. We’ll have to develop more theory to help us get around this issue.

1.3 The Comparison Tests

There is a useful test for quickly checking if a series diverges:

Theorem 1.3.1 ( Divergence Test). Let {an} be a sequence. If limn→∞ an 6= 0, then∑∞
n=1 an diverges.
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Example 1.3.2. The divergence test says the series
∑∞

n=1
n
n+1

diverges, because limn→∞
n
n+1

=
1 6= 0. The series

∑∞
n=1(1 + sin(n)) also diverges, because limn→∞ 1 + sin(n) does not exist.

Warning: the divergence test does not say that if limn→∞ an = 0, that
∑∞

n=1 an converges.
As we will later see, the series

∑∞
n=1

1
n2 converges, but as mentioned before the harmonic

series
∑∞

n=1
1
n

diverges. In both series, the general term tends to 0, so if this happens we
cannot conclude anything about convergence or divergence.

Our first two series test are going to be our most powerful ones.

Theorem 1.3.3 (Direct comparison test). Let
∑
an,
∑
bn be infinite series with an, bn ≥

0, and assume that
∑
an ≤

∑
bn eventually.

(a) If
∑
an diverges, then

∑
bn diverges.

(b) If
∑
bn converges, then

∑
an converges.

Intuitively, the direct comparison test says anything smaller than a convergent series
converges (i.e. anything smaller than a finite sum is finite), and anything larger than a
divergent series is divergence (i.e., anything larger than an infinite sum is infinite). Notice
that we only need that the inequality on series holds eventually. We may always rip out a
finite number of terms from the sum (which doesn’t change convergence) to make such an
inequality explicitly true (provided an ≤ bn eventually holds).

Theorem 1.3.4 (Limit comparison test). Let
∑
an,

∑
bn be infinite series with an ≥ 0

and bn > 0. Set L = limn→∞
an
bn

and assume that L exists. If 0 < L < ∞, then
∑
an and∑

bn both converge or diverge together.

Intuitively, if L is finite, this says eventually, that an ≈ Lbn, so the terms in the series
roughly differ by a constant multiple, which won’t change the convergence or divergence.

Each comparison test has its own set of pros and cons. In general, the direct comparison
test will be a bit harder to apply, since one needs to exhibit explicit inequalities, which might
be tricky to find. The limit comparison test is typically more useful, because in the process
of intuitively reasoning if a series will converge or diverge, one often gets another series to
compare with for free, and computing a limit is much easier than trying determine which
series is larger. The direct comparison tests is more useful in a few specific cases: when the
series has terms with logarithms (which grow too slowly to find a different series with similar
growth speed), or with exponentials (which grow too quickly). Another situation where the
direct comparison test is useful is when trigonometric functions like sine or cosine appear, as
we have explicit upper/lower bounds on these functions. When we later cover Taylor series,
we will see how to come up with good approximations to these types of functions that allow
the limit comparison test to more easily apply.

Before moving onto examples, we need some series whose behavior is known that we can
compare to. Above we classified the convergence or divergence of geometric series. Another
common family of series, known as p-series, have the following behavior:
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Theorem 1.3.5 (Classification of p-series). The p-series
∑∞

n=1
1
np converges if p > 1 and

diverges if 0 < p ≤ 1.

It will be useful to know how quickly certain commonly encountered functions grow. We
will use the notation “an � bn” to mean the sequence an is eventually smaller than bn, i.e.
there is some N such that an ≤ bn for all n ≥ N . Another way of saying this is that an
grows slower than bn.

Theorem 1.3.6. The following hold for any a > 0 and any b > 1: ln(n) � na � bn �
n!� nn.

Remark 1.3.7. The above theorem is actually even stronger than what is stated. As you
move up the hierarchy, not only do you have eventual inequalities, but you also have eventual
limit domination, meaning that the limit of the ratio tends to 0 as n → ∞. For example,
limn→∞

ln(n)
na = 0 for any a > 0. This strengthening of the theorem can be proved by repeated

applications of L’Hopital’s rule (and in fact, is really how you would prove the above version
anyway.)

Example 1.3.8. The series
∑∞

n=1
1
n2n

converges. The general term 1
n2n

decays more quickly
than 1

2n
, and the series

∑∞
n=1

1
2n

converges, so we expect our series converges as well. We see
that 2n < n2n, so that 1

n2n
< 1

2n
for all n. This says

∑∞
n=1

1
n2n

<
∑∞

n=1
1
2n

. The latter is a
convergent geometric series, so the result follows by the direct comparison test.

Example 1.3.9. The series
∑∞

n=0
4

4n+n!
converges. The general term 1

n!+4n
decays more

quickly than 1
4n

, and the series
∑∞

n=0
1
4n

converges, so we expect our series converges as
well. Since n! + 4n > 4n for all n ≥ 0, we see that 1

4n+n!
< 1

4n
, so multiplying by 4 says

4
4n+n!

< 4
4n

for n ≥ 0. Since
∑∞

n=0
4
4n

= 4
∑∞

n=0(
1
4
)n is a convergent geometric series, we see

that
∑∞

n=0
4

4n+n!
converges by a direct comparison test.

Example 1.3.10. The series
∑∞

n=1

√
n

n−1 diverges. As n → ∞,
√
n

n−1 ≈
√
n
n

= 1√
n
. Since∑∞

n=1
1√
n

diverges, we think our series should diverge as well. Since n − 1 < n, we get
1

n−1 >
1
n

so that
√
n

n−1 >
√
n
n

= 1√
n
. The series

∑∞
n=1

1√
n

is a divergent p-series with p = 1/2,
so the result follows by the direct comparison test.

Example 1.3.11. The series
∑∞

n=1
1

3√n(1+
√
n)

diverges. As n → ∞, 1 +
√
n ≈

√
n, so that

1
3√n(1+

√
n)
≈ 1

n5/6 . Since
∑∞

n=1
1

n5/6 is a divergent p-series, we expect our original series also

diverges. As 1 ≤
√
n for n ≥ 1, we see 1 +

√
n ≤
√
n +
√
n = 2

√
n, so that 3

√
n(1 +

√
n) ≤

3
√
n(2
√
n) = 2n5/6. This then says 1

3√n(1+
√
n)
≥ 1

2n5/6 , and
∑∞

n=1
1

2n5/6 is a divergent p-series

with p = 5/6. The original series diverges by a direct comparison.

Example 1.3.12. The series
∑∞

n=1
1

n−ln(n) diverges. As n→∞, the only term that matters

in the denominator is n, because logarithms grow slowly. So we expect 1
n−ln(n) ≈

1
n
, which

would say that
∑∞

n=1
1

n−ln(n) and
∑∞

n=1
1
n

should have the same behavior. The latter is

the divergent harmonic series, so we expect our original series diverges. Set an = 1
n−ln(n)

and bn = 1
n
. Then an

bn
= n

n−ln(n) and limn→∞
an
bn

= limn→∞
n

n−ln(n) = 1 by L’Hopital’s rule.
Therefore by the limit comparison test, our original series diverges.
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Example 1.3.13. The series
∑∞

n=1
n3

n5+4n+1
converges. As n→∞, the fastest growing term

in the denominator is n5, so we expect n3

n5+4n+1
≈ n3

n5 = 1
n2 . Using a limit comparison test

with an = n3

n5+4n+1
and bn = 1

n2 , we see limn→∞
an
bn

= limn→∞
n5

n5+4n+1
= 1. This says the

behavior of the original series is the same as
∑∞

n=1
1
n2 , which is a convergent p-series. The

result then follows by the limit comparison test.

Example 1.3.14. The series
∑∞

n=1
en+n
e2n−n2 converges. As n→∞, the exponential terms are

the only things that matter in the numerator and denominator, because they grow the fastest.
Therefore, en+n

e2n−n2 ≈ en

e2n
= (1

e
)n. Therefore, we expect that

∑∞
n=1

en+n
e2n−n2 and

∑∞
n=1(

1
e
)n have

the same behavior. The latter series is a convergent geometric series with r = 1
e
, so our

original series should converge as well. Set an = en+n
e2n−n2 and bn = 1

en
. Then an

bn
= e2n+nen

e2n−n2 .

After dividing both numerator and denominator by e2n, we may write this as an
bn

=
1+ n

en

1− n2

e2n

.

Therefore, limn→∞
an
bn

= limn→∞
1+ n

en

1− n2

e2n

= 1. By the limit comparison test, we get what we

want.

Example 1.3.15. The series
∑∞

n=1 sin( 1
n2 ) converges. When x is close to 0, sin(x) ≈ x.

As n → ∞, 1
n2 → 0 so we expect sin( 1

n2 ) ≈ 1
n2 . Since

∑∞
n=1

1
n2 converges, we expect that

our original series does as well. Using an = sin( 1
n2 ) and bn = 1

n2 , we see limn→∞
an
bn

=

limn→∞
sin( 1

n2 )
1
n2

= limu→0
sin(u)
u

= 1 via the substitution u = 1
n2 . This says the series have the

same behavior, so the result follows via the limit comparison test.

Example 1.3.16. Sometimes it’s useful to chain comparison tests together. The series∑∞
n=2

ln(n)√
n3−n2 is convergent. As n → ∞, the fastest growing term in the denominator is

n3, so
√
n3 − n2 ≈

√
n3 = n3/2. So we expect that

∑∞
n=2

ln(n)√
n3−n2 and

∑∞
n=2

ln(n)

n3/2 have the

same behavior. This can be checked using the limit comparison test: with an = ln(n)√
n3−n2

and bn = ln(n)

n3/2 we see that an
bn

= n3/2
√
n3−n2 → 1. Therefore, we just need to determine what∑∞

n=2
ln(n)

n3/2 does. In order to analyze this series, we need a fact about the growth speed of
logarithms: they grow slower than any power function. Formalized mathematically, this says
for any a > 0, there exists N such that ln(n) < na for n ≥ N . Picking a = 1/4, this says

ln(n) < n1/4 eventually, so that eventually
∑ ln(n)

n3/2 <
∑

n1/4

n3/2 =
∑

1
n5/4 . The latter series is a

convergent p-series, so by a direct comparison,
∑ ln(n)

n3/2 converges and we are done.

1.4 The Integral Test

Conceptually, the integral test is the most important convergence test: it says that if the
terms of an infinite series are “nice”, the behavior of the series and the behavior of the
corresponding improper integral should be the same. This provides the explicit link between
infinite series and integration.

In practice, the integral test is often not that useful. In order for it to apply, you must
know how to integrate the general term of an infinite series – this is something you either
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know you can do, in which case the test will work, otherwise if you don’t know how to
integrate the general term, the test is completely useless. It’s generally best to try other
convergence tests before trying the integral test, unless you are confident you can make it
work.

Theorem 1.4.1 (Integral test). Let an = f(n) where f(x) is a non-negative, continuous
function that is eventually decreasing for x ≥ M for some M . Then

∑
an and

∫∞
M
f(x) dx

both converge or both diverge.

Example 1.4.2. We can use the integral test to classify the behavior of p-series. Set f(x) =
1
xp

. Then f ′(x) = −pxp−1 < 0 for x > 0, so that f(x) is decreasing. It’s clear that
f(x) is non-negative for x > 0, and also that it’s continuous. Therefore by the integral
test,

∑∞
n=1

1
np and

∫∞
1

1
xp
dx have the same behavior. First we handle the case p 6= 1. By

definition,
∫∞
1

1
xp
dx = limR→∞

∫ R
1
x−p dx = limR→∞

x1−p

1−p

∣∣R
1

= limR→∞
R1−p

1−p −
1

1−p . If p > 1,

then 1 − p < 0, so that R1−p → 0 as R → ∞, so that
∫∞
1

1
xp
dx = − 1

1−p < ∞. If p < 1,

then 1 − p > 0, so that R1−p → ∞ as R → ∞, which says
∫∞
1

1
xp
dx diverges. In the

case p = 1, the integral in question that we care about is
∫∞
1

1
x
dx = limR→∞

∫ R
1

1
x
dx =

limR→∞ ln |x|
∣∣R
1

= limR→∞ ln(R) = ∞, so that
∫∞
1

1
x
dx diverges. Putting this all together,

we find that
∑∞

n=1
1
np converges for p > 1 and diverges for p ≤ 1.

Example 1.4.3. One place where the integral test really shines is when there are loga-
rithms floating around: the series

∑∞
n=2

1
n ln(n)

diverges. Set f(x) = 1
x ln(x)

. Then f ′(x) =

− (1+ln(x))
x2 ln(x)2

< 0 for x ≥ 2. The function f(x) is also non-negative for x ≥ 2, and it’s

clearly continuous, so by the integral test, the series
∑∞

n=2
1

n ln(n)
and the improper integral∫∞

2
1

x ln(x)
dx have the same behavior. By definition, the latter integral is limR→∞

∫ R
2

1
x ln(x)

dx

= limR→∞ ln(ln(x))
∣∣R
2

= limR→∞ ln(ln(R))− ln(ln(2)) =∞. Therefore, the integral diverges,
so that the series diverges.

The right way to really think about the integral test is not as a test for convergence
of infinite series, but as a test for convergence of integrals. The integral test is incredibly
important if you think about it this way, because it gives us significantly more techniques
than we had before to determine if integrals converge or diverge!

Example 1.4.4. Suppose we wanted to know if
∫∞
0

x3+x+1
x4+1

dx converges or diverges. Using
what we learned before, we could split the integral up and do several direct comparison tests.
Alternatively, we could use the integral test, and then a limit comparison test. The function

f(x) = x3+x+1
x4+1

is clearly non-negative and continuous, and f ′(x) = − (x6+3x4+4x3−3x2−1)
(x4+1)2

is

negative for x > 1 (which is not terribly hard to see). Therefore, by the integral test,∫∞
0

x3+x+1
x4+1

dx and
∑∞

n=0
n3+n+1
n4+1

have the same behavior. As n → ∞, n3+n+1
n4+1

≈ 1
n
. Doing a

limit comparison test on
∑∞

n=0
n3+n+1
n4+1

with
∑∞

n=1
1
n

will show it diverges, and so the integral
diverges as well.

The proof of the integral test gives the following upper and lower bounds of the sum:
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Theorem 1.4.5 (Integral test estimate). Suppose that
∑∞

n=0 an is a convergent series sat-
isfying the conditions of the integral test with an monotonically decreasing for n ≥ N . Then∫∞
N
f(x) dx ≤

∑∞
n=N an ≤ aN +

∫∞
N
f(x) dx.

Example 1.4.6. Since
∑∞

n=1
1
n2 is a convergent series satisfying the conditions of the integral

test, we have 1 =
∫∞
1

1
x2
dx ≤

∑∞
n=1

1
n2 ≤ 1 +

∫∞
1

1
x2
dx = 2. The actual value of the sum was

shown by Euler to be π2

6
≈ 1.645!

1.5 The Root and Ratio Tests

We now move on to series tests that are applicable to terms with negative terms. So far,
none of our convergence tests have been “easy”, in the sense that given a series, we can’t just
test if it converges or diverges by itself. We fix this with the root and ratio tests, which are
arguably the easiest to use convergence tests. Before we do that, we need some terminology
that applies to series that have negative terms.

Definition 1.5.1. An infinite series
∑
an converges absolutely if

∑
|an| converges. If∑

|an| diverges and
∑
an converges, then we say

∑
an converges conditionally.

Absolute convergence is a “stronger” form of convergence, in the following sense:

Theorem 1.5.2 (Absolute convergence test). If
∑
|an| converges, then

∑
an converges.

That is, an absolutely convergent series converges.

Example 1.5.3. We’ll see later that
∑∞

n=1
(−1)n−1

n
converges while

∑∞
n=1

1
n

diverges, so that∑∞
n=1

(−1)n−1

n
is a conditionally convergent series.

Example 1.5.4. The series
∑∞

n=1
cos(n)
2n

converges absolutely. Taking absolute values, since

| cos(n)| ≤ 1, we have
∑∞

n=1
| cos(n)|

2n
≤
∑∞

n=1
1
2n

which is a convergent geometric series.

We now state the ratio and root tests:

Theorem 1.5.5 (Ratio test). Let
∑
an be an infinite series. Set L = limn→∞ |an+1

an
|.

(a) If 0 ≤ L < 1, then
∑
an converges absolutely.

(b) If L > 1, then
∑
an diverges.

(c) if L = 1, the ratio test says nothing.

Theorem 1.5.6 (Root test). Let
∑
an be an infinite series. Set L = limn→∞

n
√
|an|.

(a) If 0 ≤ L < 1, then
∑
an converges absolutely.

(b) If L > 1, then
∑
an diverges.

(c) if L = 1, the root test says nothing.
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Both the root and ratio test require only a single infinite series to perform the test, and
further more, when they work they tell you explicitly whether or not the series converges
(even absolutely!) or diverges. The drawback is that they don’t always work. Of the two,
the ratio test is more useful in practice. In fact, the root test is really only helpful when
there are expressions raised to n-th powers, and don’t involve any factorials. The ratio test is
significantly more useful when factorials appear (more than any other convergence test), and
handles n-th powers relatively easily as well. If you’re trying to determine if an infinite series
converges or not, and it’s not of a special form (i.e. alternating, geometric, telescoping), and
there’s nothing to obviously do a limit comparison with, I recommend trying the ratio test.

One last thing that’s worth pointing out: it’s not a coincidence that the two tests look
very similar. The root test is actually stronger than the ratio test, in the sense that you
prove the ratio test by using the root test. If the ratio test works, you could have also done
the root test. Sometimes if the ratio test doesn’t work, the root test will work. If the root
test doesn’t work, don’t bother with the ratio test: it won’t work either!

Example 1.5.7. The series
∑∞

n=1
2n
nn converges. Set an = 2n

nn . Then n
√
|an| = (2n)1/n

n
. As

n → ∞, we see that (2n)1/n → 1: this is because if L = limn→∞(2n)1/n, then ln(L) =

limn→∞
ln(2n)
n

= 0 by L’Hopital’s rule, so L = 1. This says n
√
|an| → 0 as n → ∞. Conver-

gence then follows from the root test.

Example 1.5.8. The series
∑∞

n=1(1 + 1
n
)−n

2
converges. Set an = (1 + 1

n
)−n

2
, then n

√
|an| =

(1 + 1
n
)−n. As n→∞, we see limn→∞

1
(1+1/n)n

= 1
e
< 1, so the convergence follows from the

root test.

Example 1.5.9. The series
∑∞

n=1
n!

(2n)!
converges. Set an = n!

(2n)!
. Then |an+1

an
| = (n+1)!

(2n+2)!
·

(2n)!
n!

= n+1
(2n+2)(2n+1)

→ 0 < 1 as n→∞. The convergence then follows by the ratio test.

Example 1.5.10. The series
∑∞

n=1
2n

2

n!
diverges. Set an = 2n

2

n!
, then |an+1

an
| = 2n

2+2n+1

(n+1)!
· n!
2n2 =

22n+1

n+1
→∞. Therefore the series diverges by the ratio test.

Example 1.5.11. The series
∑∞

n=1
n!
nn converges. Set an = n!

nn . Then |an+1

an
| = (n+1)!nn

(n+1)n+1n!
=

(n+1)nn

(n+1)(n+1)n
= ( n

n+1
)n = (1 + 1

n
)−n. As n→∞, we have (1 + 1

n
)−n → 1

e
, so the result follows

by the ratio test.

1.6 Alternating Series

Our last type of series we study is when the negative terms are predictable, specifically, when
the terms of the series alternate between positive and negative.

Definition 1.6.1. An alternating series is an infinite series of the form
∑

(−1)nan where
an ≥ 0.

Because of the alternation between positive and negative terms, this makes it harder for
the sum to diverge to infinity, so in some sense, alternating series are more “well behaved”.
One way of phrasing this is as follows:
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Theorem 1.6.2 (Alternating series test). Let
∑

(−1)nan be an alternating series. If
limn→∞ an = 0 and an is monotonically decreasing, then

∑
(−1)nan converges.

The first condition of the alternating series test is a requirement for the series to even
converge in the first place (otherwise it diverges by the divergence test), so really the only
condition we are imposing on the terms is that they are strictly decreasing, which is a rel-
atively tame condition as far as “niceness” of sequences go. The alternating series test has
one weakness: it cannot show an alternating series diverges. In fact, the conditions of the
alternating series test say that a divergent alternating series has to be fairly complicated
(provided it doesn’t obviously diverge, i.e. has limn→∞ an 6= 0).

Example 1.6.3. The series
∑∞

n=1
(−1)n−1

n
converges conditionally: we know

∑∞
n=1

1
n

diverges,
but clearly 1

n
goes to 0 and is monotonically decreasing, and so by the alternating series test,∑∞

n=1
(−1)n−1

n
converges conditionally.

Example 1.6.4. The series
∑∞

n=1(−1)n 1
1+ 1

n

diverges because limn→∞(−1)n 1
1+ 1

n

does not

exist – not every alternating series requires the alternating series test!

Example 1.6.5. The series
∑∞

n=2(−1)n 1
n2 ln(n)

converges. With an = 1
n2 ln(n)

, it’s clear that

limn→∞ an = 0, and we see that an is decreasing because the function f(n) = 1
n2 ln(n)

has

derivative f ′(n) = −2 ln(n)+1
n3 ln(n)2

< 0 for n ≥ 1. The result follows by the alternating series test.

In fact, the convergence is absolute: the series
∑∞

n=2
1

n2 ln(n)
converges because n2 ln(n) > n2

for n ≥ 3, so
∑∞

n=3
1

n2 ln(n)
<
∑∞

n=3
1
n2 which is a convergent p-series.

Example 1.6.6. The series
∑∞

n=1
cos(πn)

n2/3 converges conditionally. Notice that cos(πn) =
(−1)n, so this is really just the series

∑∞
n=1(−1)n 1

n2/3 . It’s clear that 1
n2/3 → 0 as n → ∞,

and the function f(n) = n−2/3 has derivative f ′(n) = −2
3
n−5/3 < 0, so it converges by the

alternating series test. However, taking an absolute value, the series
∑∞

n=1
1

n2/3 is a divergent
p-series.

Example 1.6.7. The series
∑∞

n=1(−1)n e
1/n

n
converges conditionally. As n → ∞, 1

n
→ 0,

and ex ≈ 1 for x ≈ 0. This says as n → ∞, that e1/n

n
≈ 1

n
. First, we show that we do

not converge absolutely: the series
∑∞

n=1
e1/n

n
should behave like the series

∑∞
n=1

1
n
, which

diverges. Indeed, using the limit comparison test with an = e1/n

n
and bn = 1

n
, we have

an
bn

= e1/n and clearly limn→∞
an
bn

= 1. By the limit comparison test,
∑∞

n=1
e1/n

n
diverges.

The alternating series however, converges. With an = e1/n

n
, it’s clear that an ≥ 0 and

limn→∞ an = limn→∞
e1/n

n
= 0. Set f(n) = e1/n

n
. Then f ′(n) = − e1/n(n+1)

n3 < 0. This says an
is decreasing, so by the alternating series test, we are done.

Example 1.6.8. The series
∑∞

n=1(−1)n+1 10n

2n2 converges absolutely. To see this, use the root

test: |an|1/n = 10
2n

and clearly |an|1/n → 0 as n → ∞. The alternating series test isn’t the
only thing you should try when you see alternating series!
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Example 1.6.9. We give an example of a (non-obvious) divergent alternating series. Define

an =

{
1/n n is even

1/n2 n is odd

I claim the series
∑∞

n=1(−1)nan diverges. We show this via the definition of convergence for

an infinite series. The N -th partial sum is given by SN =
∑N

n=1(−1)nan = −
∑

k≤N, k odd
1
k2

+∑
k≤N, k even

1
k
. As N → ∞, the first sum converges, because

∑
k odd

1
k2
≤
∑∞

n=1
1
n2 and∑∞

n=1
1
n2 converges, while the second sum diverges, because

∑
k even

1
k

= 1
2

∑∞
n=1

1
n

is the
harmonic series. Since the partial sums diverge, the series

∑∞
n=1(−1)nan diverges.

Alternating series have a very nice error bound, that make it very easy to estimate these
types of sums.

Theorem 1.6.10 (Alternating series error bound). Let
∑∞

n=0(−1)nan be a convergent alter-
nating series, and let S denote the value of the sum. Then |S − SN | ≤ aN+1.

Example 1.6.11. We saw that
∑∞

n=1
(−1)n
n

converges. For any value of N ,
∑N

n=1
(−1)n
n

approximates the true value of the sum within an error of 1
N+1

. To guarantee two decimal
places of accuracy, we can take N = 99, for example, and one may compute with a computer
that

∑99
n=1

(−1)n
n
≈ −.698, so that

∑∞
n=1

(−1)n
n
≈ −.69. We’ll see later that

∑∞
n=1

(−1)n
n

=
− ln(2) ≈ −.693147 – the series converges very slowly!
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1.7 Summary of Tests

Test Applicable Series Conclusion Additional
Always try this first.

Divergence
∑

an Diverges if lim
n→∞

an 6= 0 Inconclusive if lim
n→∞

an = 0.

Can not show convergence!!

Geometric Series
∞∑

n=M

crn Converges if |r| < 1, diverges if |r| ≥ 1 Converges to value
crM

1− r

If
∑

bn converges, then
∑

an converges

Direct Comparison
∑

an and
∑

bn

with 0 ≤ an ≤ bn eventually If
∑

an diverges, then
∑

bn diverges

Limit Comparison
∑

an and
∑

bn with 0 < an, bn
∑

an and
∑

bn both converge or diverge

and lim
n→∞

an
bn

= L, 0 < L <∞

Integral
∑

an with an = f(n) continuous,
∑

an and

∫ ∞
M

f(x) dx both converge or diverge |S − SN | ≤
∫ ∞
N

f(x) dx

positive, decreasing eventually for n ≥M

p-Series
∞∑
n=1

1

np
Converges if p > 1, diverges if p ≤ 1

If
∑

an converges but

Absolute Convergence
∑

an If
∑
|an| converges,

∑
an converges absolutely

∑
|an| diverges, we call this

conditional convergence

Ratio
∑

an with an 6= 0 and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L Converges (absolutely) if L < 1, diverges if L > 1 Inconclusive if L = 1

Root
∑

an with lim
n→∞

n
√
|an| = L Converges (absolutely) if L < 1, diverges if L > 1 Inconclusive if L = 1

∑
(−1)nan with an positive,

Alternating Series monotonically decreasing eventually,
∑

(−1)nan converges |S − SN | ≤ aN+1

and lim
n→∞

an = 0
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Chapter 2

Power Series

Our study of when infinite series converge leads to the following question: when can a func-
tion be written as an infinite series? To motivate why one would even want to do such a
thing, at its heart, calculus is about approximation. One of the questions calculus tries to
answer is how to find “good” approximations to a function f(x) locally near some point x0.
You are already familiar with one such technique: “linearize” the function by finding the
tangent line L(x) at x0, and then for values of x close to x0, L(x) is a “good” approximation
to f(x). L(x) is an approximation to f(x) by a polynomial of degree 1. What if we wanted
an approximation to f(x) by a polynomial of degree 2, or arbitrary degree n?

Since calculus is concerned with limit operations, one might ask if we could make sense
of an “infinite degree” polynomial. If so, it’s then natural to ask whether or not the above
approximations actually become equalities, which is precisely asking when can you write a
function as an infinite series! Our goal is to answer this question, and see the many powerful
application that this knowledge gives us with regards to classical problems in calculus.

2.1 Basic Definitions

Definition 2.1.1. A power series is an infinite series of the form F (x) =
∑∞

n=0 an(x− c)n
for variable x, some sequence {an}, and some real number c, called the center of the power
series.

Note that a power series F (x) is not necessarily a well-defined function: for some values
of x, the resulting series F (x) may either converge or diverge.

Example 2.1.2. Let F (x) =
∑∞

n=0 x
n, which is a power series centered at c = 0 with

constant coefficients an = 1. For each fixed value of x, the resulting infinite series is a
geometric series, and therefore converges if |x| < 1 and diverges if |x| ≥ 1. Therefore we
cannot make sense of F (x) as a function defined on R, but we can make sense of F (x) as
a function defined on (−1, 1): from the formula for the sum of a geometric series, we know
that for |x| < 1, F (x) =

∑∞
n=0 x

n = 1
1−x .

The first question we must answer then if we wish to make sense of power series, is when
can we determine a domain that makes a power series a well-defined function? Since for

15



each fixed value of x a power series is just an infinite series, we can answer this using the
theory we’ve already developed. A bit of work will show that power series have the following
behavior:

Theorem 2.1.3 (Convergence of power series). For a power series F (x) =
∑∞

n=0 an(x−c)n,
exactly one of the following is true:

� There is a unique non-negative real number R such that F (x) converges absolutely for
|x− c| < R and diverges for |x− c| > R.

� F (x) converges absolutely for all x ∈ R.

Definition 2.1.4. The radius of convergence R of a power series F (x) is defined as the
number R in the above theorem. If F (x) converges absolutely for all x, we define R = ∞.
The interval of convergence is the set of all values such that F (x) converges.

How can we find the radius of convergence of a power series? Assuming we can apply the
ratio test to the infinite series

∑∞
n=0 an(x − c)n, we see that the series converges absolutely

if limn→∞ |an+1(x−c)n+1

an(x−c)n | = limn→∞ |an+1

an
||x− c| < 1, and diverges if limn→∞ |an+1

an
||x− c| > 1.

If L = limn→∞ |an+1

an
| is finite and non-zero, this says that the infinite series F (x) converges

absolutely if L|x−c| < 1 and diverges if L|x−c| > 1, i.e. converges absolutely for |x−c| < 1/L
and diverges if |x − c| > 1/L, so that the above theorem says R = 1/L. If L = 0, then
L|x− c| = 0 for any value of x, so therefore F (x) converges absolutely for any such choice of
x, which says R =∞. If L is infinite, then for any value of x 6= c, limn→∞ |an+1

an
||x− c| =∞,

so F (x) diverges, and for x = c we see limn→∞ |an+1

an
||x− c| = 0, i.e. F (x) converges only at

x = c, so R = 0. We can sum this up in the following:

Theorem 2.1.5. Assume that L = limn→∞ |an+1

an
| exists. The radius of convergence of the

power series F (x) =
∑∞

n=0 an(x− c)n is given by R = 1
L

, where this is interpreted as R = 0
if L =∞ or R =∞ if L = 0.

The theorem on the convergence behavior of power series tells us that if R <∞, a power
series must converge in the interval (c−R, c+R), and diverges in (−∞, c−R)∪ (c+R,∞).
However, the theorem tells us nothing about what happens at the endpoints x = c−R and
x = c + R. To check if a power series converges for these values of x, this must be done
manually using the usual convergence tests for infinite series.

Example 2.1.6. In the previous example, we determined the power series F (x) =
∑∞

n=0 x
n

converges if |x| < 1 and diverges if |x| ≥ 1 using properties of geometric series. In other
words, the radius of convergence is R = 1 and the interval of convergence is (−1, 1). We can
also determine this using the ratio test: F (x) converges absolutely if limn→∞ |x

n+1

xn
| = |x| < 1

and diverges if |x| > 1, so R = 1. If x = 1, then F (1) =
∑∞

n=0 1 diverges, and similarly
F (−1) =

∑∞
n=0(−1)n also diverges, so the interval of convergence is (−1, 1).

Example 2.1.7. Set F (x) =
∑∞

n=0 n!xn. What is the interval of convergence of F (x)? Using

the ratio test, we find that L = limn→∞
(n+1)!
n!

= limn→∞(n+ 1) =∞. This says R = 0, and
so F (x) converges only at x = 0.
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Example 2.1.8. Set F (x) =
∑∞

n=2
1

ln(n)
(x−1)n. What is the interval of convergence of F (x)?

Using the ratio test, F (x) converges absolutely if limn→∞ |
1

ln(n+1)
(x−1)n+1

1
ln(n)

(x−1)n | = limn→∞
ln(n)

ln(n+1)
|x−

1| < 1 and diverges if limn→∞
ln(n)

ln(n+1)
|x − 1| > 1. Since limn→∞

ln(n)
ln(n+1)

= 1, this says F (x)

converges absolutely if |x − 1| < 1 and diverges if |x − 1| > 1, i.e. R = 1. We then see
that F (x) converges in the interval (0, 2). What happens at the endpoints? At x = 0, we
have F (0) =

∑∞
n=2

1
ln(n)

(−1)n, which converges by the alternating series test. At x = 2,

F (1) =
∑∞

n=2
1

ln(n)
. Since ln(n) < n for all n, 1

n
< 1

ln(n)
so that

∑∞
n=2

1
ln(n)

diverges by a

direct comparison. Therefore F (1) diverges, and the interval of convergence of F (x) is given
by [0, 2).

Example 2.1.9. Set F (x) =
∑∞

n=0
(−1)nx2n
4n(n!)2

. In both of the two previous examples, we could
have computed the radius of convergence by using the previous theorem. However here the
theorem does not apply, because the power series F (x) has only even powers of x in the
sum. Therefore we need to use the ratio test to determine the radius of convergence. With

bn = (−1)nx2n
4n(n!)2

, we have | bn+1

bn
| = | (−1)

n+1x2n+2

4n+1((n+1)!)2
· 4n(n!)2

(−1)nx2n | =
x2

4(n+1)2
. Therefore, limn→∞ | bn+1

bn
| =

limn→∞
x2

4(n+1)2
= 0 for any value of x. This says R = ∞ and F (x) converges absolutely for

all x.

2.2 Functions Defined by Power Series

The convergence behavior of power series says that a power series F (x) determines a well-
defined function on its interval of convergence. One reason why we care about power series
is that doing calculus with them is extremely easy:

Theorem 2.2.1 (Integration and differentiation of power series). Let F (x) =
∑∞

n=0 an(x−
c)n be a power series with radius of convergence R. Then for |x−c| < R, we may differentiate
and integrate the power series F (x) term by term. That is, the following hold:

� F ′(x) =
∑∞

n=0
d
dx
an(x− c)n =

∑∞
n=1 nan(x− c)n−1

�

∫
F (x) dx =

∑∞
n=0

∫
an(x− c)n dx = C +

∑∞
n=0

an
n+1

(x− c)n+1.

Furthermore, the radius of convergence remains unchanged, but the interval of convergence
of these new series may differ at the endpoints.

Example 2.2.2. Let F (x) =
∑∞

n=1
xn

n
. Then using the theorem for computing the radius

of convergence, we see that R = 1 and F (x) converges in (−1, 1). If x = 1, F (1) =
∑∞

n=1
1
n

diverges, and at x = −1, F (−1) =
∑∞

n=1
(−1)n
n

is a convergent alternating series. Therefore,
F (x) has interval of convergence [−1, 1). Taking a derivative says F ′(x) =

∑∞
n=1

d
dx

xn

n
=∑∞

n=1 x
n−1 =

∑∞
n=0 x

n. As previously determined, this power series has radius of conver-
gence 1 and interval of convergence (−1, 1). If we integrate F (x), we see

∫
F (x) dx =∑∞

n=1

∫
xn

n
dx =

∑∞
n=1

1
n

∫
xn dx = C +

∑∞
n=1

1
n(n+1)

xn+1. This series has radius of conver-

gence R = 1, and so converges in the interval (−1, 1). At x = −1, the series C+
∑∞

n=1
(−1)n
n(n+1)

is a convergent alternating series, and at x = 1 the series C +
∑∞

n=1
1

n(n+1)
converges by a

limit comparison with
∑∞

n=1
1
n2 . This says the interval of convergence is [−1, 1].
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The above theorem tells us that functions defined by a power series are very special: they
are not only differentiable, but are infinitely differentiable (the derivative of a power series is
a power series so you can keep applying the theorem!), and they behave nicely with respect
to the operations of differentiation and integration. Naturally then, is the following: give a
function f(x), how can we determine if it can be defined by a power series on some interval?

2.3 Taylor Series

Suppose we have a function f(x) defined on some interval I that can be written as a power
series. That is to say, f : I → R is defined by f(x) =

∑∞
n=0 an(x − c)n for some power

series
∑∞

n=0 an(x − c)n. It turns out the coefficients an of the power series can very easily
be determined. Plugging in x = c, all terms on the right hand side disappear except the
n = 0 term, so f(c) = a0. Since f is represented by a power series, it is differentiable, so
we may write f ′(x) =

∑∞
n=1 nan(x − c)n−1. Plugging in x = c, all terms in the right hand

side disappear except the n = 1 term, which says f ′(c) = a1. Differentiating again says
f ′′(x) =

∑∞
n=2 n(n − 1)an(x − c)n−2. Plugging in x = c, all terms in the right hand side

disappear except the n = 2 term, so f ′′(c) = 2a2 says a2 = f ′′(c)
2

. Continuing this process,

one finds that an = f (n)(c)
n!

, so that f(x) =
∑∞

n=0
f (n)(c)
n!

(x− c)n. This says that if a function
f(x) can be written as a power series, it necessarily has this special form.

Definition 2.3.1. Let f(x) be an infinitely differentiable function. The Taylor series of

f(x) centered at c, denoted T (x), is the power series T (x) =
∑∞

n=0
f (n)(c)
n!

(x − c)n. If c = 0,
the power series is sometimes called the MacLaurin series of f(x).

Example 2.3.2. What’s the Taylor series of f(x) = ex centered at c = 0? By definition,

this Taylor series is given by
∑∞

n=0
f (n)(0)
n!

xn, so we need to figure out what an arbitrary n-th
order derivative of f looks like. Luckily, f (n)(x) = ex for all n, so f (n)(0) = 1. This says the
Taylor series centered at 0 of ex is given by

∑∞
n=0

1
n!
xn.

Example 2.3.3. We have seen that a valid power series expansion of f(x) = 1
1−x when

|x| < 1. By the uniqueness of a power series representation, this actually says that the
Taylor series centered at c = 0 of f(x) is given by

∑∞
n=0 x

n, valid for |x| < 1. That is,
1

1−x =
∑∞

n=0 x
n for |x| < 1.

Example 2.3.4. What’s the Taylor series centered at c = 0 for f(x) = sin(x)? Derivatives
of sin(x) have a simple pattern: they cycle cos(x),− sin(x),− cos(x), sin(x). If we plug in
x = 0, the pattern goes 1, 0,−1, 0, i.e. the even order derivatives at 0 are all 0 and the odd

order derivatives at 0 alternate between 1 and −1. Then
∑∞

n=0
f (n)(0)
n!

xn =
∑

n odd
f (n)(0)
n!

xn.
We can loop the sum over all odd integers by writing n = 2k + 1 and then letting k vary

from 0 to ∞, i.e.
∑

n odd
f (n)(0)
n!

xn =
∑∞

k=0
f (2k+1)(0)
(2k+1)!

x2k+1 =
∑∞

k=0
(−1)k
(2k+1)!

x2k+1.

What we determined at the beginning of the section is that if a function can be written
as a power series centered at some point c, that power series must be its Taylor series. We
have not said that a function is equal to its Taylor series. Indeed, this is false:
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Example 2.3.5. Consider the function f defined by f(x) =

{
e−1/x

2
x 6= 0

0 x = 0
. Through quite

a lot of (difficult) work, one can show that this function has the following unusual properties:
f is infinitely differentiable, and f (n)(0) = 0 for all n ≥ 0. The Taylor series of f(x) centered
at c = 0 is then given by T (x) = 0, which obviously is not the same as f(x).

To finish off the section, we give some examples of how one goes about computing Taylor
series. The take away from these examples should all be the same: to compute a Taylor
series, perform operations on known power series to arrive at an answer. Do not try and
work with the definition!

Example 2.3.6. Let’s compute the Taylor series of f(x) = x2

(1−x)3 centered at c = 0. We

start with the known Taylor series 1
1−x =

∑∞
n=0 x

n, valid for |x| < 1. If we differentiate once,

we find 1
(1−x)2 =

∑∞
n=1 nx

n−1, and if we differentiate again we see 2
(1−x)3 =

∑∞
n=2 n(n−1)xn−2.

This says 1
(1−x)3 = 1

2

∑∞
n=2 n(n − 1)xn−2, so multiplying by x2 says x2

(1−x)3 = x2

2

∑∞
n=2 n(n −

1)xn−2 = 1
2

∑∞
n=2 n(n− 1)xn. This expansion is still valid for |x| < 1 (differentiating doesn’t

change the radius of convergence!). Since we have found a power series representing f(x) in
some interval, this forces it to be the Taylor series of f(x) by uniqueness.

Example 2.3.7. Similarly, by integrating the Taylor series of 1
1−x , we can find the Taylor

series of ln(1− x). We have 1
1−x =

∑∞
n=0 x

n, valid for |x| < 1. Integrating says ln(1− x) =

C +
∑∞

n=0
xn+1

n+1
. To figure out C, plug in x = 0: we then have ln(1) = C, so C = 0. It’s easy

to see we pick up convergence at the end point x = −1, so we have ln(1 − x) =
∑∞

n=0
xn+1

n+1

for x ∈ [−1, 1). Since we have found a power series representation for our function, it must
be its Taylor series.

Example 2.3.8. Let’s compute the Taylor series of f(x) = 1
1−x centered at c = 4. We know

that 1
1−u =

∑∞
n=0 u

n is a valid power series expansion when |u| < 1. Instead of directly
computing derivatives, we can do a clever trick to find the Taylor series. We know that the
Taylor series of f(x) centered at 4 is of the form

∑∞
n=0 an(x − 4)n for some coefficients an,

so if we can find such a power series, uniqueness forces it to be the Taylor series of f(x). To
do so, we will perform a substitution and use the above formula to make an (x − 4)n term
appear in the sum. Write 1

1−x = 1
1−(x−4+4)

= 1
−3−(x−4) = −1

3
1

1−(−x−4
3

)
. Set u = −x−4

3
. Then

the above says 1
1−x = −1

3

∑∞
n=0(−

x−4
3

)n =
∑∞

n=0(−1)n+1 (x−4)n
3n+1 , which is valid for |x−4

3
| < 1,

i.e. |x− 4| < 3. Since we have found a power series of f centered at 4, it must be its Taylor
series.

Example 2.3.9. Let’s find the Taylor series of f(x) = 2
1−2x −

1
1−x centered at c = 0.

Similarly to above, we use the expansion 1
1−u =

∑∞
n=0 u

n for |u| < 1. Writing each term as

a power series, we have 2
1−2x −

1
1−x = 2

∑∞
n=0(2x)n −

∑∞
n=0 x

n =
∑∞

n=0 2n+1xn −
∑∞

n=0 x
n =∑∞

n=0(2
n+1 − 1)xn, which is only valid when both series converge. Since the first series

convergences only for |x| < 1/2, we see this power series expansion is only valid for |x| < 1/2.
Since we have found a power series expansion of f that’s valid in some interval around 0,
this says it must be the Taylor series of f .
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Example 2.3.10. Let’s find the Taylor series of f(x) =
∫ x
0
et

2−1
t

dt centered at c = 0.
Note that it is not at all possible to compute an anti-derivative of the integrand – the only
method here is to integrate its Taylor series. The Taylor series of et centered at 0 is given

by et =
∑∞

n=0
tn

n!
which is valid for all t, so et

2
=
∑∞

n=0
(t2)n

n!
=
∑∞

n=0
t2n

n!
. This series looks

like 1 + t2 + t4

2
+ . . ., so et

2 − 1 = t2 + t4

2
+ . . . =

∑∞
n=1

t2n

n!
, which is a valid expansion for

all t. Dividing through by t then says et
2−1
t

= 1
t

∑∞
n=1

t2n

n!
=
∑∞

n=1
t2n−1

n!
. We then have∫ x

0
et

2−1
t

dt =
∫ x
0

∑∞
n=1

t2n−1

n!
dt =

∑∞
n=1

∫ x
0
t2n−1

n!
dt =

∑∞
n=1

x2n

(2n)n!
, and further this expression

is valid for all x. Since we have found a power series representation of f(x), this must be its
Taylor series.

Example 2.3.11. Let’s find the Taylor series of f(x) = tan−1(x) centered at c = 0. We
know that d

dx
tan−1(x) = 1

1+x2
, so let’s start by finding the Taylor series of this function

instead, which is much easier. Starting with 1
1−x =

∑∞
n=0 x

n, we have 1
1+x2

=
∑∞

n=0(−1)nx2n

by replacing x with −x2. Integrating then says tan−1(x) = C +
∑∞

n=0(−1)n x
2n+1

2n+1
. Since

tan−1(0) = 0, we find C = 0, and so tan−1(x) =
∑∞

n=0(−1)n x
2n+1

2n+1
. The radius of convergence

is 1 because we did not do any operations to change it from our starting series. Testing
the endpoints, the series converges at both x = 1,−1 by the alternating series test, and
so the power series representation is valid on [−1, 1]. Since we have found a power series
representation of f(x), this must be its Taylor series.

2.4 Polynomial Approximations

Determining when a function is equal to its Taylor series is quite a subtle question. In fact,
it’s also quite hard: in general, there is not much we can say. At the very minimum however,
we can say the following. For each fixed value of x, consider the n-th partial sum Tn(x) of

the Taylor series T (x), that is Tn(x) =
∑n

k=0
f (k)(c)
k!

(x− c)k. Saying that f(x) = T (x) is the
same as saying that Tn(x)→ f(x) as n→∞. If we set Rn(x) = f(x)−Tn(x), this says that
if f(x) = T (x), if and only if Rn(x)→ 0 as n→∞.

Theorem 2.4.1 (Representation by Taylor series). An infinitely differentiable function f(x)
can be written as a power series centered at c if and only if the n-th order remainder term
Rn(x) = f(x)− Tn(x) satisfies limn→∞Rn(x) = 0 for all x ∈ I.

To reiterate for emphasis, this theorem is saying very little: we merely translated the
statement that f(x) = T (x) into a statement about its partial sums via the definition of
convergence of an infinite series. Explicitly computing the remainder term Rn(x) is generally
a hopeless task. Therefore if one wants to check using the above criterion that f(x) can be
represented by a power series, we need to come up with a way of estimating the remainder
term Rn(x) if we want to see if it tends to 0.

Definition 2.4.2. The n-th order Taylor polynomial of f(x) centered at c is the n-th

partial sum of its Taylor series, Tn(x) =
∑n

k=0
f (k)(c)
k!

(x− c)k.
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Example 2.4.3. Let’s compute the 4-th order Taylor polynomial of f(x) = xex
2

centered at

c = 0. By definition, this is given by f(0) + f ′(0)x+ f ′′(0)
2
x2 + f ′′′(0)

6
x3 + f (4)(0)

24
x4. One such

approach is to just calculate all the relevant derivatives and plug in x = 0. It’s an easy compu-
tation to check that f ′(x) = (2x2 +1)ex

2
, f ′′(x) = (4x3 +6x)ex

2
, f ′′′(x) = (8x4 +24x2 +6)ex

2

and f (4)(x) = (16x5 + 80x3 + 60x)ex
2
. Plugging in 0 then gives T4(x) = x + x3. An-

other way we could have done this computation is as follows. T4(x) is the 4-th degree
polynomial that comes from the Taylor series of f(x), so if we compute it’s Taylor se-
ries, we can chop off terms to get the Taylor polynomial. Since ex =

∑∞
n=0

xn

n!
, we have

xex
2

= x
∑∞

n=0
(x2)n

n!
=
∑∞

n=0
x2n+1

n!
= x+ x3 + x5

2
+ . . .. We recover T4(x) by chopping off the

sum at the degree 4 term (of which we see there is none), so T4(x) = x+ x3.

This example illustrates several things: using Taylor series to compute Taylor polynomials
is significantly faster, that the n-th degree Taylor polynomial doesn’t even need to have degree
n, and that two Taylor polynomials could be equal (here we have T3(x) = T4(x)).

Example 2.4.4. Let f(x) = x4 + 1
2
x2 − 1. Then the 4-th order Taylor polynomial of f(x)

centered at c = 0 is just x4 + 1
2
x2− 1. This is because f(x) is already a degree 4 polynomial.

The remainder term Rn(x) tells you how far off from f(x) the approximation Tn(x) is.
Determining how “good” of an approximation Taylor polynomials are is one of the major
theorems of calculus!

Theorem 2.4.5 (Taylor’s Theorem). Let f be a function such that f (n+1)(x) exists and is
continuous. Suppose there is a constant Kn+1 such that |f (n+1)(z)| ≤ Kn+1 for all z between
x and c. Then |Rn(x)| = |f(x)− Tn(x)| ≤ Kn+1

(n+1)!
|x− c|n+1.

Taylor’s inequality tells us that the size of the remainder term Rn(x) depends on the size
of the (n+1)-st derivative of f . This makes it more explicit why it’s hard to show a function
can be written as a power series: computing arbitrary order derivatives is generally not easy.

Example 2.4.6. Consider the Taylor expansion of ex centered at c = 0. Since dn

dxn
ex = ex

for all n ≥ 0, Taylor’s theorem says that for any value of x and any n ≥ 0, we have
|Rn(x)| ≤ e|x|

(n+1)!
|x|n+1 because the maximum value of ex on the interval [−x, x] happens at

whichever endpoint is positive. Taking a limit as n → ∞ then shows that Rn(x) → 0, and
so this means the Taylor series of ex converges to ex, so we get an equality ex =

∑∞
n=0

1
n!
xn.

Some calculus books give this as the definition of the exponential function. In particular,
we get the numerical identity e = 1 + 1 + 1

2
+ 1

6
+ . . ..

As a first application, we can handle one simple case of when a function can be written
as a power series: let T (x) be the Taylor series of f(x) centered at c, and suppose that
T (x) has radius of convergence R. If there is some number K such that |f (n)(x)| ≤ K
for all n and all x such that |x − c| < R, then applying Taylor’s inequality says that
|Rn(x)| ≤ K

(n+1)!
|x − c|n+1 ≤ K

(n+1)!
Rn+1. Taking n → ∞ says that |Rn(x)| → 0, so that we

have proved the following:
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Theorem 2.4.7. Let f be an infinitely differentiable function. Let T (x) be the Taylor series
of f(x) centered at c with radius of convergence R. Suppose there is some constant K such
that |f (n)(x)| ≤ K for all n and all x such that |x−c| < R. Then f(x) = T (x) for |x−c| < R.
That is to say, such an f has a power series representation.

Example 2.4.8. With f(x) = sin(x), we see that |f (n)(x)| ≤ 1 for all n ≥ 0. The above
theorem says that the Taylor series of sin(x) converges to sin(x), and so from our prior

example we have an actual equality sin(x) =
∑∞

k=0(−1)k x2k+1

(2k+1)!
, valid for all x because the

series has infinite radius of convergence. We can compute the Taylor series of cos(x) by taking

the derivative of the Taylor series of sin(x). Doing so, we find cos(x) =
∑∞

k=0
(−1)k
(2k)!

x2k, which

is again valid for all x, so we have the equality cos(x) =
∑∞

k=0
(−1)k
(2k)!

x2k.

We now give some examples of how the error bound inequality can be used to quantify
how “good” a polynomial approximation is.

Example 2.4.9. Suppose f(x) = e−x and we have T3(x) centered at c = 1. How good of
an approximation to f(1.1) is T3(1.1)? The error bound formula says |f(1.1) − T3(1.1)| ≤
K4

4!
|.1|4, where K4 is an upper bound of |f (4)(x)| on the interval [1, 1.1]. Since |f (4)(x)| =

f (4)(x) = e−x, K4 is just an upper bound of e−x on the interval [1, 1.1]. The function e−x

is strictly decreasing on this interval, so it attains it’s maximal value on the interval at the
left endpoint x = 1. This says the maximal value is given by 1

e
, so we can take K4 = 1

e
.

Although this is a perfectly valid choice of K4, if the point is to do an approximation by
hand, it’s completely useless to choose a value of K4 that would involve e, since that’s
another thing we have to approximate. Since e ≈ 2.718, in particular we have e ≥ 5

2
so

1
e
≤ 2

5
. We will then instead take K4 = 2

5
, the trade off being the error estimate will be a

little bit worse, but computable by hand. Plugging into the error bound formula, this says
|f(1.1)− T3(1.1)| ≤ 2/5

24
(.1)4 = 1

60·104 ≈ .000001. This says if we want to estimate e−1.1, that
T3(1.1) is a very good estimate. Indeed, we can compute that T3(x) centered at c = 1 is given
by T3(x) = 1

e
− 1

e
(x−1)+ 1

2e
(x−1)2− 1

6e
(x−1)3, so that T3(1.1) = 1

e
− 1

10e
+ 1

200e
− 1

6000e
= 5429

6000e
.

If we use the approximation e ≈ 2.718, then T3(1.1) ≈ .3329, while f(1.1) ≈ .33287 (we
obviously lost a bit more precision by having to approximate e).

Example 2.4.10. Suppose f(x) = xex
2
. Earlier, we computed that T3(x) = x + x3. How

good of an approximation is this to f(x)? For an arbitrary value x > 0, the error bound
formula says |f(x)− T3(x)| ≤ K4

4!
x4, where K4 is an upper bound of |f (4)(z)| on the interval

[0, x]. We also computed that g(z) = |f (4)(z)| = f (4)(z) = (16z5 + 80z3 + 60z)ez
2
. By

definition, K4 is an upper bound of this function on the interval [0, x]. The function g(z)
is strictly increasing, because g′(z) = (32z6 + 240z4 + 360z2 + 60)ez

2 ≥ 0 when z is in the
interval [0, x]. In particular, this says g(z) attains it’s maximal value at the right endpoint
of this interval, i.e. at z = x. Therefore, we may choose K4 = (16x5 + 80x3 + 60x)ex

2
. If we

plug this in, this says |f(x)− T3(x)| ≤ (16x5+80x3+60x)ex
2

24
x4 = (16x9+80x7+60x5)ex

2

24
.

This says at worst, the error grows at the same rate as the function (16x9+80x7+60x5)ex
2

24
.

Since limx→0
(16x9+80x7+60x5)ex

2

24
= 0 (and it goes to 0 quite quickly), for values of x close to

0, the approximation will be quite good. For example, using a calculator we find |f(.1) −
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T3(.1)| ≤ .00002559, so T3(.1) = .101 approximates f(.1) to within 4 decimal places. Indeed,

we see f(.1) ≈ .101005. However, as x→∞, we have (16x9+80x7+60x5)ex
2

24
=∞, and moreover,

this function is growing extremely quickly (faster than an exponential function!). This says
for values of x far from 0, the error bound will be terrible. For example, at x = 1, we see
|f(1)−T3(1)| ≤ 13e

2
≈ 17.668. This an absolutely useless estimate, because we knew f(1) = e

and T3(1) = 2, so in actuality |f(1)− T3(1)| ≈ .718!

Example 2.4.11. Suppose we want to compute ln(1.1) to within 4 decimal places of accu-
racy. How can we do this? One such approach using what we have done so far is to figure
out how many terms in the Taylor series of ln(1.1) are necessary in order for the N -th Taylor
polynomial TN(x) to approximate to within that level of error by using the error bound
formula. In order for the error bound formula to remain useful, we must make sure that
we center TN(x) somewhere close to 1.1. One such approach is to center it at c = 1, so
that phrased mathematically, we want to find N such that |f(1.1) − TN(1.1)| ≤ 1

104
, where

f(x) = ln(x) and TN(x) is centered at c = 1.

The error bound formula says |f(1.1) − TN(1.1)| ≤ KN+1

(N+1)!
(.1)N+1, so if we make this

smaller than 1
104

, then we’re good. In order to do this, we need to figure out how to pick
KN+1. By definition, KN+1 is an upper bound of |f (N+1)(x)| on the interval [1, 1.1]. First,
we compute an arbitrary order derivative of f(x). We have f(x) = ln(x), f ′(x) = x−1,
f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4, and so on. Continuing the pattern, we see
that f (N)(x) = (−1)N+1(N − 1)!x−N , so that |f (N+1)(x)| = N !x−(N+1). In particular, this
function is decreasing (because the derivative is always negative), so that it’s maximal value
happens at the left endpoint x = 1. Plugging this in, the maximum value of N !x−(N+1) is
just N !, so we may take KN+1 = N !. We then need to solve the inequality KN+1

(N+1)!
1

10N+1 ≤ 1
104

.

Plugging in our choice of KN+1, this is the same thing as solving 1
(N+1)10N+1 ≤ 1

104
, i.e.

104 ≤ (N + 1)10N+1. We see that N = 3 is the smallest such choice of N that works, so we
only need to take 3 terms in the Taylor series to get the desired level of accuracy.

If we wanted to then approximate ln(1.1), we can then easily compute T3(x) = (x− 1)−
1
2
(x− 1)2 + 1

3
(x− 1)3, so that T3(1.1) = 1

10
− 1

200
+ 1

3000
= 143

1500
≈ .09533, and indeed, this is

a good approximation to ln(1.1) ≈ .09531.

2.5 Applications of Taylor Series

Taylor series are the ultimate tool of calculus – they can be used to answer almost all classical
calculus problems you might be interested in solving. In particular, we will see how Taylor
series can be used to do the following:

� Compute limits.

� Compute derivatives at a point.

� Compute the value of an infinite series.
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� Approximate the value of a definite integral when the integrand does not have an
anti-derivative we can write down.

� Analyze the growth rate of functions, making it easier to apply the limit comparison
test.

Example 2.5.1. Suppose we want to compute limx→0
sin(x4)−x4
(x4− 1

6
x3)4

. If you try and use L’Hopital’s

rule, you’ll very quickly convince yourself that it will be extremely difficult. How else
can we compute this limit? One approach is replace the numerator with it’s Taylor se-
ries, and do the resulting limit computation. We have sin(x) =

∑∞
n=0(−1)n x2n+1

(2n+1)!
, so

sin(x4) =
∑∞

n=0(−1)n x8n+4

(2n+1)!
= x4 − 1

6
x12 + . . ., thus sin(x4) − x4 =

∑∞
n=1(−1)n x8n+4

(2n+1)!
=

−1
6
x12 + 1

120
x20 + . . ., so that limx→0

sin(x4)−x4
(x− 1

6
x3)4

= limx→0
− 1

6
x12+ 1

120
x20+...

(x4− 1
6
x3)4

. Dividing the numer-

ator and denominator through by x12, we find limx→0
− 1

6
x12+ 1

120
x20+...

(x4− 1
6
x3)4

= limx→0
− 1

6
+ 1

120
x8+...

(x− 1
6
)4

=

−63 = −216.

Example 2.5.2. Let f(x) = ex
2
. Suppose we wanted to calculate the 1000-th derivative of

f at 0, f (1000)(0). It’s obviously impossible to calculate 1000 derivatives by hand, and no
computer will be able to calculate the derivative explicitly. How can we do this? The easiest
way is to compute the Taylor series of f(x) centered at 0, which encodes information about
all derivatives of f at 0. We have ex =

∑∞
n=0

xn

n!
, so that ex

2
=
∑∞

n=0
x2n

n!
. In particular, the

definition of the Taylor series says ex
2

=
∑∞

n=0
f (n)(0)
n!

xn, so to recover the value of f (1000)(0),
we need to look at the coefficient of x1000 in the Taylor series of f(x). We see that the

coefficient is just 1
500!

, so by comparing coefficients in these two series we find 1
500!

= f (1000)(0)
1000!

,
which says f (1000)(0) = 1000!

500!
.

Example 2.5.3. The series
∑∞

n=0
2n+1
4n

converges by doing a direct comparison test with
a geometric series. As it turns out, we can actually compute the value of this sum. The
way we do this is as follows: write

∑∞
n=0

2n+1
4n

=
∑∞

n=0(2n + 1)(1
4
)n. Then the value of this

sum is f(1/4), where f(x) =
∑∞

n=0(2n+ 1)xn. If we can find a function whose Taylor series
centered at 0 is equal to f(x), then we can find the exact value of the series. It’s a quick
check to see that f(x) converges for |x| < 1, so we can write f(x) = 2

∑∞
n=0 nx

n +
∑∞

n=0 x
n

for such values. We know that the second series is the Taylor series of 1
1−x . What about

the first series? The key observation is that this series is “almost” what you would get if
you differentiated the second series. In fact, the only difference is a factor of x, so we have∑∞

n=0 nx
n = x d

dx

∑∞
n=0 x

n = x d
dx

1
1−x = x

(1−x)2 . This tells us that f(x) = 2x
(1−x)2 + 1

1−x , for

|x| < 1. Plugging in x = 1
4

then says f(1/4) =
∑∞

n=0
2n+1
4n

= 20
9

.

Example 2.5.4. At some point in your life, someone has probably mentioned that the
function f(x) = e−x

2
does not have an anti-derivative that you can write down. However,

functions that look like this are of fundamental importance in fields relating to mathematics,
for example, f(x) = 1√

2π
e−x

2/2 is what is known as the “standard normal distribution” in
statistics. If you have taken such a course before, then you know that computing definite
integrals of this function is extremely important. How can we do it? As an example, we’ll
approximate

∫ 1

−1
1√
2π
e−x

2/2 dx. A statistical interpretation of this integral is that if you have
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a population that is normally distributed, this integral computes the proportion of the pop-
ulation that lies within 1 standard deviation from the mean.

First, we’ll find a Taylor series of the integrand centered at 0. This is easy to do: we

know ex =
∑∞

n=0
xn

n!
, so e−x

2/2 =
∑∞

n=0
(−x2/2)n

n!
=
∑∞

n=0(−1)n x2n

2nn!
. Integrating this se-

ries then says
∫ 1

−1
1√
2π
e−x

2/2 dx = 1√
2π

∫ 1

−1
∑∞

n=0(−1)n x2n

2nn!
dx = 1√

2π

∑∞
n=0

∫ 1

−1(−1)n x2n

2nn!
dx =

1√
2π

∑∞
n=0(−1)n 2

(2n+1)2nn!
. In order to approximate the sum, we can use the remainder es-

timate from the alternating series test. First, let’s pick a desired level of accuracy, say, 4
decimal places. If we let S denote the value of the series, then the alternating series test
says |S − SN | ≤ aN+1. Then we would like to find N such that aN+1 ≤ 1

104
, that is, solve

2
(2N+3)2N+1(N+1)!

≤ 1
104

, which is equivalent to solving 20000 ≤ (2N + 3)2N+1(N + 1)!. We see
that N = 4 is the smallest value of N that works, so we arrive at the desired accuracy by
computing S4. Using a calculator to do so, we then conclude that

∫ 1

−1
1√
2π
e−x

2/2 dx ≈ .6827.

Example 2.5.5. Suppose we wanted to know if
∑∞

n=1(1/n − tan−1(1/n)) converges or di-
verges. In order to come to a conclusion, we need to understand how the summand grows as
n→∞. The 3rd order Taylor polynomial of tan−1(x) centered at x = 0 is tan−1(x) ≈ x− 1

3
x3.

Since 1/n→ 0 as n→∞, this means that tan−1(1/n) ≈ 1
n

+ 1
3n3 , so as n→∞ we see that

1/n− tan−1(1/n) ≈ 1
3n3 . Therefore, our original sum should converge.

To formally show this, we’ll examine
∑∞

n=1 |1/n− tan−1(1/n)| instead (because showing
the terms in our original sum are positive so we can use a comparison test is rather tricky!).
By Taylor’s theorem, we have tan−1(x) = x − 1

3
x3 + R3(x), where |R3(x)| ≤ Cx4 for some

constant C. Therefore, tan−1(1/n) = 1
n
− 1

3n3 + R3(1/n), with |R3(1/n)| ≤ C
n4 . We have

limn→∞
|1/n−tan−1(1/n)|

1/(3n3)
= limn→∞

|1/(6n3)−R3(1/n)|
1/(6n3)

≤ 1 + limn→∞
|R3(1/n)|
1/(6n3)

≤ 1 + limn→∞
6C
n

=

1. Similarly, we also see that limn→∞
|1/n−tan−1(1/n)|

1/(3n3)
≥ limn→∞

1/n−tan−1(1/n)
1/(3n3)

= 1, and

so we conclude that limn→∞
|1/n−tan−1(1/n)|

1/(3n3)
= 1. Therefore by the limit comparsion test,∑∞

n=1 |1/n− tan−1(1/n)| converges, and so the original series does too.
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