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For a regular noetherian scheme X with 2 invertible in X, let W (X) denote
the Witt group of X [9]. By definition, the Witt group is the quotient of the
Grothendieck group of vector bundles with quadratic forms over X by the subgroup
generated by quadratic bundles V which admit a Lagrangian subbundle E, meaning
that E is its own orthogonal complement in V . A fundamental question is whether
the homomorphism from the Witt group of X to the Witt group of its function field
is injective. (When X does not have this injectivity property, and X is a variety
over a field so that Ojanguren’s injectivity theorem for local rings applies [15], then
X has an even-dimensional quadratic bundle which is Zariski-locally trivial but
which has no Lagrangian subbundle.) Ojanguren [16] and Pardon [17] proved this
injectivity when the regular noetherian scheme X is affine of dimension at most 3,
and this was extended to all regular noetherian schemes X of dimension at most 3 by
Balmer and Walter [1]. There are simple examples of 4-dimensional varieties where
injectivity fails, for example the affine quadric S4

R over the real numbers defined by
x2

0 + · · ·+x2
4 = 1 and the smooth projective quadric of dimension 4 over the complex

numbers. But Pardon showed that injectivity holds for all smooth complex affine
varieties of dimension 4 [17]. There remained the question of whether Pardon’s
result could hold in a larger range of dimensions. The only known counterexamples
to injectivity for smooth complex affine varieties began in dimension 8, for example
S4

C × S4
C, as pointed out by Knus, Ojanguren, and Sridharan ([10], section 5), as

well as S8
C. More generally, using Karoubi’s calculation of the hermitian K-group

of SnC for all n ([8], p. 141), one can check that W (SnC) → W (C(SnC)) fails to be
injective if and only if n ≡ 0, 1 (mod 8) and n ≥ 8.

In this paper, we complete the story as follows.

Theorem 0.1 There is a smooth complex affine 5-fold U with W (U)→W (C(U))
not injective.

The main technical tools are the spectral sequences of Balmer and Walter [1]
and Pardon [18], which together make the relation between Witt groups and Chow
groups modulo 2 fairly explicit. For example, these spectral sequences easily imply
Parimala’s theorem (Theorem 1.4, below, originally stated only for affine varieties)
that the Witt group of a smooth complex 3-fold X is finite if and only if the Chow
group CH2(X)/2 is finite [19]. Schoen recently found smooth complex 3-folds X
with CH2(X)/l infinite for some primes l [21], and I expect that his method can
be extended to give such examples with l = 2. That would give the first known
examples of smooth complex varieties with infinite Witt group.

For Theorem 0.1, we need to identify the first differential in Pardon’s spectral
sequence with the Steenrod operation Sq2 on Chow groups modulo 2, as defined
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by Voevodsky [24] and Brosnan [3]. Given that, the main problem is to exhibit
a smooth complex affine variety of high dimension n whose Chow group of curves
modulo 2 is nonzero. (Notice that the Chow group of zero-cycles modulo 2 is zero in
this situation, as is the cohomology group H2n−2(X,F2) to which the Chow group
of curves maps.) Probably one could construct such an example by the methods of
Kollár and van Geemen [12] or Schoen [21]. But we use a more elementary method,
based on the phenomenon that a fibration of a “sufficiently nonsingular” variety
which has a multiple fiber cannot have a section.

I would like to thank Paul Balmer, Philippe Gille, and Manuel Ojanguren for
useful discussions.

1 The Gersten-Witt complex and Chow groups

Let X be a regular noetherian integral separated scheme of finite dimension with 2
invertible in X. Balmer and Walter [1] and Pardon [18] defined the Gersten-Witt
complex WX of X as a cochain complex

0→W (k(X))→ ⊕x∈X(1)W (k(x))→ · · · → ⊕x∈X(n)W (k(x))→ 0,

where X(i) denotes the set of codimension-i points of the scheme X, or equivalently
the set of codimension-i subvarieties of X. More canonically, as explained in Balmer
and Walter’s equation (6) [1] or Pardon’s Corollary 0.11 [18], this sequence can be
written

0→W (k(X))→ ⊕x∈X(1)W (k(x);ωx/X)→ · · · → ⊕x∈X(n)W (k(x);ωx/X)→ 0.

Here ωx/X denotes the 1-dimensional k(x)-vector space det(mx/m
2
x), where mx is

the maximal ideal in the local ring OX,x, and W (F ;L) is the Witt group of quadratic
forms over a field F that take values in a given 1-dimensional vector space L over F .
Let H∗(WX) denote the cohomology groups of this cochain complex, with W (k(X))
placed in degree 0. The group H0(WX) is also known as the unramified Witt group
Wnr(X). The groups H∗(WX) are related to the 4-periodic Witt groups W ∗(X)
by Balmer and Walter’s “Gersten-Witt spectral sequence” [1], which reduces to the
following exact sequence for X of dimension at most 7:

0→H4(W )→W 0 → H0(W )→ H5(W )→W 1 → H1(W )

→H6(W )→W 2 → H2(W )→ H7(W )→W 3 → H3(W )→ 0.

In particular, this exact sequence shows that for X of dimension at most 7, the
group H4(WX) is isomorphic to the kernel of the homomorphism from the Witt
group of X to the Witt group of its function field. The group H4(WX) is obviously
zero for X of dimension at most 3, which gives Balmer and Walter’s theorem that
the homomorphism is injective for X of dimension at most 3. In this paper we will
prove that the homomorphism is not injective for some smooth complex affine 5-fold
U ; equivalently, H4(WU ) can be nonzero for such a U .

To compute the groups H∗(WX), we can filter the complex WX by the sub-
groups In in the Witt groups of fields. This gives Pardon’s spectral sequence ([18],
0.13), as follows. Write H i

Zar(X,H
j
F2

), or H i(X,Hj) for short, to mean the Zariski
cohomology of X with coefficients in the presheaf Hj

F2
(V ) := Hj

et(V,F2), for open
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subsets V ⊂ X. Remarkably, these are the same groups that form the E2 term
of the Bloch-Ogus spectral sequence (Theorem 1.2, below), although the following
spectral sequence is different.

Theorem 1.1 For any smooth variety X over a field k of characteristic not 2,
there is a spectral sequence Eij2 = H i

Zar(X,H
j
F2

) ⇒ H i(WX). The differentials are
in an unusual direction: dr has bidegree (1, r− 1) for r ≥ 2. The groups H i(X,Hj)
are zero unless 0 ≤ i ≤ j. The groups on the main diagonal are the Chow groups
modulo 2: H i(X,H i) = CH i(X)/2. Finally, the differential on this main diagonal,
d2 : CH i(X)/2→ CH i+1(X)/2, is the Steenrod operation Sq2, as defined on Chow
groups by Voevodsky [24] and Brosnan [3].

H0(X,H3) H1(X,H3) H2(X,H3) H3(X,H3)
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The Chow group CH iX is defined as the group of codimension-i algebraic cycles
on X modulo rational equivalence. A general reference on Chow groups is Fulton’s
book ([5], 1.3).

Proof. Most of this is Pardon’s Corollary 0.13 [18], specialized to the case
where the sheaf C is the trivial line bundle OX . Also, Pardon’s grading of the
spectral sequence differs from that used here. The vanishing of H i(X,Hj) for i > j
and the isomorphism H i(X,H i

F2
) = CH i(X)/2 were proved by Bloch and Ogus

([2], 6.2 and proof of 7.7). The new point is the identification of the differential
d2 : CH i(X)/2→ CH i+1(X)/2 with Sq2.

To prove this, it is convenient to reduce to the case where the field k is perfect.
Indeed, for any field extension E of k, there is a natural flat pullback map of Chow
groups, CH i(X) → CH i(XE). Both the Pardon differential d2 and the Steenrod
operation Sq2 are compatible with this pullback map. Furthermore, when E is a
finite extension of k of odd degree, the map CH i(X)/2→ CH i(XE)/2 is injective,
by Fulton [5], 15.1.5. Since k does not have characteristic 2, any inseparable exten-
sion of k has odd degree. By taking direct limits, it follows that the natural map
CH i(X)/2 → CH i(XE)/2 is injective when E is the perfect closure of k (that is,
E = ∪rk1/pr for k of characteristic p > 0, or E = k in characteristic zero). There-
fore, if we prove that the Pardon differential d2 is equal to Sq2 for varieties over a
perfect field, then the same is true for varieties over any field. Thus, we can now
assume that the base field k is perfect.

Let n be the dimension of the smooth variety X. Let Y be a smooth (n − i)-
dimensional variety with a proper map f : Y → X. Then the Steenrod operation
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Sq2 : CH i(X)/2→ CH i+1(X)/2 is defined in such a way that

Sq2(f∗[Y ]) = f∗(c1f
∗(TX)− c1TY )

= c1(TX)f∗[Y ]− f∗c1(TY ),

by 8.10, 8.11, 9.4 in Brosnan [3]. This property defines Sq2 uniquely. In fact, for any
codimension-i subvariety Z of X, the normalization of Z is regular in codimension 1,
since a normal noetherian local ring of dimension 1 is regular ([13], 11.2). Therefore,
we can remove a codimension-2 subset of Z from Z and from X, so as to make the
normalization Y of Z regular. Since the base field k is perfect, it follows that Y
is smooth over k ([13], 26.3, Lemma 1 in section 28, 30.3). Removing that subset
does not change the group CH i+1(X)/2, since the algebraic cycles and rational
equivalences that define this group are unchanged. Having thus modified X, we can
define Sq2[Z] by the above formula applied to the proper map Y → X.

Furthermore, the variety Z is Cohen-Macaulay in codimension 1, since any
reduced noetherian local ring of dimension 1 is Cohen-Macaulay ([13], Exercise
17.1(b)). So, after removing a suitable closed subset of codimension 2 in Z from Z
and fromX, we can assume that Z is Cohen-Macaulay, as well as having smooth nor-
malization. As above, removing this subset does not change the group CH i+1(X)/2
we are concerned with. With this change made, Z has a dualizing sheaf ωZ (a short
notation for ωZ/k). Indeed, any variety Z over k has a dualizing complex, defined as
π!(k) where π is the map from Z to Spec k, and Cohen-Macaulayness of Z means
that this complex is a single sheaf ωZ placed in degree −dim Z. This aspect of
Grothendieck-Verdier duality is described in Hartshorne’s book [7], V, Exercise 9.7,
or in more detail in Conrad’s book [4], 3.5.1.

Having described Sq2 of the codimension-i subvariety Z of X, we now compare
it to the differential d2. To compute d2[Z], we first lift the nonzero element of
W/I(k(z), ωz/X) ∼= F2 to an element of W (k(z);ωz/X). For example, we can do
this by choosing a 1-dimensional k(z)-vector space L together with an isomorphism
L⊗L ∼= ωz/X . We can choose a basis element for the 1-dimensional vector space L;
then we get an isomorphism k(z) ∼= ωz/X . Since Z is Cohen-Macaulay, we can view
the isomorphism k(z) ∼= ωz/X as a nonzero rational section of the relative dualizing
sheaf ωZ/X := ωZ ⊗OZ ω∗X |Z .

The differential in the Gersten-Witt complex is defined by Balmer and Wal-
ter’s Proposition 8.5 [1], as a sum over codimension-1 points d in Z of elements
M in the Witt group of finite-length OX,d-modules, which can be identified with
W (k(d), ωd/X). To compute d2[Z] in the Pardon spectral sequence, we only need
to know the class of these elements in W/I(k(d), ωd/X) ∼= F2, that is, the length
modulo 2 of the finite-length OX,d-module M . Thus d2[Z] is a divisor with F2 coef-
ficients on Z. Balmer and Walter’s exact sequence (35) shows that this divisor has
the form

d2[Z] = ωZ/X −OZ
in the first graded piece of the Grothendieck group of coherent sheaves on Z, fil-
tered by codimension of support, (gr1G0Z)/2. Here inspection of Quillen’s spectral
sequence that converges to this filtration of G0Z shows that gr1G0Z is isomorphic
to the divisor class group of Z ([20], section 7, Theorem 5.4). Also, to obtain the
above formula, we use that the module Exte−1

O (A,O) which Balmer and Walter call
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ωA in their exact sequence (35), apparently corresponding to ωZ in the notation
here, is really the relative dualizing sheaf ωZ/X .

Since ωZ/X is the tensor product of the sheaf ωZ with the line bundle ω∗X |Z , it
is easy to rewrite the formula for d2[Z] as:

ωZ/X −OZ = −(ωX |Z −OZ) + (ωZ −OZ)

= c1(TX)|Z + (ωZ −OZ)

in the divisor class group (gr1G0Z)/2. To show that this class equals Sq2[Z] in
CH i+1(X)/2, as defined by Brosnan’s formula above, it remains to identify the
class ωZ −OZ in (gr1G0Z)/2 with f∗c1(TY ), where f : Y → Z is the normalization
of Z. Recall that we have removed a codimension-2 subset of Z in such a way that
the normalization Y is smooth. Here we can write f∗(c1TY ) as f∗ωY − f∗OY in
(gr1G0Z)/2.

Let A and B denote the cokernels of the natural maps of sheaves on Z:

0→ OZ → f∗OY → A→ 0

and
0→ f∗ωY → ωZ → B → 0.

The equality we want, saying that ωZ−OZ equals f∗ωY −f∗OY in (gr1G0Z)/2, will
clearly follow if we can show that the sheaves A and B are equal in (gr1G0Z)/2.
Since the sheaves A and B are zero at the generic point of Z, it suffices to show
that A and B have the same coefficient in F2 at each codimension-1 point d in Z.
Let OZ,d denote the local ring of Z at d. In these terms, we need to know that the
OZ,d-modules A and B have the same length modulo 2.

Using Grothendieck-Verdier duality, we find an isomorphism of OZ-modules B ∼=
Ext1

OZ
(A,ωZ). In more detail, consider the long exact sequence of OZ-modules

obtained from the first exact sequence above by applying HomOZ (·, ωZ):

HomOZ (f∗OY , ωZ)→ HomOZ (OZ , ωZ)→ Ext1
OZ

(A,ωZ)→ Ext1
OZ

(f∗OY , ωZ).

We have ExtiOZ (Rf!M,N) ∼= f∗ExtiOY (M,f !N) for all i, by Theorem 1 in Verdier
[23]. In the case at hand, Rf!OY is just the sheaf f∗OY because f is finite. Also, since
Z is Cohen-Macaulay, we have already mentioned that the natural map πZ : Z →
Spec k has the property that the complex π!

Z(k) is simply a sheaf ωZ placed in degree
−dim Z. The same goes for the smooth variety Y . In view of the commutative
diagram

Y

πY ##GGGGGGGGG f
// Z

πZ
��

Spec k,

it follows that f !ωZ is isomorphic to the sheaf ωY . So the above exact sequence can
be rewritten as

f∗ωY → ωZ → Ext1
OZ

(A,ωZ)→ f∗Ext1
OY

(OY , ωY ) = 0.

This proves that B ∼= Ext1
OZ

(A,ωZ), as we claimed.
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Finally, for each codimension-1 point d in Z, the functor A 7→ Ext1
OZ,d

(A,ωZ) is
a duality on the category of finite-length OZ,d-modules, preserving the length of such
modules. This is a special case of Grothendieck’s local duality theorem, using that
the local ring OZ,d is Cohen-Macaulay of dimension 1 ([7], IV.6.3). Thus A and B
have the same length at each divisor in Z. As mentioned above, this completes the
proof that the differential d2 : CH i(X)/2→ CH i+1(X)/2 is the Steenrod operation
Sq2. QED

In order to understand the groups H i(X,Hj), and compute them in some cases,
one can use the Bloch-Ogus spectral sequence ([2], 6.3). It has the same E2 term
as Pardon’s spectral sequence, but with differentials in the usual direction:

Theorem 1.2 (Bloch-Ogus) For any smooth variety X over a field of characteristic
not 2, there is a spectral sequence Eij2 = H i

Zar(X,H
j
F2

)⇒ H i+j
et (X,F2). The groups

H i(X,Hj) in the E2 term are zero unless 0 ≤ i ≤ j. The groups on the main
diagonal are the Chow groups modulo 2: H i(X,H i) = CH i(X)/2. Finally, the
differentials are in the usual direction: dr has bidegree (r, 1− r), r ≥ 2.

H0(X,H3)

++WWWWWWWWWWWWWWWWWWWWWW H1(X,H3) H2(X,H3) H3(X,H3)

H0(X,H2) H1(X,H2) H2(X,H2)

H0(X,H1) H1(X,H1)

H0(X,H0)

For completeness, let me explain how the groups H i
Zar(X,H

j
F2

) in the E2 term of
the Bloch-Ogus spectral sequence are related to motivic cohomology groups. This
will not be used in the rest of the paper.

Let X be a smooth variety over a field k of characteristic not 2. There is a
natural sequence of homomorphisms relating the motivic cohomology groups of X
with different weights,

· · · → H i
M (X,F2(j))→ H i

M (X,F2(j + 1))→ · · · ,

given by cup product with the nonzero element of H0
M (k,F2(1)) ∼= µ2(k) ∼= F2.

The motivic cohomology groups in this sequence are initially zero, namely for
i > 2j. The first group to appear is the Chow group CHj(X)/2, when i = 2j.
Finally, the groups in the sequence are eventually isomorphic to the etale cohomol-
ogy H i

et(X,F2), namely when j ≥ i. Now we can explain the groups H i
Zar(X,H

j
F2

)
in the E2 term of the Bloch-Ogus spectral sequence: they are the differences be-
tween one motivic cohomology group and the next one, in the above sequence. More
precisely:

Theorem 1.3 For each j ≥ 0, there is a long exact sequence:

→ H i+j
M (X,F2(j−1))→ H i+j

M (X,F2(j))→ H i
Zar(X,H

j
F2

)→ H i+j+1
M (X,F2(j−1))→
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Proof. The ingredients here are deep. First, by Voevodsky, we know the
Milnor conjecture, also known as the Bloch-Kato conjecture with F2 coefficients
([25], Theorem 1.3). Namely, for any field k of characteristic not 2, the natural map
from the Milnor K-theory of k modulo 2 to the Galois cohomology of k with F2

coefficients is an isomorphism.
Next, by Geisser and Levine ([6], Theorem 1.1), generalizing the work of Suslin

and Voevodsky in characteristic zero [22], we know that the Bloch-Kato conjecture
with Fp coefficients implies the Beilinson-Lichtenbaum conjecture with Fp coeffi-
cients. As a result, we know that the Beilinson-Lichtenbaum conjecture with F2

coefficients is true.
This means that the natural map

F2(j)→ τ≤j Rα∗(F2)

is an isomorphism for all j ≥ 0. This is a map in the derived category of sheaves in
the Zariski topology on any smooth variety X over a field of characteristic not 2.
The object F2(j) is defined so that H i

Zar(X,F2(j)) is the motivic cohomology of X
with F2 coefficients, also written H i

M (X,F2(j)).
On the right, τ≤j is a truncation, α is the projection from the etale site to the

Zariski site, and F2 is a sheaf in the etale topology on X. More concretely, this
means that the object τ≤j Rα∗(F2) in the derived category of Zariski sheaves on X
has cohomology sheaf in degree i given as follows. For i > j, this sheaf is zero; for
i ≤ j, it is the sheaf H i

F2
of etale cohomology groups.

In particular, there is a distinguished triangle in the derived category of Zariski
sheaves on X:

τ≤j−1Rα∗(F2)→ τ≤j Rα∗(F2)→ Hj
F2

[−j],

where the shift [−j] just means that the sheaf Hj
F2

is placed in degree j. The
associated long exact sequence of Zariski cohomology groups is the result we want.
QED

As an application of the Balmer-Walter and Pardon spectral sequences, not
needed for the rest of the paper, we can give an easy proof of the following theorem
of Parimala (originally stated only for affine varieties) [19].

Theorem 1.4 Let X be a smooth complex 3-fold. Then the Witt group W (X) is
finite if and only if the Chow group CH2(X)/2 is finite.

Proof of Theorem 1.4. Consider the Bloch-Ogus spectral sequence for X.
Since X has dimension 3 over the complex numbers, the groups H i(X,Hj) in the
E2 term are zero unless j ≤ 3. Combining this with the other properties listed in
Theorem 1.2, we see that the only possible differential in the Bloch-Ogus spectral
sequence is d2 : H0(X,H3) → H2(X,H2) = CH2(X)/2. The spectral sequence
converges to H∗(X,F2), which is finite. So all the groups H i(X,Hj) are finite
except possibly for H0(X,H3) and H2(X,H2) = CH2(X)/2, and H0(X,H3) is
finite if and only if CH2(X)/2 is finite.

Thus, if CH2(X)/2 is finite, then all the groups H i(X,Hj) are finite. By the
Pardon spectral sequence, it follows that the groups H i(WX) are finite, and by the
Balmer-Walter spectral sequence, it follows that the Witt groups W i(X) are finite.
In particular, the classical Witt group W 0(X) is finite.
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Conversely, if CH2(X)/2 is infinite, then H0(X,H3) is infinite. There are no
possible differentials involving this group in the Pardon spectral sequence, and so
H0(WX) is infinite. Also, for dimension reasons, there are no differentials in the
Balmer-Walter spectral sequence, and so W 0(X) is infinite. QED

2 The example

We come to the problem of finding a smooth complex affine 5-fold U with W (U)→
W (C(U)) not injective. As explained in section 1, it is equivalent to make H4(WU )
nonzero. Using Pardon’s spectral sequence, Theorem 1.1, for any smooth complex
affine 5-fold U , we can ask when an element α of H4(U,H4) = CH4(U)/2 corre-
sponds to some nonzero element of H4(WU ). First, the only possible differential
on α maps it to H5(U,H5) = CH5(U)/2, but this group is zero. Indeed, more
generally, the Chow group of zero-cycles on any noncompact complex variety is a
divisible abelian group, by Fulton’s Example 1.6.6 [5]. As a result, CH0(U)/2 = 0.
(Note that CH5U = CH0U for U of dimension 5.)

The only differential in Pardon’s spectral sequence that might hit α is Sq2 :
CH3(U)/2→ CH4(U)/2. Thus we have shown:

Lemma 2.1 Let U be a noncompact smooth complex 5-fold. If Sq2 : CH3(U)/2→
CH4(U)/2 is not surjective, then H4(WU ) is not zero.

We will choose U to be a suitable open subset of Q4×(A1−0), where Q4 denotes
the smooth complex 4-dimensional quadric. Any open subset U of Q4×(A1−0) has
the convenient property that the Steenrod operation Sq2 : CH3(U)/2→ CH4(U)/2
is identically zero, as we now show. The pullback map CH∗(Q4)→ CH∗(Q4×A1) is
an isomorphism ([5], 3.3(a)), and the restriction to an open subset CH∗(Q4×A1)→
CH∗U is surjective ([5], 1.8). So it suffices to show that

Sq2 : CH3(Q4)/2→ CH4(Q4)/2

is zero. The Chow ring of a complex quadric maps isomorphically to its cohomology
([5], 19.1.11), and so it suffices to show that

Sq2 : H6(Q4,F2)→ H8(Q4,F2)

is zero. For this, we use Wu’s formula (see Milnor and Stasheff [14], 11.14): to show
that Sq2 is zero when mapping into the top degree of H∗(Q4,F2), it is equivalent
to show that the Wu class v2(Q4) = w2(Q4) + w2

1(Q4) is zero in H2(Q4,F2). Since
Q4 is a complex manifold, the Wu class is the reduction modulo 2 of c1(Q4). But
c1(Q4) is 4 times the hyperplane class, and so its reduction modulo 2 is zero, as we
want. (In other words, we are using that an even-dimensional complex quadric is a
spin manifold.)

Thus Sq2 : CH3(U)/2 → CH4(U)/2 is zero. Combining this with Lemma 2.1
gives:

Lemma 2.2 Let U be an open subset of Q4 × (A1 − 0). If CH4(U)/2 is not zero,
then H4(WU ) is not zero.
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It remains to find an affine open subset U of Q4 × (A1 − 0) such that the Chow
group CH4(U)/2 = CH1(U)/2 of curves modulo 2 is not zero. Let Q4 ⊂ P5 be
defined by

x0x1 + x2x3 + x4x5 = 0.

We define U to be the complement of the hypersurface Y in Q4 × (A1 − 0) defined
by

x8
0 + tx8

1 + t2x8
2 + t3x8

3 + t4x8
4 + t5x8

5 = 0.

(Equations of this form were used in a different context by Kollár [11], IV.6.4.3.1.)
The complement of the hypersurface defined by this equation in P5 × (A1 − 0) is
clearly affine, and U is the closed subset of this affine variety defined by the quadric.
Therefore the smooth complex 5-fold U is affine.

It remains to show that CH1(U)/2 is not zero. By the exact sequence

CH1(Y )/2→ CH1(Q4 × (A1 − 0))/2→ CH1(U)/2→ 0

from Fulton ([5], 1.8), it is equivalent to show that CH1(Y )/2→ CH1(Q4 × (A1 −
0))/2 is not surjective. The proper pushforward map

CH1(Q4 × (A1 − 0))/2→ CH1(A1 − 0)/2 = F2

is surjective, since the curve p × (A1 − 0) has degree 1 over A1 − 0 for any point
p in Q4. Therefore we will be done if we can show that the pushforward map
CH1(Y )/2 → CH1(A1 − 0)/2 = F2 is not surjective, in other words that every
curve in Y has even degree over A1 − 0.

We can in fact forget about the quadric at this point, and only consider the
hypersurface Z5 in P5 × (A1 − 0) defined by

x8
0 + tx8

1 + t2x8
2 + t3x8

3 + t4x8
4 + t5x8

5 = 0.

We will show that every curve in Z has even degree over A1 − 0, which obviously
implies the same statement for curves in Y 4 ⊂ Z5. The point is that if there was
a curve on Z of odd degree over A1 − 0, then we could restrict this curve over a
neighborhood of 0 in A1. It could fall into several pieces, but at least one would have
odd degree over C((t)). Thus, we are finished if we can show that the morphism
t : Z → A1 − 0 has no section over C((t1/r)) for any odd r.

This is immediate by a power series calculation. Let u = t1/r, r odd, and suppose
that Z → A1 − 0 has a section over Spec C((u))→ A1 − 0. This means that there
are Laurent series xi(u) which satisfy the equation

x8
0 + urx8

1 + u2rx8
2 + u3rx8

3 + u4rx8
4 + u5rx8

5 = 0.

But the lowest degrees in u of these 6 terms are congruent to 0, r, 2r, . . . , 5r (mod 8).
Since r is odd, these lowest degrees are all different. So the only way the 6 terms
can add up to zero is if all are identically zero. That would imply that xi(u) = 0 for
all i, but this does not correspond to a point in projective space. Thus Z → A1− 0
has no section over C((t1/r)) for any odd r.

This completes the proof that the smooth complex affine 5-fold U has H4(WU )
nonzero, and so the homomorphism W (U) → W (C(U)) is not injective. QED
(Theorem 0.1).
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