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Burt Totaro

It is natural to ask whether we can define the Chow group of algebraic cycles
with twisted coefficients, as we can do for cohomology. Rost gave such a definition.
Namely, he defined Chow groups with coefficients in a locally constant étale sheaf
E, assuming that E is torsion of exponent invertible in the base field k [34, Remarks
1.11 and 2.5]. We generalize the definition so that E need not be torsion (and, in
characteristic p > 0, p need not act invertibly on E). It was not obvious how to
make such a definition, because Chow groups are defined in terms of the Zariski
topology, not the étale topology. For the constant sheaf ZX , the twisted Chow
group CHi(X,ZX) is the usual Chow group CHiX.

Chow groups with twisted coefficients have hardly been studied at all, although
Rost’s more general notion of cycle modules has been influential. The main goal
of this paper is to present some methods for computing twisted Chow groups, in
the hope of making these groups more useful in practice. This continues the grand
theme of importing ideas from homotopy theory into algebraic geometry, in order
to understand torsion phenomena.

Twisted Chow groups are directly related to Serre’s notion of “negligible coho-
mology” for finite groups [15, section 26]. This paper was prompted by a remarkable
computation of negligible cohomology by Merkurjev and Scavia [31], which we gen-
eralize in terms of twisted Chow groups (Theorem 8.1). In short, twisted Chow
groups are always generated by the Chow groups of suitable covering spaces. (For
now, we are not giving new calculations of the usual Chow groups.) Twisted Chow
groups tensored with the rationals can easily be computed in terms of the Chow
groups of suitable covering spaces (Lemma 2.2), and so their main novelty is integral
or modulo a prime number.

Guillot, Di Lorenzo, and Pirisi defined equivariant Chow groups with coefficients
in any cycle module [21, 11]. In particular, that gives a definition of equivariant
Chow groups with coefficients, CH∗G(X,M) for a ZG-module M (section 5). An
interesting special case is when X is a point; then we get a definition of twisted
Chow groups of the classifying space of G, CH∗(BGk,M). (These groups map
to the cohomology of G with coefficients in M .) We prove some general bounds
for generators of CH∗(BGk,M) (Theorems 9.2 and 12.1). We give complete cal-
culations of these invariants (for all G-modules) when G is cyclic, quaternion, or
the group Z/2 × Z/2 (Theorems 9.1, 11.1, 13.1). The results are related to group
cohomology, but with some striking differences (Remarks 12.2 and 13.2).

Heller, Voineagu, and Østvær have defined twisted motivic cohomology [22].
We reformulate the definition and provide some computational tools, such as re-
lating twisted motivic cohomology with twisted higher Chow groups (section 4).
Surprisingly, there is a surjection from H2i

M(X,E(i)) to the twisted Chow group
CH i(X,E), but it is not always an isomorphism (Theorems 4.5 and 14.1). In the
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example, the monodromy group of E is Z/2 × Z/2. The example depends on re-
lating twisted Chow groups with the theory of algebraic tori, such as the notion of
coflasque resolutions.

I believe that twisted Chow groups and twisted motivic cohomology are both
worth investigating. Each theory has its own advantages (Remark 14.2). More
generally, we conjecture a definition of Chow groups twisted by any birational sheaf
with transfers, in the sense of Kahn–Sujatha (Conjecture C.1).

This work was supported by NSF grant DMS-2054553 and Simons Foundation
grant SFI-MPS-SFM-00005512. Thanks to Alexander Merkurjev, Federico Scavia,
and Olivier Wittenberg for useful conversations. In particular, Wittenberg sug-
gested the proof of Corollary 8.3.

1 Definition

We start by recalling Rost’s definition of Chow groups with twisted coefficients in
the torsion case. The definition mixes the Zariski and étale topologies in a nontrivial
way.

Definition 1.1. Let X be a separated scheme of finite type over a field k. Let E
be a locally constant étale sheaf on X which is killed by a positive integer r that is
invertible in k. Then CHi(X,E) is defined to be the cokernel of the residue map
on Galois cohomology groups:

⊕x∈X(i+1)
H1(k(x), E(1))→ ⊕x∈X(i)

H0(k(x), E).

Here E(1) means the Galois module E ⊗Z/r µr, where µr denotes the rth roots of
unity in a separable closure of k. Also, X(i) means the set of points of the scheme
X whose closure has dimension i.

For E = (Z/r)X , we have H1(k(x), E(1)) ∼= H1(k(x), µr) ∼= k(x)∗/(k(x)∗)r, and
so CHi(X,Z/r) is the usual Chow group modulo r, CHi(X)/r. Throughout the
paper, cohomology of fields with no topology specified will denote Galois cohomology
(or equivalently, étale cohomology). Schemes of finite type over a field will be
assumed to be separated.

Even though the definition involves étale cohomology of fields, the twisted Chow
groups of X cannot be viewed as étale cohomology of X, regardless of the choice of
coefficients. In particular, for X smooth over k, there is a natural homomorphism
from CH i(X,E) to étale motivic cohomology H2i

et (X,E(i)) (Theorem 6.1), and
this is an isomorphism rationally, but not integrally. For example, when k is the
complex numbers C, étale motivic cohomology H2i

et (X,Z/r(i)) can be identified
with ordinary cohomology, H2i(X(C),Z/r). That is usually quite different from
CH i(X,Z/r) = CH i(X)/r.

In this paper, we generalize the definition of twisted Chow groups to any locally
constant étale sheaf E of abelian groups, not necessarily torsion, as follows.

Definition 1.2. Let X be a separated scheme of finite type over a field k. Let E be
a locally constant étale sheaf on X. Then CHi(X,E) is defined to be the cokernel
of the residue map on Galois cohomology groups:

⊕x∈X(i+1)
H1(k(x), E(1))→ ⊕x∈X(i)

H0(k(x), E).
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Here we interpret Z(1) as Gm[−1], a shift of the multiplicative group in the derived
category of étale sheaves over a field, as in Voevodsky’s theory of motivic cohomology
[30, Theorem 4.1]. Define E(1) as the derived tensor product E ⊗LZ Gm[−1].

This agrees with Rost’s definition (Definition 1.1) when E is torsion of exponent
invertible in k. Also, when E is the constant étale sheaf ZX , CHi(X,ZX) is the
usual Chow group CHiX. That makes it quite natural to consider non-torsion
coefficients. See also Conjecture C.1 for a more general attempt to define Chow
groups twisted by any birational motivic sheaf.

Remark 1.3. Define an étale sheaf E of abelian groups on a scheme X to be naively
locally constant if there is an étale covering {Xα → X} on which E is constant. For
convenience, define an étale sheaf to be locally constant if it is a direct limit of naively
locally constant sheaves. For X connected with a choice of a geometric base point,
locally constant sheaves in this sense correspond to discrete abelian groups M with
a continuous action of πet

1 X, whereas naively locally constant sheaves correspond
to the special case where M is fixed by some open subgroup of πet

1 X.

Rost’s arguments imply essentially all the formal properties of Chow groups
with twisted coefficients, although we need an extra argument (Corollary A.3) to
avoid inverting the exponential characteristic e of k. (By definition, e = 1 if k has
characteristic zero, and e = p if k has characteristic p > 0.) Let us see how this
works. The first step is to observe that a locally constant étale sheaf E on a scheme
X of finite type over k determines a cycle module H∗[E] on X. To describe what
this means, first define a field over X to be a field F with a morphism SpecF → X
such that F is finitely generated over k. Then a cycle module M on X is a Z-graded
abelian group M(F ) associated to every field over X, along with various operations
on these groups. In our case, given a locally constant étale sheaf E on X, we define
H∗[E](F ) as the étale cohomology groups:

H∗[E](F ) = ⊕j≥0H
j(F,E(j)).

Here Z(j) denotes the étale sheafification of Voevodsky’s motivic cohomology com-
plex, and E(j) = E ⊗LZ Z(j). In particular, if E is torsion of exponent r invertible

in k, then we have the more elementary description E(j) ∼= E ⊗Z/r µ
⊗j
r in D(Xet),

giving the description of the cycle module H∗[E] from Rost’s paper [34, Remark
1.11].

For clarity, we recall the operations required of a cycle module. First, for each
inclusion ϕ : F1 → F2 of fields over X, we are given a homomorphism ϕ∗ : M(F1)→
M(F2) of degree 0 (a “pullback” homomorphism, in geometric language). For each
finite extension ϕ : F1 → F2 of fields over X, we have a “transfer” or “pushforward”
homomorphism ϕ∗ : M(F2)→M(F1) of degree 0. For each field F overX, the group
M(F ) is a graded left module over the Milnor K-theory ring KM

∗ F . Finally, suppose
that a field F has a “valuation over X”, meaning a discrete valuation v together
with a morphism SpecOv → X such that Ov is the local ring of a normal variety
over X at a point of codimension 1. Then we are given a “residue” homomorphism
∂v : M(F ) → M(k(v)) of degree −1, where k(v) is the residue field of v. We omit
the relations that these operations are required to satisfy, for M to be called a cycle
module [34, definitions 1.2 and 2.1].

We need the étale sheaf E on X to be locally constant in order to define the
residue homomorphisms on H∗[E]. Namely, for a discrete valuation v over X on
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a field F with residue field k(v), E pulls back to a locally constant étale sheaf on
SpecOv, and that is the situation in which we have a residue homomorphism on
étale motivic cohomology:

∂v : Hb(F,E(b))→ Hb−1(k(v), E(b− 1)).

This is easier to construct if E is a Z[1/e]-module; then it comes from an isomor-
phism in the derived category of étale sheaves on Spec k(v):

Z[1/e](b− 1)k(v)[−2] ∼= i!Z[1/e](b)Ov

for any b ≥ 1, where i : Spec k(v)→ SpecOv is the inclusion and i! is the exceptional
inverse image functor [6, proof of Proposition 7.1.10]. This fits into the localization
sequence for étale motivic cohomology due to Cisinski and Déglise: for a regular
closed subscheme Y of codimension r in a regular excellent scheme X, we have a
long exact sequence [6, Theorem 5.6.2 and Proposition 7.1.6]:

H i−2r
et (Y,Z[1/e](j − r))→ H i

et(X,Z[1/e](j))→ H i
et(X − Y,Z[1/e](j))

→ H i−2r+1
et (Y,Z[1/e](j − r)).

Here Z[1/e](i) is the étale sheafification of the usual motivic cohomology com-
plex (with e inverted) for i ≥ 0, whereas it is torsion for i < 0: Z[1/e](i) ∼=
⊕l 6=eQl/Zl(i)[−1] for i < 0.

In characteristic p > 0, the residue map in the derived category of étale sheaves
does not exist without inverting e = p. Nonetheless, we construct a residue homo-
morphism

∂v : Hb(F,E(b))→ Hb−1(k(v), E(b− 1))

for a locally constant étale sheaf E on SpecOv (without inverting p) in Corollary A.3.
As a result, H∗[E] is a cycle module, and so Chow groups with twisted coefficients
satisfy the desired properties without having to invert the exponential characteristic.

Once we know that H∗[E] is a cycle module, Rost’s theory implies essentially
all the formal properties one would want for Chow groups with twisted coefficients.
We have:

• Proper pushforward. For a proper morphism f : X → Y of schemes over k
and a locally constant étale sheaf E on Y , we have a homomorphism

f∗ : CHi(X, f
∗E)→ CHi(Y,E)

[34, section 5].

• Flat pullback. For a flat morphism f : X → Y of relative dimension n and a
locally constant étale sheaf E on Y , we have a homomorphism

f∗ : CHi(Y,E)→ CHi+n(X, f∗E)

[34, section 5].
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• Localization sequence. For a closed subscheme Z ⊂ X and a locally constant
étale sheaf E on X, we have an exact sequence

CHi(Z,E)→ CHi(X,E)→ CHi(X − Z,E)→ 0.

This sequence can be extended to the left, using the cycle module H∗[E].
Writing Ci(X,E)j for Rost’s Ci(X;H∗[E], j), we define

Ci(X,E)j = ⊕x∈X(i)
H i+j(k(x), E(i+ j)).

Let Ai(X,E)j be the homology of the boundary maps on these groups,

Ci+1(X,E)j → Ci(X,E)j → Ci−1(X,E)j .

Then the localization sequence extends to a long exact sequence [34, section
5]:

· · · → Ai+1(X − Z,E)−i

→ Ai(Z,E)−i → Ai(X,E)−i → Ai(X − Z,E)−i → 0.

• Homotopy invariance. For an affine bundle π : V → X of relative dimension
n and a locally constant étale sheaf E on X, the pullback

π∗ : CHi(X,E)→ CHi+n(V, π∗E)

is an isomorphism [34, Proposition 8.6].

• Products. For a smooth schemeX over k, write CH i(X,E) for the codimension-
i Chow group with coefficients. (Thus, if X has dimension n everywhere, we
have CH i(X,E) = CHn−i(X,E).) Then CH∗(X,E) is a module over the
usual Chow ring CH∗X [34, section 14].

• Pullback for smooth schemes. For any morphism f : X → Y of smooth
schemes over k and a locally constant étale sheaf E on Y , we have a ho-
momorphism

f∗ : CH i(Y,E)→ CH i(X, f∗E)

[34, section 12].

Rost also proves the expected compatibilities among these operations. For the
constant étale sheaf AX associated to an abelian group A, the operations above are
the usual operations on CHi(X,AX) ∼= CHi(X)⊗Z A.

2 Basic calculations

We now give some basic calculations of Chow groups with twisted coefficients, em-
phasizing cases in which they reduce to the usual Chow groups.

Lemma 2.1. Let f : Y → X be a finite étale morphism of schemes of finite type
over a field k. For a locally constant étale sheaf E on Y ,

CHi(X, f∗E) ∼= CHi(Y,E).
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Equivalently, Chow groups of X with coefficients in an induced representation
E of the fundamental group reduce to Chow groups with coefficients for a cover-
ing space of X. When E is a permutation representation of the étale fundamental
group π1X (over some commutative ring R), CHi(X,E) is the usual Chow group
CHi(Y )⊗Z R of a covering space Y of X (possibly with several connected compo-
nents).

Proof. (Lemma 2.1) One can prove this by hand, but an efficient approach is to use
Rost’s results about an arbitrary morphism f : Y → X [34, Corollary 8.2]. Namely,
for any cycle module M on Y , there is a convergent “Leray-Serre” spectral sequence

E2
pq = Ap(X,Aq[f ;M ])⇒ Ap+q(Y ;M),

for some cycle modules Aq[f ;M ] on X. Namely, for each field F over X, let YF =
Y ×X SpecF . Then we define

Aq[f ;M ](F ) = Aq(YF ;M).

Let f : Y → X be a finite étale morphism, and let E be a locally constant étale
sheaf on Y . In this case, YF has dimension 0 for each field F over X. So we read
off that

Aq[f ;H∗[E]] ∼=

{
0 if q 6= 0

H∗[f∗E] if q = 0.

Therefore, the spectral sequence reduces to an isomorphism Ai(X,H
∗[f∗E]) ∼=

Ai(Y,H
∗[E]) of graded abelian groups. In degree −i, this gives that CHi(X, f∗E) ∼=

CHi(Y,E), as we want.

Next, we consider the relation between Chow groups with twisted coefficients
and the usual Chow groups. We get a complete answer with rational coefficients.
Namely, let G be a finite group, f : Y → X an étale G-torsor, and E a ZG-module.
Then we can view E as a locally constant étale sheaf on X, and every sheaf associ-
ated to a representation of π1X with finite image arises this way. In this situation,
we have the flat pullback homomorphism

CHi(X,E)→ CHi(Y, f
∗E) = CHi(Y )⊗Z E.

Since f∗E is a G-equivariant sheaf on Y , this homomorphism lands in the G-fixed
subgroup:

CHi(X,E)→ (CHi(Y )⊗Z E)G.

One may ask how close this is to an isomorphism; it is always an isomorphism tensor
Q, as we will see.

Since f is finite, we also have the pushforward homomorphism

CHi(Y )⊗Z E = CHi(Y, f
∗E)→ CHi(X,E).

Using that f∗E is a G-equivariant sheaf on Y , this homomorphism factors through
the coinvariants of G:

(CHi(Y )⊗Z E)G → CHi(X,E).

Again, one may ask how close this is to an isomorphism.
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Lemma 2.2. Both homomorphisms above become isomorphisms tensor Q.

Proof. Consider the composition

CHi(X,E)→ (CHi(Y )⊗ E)G → (CHi(Y )⊗ E)G → CHi(X,E).

This is f∗f
∗ on twisted Chow groups, which is multiplication by |G|, as one can

check on generators. Next, consider the composition

(CHi(Y )⊗ E)G → (CHi(Y )⊗ E)G → CHi(X,E)→ (CHi(Y )⊗ E)G.

This is f∗f∗, which is the trace
∑

g∈G g
∗. (This follows from the fact that proper

pushforward commutes with flat pullback [34, Proposition 4.1(3)], applied to the
Cartesian diagram

Y ×X Y //

��

Y

��

Y // X,

where Y ×X Y ∼= Y ×G.)
Since we are considering f∗f∗ on the G-invariant subgroup of CHi(Y ) ⊗ E, it

follows that f∗f∗ is multiplication by |G| on this subgroup. Thus, tensoring with
Q, f∗ gives an isomorphism

CHi(X,E)⊗Q ∼= (CHi(Y )⊗ E)G ⊗Q,

as we want. Also, for any abelian group A with an action of the finite group G, the
natural homomorphism AG → AG becomes an isomorphism tensor Q. It follows
that f∗ also gives an isomorphism tensor Q:

(CHi(Y )⊗ E)G ⊗Q ∼= CHi(X,E)⊗Q.

Finally, we observe that Chow groups with twisted coefficients do not always
have the exactness properties one might wish for, by analogy with cohomology. For
example, given an exact sequence 0 → A → B → C → 0 of locally constant étale
sheaves on X, we have a long exact sequence of étale cohomology groups,

· · · → H i
et(X,A)→ H i

et(X,B)→ H i
et(X,C)→ H i+1

et (X,A)→ · · · .

(When k = C, we also have the analogous sequence of ordinary cohomology groups
with twisted coefficients.) For twisted Chow groups, we will give a partial substitute
in Theorem 3.1.

Lemma 2.3. Let 0 → A → B → C → 0 be a short exact sequence of locally
constant étale sheaves on a scheme X of finite type over k. Then the complex
0 → CHi(X,A) → CHi(X,B) → CHi(X,C) → 0 need not be exact at any of the
three terms. There are counterexamples with X smooth over k.

Proof. Let G be the group Z/2. The regular representation of G over F2, B = F2G,
fits into a short exact sequence 0 → A → B → C → 0 of G-modules, with both
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A and C isomorphic to the trivial representation F2. We will give the desired
counterexamples for this coefficient sequence.

Let f : Y → X be a finite étale morphism of degree 2. Let B = f∗(F2)Y . Then
the exact sequence above gives an exact sequence 0 → A → B → C → 0 of locally
constant étale sheaves on X, with both A and C isomorphic to (F2)X . By Lemma
2.1, the resulting complex of Chow groups with twisted coefficients has the form:

0→ CHi(X)/2→ CHi(Y )/2→ CHi(X)/2→ 0,

where the first homomorphism is pullback and the second is pushforward.
For example, take k = C, X = A1 − 0, Y = A1 − 0, and define f : Y → X by

f(y) = y2. Then exactness fails on the right for i = 1. (The generator of CH1Y = Z
maps to 2 times the generator of CH1X = Z, hence to zero modulo 2.) Next, take
k = C, X = (A2 − 0)/G (where G = Z/2 acts by ±1), and Y = A2 − 0. Then
CH1X ∼= CH1BG ∼= Z/2, whereas CH1Y = 0, and so the sequence is not exact on
the left.

For the middle, let k = Q and let E be an elliptic curve over Q such that the
Mordell-Weil group E(Q) contains (Z/2)2 and has rank at least 1. (For example,
E could be the curve [29, Elliptic Curve 117.a3].) Let Y be E minus the 2-torsion
subgroup E[2]; so Y is E minus 4 rational points. Let G = Z/2 act on Y by ±1;
then G acts freely on Y , and X := Y/G is isomorphic to P1

Q minus 4 rational points.
So CH0X = 0 and hence CH0(X)/2 = 0. On the other hand, CH0Y ∼= E(Q)/E[2],
and so CH0(Y )/2 6= 0. Thus the sequence CH0(X)/2→ CH0(Y )/2→ CH0(X)/2
is not exact.

Remark 2.4. We can also give examples over C for which exactness fails in the
middle, in Lemma 2.3. Let M be the K3 surface which is the double cover of
P2

C ramified along the smooth sextic curve C = {0 = x6 + y6 + z6 − 10(x3y3 +
y3z3 + z3x3)}. Mukai observed that the automorphism group of M contains the
Mathieu group M9 = 32Q8 of order 72, one of the largest finite groups of symplectic
automorphisms of a K3 surface [33, Theorem 0.3]. His arguments imply that M has
Picard group Z20. Let X = P2 −C, which has the étale double cover Y := M −C.
Then CH1X ∼= Z/6, and so CH1(X)/2 ∼= Z/2. On the other hand, C has genus
10, and so C2 = 2g − 2 = 18 on the K3 surface M . It follows that C is not
divisible by 2 in CH1M : if C ∼ 2D, then C2 = 4D2, but C2 is not zero modulo
4. So CH1(Y )/2 = (CH1(M)/2)/〈C〉 is isomorphic to (Z/2)19. It follows that the
sequence

CH1(X)/2→ CH1(Y )/2→ CH1(X)/2

is not exact.

3 Chow groups and coflasque resolutions

We now give a sufficient condition for an exact sequence of coefficient modules to
give an exact sequence of twisted Chow groups. The statement uses the notion of
a coflasque resolution from the theory of algebraic tori.

Let G be a finite group and M a ZG-lattice, meaning a finitely generated ZG-
module that is Z-torsion free. Following Colliot-Thélène and Sansuc, M is called
invertible if it is a summand of a permutation module [8, section 0.5]. Next, M is
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coflasque if H1(H,M) = 0 for every subgroup H of G. Finally, M is flasque if the
dual lattice M∗ is coflasque. An invertible ZG-lattice is flasque and coflasque. By
Endo and Miyata, every coflasque ZG-lattice is invertible if and only if every Sylow
subgroup of G is cyclic [7, Proposition 2].

More generally, let R be a Dedekind domain that is Z-torsion free. We can
then make the same definitions for an RG-lattice, meaning a finitely generated RG-
module that is R-torsion free. For example, for a prime number p, the localization
R = Z(p) or the completion R = Zp come up naturally.

For a profinite group L (such as the étale fundamental group of a scheme),
we define an R-module M with continuous L-action to be invertible, coflasque, or
flasque if there is a finite quotient group G of L such that M is an RG-lattice with
the corresponding property.

For a finite group G, every finitely generated RG-module M has a coflasque
resolution

0→ Q→ P →M → 0,

meaning that P is a permutation module over R and Q is coflasque [8, Lemma 0.6].
Moreover, Q is determined by M up to direct sums with permutation modules.

Theorem 3.1. Let X be a k-scheme of finite type, and let 0 → A → B → C → 0
be an exact sequence of locally constant étale sheaves on X. Let i be an integer.

(1) If A is coflasque, then CHi(X,B)→ CHi(X,C)→ 0 is exact.
(2) If A is invertible, then CHi(X,A) → CHi(X,B) → CHi(X,C) → 0 is

exact.

Example 3.2. In some cases, Theorem 3.1 describes Chow groups with twisted
coefficients in terms of the usual Chow groups of varieties. For example, let G be a
finite group, and let M = ZG/Z. (For example, if G = Z/2, then M is Z with G
acting by ±1.) Let X be the quotient of a k-scheme Y by a free G-action. (One could
assume that Y is quasi-projective to ensure that X is a scheme, or use Remark 5.1.)
Then applying Theorem 3.1 to the coflasque resolution 0 → Z → ZG → M → 0
gives an exact sequence

CHiX → CHiY → CHi(X,M)→ 0,

where the first homomorphism is pullback. This describes CHi(X,M) in terms of
Chow groups of varieties.

More generally, for any finite group G, every finitely generated ZG-module M
has a resolution 0 → Q → P → M → 0 with P a permutation module and Q
coflasque. By Theorem 3.1, given a homomorphism π1X → G, CHi(X,M) is always
a quotient of the usual Chow group CHi of some covering space of X (possibly with
several connected components). (This also follows from Theorem 8.1, below.) When
G is cyclic, Q is invertible by Endo–Miyata’s result above; in that case, Theorem
3.1 expresses CHi(X,M) more explicitly as a cokernel of a homomorphism between
usual Chow groups.

Remark 3.3. In Theorem 3.1, if A is coflasque (but not invertible), CHi(X,A) →
CHi(X,B)→ CHi(X,C) need not be exact (Theorem 14.1).

9



Proof. (Theorem 3.1) Consider the diagram of étale cohomology groups, with exact
columns:

⊕x∈X(i+1)
H1(k(x), A(1)) //

��

⊕x∈X(i)
H0(k(x), A)

��

⊕x∈X(i+1)
H1(k(x), B(1)) //

��

⊕x∈X(i)
H0(k(x), B)

��

⊕x∈X(i+1)
H1(k(x), C(1)) //

��

⊕x∈X(i)
H0(k(x), C)

��

⊕x∈X(i+1)
H2(k(x), A(1)) // ⊕x∈X(i)

H1(k(x), A).

The cokernels of the first three horizontal maps are CHi(X,A), CHi(X,B), and
CHi(X,C).

Proof of (1): Suppose that A is coflasque. Then H1(k(x), A) = 0 for every point
x in X. It follows that H0(k(x), B)→ H0(k(x), C) is surjective for each point x in
X. Therefore, CHi(X,B)→ CHi(X,C) is surjective.

Proof of (2): Suppose that A is invertible. Then A is coflasque, and so (1) gives
that CHi(X,B) → CHi(X,C) is surjective. Furthermore, since A is Z-torsion
free, we have H2(k(x), A(1)) ∼= H1(k(x), A ⊗Z Gm) for every point x in X. For
R = Z, that group is H1 with coefficients in an algebraic torus over k(x). Since A
is invertible, this H1 group is zero, using Hilbert’s Theorem 90 that H1(F,Gm) = 0
for every field F .

Then a diagram chase implies that CHi(X,A) → CHi(X,B) → CHi(X,C)
is exact. In more detail, let u be an element of CHi(X,B) that maps to zero in
CHi(X,C). Choose a representative for u in Zi(X,B) := ⊕x∈X(i)

H0(k(x), B). Then

the image of u in Zi(X,C) is the boundary of some element y in⊕x∈X(i+1)
H1(k(x), C(1)).

Since H2(k(x), A(1)) = 0 by the previous paragraph, y comes from some element
z in ⊕x∈X(i+1)

H1(k(x), B(1)). Then u − ∂z in Zi(X,B) maps to zero in Zi(X,C).
Since the columns in the diagram above are exact, u − ∂z comes from an element
of Zi(X,A), as we want.

4 Twisted motivic cohomology

In this section we define twisted motivic cohomology associated to a locally con-
stant étale sheaf, following Heller–Voineagu–Østvær [22, section 5.2]. We show
that twisted motivic cohomology H2i

M(X,E(i)) can be described as a twisted higher
Chow group CH i(X,E, 0) (Corollary 4.4). A striking point is that this is not always
isomorphic to the twisted Chow group CH i(X,E) from section 1 (Theorem 14.1).
Both theories deserve to be investigated; we compare their advantages in Remark
14.2.

Heller, Voineagu, and Østvær consider an action of a finite group G on a smooth
scheme Y over a field k, with the order of G invertible in k. They define Bredon
motivic cohomology with coefficients in a cohomological Mackey functor M for G,
H i
G(Y,M(j)). In this paper, we only consider the case where G acts freely on

Y ; equivalently, we are considering invariants of X := Y/G with its given G-torsor.
Then most of the information in the Mackey functor is irrelevant. Every ZG-module
E determines a cohomological Mackey functor M by setting M(G/H) = EH . In this
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case, Heller–Voineagu–Østvær’s theory coincides with twisted motivic cohomology
H i

M(X,E(j)), as defined below.
We can imitate Hoyois’s simple definition of motivic cohomology and the con-

struction by Kahn–Levine and Elmanto–Nardin–Yakerson of motivic cohomology
twisted by an Azumaya algebra [24, 26, 14]. Namely, let X be an arbitrary scheme,
and let E be a locally constant étale sheaf on X. Then E determines a presheaf
(also called E) on the category SmX of smooth schemes over X, taking a smooth
morphism π : Y → X to H0(Y, π∗E). Since this is an étale sheaf, it is a Nisnevich
sheaf on SmX . (The Nisnevich topology is defined for arbitrary schemes in [23,
Appendix C].) Also, E has transfers for finite locally free morphisms in SmX (cf.
[30, Lemma 6.11]). A fortiori, E has framed transfers (that is, transfers for finite
syntomic morphisms with a trivialization of the cotangent complex). As such, E
defines a space EX in the framed motivic homotopy category Hfr(X). So E de-
fines a motivic spectrum HEX := Σ∞T,frEX in the stable homotopy category SH(X).
(This is not the suspension spectrum of a motivic space. Rather, a framed motivic
space is analogous to an E∞ space in topology, and Σ∞T,fr denotes the left adjoint

to the functor Ω∞,frT from SH(X) to Hfr(X) (not to H(X)).) For the constant sheaf
E = ZX , Hoyois showed that this object HZX coincides with Spitzweck’s motivic
cohomology spectrum in SH(X), for every scheme X [24, Theorem 21].

In particular, this gives a definition of E-twisted motivic cohomology:

H i
M(X,E(j)) = π2j−i mapSH(X)(Σ

∞
T X+,Σ

j
THEX).

This is analogous to the definition of motivic cohomology twisted by an Azumaya
algebra [14, Definition 5.17]. In particular, this agrees with Spitzweck’s definition
of motivic cohomology when E is a constant sheaf, and with Voevodsky’s definition
when in addition X is defined over a field.

Lemma 4.1. Let 0→ A→ B → C → 0 be a short exact sequence of locally constant
étale sheaves on a scheme X. Suppose that A is coflasque. Then, for each integer
j, we have a long exact sequence of twisted motivic cohomology groups:

· · · → H i
M(X,A(j))→ H i

M(X,B(j))→ H i
M(X,C(j))→ H i+1

M (X,A(j))→ · · ·

Remark 4.2. Using this lemma, we can always describe H2i
M(X,C(i)) as the cokernel

of an explicit map between the usual Chow groups of covering spaces of X (not
necessarily connected). Namely, assume that C is a finitely generated Z-module with
an action of πet

1 X, and let 0→ A→ B → C → 0 be a coflasque resolution. We have
H2i+1

M (X,A(i)) = 0 by the relation to twisted higher Chow groups (Corollary 4.4
below), and so Lemma 4.1 expresses H2i

M(X,C(i)) as the cokernel of H2i
M(X,A(i))→

H2i
M(X,B(i)). By taking a coflasque resolution of A, we can describe H2i

M(X,A(i))
as the image of a homomorphism from H2i

M(X,P (i)), for some permutation module
P . Since P and B are permutation modules, we have expressed H2i

M(X,C(i)) as the
cokernel of a map between the usual Chow groups of covering spaces of X.

The twisted Chow groups can likewise be expressed as the image of a homo-
morphism from the usual Chow groups of some covering space by Theorem 3.1 (or
by the surjective homomorphism H2i

M(X,C(i)) → CH i(X,C) from Theorem 4.5,
below). I don’t know a simple description of the kernel, though.
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Proof. For any exact sequence 0 → A → B → C → 0 of locally constant étale
sheaves on X, we have an exact sequence 0 → AX → BX → CX of Nisnevich
sheaves with transfer. Suppose in addition that A is coflasque. Let Y be a smooth
scheme over X, and let L be the henselization of the local ring of Y at a point x
in Y . (We are not taking the strict henselization. So the residue field of L is k(x),
not the separable closure of k(x).) I claim that H1

et(L,A) = 0. Indeed, we have
H1

et(L,A) ∼= H1(k(x), A). Let G be the image of π1(SpecL) = Gal(k(x)s/k(x))
acting on A, which is a finite group. Let H be the kernel of Gal(k(x)s/k(x))→ G.
Then the Lyndon–Hochschild–Serre spectral sequence gives an exact sequence

0→ H1(G,A)→ H1(k(x), A)→ H1(H,A)G.

Here H1(G,A) is zero since A is coflasque, and H1(H,A) = Hom(H,A) is zero
since H is profinite and A is a discrete torsion-free abelian group. So H1

et(L,A) =
H1(k(x), A) = 0, as claimed.

For each henselian local ring L of a scheme Y in SmX , we have an exact sequence
of étale cohomology:

0→ A(L)→ B(L)→ C(L)→ H1
et(L,A).

Therefore, the previous paragraph gives that 0 → A(L) → B(L) → C(L) → 0 is
exact. That is, 0→ AX → BX → CX → 0 is an exact sequence of Nisnevich sheaves
on X [30, p. 90]. As a result, we get an exact triangle HAX → HBX → HCX in
SH(X). That implies the desired long exact sequence.

We can also define twisted higher Chow groups. These groups should agree with
twisted motivic cohomology for a regular scheme. We prove this in bidegrees (2j, j),
and in any bidegree when X is smooth over a perfect field k and the étale sheaf E is
pulled back from k (Lemma 4.3 and Corollary 4.4). Namely, for an equidimensional
scheme X with a locally constant étale sheaf E, define the jth twisted Bloch cycle
complex zj(X,E) as the simplicial abelian group (or the associated chain complex)
which in degree d is given by

⊕z∈X×∆dH0(k(z), E),

where the sum is over all codimension-j points of X×∆d whose closure intersects all
faces of X×∆d in the expected dimension. (Here ∆d denotes the algebraic simplex
{x0 + · · · + xd = 0} in Ad+1, as in Bloch’s definition of higher Chow groups.)
The boundary maps in the chain complex are given by intersections with faces of
X ×∆d. Write CHj(X,E, d) for the homotopy group πd of the simplicial abelian
group zj(X,E) (or, equivalently, Hd of the associated chain complex).

Lemma 4.3. Let X be an equidimensional smooth scheme of finite type over a
perfect field k. Let E be an étale sheaf over k, pulled back to X. Then twisted
motivic cohomology agrees with twisted higher Chow groups:

H i
M(X,E(j)) ∼= CHj(X,E, 2j − i).

Proof. We follow the proof of the analogous isomorphism for motivic cohomology
twisted by an Azumaya algebra [14, Proposition 5.15]. The key point is that the A1-
invariant Nisnevich sheaf Ek on Smk is birational, in the sense that Ek(Y ) ∼= Ek(U)
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for a dense open subset U of Y in Smk. (This follows from the fact that Y is normal
[36, Tag 0BQI].) In terms of Voevodsky’s slice filtration, it follows that HEk is a
0-slice in SH(k), meaning that HEk ' s0HEk [14, Proposition 5.3]. We can rewrite
the spectrum used to define the twisted motivic cohomology of X in terms of the
morphism f : X → Spec k:

mapSH(X)(Σ
∞
T X+,Σ

j
THEX) ' mapSH(X)(Σ

∞
T X+, f

∗(Σj
THEk))

' mapSH(k)(Lf#(Σ∞T X+),Σj
THEk)

= mapSH(k)(Σ
∞
T X+,Σ

j
THEk),

where in the last line we write Σ∞T X+ for the object of SH(k) associated to X. By
Levine’s results on the homotopy coniveau tower, using the smoothness of X over
k, it follows that this mapping spectrum in SH(k) is equivalent to the simplicial
spectrum

⊕z∈X×∆•(s0HEk)(k(z)),

where the sum is indexed by every codimension-j point of X × ∆• whose closure
meets all faces in the expected dimension [28, Corollary 5.3.2 and Theorem 9.0.3].
Since s0HEk ' HEk, the latter spectrum is equivalent to the twisted Bloch cycle
complex.

Corollary 4.4. Let X be an equidimensional smooth scheme of finite type over a
perfect field k. Let E be a locally constant étale sheaf on X such that the exponential
characteristic of k acts invertibly on E. Then twisted motivic cohomology in degree
(2j, j) agrees with twisted higher Chow groups:

H2j
M (X,E(j)) ∼= CHj(X,E, 0).

Proof. Let Xa be the “union of all subvarieties of codimension at least i in X”.
Precisely, the twisted motivic cohomology of X −Xa means the direct limit of the
motivic twisted cohomology of X−S over all closed subsets of codimension at least
a in X. Then, by taking a direct limit of localization sequences, we have an exact
sequence for any i, j, a:

· · · → ⊕x∈X(a)H i−2a
M (k(x), E(j − a))→ H i

M(X −Xa+1, E(j))

→ H i
M(X −Xa, E(j))→ ⊕x∈X(a)H i−2a+1

M (k(x), E(j − a))→ · · · .

Here X(a) denotes the set of points whose closure has codimension a in X.
The invariants for fields (on the left and right) can be identified with twisted

higher Chow groups, by Lemma 4.3. Many of these groups are trivially zero. In
particular, the groups contributing to H2i

M(X,E(i)) are CH i−b(k(x), E, 0) for points
x of codimension b in X, and this group is zero for b 6= i. Explicitly, the exact
sequence above for a = i gives:

H2i−1
M (X −Xi, E(i))→ ⊕x∈X(i)CH0(k(x), E, 0)→ H2i

M(X,E(i))→ 0.

To clarify this, we also want generators for H2i−1
M (X − Xi, E(i)). The groups

contributing to this are CH i−b(k(x), E, 1) for points x of codimension b in X with
0 ≤ b ≤ i − 1. This is zero for b 6= i − 1. For a = i − 1, the exact sequence
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above shows that ⊕x∈X(i−1)CH1(k(x), E, 1) maps onto H2i−1
M (X −Xi, E(i)). Thus

we have an exact sequence:

⊕x∈X(i−1)CH1(k(x), E, 1)→ ⊕x∈X(i)CH0(k(x), E, 0)→ H2i
M(X,E(i))→ 0.

For a field F with an étale sheaf E, we have CH0(F,E, 0) ∼= H0(F,E). Likewise,
CH1(F,E, 1) is generated by H0(L,E) for closed points SpecL in (SpecF ) ×∆1.
These are the same as the generators and relations for CH i(X,E, 0), and so we
have shown that

H2i
M(X,E(i)) ∼= CH i(X,E, 0).

Corollary 4.5. Let X be a smooth variety over a field k and E a locally constant
étale sheaf on X. Assume that the exponential characteristic of k acts invertibly on
E. Then there is a natural surjection

H2i
M(X,E(i))→ CH i(X,E).

Proof. By Corollary 4.4, H2i
M(X,E(i)) is isomorphic to the twisted higher Chow

group CH i(X,E, 0). The generators for this group are the same as for CH i(X,E),
and so the natural homomorphism CH i(X,E, 0)→ CH i(X,E) is surjective.

We will see that this surjection is not always an isomorphism (Theorem 14.1). To
describe the difference in the definitions: the relations in CH i(X,E) areH1(k(x), E(1))
for points x of codimension i− 1 in X, while the relations in CH i(X,E, 0) are the
transfers to H1(k(x), E(1)) of products of H0(F,E) with H1(F,Z(1)) = F ∗, for
finite extensions F of k(x).

5 Equivariant Chow groups with coefficients

Following the definition of equivariant Chow groups [38, 12, 39], Guillot, Di Lorenzo,
and Pirisi defined equivariant Chow groups with coefficients in a cycle module
[21, 11]. We focus here on the special case of equivariant Chow groups with co-
efficients in a ZG-module M , CHG

∗ (X,M). In particular, that gives a definition of
the Chow groups of the classifying space with coefficients in M , CH∗(BGk,M) =
CH∗G(Spec k,M).

Namely, let X be a scheme of finite type over a field k with an action of a
finite group G. Let M be a ZG-module. Let i be an integer. Let V be any
representation of G over k such that G acts freely on a Zariski-closed subset S ⊂ V
with codim(S ⊂ V ) > dim(X)− i. Then we define the ith equivariant Chow group
with coefficients in M by:

CHG
i (X,M) = CHi+dim(V )((X × (V − S))/G,M).

By the same proof as for CHG
i (X) (using homotopy invariance and the localization

sequence), this group is independent of the choice of (V, S).

Remark 5.1. If X is quasi-projective over k, then (X × (V − S))/G is also a quasi-
projective scheme, and so its twisted Chow groups have been defined in section 1.
If X is not quasi-projective, then (X × (V −S))/G is (in general) only an algebraic
space. In that case, one has to use that the definition of twisted Chow groups works
without change for algebraic spaces, as in [12, section 6.1].
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When X is smooth and equidimensional over k, define

CH i
G(X,M) = CHG

dim(X)−i(X,M).

(If X is smooth but has components of different dimensions, define CH i
G(X,M) to

be the direct sum of these groups for each G-orbit of components.)
As in the references above, the formal properties of equivariant Chow groups

with coefficients follow immediately from the properties of Chow groups with co-
efficients. In particular, we have proper pushforward, flat pullback, homotopy in-
variance, the localization sequence, and (in the smooth case) products. Namely,
for smooth k-schemes, CH∗G(X,M) pulls back under arbitrary G-equivariant mor-
phisms, and CH∗G(X,M) is a module over the ring CH∗GX.

6 The étale cycle map

We now construct the cycle map from twisted Chow groups to étale motivic coho-
mology. For smooth varieties, we define the cycle map in full generality, without
having to invert the exponential characteristic of k. In that generality, the construc-
tion is subtle: étale motivic cohomology need not satisfy the localization sequence in
the usual form, and we use instead a new purity result, Corollary B.3. For singular
varieties, the cycle map takes values in étale Borel-Moore motivic homology, which
we only consider with the exponential characteristic inverted.

Theorem 6.1. Let X be a scheme of finite type over a field k, and let M be a
locally constant étale sheaf on X.

(1) Suppose that X is regular. Then we define a natural homomorphism

CHr(X,M)→ H2r
et (X,M(r)).

(2) Without assuming that X is regular, suppose that the exponential character-
istic of k acts invertibly on M . Then we define a natural homomorphism

CHj(X,M)→ HBM
2j,et(X,M(j))

to étale motivic Borel-Moore homology.

Remark 6.2. In Theorem 6.1(2), we use a version of étale motivic Borel-Moore
homology defined by Cisinski and Déglise. They also suggested that the “right”
definition of étale Borel-Moore motivic homology, especially if we do not want to
invert the exponential characteristic of k, would be étale cohomology with coef-
ficients in Bloch’s higher Chow complexes [6, Remark 7.1.4]. In more detail, we
should define

HBM
i,et (X,Z(j)) = H−iet (X,DX(−j)),

where DX(−j) is a shift of Bloch’s cycle complex, numbered by dimension of cycles.
Namely, for U étale over X, DU (−j) = zj,U [2j], where zj,U is the cochain complex in
which (zj,U )i is the free abelian group on the set of (j − i)-dimensional subvarieties
in X ×∆−i that meet all faces in the expected dimension.

For a locally constant étale sheaf M , we can therefore define

HBM
i,et (X,M(j)) = H−iet (X,M ⊗LZ DX(−j)).
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I conjecture that there is a cycle map

CHi(X,M)→ HBM
2i,et(X,M(i)),

without having to invert the exponential characteristic of k.

Proof. (1) We first define the cycle map on generators. Let Y be a subvariety of
codimension r in X, and let u be an element of H0(k(Y ), E). Write i : Y → X for
the inclusion. First suppose that Y is regular. Then H0

et(Y,E) ∼= H0(k(Y ), E), and
so we can view u as an element of H0

et(Y,E) [36, Tag 0BQI]. Then the morphism
E[−2r]→ i!E(r) in the derived category Det(Y ) (Corollary B.3) gives a homomor-
phism H0

et(Y,E) → H0
et(Y, i

!E(r)[2r]) ∼= H2r
et (Y, i!E(r)) ∼= H2r

Y,et(X,E(r)). We can

map further to H2r
et (X,E(r)), as we want.

Next, let Y be a subvariety of codimension r in X, possibly singular, and let
u be an element of H0(k(Y ), E). Let Y ′ be the singular locus of Y , which has
codimension at least r + 1 in X. The previous paragraph defines an element of
H2r
Y−Y ′(X − Y ′, E(r)), and so it suffices to show that H2r

Y (X,E(r))→ H2r
Y−Y ′(X −

Y ′, E(r)) is an isomorphism. Consider the exact sequence:

H2r
Y ′(X,E(r))→ H2r

Y (X,E(r))→ H2r
Y−Y ′(X − Y ′, E(r))→ H2r+1

Y ′ (X,E(r)).

So it suffices to show that for a closed subset Y ′ of codimension everywhere at least
s in X and any a < s, H2a

Y ′(X,E(a)) = H2a+1
Y ′ (X,E(a)). This follows from Corollary

B.3, which says in terms of f : Y ′ ↪→ X that τ≤2a+1f
!E(a) = 0.

Next, let us show that this map on generators passes to a well-defined homo-
morphism CHr(X,E) → H2r

et (X,E(r)). A relation is given by a closed subvariety
Y of codimension r−1 in X and an element u ∈ H1(k(Y ), E(1)). We want to show
that ∂u ∈ Zr(X,E) maps to zero in H2r

et (X,E(r)). More precisely, we will show
that u maps to zero in H2r

Y,et(X,E(r)). Write i : Y ↪→ X for the inclusion.

Here u comes from an element of H1
et(Y − D,E(1)) for some reduced divisor

D in Y , say D = D1 + · · · + Ds. Let Dsing be the singular locus of D, so D −
Dsing =

∐s
j=1D

0
j for some regular codimension-1 subvarieties D0

j of Y − Dsing.
Since Y − D is a regular subvariety of the regular scheme X − D, the morphism
E(1)[−2r+2]→ i!E(2r) in Det(Y −D) (Corollary B.3) gives a Gysin homomorphism
H1

et(Y −D,E(1)) → H2r−1
Y−D(X −D,E(r)). So we can view u as an element of the

latter group. Consider the exact sequence of étale cohomology groups:

H2r−1
Y−D(X −D,E(r))→ ⊕sj=1H

2r
D0

j
(X −Dsing, E(r))→ H2r

Y−Dsing
(X −Dsing, E(r)).

Since D0
j is a regular subscheme of the regular scheme X−Dsing, we have the purity

isomorphism H0(D0
j , E) ∼= H2j

D0
j
(X −Dsing, E(r)) (Corollary B.3). So the exact se-

quence above shows that ∂u in Zr(X,E) maps to zero in H2r
Y−Dsing

(X−Dsing, E(r)).

Finally, the restriction map H2r
Y (X,E(r)) → H2r

Y−Dsing
(X − Dsing, E(r)) is an iso-

morphism, since Dsing has codimension at least r+1 in X (by Corollary B.3 again).
So the image of ∂u in H2r

Y (X,E(r)) is zero, as we want. Thus the cycle map
CH i(X,E)→ H2i

et (X,E(r)) is well-defined.
(2) Now allow X to be singular, but assume that the exponential characteristic

e of k is invertible in M . In this case, Cisinski and Déglise defined one version of
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the étale motivic Borel-Moore homology of X over k [6, Remark 7.1.12(4)]. Write
f : X → Spec k. Namely, they set

HBM
i (X,Z[1/e](j)) = H−iet (X,BX(−j))

for an object BX(−j) in Det(X) (the object f !1k(−j) in the category of h-motives
DMh(X,Z[1/e]), which has a functor Rα∗ to Det(X)). Therefore, we can define
twisted Borel-Moore homology by

HBM
i (X,M(j)) = H−iet (X,M ⊗LZ BX(−j)),

where we assume that M is a locally constant étale sheaf on which e acts invertibly.
We have H i

et(X,M(j)) ∼= HBM
2n−i,et(X,M(n−j)) for X smooth over k, everywhere

of dimension n. Also, for a closed subscheme S of a scheme X over k, we have a
localization exact sequence:

· · · → HBM
i,et (S,M(j))→ HBM

i,et (X,M(j))

→ HBM
i,et (X − S,M(j))→ HBM

i−1,et(S,M(j))→ · · · .

Let Xa be the “union of all subvarieties of dimension at most a in X”, as in the
proof of Corollary 4.4. By taking a direct limit of localization sequences, we have
an exact sequence for any i, j, a:

· · · → ⊕x∈X(a)
H2a−i

et (k(x),M(a− j))→ HBM
i,et (X −Xa−1,M(j))

→ HBM
i,et (X −Xa,M(j))→ ⊕x∈X(a)

H2a−i+1
et (k(x),M(a− j))→ · · · .

We first define the cycle map CHb(X,M)→ HBM
2b,et(X,M(b)) on generators. So

let x be a point in X whose closure has dimension b, and let u be an element of
H0(k(x),M). By the localization sequence above, this maps to an element u in
HBM

2b,et(X −Xb−1,M(b)). For each 0 ≤ c ≤ b− 1, the restriction map

HBM
2b,et(X −Xc−1,M(b))→ HBM

2b,et(X −Xc,M(b))

is an isomorphism by the localization sequence, using that H i
et(F,M(j)) = 0 for

fields F when i and j are negative. (Indeed, the complex of étale sheaves Z[1/e](j)
with j < 0 is concentrated in cohomological degree 1 by section 1, and so M(j) =
M ⊗LZ Z[1/e](j) is concentrated in degrees ≥ 0.) Therefore, u comes from a unique
element of HBM

2b,et(X,M(b)).
It remains to show that the cycle map vanishes on the relations defining CHb(X,M).

So let x be a point in X whose closure has dimension b+ 1, and let u be an element
of H1(k(x),M(1)). We want to show that the boundary ∂u in Zb(X,M) maps to
zero in HBM

2b,et(X,M(b)). It suffices to prove this with X replaced by the closure of
the point x; that is, we can assume that X is a variety of dimension b + 1 over k.
As above, we have the localization sequence

HBM
2b+1,et(X −Xb,M(b))→ ⊕x∈X(b)

H0
et(k(x),M)→ HBM

2b,et(X −Xb−1,M(b)).

SinceX has dimension b+1, the first group here isH1
et(k(X),M(1)). So the sequence

shows that ∂u in ⊕x∈X(b)
H0

et(k(x),M) maps to zero in HBM
2b,et(X−Xb−1,M(b)). The

previous paragraph defines the image of ∂u in the finer group HBM
2b,et(X,M(b)). But

we showed in the previous paragraph that the restriction from HBM
2b,et(X,M(b)) to

HBM
2b,et(X −Xb−1,M(b)) is an isomorphism. So ∂u is zero in HBM

2b,et(X,M(b)). Thus

we have a well-defined homomorphism CHb(X,M)→ HBM
2b,et(X,M(b)).
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7 The cycle map for complex varieties

Theorem 7.1. Let X be a scheme of finite type over C, M a locally constant étale
sheaf on X, and i an integer. Then we define a natural homomorphism

CHi(X,M)→ HBM
2i (X,M)

to Borel-Moore homology (using the classical topology). For X smooth over C, we
can rephrase this as a homomorphism

CHj(X,M)→ H2j(X,M).

Proof. Let X be a locally compact space of finite dimension. To define Borel-
Moore homology with twisted coefficients, recall that HBM

i (X,Z) can be described
as H−i(X,DX), where DX is the dualizing complex and we consider cohomology
in the classical topology [25, Equation IX.4.1]. For a locally constant étale sheaf M
on X, we can define HBM

i (X,M) = H−i(X,M ⊗LZ DX).
Let X be a scheme of finite type over C. We first define the cycle map on

generators. Let y be a point of the scheme X whose closure Y has dimension i, and
let u be an element of H0(k(y),M). Let S be the singular set of Y . Since S has
dimension at most i− 1 in X, the localization sequence

→ HBM
2i (S,M)→ HBM

2i (X,M)→ HBM
2i (X − S,M)→ HBM

2i−1(S,M)→

shows that HBM
2i (X,M) → HBM

2i (X − S,M) is an isomorphism. So it suffices to
define an element of HBM

2i (X−S,M) associated to u. Replacing X by X−S, we can
assume that Y is smooth. Then H0(Y,M) ∼= H0(k(y),M) since Y is normal [36,
Tag 0BQI]. So we can view u as an element of H0(Y,M) ∼= HBM

2i (Y,M). Proper
pushforward gives a homomorphism HBM

2i (Y,M) → HBM
2i (X,M). So u gives an

element of HBM
2i (X,M), as we want.

It remains to show that for a point w of the scheme X whose closure has dimen-
sion i+1 in X and an element t of H0(k(w),M(1)), the boundary of t maps to zero
in HBM

2i (X,M). Because Galois cohomology commutes with direct limits, t comes
from a cohomology class in some Galois submodule of M that is finitely generated
as a Z-module. So we can assume that M is finitely generated as a Z-module, and
we want to show that ∂t maps to zero in HBM

2i (X,M). We can assume that X is
connected. In this case, in terms of the classical topology, M is a module for the
fundamental group π1X that factors through some finite quotient group G of π1X.

Since the dualizing complex DX is constructible, so is M ⊗LZDX , and hence the
group HBM

2i (X,M) ∼= H−2i(X,M ⊗LZ DX) is finitely generated. So if we can show
that ∂t in HBM

2i (X,M) is divisible, then it is zero, as we want. The image of ∂t is
zero in HBM

2i (X,M/n) for every positive integer n, because we know that ∂t maps
to zero in HBM

2i,et(X,M(i)) (Theorem 6.1), hence in HBM
2i,et(X,M/n(i)), which (as we

are over C) can be identified with HBM
2i (X,M/n). By the exact sequence

HBM
2i (X,nM)→ HBM

2i (X,M)→ HBM
2i (X,M/n),

it follows that ∂t lies in the image of HBM
2i (X,nM) for every positive integer n. If

M is Z-torsion-free (so nM ∼= M), then it follows that ∂t is divisible, hence zero as
we want.
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In general, let a be the order of the torsion subgroup of M . Then aM is a
torsion-free ZG-submodule of M . We know that ∂t in HBM

2i (X,M) is in the image
of HBM

2i (X,naM) for every positive integer n. So for every positive integer n, ∂t is
the image of an element of HBM

2i (X, aM) that is divisible by n, and hence ∂t itself
is divisible by n. Thus ∂t = 0 in HBM

2i (X,M), as we want. Finally, for X smooth
over k, the cycle map we have constructed can be rewritten as CHj(X,M) →
H2j(X,M), via Poincaré duality.

8 Twisted Chow groups and transfers

We now observe that twisted Chow groups have explicit generators in terms of trans-
fers. This generalizes Merkurjev–Scavia’s description of the negligible subgroup of
group cohomology in degree 2 [31, Theorem 1.3, Corollary 4.2]. It is also related
to Theorem 3.1, since it shows again that twisted Chow groups are a quotient of
the usual Chow groups of a suitable covering space of X (possibly with several
connected components).

Theorem 8.1. Let X be a k-scheme of finite type, G a finite group, Y → X a
G-torsor, and M a ZG-module. Then CHi(X,M) is generated by the images of the
homomorphisms

MH ⊗Z CHi(Y/H)→ CHi(Y/H,M)→ CHi(X,M)

over all subgroups H of G, where the last map is the transfer or pushforward.
More strongly, one does not need to use all subgroups of G. For each element

x ∈ M , let Gx be the centralizer of x in G. Then CHi(X,M) is generated by the
elements trGGx

(xy) for all x ∈M and all y ∈ CHi(Y/Gx).

Proof. The group CHi(X,M) is generated by the groups H0(k(z),M) for all points
z in X with closure Z of dimension i. Given such a point, let H be the image of
the composition π1(Spec k(z)) → π1X → G. Then the restriction of the covering
map f : Y/H → X over z has a section, z1 ∈ Y/H. Let Z1 be its closure in Y/H
(which maps birationally to Z). Let u be any element of H0(k(z),M) = MH . Then
the element of CHi(X,M) associated to the pair (z, u) is the pushforward of the
product u[z1] in MH ⊗Z CHi(Y/H)→ CHi(Y/H,M).

That proves the first statement, that CHi(X,M) is generated by trGH(xy) for
all subgroups H in G, x ∈ MH and y ∈ CHi(Y/H). Here H is contained in the
centralizer Gx of x in G. By the projection formula,

trGH(xy) = trGGx
trGx
H (resGx

H (x)y)

= trGGx
(x trGx

H y).

Thus CHi(X,M) is generated by the elements trGGx
(xz) for all x ∈ M and all

z ∈ CHi(Y/Gx).

To deduce Merkurjev–Scavia’s statement, we need the following simple observa-
tion.
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Lemma 8.2. Let X be a smooth k-variety, G a finite group, Y → X a G-torsor,
and M a ZG-module. Assume that the exponential characteristic of k acts in-
vertibly on M . Then, for i > 0, the cycle class homomorphism CH i(X,M) →
H2i

et (X,M(i)) maps into the kernel of restriction to H2i(k(X),M(i)). For i = 1,
the image of CH1(X,M) → H2

et(X,M(1)) is equal to the kernel of restriction to
H2(k(X),M(1)).

Proof. For i > 0, it is clear that the homomorphism CH i(X,M) → H2i
et (X,M(i))

maps into the kernel of restriction to H2i(k(X),M(i)), because it gives classes
supported on a codimension-i subset of X.

Let i = 1. Let u be an element of H2
et(X,M(1)) that restricts to zero in

H2(k(X),M(1)). Then there is a closed subset S of codimension at least 1 in
X such that u restricts to zero on X − S. By the localization sequence for étale
motivic cohomology (section 1), H2

et(X,M(1)) does not change after removing a
subset of codimension at least 2 from X. After doing so, we can assume that S is
a disjoint union of regular codimension-1 subvarieties of X.

For a regular codimension-1 subvariety Z of X, the localization sequence for
étale motivic cohomology has the form

H0
et(Z,M)→ H2

et(X,M(1))→ H2
et(X − Z,M(1)).

By definition, elements ofH0
et(Z,M) = H0

et(k(Z),M) are in the image of CH1(X,M).
Thus we have shown that the kernel of restriction to the generic point is contained
in the image of CH1(X,M); so it is equal to that image.

Corollary 8.3. Let G be a finite group and M a finite G-module. Let k be a field
such that |G| and |M | are invertible in k and k contains the |G||M | roots of unity.
Then the subgroup of elements of H2(G,M) that are negligible over k is generated
by the images of the maps

MH ⊗H2(H,Z)→ H2(H,M) −−→
trGH

H2(G,M),

where H runs over all subgroups of G.
More strongly, one does not need to use all subgroups of G. For each element

x ∈M , let Gx be the centralizer of x in G. Then the negligible subgroup of H2(G,M)
is generated by the elements trGGx

(xy) for all x ∈M and all y ∈ H2(Gx,Z).

Proof. By definition, an element u of H i(G,M) is called negligible over k if for
every field K containing k and every continuous homomorphism Gal(Ks/K)→ G,
the induced homomorphism H i(G,M) → H i(K,M) takes u to zero. Let V be a
faithful representation of G; then the resulting G-torsor over k(V/G) is versal in
Serre’s sense. In particular, an element u of H i(G,M) is negligible over k if and
only if it pulls back to zero in H i(k(V/G),M) [18, Proposition 2.1, Corollary 2.2].

Merkurjev and Scavia showed, using that k contains the |G||M | roots of unity,
that the transferred classes in H2(G,M) described in the Corollary are negligible
over k [31, proof of Theorem 1.3]. This is the easier direction, using Kummer theory.

Conversely, let u be an element of H2(G,M) which is negligible over k; we want
to show that u is in the subgroup of transferred classes as above. A fortiori, u is
negligible over a separable closure of k; so we can assume that k is separably closed.
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Let U be an open subset of V such that G acts freely on U . For a suitable choice
of representation V , we can assume that V − U has codimension at least 2 in V .
Then CH1(U/G,M) ∼= CH1(BGk,M) by definition of the latter group. Likewise,
H2

et(U/G,M) ∼= H2(G,M) by the Hochschild–Serre spectral sequence, using that
k is separably closed [32, Theorem III.2.20]. By Theorem 8.1, an element u in
H2(G,M) is negligible if and only if, as an element of H2(G,M) ∼= H2

et(U/G,M) ∼=
H2

et(U/G,M(1)), it is in the image of CH1(U/G,M) ∼= CH1(BGk,M). Note that
CH1(BHk) ∼= H2(H,Z) ∼= Hom(H, k∗) for each subgroup H of G [39, Lemma 2.26].
Therefore, Theorem 8.1 and Lemma 8.2 yield the two statements we want.

Corollary 8.3 is Merkurjev–Scavia’s result [31, Theorem 1.3, Corollary 4.2]. As
they explain, the assumption that k contains the |G||M | roots of unity is sharp.
That suggests the following question, which has a positive answer when i = 1:

Question 8.4. Let G be a finite group, M a ZG-module which is killed by some
positive integer. Let e(G) be the exponent of G and r := e(M) the exponent of M .
Let k be a field such that e(G)e(M) is invertible in k and k contains the e(G)e(M)
roots of unity. Let i ≥ 0. Does the cycle map

CH i(BGk,M)→ H2i
et (BGk,M(i))

factor through the homomorphism

H2i(G,M ⊗Z/r µr(k)⊗i)→ H2i
et (BGk,M(i))?

By Theorem 8.1, Question 8.4 would follow from the special case M = Z/r (with
trivial action of G). By Gherman and Merkurjev, in the case i = 1, the assumption
that k contains the e(G)e(M) roots of unity is sharp [18, Theorem 4.2]. Earlier,
Grothendieck had considered Question 8.4 in the special case of Chern classes of
representations (with M = Z/r), although without the precise hypothesis on the
e(G)e(M) roots of unity [20, section 5].

9 Twisted Chow groups of a cyclic group

In this section, for a finite cyclic group G, we compute the Chow groups of BG with
arbitrary coefficients. In this case, the twisted Chow groups are periodic and have
a simple relation to group cohomology.

Theorem 9.1. Let G be the cyclic group of order m, and let M be a finitely gener-
ated ZG-module. Let k be a field such that m is invertible in k and k contains the
mth roots of unity. Then

CH i(BGk,M) ∼=

{
MG if i = 0

MG/ tr(M) if i > 0,

where the trace tr is
∑

g∈G g. For k = C, we can also say that the natural homo-
morphism

CH i(BGC,M)→ H2i(BG,M)

is an isomorphism for all i. (The right side is usually written as H2i(G,M), group
cohomology with coefficients.)
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Thus CH∗(BGC,M)→ Hev(BG,M) is an isomorphism for G cyclic. Note that
the cohomology may be nonzero in odd degrees for G cyclic. Namely, for i ≥ 1
odd, H i(G,M) ∼= ker(tr : M → M)/ im(1 − σ), where G = 〈σ : σm = 1〉 ∼= Z/m
and tr = 1 + σ + · · · + σm−1. For example, for G = Z/2, H1(G,M) is nonzero for
M = F2, or for M = ZG/Z (which is Z with G acting by ±1).

Proof. (Theorem 9.1) Since k contains the mth roots of unity, G has a faithful
representation V of dimension 1. Clearly G acts freely on V − 0, and so we can
apply the following lemma.

Lemma 9.2. Let G be a finite group. Suppose that G has a representation V of
dimension n > 0 over a field k such that G acts freely on V − 0. Let M be a finitely
generated ZG-module. Then multiplication by the Euler class cnV on CH i(BGk,M)
is surjective for i ≥ 0 and an isomorphism for i ≥ 1.

Proof. Use the localization sequence for equivariant Chow groups with coefficients,
applied to the inclusion {0} ⊂ V :

CH i
G({0},M)→ CH i+n

G (V,M)→ CH i+n
G (V − 0,M)→ 0.

By homotopy invariance of twisted Chow groups, the first two groups can be iden-
tified with CH i(BG,M) and CH i+n(BG,M), and the homomorphism is multipli-
cation by the Euler class of V , cnV ∈ CHnBG. Also, the third group in the exact
sequence is CH i+n((V − 0)/G,M), because G acts freely on V − 0. So the exact
sequence says that CH∗((V − 0)/G,M) ∼= CH∗(BG,M)/(cn(V )CH∗(BG,M)).

We have CH i((V −0)/G,M) = 0 for i > n. More subtly, it is also zero for i = n.
By Theorem 8.1, it suffices to show that CH0((V −0)/H) is zero for every subgroup
H of G. The point is that H commutes with the action of the multiplicative group
Gm on V by scalars, and so we have an action of Gm on (V − 0)/H with finite
stabilizer groups. It follows that CH0((V − 0)/H) = 0 [39, Lemma 5.3]. We
conclude that CH i((V − 0)/G,M) = 0 for i ≥ n. Therefore, multiplication by cnV
is surjective on CH i(BGk,M) for i ≥ 0.

To prove the injectivity statement, use the previous term in the localization
sequence. In Rost’s notation:

A1−i((V − 0)/G,M)i

→ AG−i({0},M)i → AG−i(V,M)i → A−i((V − 0)/G,M)i → 0.

The first group is zero for i > 1, and so multiplication by cnV is injective on
CH i(BG,M) for i > 1.

In fact, this injectivity extends to the case i = 1. The point is that the group
A0((V − 0)/G,M)1 may not be zero, but its boundary map to AG−1({0},M)1 is
zero. By definition of equivariant Chow groups, for an approximation U/G to BG
of dimension N , this is identified with the boundary map from AN (((V − 0) ×
U)/G,M)1−N to AN−1(({0} × U)/G,M)1−N . But the inverse image of ((V − 0)×
U)/G of each closed point in (V − 0)/G has closure in (V × U)/G disjoint from
({0} × U)/G, and so the boundary map is zero. Thus multiplication by cnV is
injective on CH i(BG,M) for i ≥ 1 (not just for i > 1). Lemma 9.2 is proved.
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We can now prove Theorem 9.1. By definition, CH i(BGk,M) means CH i(U/G,M)
for any Zariski open subset U of a finite-dimensional representation W of G over k
such that G acts freely on U and W − U has codimension > i in W . In particular,
CH0(BG,M) ∼= CH0(U/G,M) ∼= H0(k(U/G),M) ∼= MG, as we want.

Applying Lemma 9.2 to the 1-dimensional faithful representation V of G shows
that CH∗(BG,M) is generated by CH0(BG,M) = MG as a module over Z[c1V ].
For each positive integer i, let U/G be an approximation to BG as above, and write
f : U → U/G for the covering. Then CH i(BG,M) = CH i(U/G,M) is generated by
c1(V )iMG. Moreover, f∗(c1(V )i) = 0 in CH i(U) = 0, and so 0 = f∗(f

∗(c1(V )i)x) =
c1(V )i tr(x) for every x in CH0(U, f∗M) = M . That is, MG/ tr(M) maps onto
CH i(BG,M) for i > 0.

Let k = C. Then, for i > 0, the surjection MG/ tr(M)→ CH i(BGC,M) must
be an isomorphism, by mapping further to H2i(BG,M). Indeed, it is a standard
calculation in group cohomology that for a cyclic group G, the map MG/ tr(M)→
H2i(BG,M) (given by multiplication by c1(V )i) is an isomorphism for all i > 0.

For a general field k under our assumptions (m invertible in k and k con-
taining the mth roots of unity), let us show that the surjection MG/ tr(M) →
CH i(BGk,M) for i > 0 is also injective. Since both sides commute with direct
limits, we can assume that M is a finitely generated ZG-module. Also, it suffices
to prove this injectivity after replacing k by its separable closure. For i > 0 and
each prime number l dividing m = |G|, it suffices to show that the homomorphism
(MG/ tr(M))(l) → CH i(BGk,M)(l) → H2i

et (BGk,M
∧l(i)) (continuous or pro-étale

cohomology) is injective. By the Hochschild–Serre spectral sequence, using that k
is separably closed, we have H2i

et (BGk,M
∧l(i)) ∼= H2i(G,M∧l⊗Zl(i)) [32, Theorem

III.2.20]. Since G is cyclic, this is isomorphic to (MG/ tr(M))(l), as we want.

10 Twisted Chow groups in codimension 1

We now show that the codimension-1 Chow group with any twist injects into étale
motivic cohomology. This fails in higher codimension, even for CH2(X,Z/r) =
CH2(X)/r (for example, see [35, 40]). It also fails for twisted motivic cohomology
in codimension 1 (Theorem 14.1).

Theorem 10.1. Let X be a smooth scheme of finite type over a field k. Let M
be a locally constant étale sheaf on X. Assume that the exponential characteristic
of k acts invertibly on M . Then the cycle map CH i(X,M) → H2i

et (X,M(i)) is an
isomorphism for i = 0 and injective for i = 1.

Proof. We can assume that X is connected, hence irreducible. By definition, we
have CH0(X,M) ∼= H0(k(X),M) ∼= H0

et(X,M), as we want. (This follows from
the fact that X is normal [36, Tag 0BQI].) Next, let y be an element of CH1(X,M)
that maps to zero in H2

et(X,M(1)). Then y is represented by finitely many distinct
irreducible divisors D1, . . . , Ds on X together with an element of H0(k(Dj),M)
for j = 1, . . . , s. Let S be the singular locus of D := D1 ∪ · · · ∪ Ds; then S has
codimension at least 2 in X. Clearly y maps to zero in H2

et(X − S,M(1)), and we
want to show that y is zero in CH1(X,M) ∼= CH1(X−S,M). Thus, we can replace
X by X − S; then D1, . . . , Ds are regular and disjoint in X. Let D be the union of
D1, . . . , Ds.
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Consider the commutative diagram, with top row exact:

H1
et(X −D,M(1)) //

��

⊕jH0
et(Dj ,M) //

∼=
��

H2
et(X,M(1))

H1(k(X),M(1)) // ⊕jH0(k(Dj),M)

Then y in ⊕jH0(k(Dj),M) comes from an element of ⊕jH0(Dj ,M) that maps to
zero in H2

et(X,M(1)). By the top row, that element is in the image of H1
et(X −

D,M(1)), and so y is in the image ofH1
et(k(X),M(1)). That is, y = 0 in CH1(X,M),

as we want.

Corollary 10.2. (1) Let G be a finite group and M a ZG-module. Then

CH1(BGC,M)→ H2(BGC,M) = H2(G,M)

is injective.
(2) Let G be a finite group, k a field, M a finitely generated ZG-module, and l a

prime number invertible in k. Then the kernel of CH1(BGk,M)→ H2
et(BGk,M

∧l(i))
(continuous or pro-étale cohomology) is torsion of order prime to l.

Proof. In proving (1), we write BG for BGC. Let y be an element of CH1(BG,M)
that maps to zero in H2(BG,M) (cohomology for the classical topology); we want
to show that y is zero. Since both sides commute with direct limits, we can assume
that M is a finitely generated ZG-module. Since y maps to zero in H2(BG,M), it
maps to zero in H2(BG,M/nM) ∼= H2

et(BG, (M/nM)(1)) for every positive integer
n. By the exact sequence

H2
et(BG,nM(1))→ H2

et(BG,M(1))→ H2
et(BG, (M/nM)(1)),

the class of y in H2
et(BG,M(1)) is in the image of H2

et(BG,nM(1)) for every positive
integer n. If M is Z-torsion-free, this means that y in H2

et(BG,M(1)) is divisible.
Next, observe that H2

et(EG,M(1)) ∼= H2
et(C,M(1)) = 0, since C is separably closed

and M(1) = M ⊗LZ Gm is in cohomological degrees [−1, 0]. By pullback and push-
forward for EG→ BG, it follows that H2

et(BG,M(1)) is killed by |G|. In the case
where M is Z-torsion-free, it follows that y is zero in H2

et(BG,M(1)). By Theorem
10.1, y is zero in CH1(BG,M), as we want.

In general, we have arranged that M is a finitely generated ZG-module, possibly
with torsion. The previous argument shows that y in H2

et(BG,M(1)) is in the image
of H2

et(BG,nM(1)) for every positive integer n. Let a be the order of the torsion
subgroup of M . Then aM is a Z-torsion-free ZG-submodule of M . We know
that y in H2

et(BG,M(1)) is in the image of H2
et(BG,naM(1)) for every positive

integer n. Therefore, y in H2
et(BG,M(1)) is in the image of n times an element of

H2
et(BG, aM(1)), and so y is a multiple of n in H2

et(BG,M(1)). The latter group
is killed by |G|, and so (taking n = |G|) it follows that y is zero in H2

et(BG,M(1)).
By Theorem 10.1, y is zero in CH1(BG,M), as we want.

For an arbitrary field k, essentially the same argument proves (2). Here we as-
sume that M is a finitely generated ZG-module. We can replace M by M [1/e] with-
out changing what we are trying to prove, where e is the exponential characteristic
of k. Let y be an element of CH1(BGk,M) that maps to zero in H2

et(BGk,M
∧l(1)).
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Then y maps to zero in H2
et(BGk, (M/lrM)(1)) for every positive integer r. If M

is Z-torsion-free, it follows as above that y is l-divisible in H2
et(BGk,M(1)).

By homotopy invariance for étale motivic cohomology (using that e acts invert-
ibly on M), the composition

H2
et(k,M(1))→ H2

et(BGk,M(1))→ H2
et(EGk,M(1))

is an isomorphism. Moreover, y pulls back to zero in CH1(EGk,M) = 0, hence in
H2

et(EGk,M(1)). That is, y is in the summand ker(H2
et(BGk,M(1))→ H2

et(EGk,M(1))),
and so y is l-divisible in this summand. This summand is killed by |G|, by pullback
and pushforward. So y in H2

et(BGk,M(1)) is killed by a positive integer N prime
to l. By Theorem 10.1, it follows that y in CH1(BGk,M) is killed by the posi-
tive integer N prime to l. The extra argument when M has torsion works without
change.

11 The generalized quaternion groups

The generalized quaternion group Q2m of order 2m with m ≥ 3 plays a special
role in finite group theory, as these are the only non-cyclic p-groups of p-rank 1 [1,
Proposition IV.6.6]. We now compute the Chow groups of the generalized quater-
nion groups with arbitrary coefficients. The answer is periodic, similar to group
cohomology but not identical. Here

Q2m = 〈x, y : x2m−1
= 1, y2 = x2m−2

, yxy−1 = x−1〉.

Theorem 11.1. Let G be the generalized quaternion group Q2m of order 2m, m ≥ 3,
and let M be a finitely generated ZG-module. Let k be a field of characteristic not
2 that contains the 2m−1st roots of unity. Then CH0(BGk,M) ∼= MG,

CH i(BGk,M) ∼= im
(
M 〈x〉 ⊗Z CH

1B〈x〉
⊕M 〈y〉 ⊗Z CH

1B〈y〉 ⊕M 〈xy〉 ⊗Z CH
1B〈xy〉 → H2

et(BGk,M
∧2(1))

)
if i is odd and i > 0, and

CH i(BGk,M) ∼= MG/ tr(M)

if i is even and i > 0, where the trace tr is
∑

g∈G g. Here 〈x〉 ∼= Z/2m−1, 〈y〉 ∼= Z/4,

and 〈xy〉 ∼= Z/4. The homomorphism in the formula for CH1(BGk,M) is the
sum of the transfers from these three subgroups to G, followed by the cycle map to
cohomology. Finally, for k = C, we can equivalently describe CH1(BGC,M) as the
image of the groups above in cohomology for the classical topology, H2(BG,M) =
H2(G,M).

Thus the cycle map CH i(BGC,M)→ H2i(BG,M) is injective for a generalized
quaternion groupG. It is surjective for i even, but not always for i odd. For example,
for the quaternion group G = Q8, CH1(BG,M) is always killed by 4, because it is
transferred from the subgroups of order 4 in G, whereas the ZG-module M := Ω2Z
has H2(G,M) ∼= Z/8. (By definition, for a ZG-module M , the syzygy module ΩM
denotes the kernel of any chosen surjection from a projective ZG-module to M .
Then, in terms of Tate cohomology, Ĥ i(G,ΩM) ∼= Ĥ i−1(G,M) for all integers i [4,
section VI.5.4].)
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Proof. (Theorem 11.1) The assumption on k ensures that G = Q2m has a faithful
representation V of dimension 2 over k. (Namely, G has a cyclic subgroup H of
index 2. Let L be a faithful 1-dimensional representation of H over k; then we can
take V to be the induced representation IndGH L.) Here G acts freely on V − 0.

Let M be a finitely generated ZG-module. By Lemma 9.2, CH∗(BGk,M) is
generated by elements of degree less than 2 as a module over Z[c2V ] in CH∗BG. By
definition, CH0(BG,M) is isomorphic to the G-fixed subgroup MG. For any finite
group H and any field k, the first Chern class gives an isomorphism Hom(H, k∗) ∼=
CH1BHk [39, Lemma 2.26]. So, for G = Q2m , CH1BG ∼= (Z/2)2.

The main issue is to compute CH1(BG,M). As a first step, let us show that
CH1BG ∼= (Z/2)2 is generated by transfers from the subgroups 〈x〉 ∼= Z/2m−1 and
〈y〉 ∼= Z/4. Let u be a generator of CH1B〈x〉 and v a generator of CH1B〈y〉. The
double coset formula describes the restriction of a transfer in the Chow ring, as in
group cohomology [39, Lemma 2.15]. We find that

resG〈x〉 tr
G
〈x〉 u = u+ y(u) = u− u = 0,

while

resG〈y〉 tr
G
〈x〉 u = tr

〈y〉
〈y2〉 res

〈x〉
〈x2m−2 〉

u

= tr
〈y〉
〈y2〉(generator of CH1B〈y2〉)

6= 0 ∈ CH1B〈y〉 ∼= Z/4.

It follows that trG〈x〉 u is the nonzero element of CH1BG ∼= (Z/2)2 whose restriction

to 〈x〉 is zero. Next,

resG〈x〉 tr
G
〈y〉 v = tr

〈x〉
〈x2m−2 〉

res
〈y〉
〈y2〉 v

= tr
〈x〉
〈x2m−2 〉

(generator of CH1B〈x2m−2〉)

6= 0 ∈ CH1B〈x〉 ∼= Z/2m−1.

So trG〈y〉 v in CH1BG ∼= (Z/2)2 has nonzero restriction to 〈x〉. It follows that

CH1BG is generated by trG〈x〉 u and trG〈y〉 v.

By the projection formula, it follows that the image of the product map MG ⊗
CH1BG→ CH1(BG,M) is contained in the sum of the images of the transfers from
CH1(B〈x〉,M) and CH1(B〈y〉,M). By Theorem 8.1, it follows that CH1(BG,M)
is generated by transfers from the three maximal subgroups of G, H1 := 〈x〉,
H2 := 〈x2, y〉, and H3 := 〈x2, xy〉. Moreover, by Corollary 10.2, CH1(BG,M) is
isomorphic to the sum of the images of these three transfers in H2

et(BGk,M
∧2(1)),

or (when k = C) in H2(BG,M) ∼= H2(G,M). For m = 3, the three subgroups Hi

are isomorphic to Z/4, and so Theorem 9.1 gives that CH1(BHj ,M) is generated
by MHj ⊗Z CH

1BHj for j = 1, 2, 3. That gives the description of CH1(BG,M) in
the theorem, for m = 3.

Form ≥ 4, we prove the description of CH1(BG,M) in the theorem by induction
on m. Here H1 is isomorphic to Z/2m−1, while H2 and H3 are isomorphic to Q2m−1 .
We know that CH1(BH1,M) is generated by the image of MH1 ⊗Z CH

1BH1, by
Theorem 9.1. By induction on m, CH1(BH2,M) is generated by transfers from
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〈x2〉 ∼= Z/2m−2, 〈y〉 ∼= Z/4, and 〈x2y〉 ∼= Z/4. Likewise, CH1(BH3,M) is generated
by transfers from 〈x2〉 ∼= Z/2m−2, 〈xy〉 ∼= Z/4, and 〈x3y〉 ∼= Z/4. So CH1(BG,M) is
generated by transfers from 〈x〉, 〈y〉, 〈xy〉, 〈x2y〉, and 〈x3y〉. However, xyx−1 = x2y,
and so the subgroup 〈y〉 is conjugate to 〈x2y〉, and likewise 〈xy〉 is conjugate to 〈x3y〉.
Therefore, CH1(BG,M) is generated by transfers from 〈x〉, 〈y〉, and 〈xy〉. That
completes the induction, computing CH1(BG,M).

Recall that G = Q2m has a representation V of dimension 2 over k such that G
acts freely on V − 0. By Theorem 9.2, multiplication by (c2V )i is an isomorphism
from CH1(BGk,M) to CH2i+1(BGk,M) for i ≥ 0, as we want. Also, multipli-
cation by (c2V )i is surjective from CH0(BGk,M) = MG to CH2i(BGk,M) for
i > 0. Since c2V restricts to zero in CH2 of the trivial group, trG1 (M)(c2V )i is zero
in CH2i(BG,M) for i > 0; so CH2i(BG,M) is generated by (MG/ tr(M))(c2V )i

for i > 0. Since G has periodic cohomology with period 4, with periodicity gen-
erated by c2V , we have H4i

et (BGks ,M
∧2(2i)) ∼= MG/ tr(M) for all i ≥ 1 and

H2i+2
et (BGks ,M

∧2(i + 1)) ∼= H2
et(BG,M

∧2(1)) for all i ≥ 0 [4, Theorem VI.9.1].
Via the cycle map to these cohomology groups over the separable closure ks, it fol-
lows that CH2i(BG,M) is isomorphic to MG/ tr(M) for all i ≥ 1, as we want.

12 Bounds on equivariant Chow groups with coefficients

Using Theorem 8.1, some earlier bounds on the degrees of equivariant Chow groups
generalize to arbitrary coefficient modules.

Theorem 12.1. (1) Let G be a finite group with a faithful representation V of
dimension n over a field k with |G| invertible in k. Let M be a ZG-module. Then
CH∗(BGk,M) is generated by elements of at most n(n− 1)/2 as a module over the
Chern classes Z[c1V, . . . , cnV ] in CH∗BGk.

(2) Under the same assumptions, let x1, . . . , xm be homogeneous elements of
positive degree in CH∗BGk such that c1V, . . . , cnV are in the subring of CH∗BGk
generated by x1, . . . , xm. Then CH∗(BGk,M) is generated by elements of degree at
most

∑
(|xi| − 1) as a module over Z[x1, . . . , xm].

(3) Suppose in addition that G acts on a smooth scheme X of finite type over
k. Then CH∗G(X,M) is generated by elements of degree at most dim(X) + n2 as a
module over Z[c1V, . . . , cnV ].

Remark 12.2. Theorem 12.1 marks a strong contrast between Chow groups with
coefficients and cohomology with coefficients. For a finite group G with a faithful
complex representation V of dimension n, Symonds showed that H∗(G,Fp) is gen-
erated by elements of degree at most n2 as a module over Fp[c1V, . . . , cnV ] [37],
[39, Corollary 4.3]. But unlike what happens for twisted Chow groups, there is
no uniform bound for the degrees of module generators of H∗(G,M) for all FpG-
modules M . For example, for G = Z/2 × Z/2 and an F2G-module M , define the
syzygy module ΩM as the kernel of the surjection from a projective cover of M to
M . Then, for m ≥ 0 and M = ΩmF2, H∗(G,M) needs a generator of degree m
as a module over H∗(G,F2), by Benson and Carlson’s results on products in Tate
cohomology [3, Lemma 2.1 and Theorem 3.1]. See the proof of Theorem 13.1 for
more details.
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Proof. (Theorem 12.1) Statement (1) is known for M = Z [39, Theorem 5.2]. (More-
over, the bound n(n − 1)/2 is optimal [39, section 5.2].) The same statement ap-
plies to all subgroups H of G, as modules over the same ring Z[c1V, . . . , cnV ]. The
transfer from CH i(BH,M) to CH i(BG,M) is linear over CH∗BG, hence over
Z[c1V, . . . , cnV ]. Therefore, Theorem 8.1 gives that CH∗(BG,M) is generated by
elements of at most n(n− 1)/2 as a module over Z[c1V, . . . , cnV ].

For statement (2), observe that CH i(BGk,M) is killed by the order of G for
i > 0, by pullback and pushforward along EGk → BGk. Therefore, it suffices to
prove the desired bounds for generators of CH∗(BGk,M)/l for each prime number
l. Use that for each finite group G, the graded ring CH∗(BG)/l has Castelnuovo–
Mumford regularity at most 0 [39, Theorem 6.5]. Under the assumptions of (2), it
follows that CH∗(BG)/l is generated by elements of degree at most

∑
(|xi| − 1) as

a module over Fl[x1, . . . , xm] [39, Lemma 3.10, Theorem 3.14]. The same bound
applies to every subgroup of G. As in part (1), it follows that CH∗(BG,M)/l is
generated by elements of degree at most

∑
(|xi|−1) as a module over Fl[x1, . . . , xm].

Likewise, statement (3) is known for M = Z [39, Lemma 6.3]. By Theorem 8.1,
the same bound holds for any ZG-module M .

Thus we have strong bounds for generators of the twisted Chow groups of a finite
group, stronger than what is true for cohomology. We may ask the same question
about relations.

Question 12.3. Let G be a finite group, with a faithful complex representation V
of dimension n. By Theorem 12.1, CH∗(BGC,M) is generated in degrees at most
n(n − 1)/2 as a module over Z[c1V, . . . , cnV ], for all ZG-modules M . Is there also
a bound for the degrees of relations in CH∗(BGC,M) that depends only on G?

One natural approach fails: the Castelnuovo–Mumford regularity of CH∗(BG,M)
can be arbitrarily large, for a fixed group G (Remark 13.3).

13 The group Z/2× Z/2

We now compute the Chow groups of G = Z/2×Z/2 with coefficients in any F2G-
module. Here Z/2×Z/2 is the simplest finite group with p-rank greater than 1, and
hence with non-periodic cohomology. The calculations show some new phenomena
(Remarks 13.2 and 13.3, and Theorem 14.1). To understand the statement, note
that for any field k of characteristic not 2, CH∗BGk is isomorphic to Z[u, v]/(2u, 2v),
where u and v are first Chern classes of 1-dimensional representations of G [39,
Theorem 2.10 and Lemma 2.12].

Theorem 13.1. Let G = Z/2 × Z/2, and let M be an F2G-module. Let k be a
separably closed field of characteristic not 2. Then

CH∗(BGk,M) ∼= im(MG ⊗Z CH
∗BGk → H∗(BG,M)).

Proof. First let k = C. It suffices to show two statements: the product map

MG ⊗ CH∗BG = CH0(BG,M)⊗ CH∗BG→ CH∗(BG,M)

is surjective, and CH∗(BG,M) injects into H∗(BG,M) = H∗(G,M) (using the
classical topology). Let F be an algebraic closure of F2. Replacing M by M ⊗F2 F
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changes all these groups by tensoring up to F . Therefore, it suffices to prove both
statements for M ⊗F2 F . That is, we can assume from now on that M is an FG-
module.

Write G = 〈g, h : g2 = 1, h2 = 1, gh = hg〉. Let L1 and L2 be the 1-dimensional
representations of G over k given by g 7→ −1, h 7→ 1 (for L1) and g 7→ 1, h 7→ −1
(for L2). Let u = c1L1 and v = c1L2 in CH1BG; then CH∗BG = Z[u, v]/(2u, 2v).
The representation L1⊕L2 of G is faithful, and its Chern classes are polynomials in
u and v. By Theorem 12.1(2), it follows that CH∗(BG,M) is generated by elements
of degree 0 as a module over CH∗BG. That is, the product map

MG ⊗ CH∗BG→ CH∗(BG,M)

is surjective.
For later use, the cohomology ring of G is the polynomial ring H∗(BG,F ) ∼=

F [x, y] with |x| = |y| = 1. We can choose the generators so that the cycle map
CH∗(BG)⊗ F → H∗(BG,F ) takes u to x2 and v to y2.

It remains to show that CH∗(BG,M)→ H∗(BG,M) is injective. These groups
commute with direct limits of FG-modules; so we can assume that M is an FG-
module of finite dimension over F . Using direct sums, we can also assume that M is
indecomposable. Then we can use the classification of indecomposable FG-modules,
as follows [2, v. 1, Theorem 4.3.3]. For a finite-dimensional FG-module M , define
the syzygy module ΩM as the kernel of the surjection from a projective cover of
M to M ; then ΩM is well-defined up to isomorphism. (Likewise, define the shift
Ω−1M as the cokernel of the inclusion from M to its injective hull.) Each element
f of Hn(G,F ) with n > 0 is represented by a map ΩnF → F of FG-modules; for
f 6= 0, define Lf to be the kernel. Then, for G = Z/2×Z/2, every indecomposable
FG-module is isomorphic to either FG, ΩnF for some n ∈ Z, or Lζn for some n > 0
and some nonzero ζ ∈ H1(G,F ). Here ζ only matters up to scalars, and so the
last type of module is determined (up to isomorphism) by n > 0 and a point in
P(H1(G,F )) ∼= P1(F ). Here ΩnF has dimension 2|n| + 1 and Lζn has dimension
2n.

In each case, we use that CH0(BG,M) = H0(BG,M) = MG and CH1(BG,M)→
H2(BG,M) is injective (Corollary 10.2). First, let M = FG. Then H2(G,M) = 0,
and so CH1(BG,M) = 0. Since MG⊗FCH∗BG→ CH∗(BG,M) is surjective (and
CH∗(BG)⊗F = F [u, v] is generated in degree 1), it follows that CH i(BG,M) = 0
for i > 0. Thus CH∗(BG,M)→ H∗(BG,M) is injective.

It will be useful to recall the description of Tate cohomology for finite groups
[4, section VI.4]: Ĥj(G,M) is isomorphic to Hj(G,M) if j > 0, to H−1−j(G,M)

if j < −1, and Ĥ−1(G,M) and Ĥ0(G,M) are the kernel and cokernel of the trace
map:

0→ Ĥ−1(G,M)→MG −→
tr
MG → Ĥ0(G,M)→ 0.

For each indecomposable FG-module other than FG, I claim that the trace map
tr : M → M is zero. (This holds more generally for any p-group.) If not, let x be
an element of M with tr(x) 6= 0. Then there is an FG-linear map f : FG → M
that takes 1 to x, and hence tr(1) to tr(x) 6= 0. But tr(1) in FG spans the socle,
(FG)G ∼= F . It follows that f is injective. Since the FG-module FG is injective
as well as projective [2, Proposition 3.1.10], it follows that M contains FG as a
summand. Thus, for M indecomposable and not isomorphic to FG, the trace is
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zero on M . Equivalently, MG = H0(G,M) maps isomorphically to Ĥ0(G,M).
This is relevant because we have more direct access to Ĥ0(G,M) in the following
calculations, and hence we can read off MG.

Next, let M = F . We have H∗(BG,F ) ∼= F [x, y], and CH∗(BG)→ H∗(BG,F )
sends u 7→ x2 and v 7→ y2. It follows that CH∗(BG,M) = F [u, v] injects into
H∗(BG,F ), as we want.

Next, let M = Ω−mF with m > 0. Then Ĥ i(G,M) ∼= Ĥ i+m(G,F ) ∼= F i+m+1

for i ≥ 0. In particular, CH1(BG,M) is the image of MG⊗CH1BG in H2(BG,M),
thus the image of F{xm, xm−1y, . . . , ym}⊗F F{x2, y2}, which is all of H2(BG,M) ∼=
F{xm+2, xm+1y, . . . , ym+2}. Therefore, CH∗(BG,M) is a quotient of the F [u, v]-
module F [u, v]{e0, . . . , em}/(uei+2 − vei) for 0 ≤ i ≤ m − 2, where ei maps to
xm−iyi in MG/ tr(M). But we compute that this F [u, v]-module maps isomor-
phically to Hev(BG,M) (that is, to the subspace of F [x, y] spanned by homoge-
neous polynomials of degree at least m and congruent to m modulo 2). Therefore,
CH∗(BG,M)→ Hev(BG,M) is an isomorphism (hence injective, as we want).

Next, let M = ΩmF with m > 0. Then Ĥ i(G,M) ∼= Ĥ i−m(G,F ). These vector
spaces decrease from dimension m (when i = 0) to dimension 1 (when i is m − 1
or m) and then increase again, by the description of Tate cohomology above. For
i ≥ 0 and j < −i, the product Ĥ i(G,F )×Ĥj(G,F )→ Ĥ i+j(G,F ) can be identified
with the cap product of cohomology with homology (which is dual to the product
on cohomology in positive degrees, hence usually nonzero). On the other hand,
products from negative degree into nonnegative degree are zero. Namely, Benson
and Carlson showed that for i > 0 and −i ≤ j < 0, for G = Z/2×Z/2 (as for many
other groups of p-rank at least 2), the product Ĥ i(G,F )× Ĥj(G,F )→ Ĥ i+j(G,F )
is zero [3, Lemma 2.1 and Theorem 3.1].

For m = 1 (that is, M = ΩF ), it follows that the image of the product map
MG ⊗ CH1BG → H2(BG,M) is zero, and hence CH1(BG,M) = 0. Since MG ⊗
CH∗BG → CH∗(BG,M) is surjective (and CH∗BG is generated in degree 1), it
follows that CH i(BG,M) = 0 for all i > 0. Thus CH∗(BG,M) → H∗(BG,M) is
injective, as we want.

For m > 1, let R = CH∗(BG) ⊗ F = F [u, v]. Then in degrees at most 1,
CH∗(BG,M) agrees with theR-moduleN := R{e0, . . . , em−1}/(uei+2 = vei for 0 ≤
i ≤ m− 3, ue0 = 0, ue1 = 0, vem−2 = 0, vem−1 = 0), using that CH1(BG,M) is the
image of MG ⊗ CH1BG→ H2(BG,M). Since MG ⊗ CH∗BG→ CH∗(BG,M) is
surjective in all degrees, we have a surjection of R-modules from N to CH∗(BG,M).
But we compute that N i maps isomorphically to H2i(BG,M) for 0 ≤ i < m/2, and
N is zero in higher degrees. In particular, N injects into H∗(BG,M). Therefore, N
maps isomorphically to CH∗(BG,M), and CH∗(BG,M) injects into H∗(BG,M)
as we want.

Finally, let M be the FG-module Lζn , for a positive integer n and a nonzero
element ζ in H1(BG,F ) = F{x, y}. Choose one of x or y which is linearly inde-
pendent of ζ, say x (without loss of generality). Then Ĥ∗(G,M) is periodic with
period 1; namely, multiplication by x is an isomorphism on this F [x, y]-module [2,
v. 1, Corollary 5.10.7].

To describe the cohomology of M = Lζn in more detail: by the exact sequence

0→M → ΩnF → F → 0,

we have H i+1(G,M) ∼= H i(G,F )/ζnH i−n(G,F ) for i ≥ n − 1. (This uses that ζn
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is a non-zero-divisor in H∗(G,F ) = F [x, y].) Since ζ is linearly independent of x,
we can also view H∗(G,F ) as the polynomial ring F [x, ζ]. Using the periodicity
of Ĥ∗(G,M), let us identify MG = Ĥ0(G,M) with Hn(G,M) ∼= Hn−1(G,F ). As
such, MG has a basis ei = xn−1−iζi with 0 ≤ i ≤ n − 1. Let w = ζ2; then
CH∗(BG) ⊗ F = F [u,w]. Then CH1(BG,M) ∼= im(MG ⊗F (CH1(BG) ⊗ F ) →
H2(BG,M)) is spanned by uei and wei for 0 ≤ i ≤ n − 1, modulo the relations
uei+2 = wei for 0 ≤ i ≤ n− 3, wen−2 = 0, and wen−1 = 0.

Let R = CH∗(BG)⊗F = F [u,w]. SinceMG⊗FR→ CH∗(BG,M) is surjective,
CH∗(BG,M) is a quotient of the graded R-module

N := R{e0, . . . , en−1}/(uei+2 = wei for 0 ≤ i ≤ n− 3, wen−2 = 0, wen−1 = 0).

But we compute that this module N maps isomorphically to Hev(BG,M), viewed as
the part of F [x, ζ]/(ζn) in degrees at least n−1. Therefore, N maps isomorphically
to CH∗(BG,M), and CH∗(BG,M) maps isomorphically to Hev(BG,M), hence
injectively, as we want.

That completes the proof for k = C. More generally, let k be a separably
closed field of characteristic not 2. Then the Hochschild–Serre spectral sequence for
EGk → BGk shows that H∗et(BGk,M) is isomorphic to H∗(G,M), for every F2G-
module M [32, Theorem III.2.20]. Also, Theorem 10.1 shows that CH1(BGk,M)→
H2

et(BGk,M(1)) is injective. (The twist here is irrelevant, since the étale sheaf µ2

is canonically isomorphic to Z/2 over k.) Given that, the arguments over C work
without change over k.

Remark 13.2. For the groupG = Z/2×Z/2, Theorem 13.1 shows that CH∗(BGC,M)
maps injectively to H∗(BG,M), for all F2G-modules M . But for some modules M ,
this map is far from an isomorphism. In particular, for m > 0, we have shown that
CH∗(BG,ΩmF2) is zero in degrees at least m/2, whereas H∗(BG,ΩmF2) contains
H∗(BG,F2) = F2[x, y] (shifted in degree) as a submodule. Thus the “support va-
riety” of H∗(BG,M) is all of SpecH∗(BG,F2) = A2

F2
, while the support variety of

CH∗(BG,M) is only the origin in SpecCH∗(BG)/2 = A2
F2

.

Remark 13.3. For a finite group G and a prime number p, the Castelnuovo–Mumford
regularity of CH∗(BGC)/p is at most zero [39, Theorem 6.5]. In terms of a faithful
representation V of G over C, with n := dim(V ), this regularity bound amounts
to an upper bound for the degrees of generators, relations, relations between re-
lations, and so on, for CH∗(BGC)/p as a graded module over the Chern classes
Fp[c1V, . . . , cnV ].

We have seen that there is a bound for the degrees of generators of CH∗(BGC,M)
as a module over Fp[c1V, . . . , cnV ] for all FpG-modules M , depending only on G
(Theorem 12.1). However, the regularity of CH∗(BGC,M) does not have such a
bound. Take G = Z/2 × Z/2 and M = ΩmF2 for m ≥ 2. Let R = CH∗(BG)/2 =
F2[u, v]. By the properties of regularity, CH∗(BG,M) has the same regularity over
R as over the Chern classes of a faithful representation [39, Lemma 3.10].

By the calculation of CH∗(BG,M) in the proof of Theorem 13.1 plus the Hilbert
syzygy theorem [13, Corollary 19.7], CH∗(BG,M) has a graded free resolution over
R of the form

0→ R⊕2 → R⊕m+2 → R⊕m → CH∗(BG,M)→ 0.
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Here the generators of R⊕m are in degree 0, and the generators of R⊕m+2 (corre-
sponding to the relations in CH∗(BG,M)) are in degree 1. From the Hilbert series
of CH∗(BG,M), we compute that the module of “relations between relations” R⊕2

has generators in degrees b(m + 2)/2c and b(m + 3)/2c. Therefore, CH∗(BG,M)
has Castelnuovo–Mumford regularity b(m+ 3)/2c − 2 = b(m− 1)/2c [39, Theorem
3.14]. In particular, the regularity of CH∗(BG,M) cannot be bounded in terms of
G.

14 Twisted Chow groups vs. twisted motivic cohomol-
ogy

We now show that the surjection from twisted motivic cohomology H2i
M(X,M(i))

to twisted Chow groups CH i(X,M) is not always an isomorphism. As a result, one
might think that the definition of twisted Chow groups from section 1 is “wrong”,
and that the definition should be changed to agree with twisted motivic cohomology.
Given the good properties of twisted Chow groups from section 1, however, I believe
that twisted Chow groups are worth studying. They form a nontrivial intermediary
between twisted motivic cohomology and twisted étale cohomology. An advantage
of twisted Chow groups is that CH1(X,M) injects into étale motivic cohomology
H2

et(X,M(1)), whereas (as we will see) H2
M(X,M(1)) does not always inject into

H2
et(X,M(1)).

Theorem 14.1. (1) There is a smooth complex variety X with a locally constant
étale sheaf M such that the maps

H2
M(X,M(1))→ H2

et(X,M(1))

and
H2

M(X,M(1))→ CH1(X,M)

are not injective.
(2) There is a short exact sequence 0 → A → B → C → 0 of locally constant

étale sheaves on X such that A is coflasque but the sequence

CH1(X,A)→ CH1(X,B)→ CH1(X,C)

is not exact.

Proof. Let k = C. The idea is to compare twisted Chow groups with twisted motivic
cohomology for BGk with G = Z/2× Z/2 = 〈g, h : g2 = 1, h2 = 1, gh = hg〉. (This
is the smallest group G that has a coflasque ZG-lattice that is not invertible. That
is relevant because of Theorem 3.1.) We can take the smooth variety X to be U/G
for any open subset U of a representation V of G over k such that G acts freely on
U and V − U has codimension at least 2 in V .

Let M be the G-module Ω−mF2 with m ≥ 2. Then M is the vector space
(F2)2m+1 with basis e1, . . . , e2m+1, and G acts by: g(ei) = ei for 1 ≤ i ≤ m + 1,
g(em+1+i) = ei + em+1+i for 1 ≤ i ≤ m, h(ei) = ei for 1 ≤ i ≤ m + 1, and
h(em+1+i) = ei+1 + em+1+i for 1 ≤ i ≤ m [2, v. 1, Theorem 4.3.3].

Then MG is spanned by e1, . . . , em+1. Let H1 = 〈g〉, H2 = 〈h〉, and H3 =
〈gh〉 be the subgroups of order 2 in G. For a = 1, 2, 3, the subspace MHa is also
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spanned by e1, . . . , em+1. Define a ZG-linear map from the permutation module
B := (ZG)m⊕Zm+1 to M , sending the ZG-module generators of B by: fi 7→ em+1+i

for 1 ≤ i ≤ m and fm+i 7→ ei for 1 ≤ i ≤ m+ 1. Then BH → MH is surjective for
every subgroup H of G, and so the kernel A is a coflasque ZG-lattice.

A Z-basis for A ∼= Z5m+1 is given by the elements si = 2fi for 1 ≤ i ≤ 2m+ 1,
s2m+1+i = gfi−fi−fm+i for 1 ≤ i ≤ m, s3m+1+i = hfi−fi−fm+1+i for 1 ≤ i ≤ m,
and s4m+1+i = ghfi − fi − fm+i − fm+1+i for 1 ≤ i ≤ m. Here AG has rank 2m+ 1
and AHa has rank 3m+1 for a = 1, 2, 3. In more detail, a Z-basis for AG is given by
sm+1, . . . , s2m+1, and 2si + s2m+1+i + s3m+1+i + s4m+1+i for 1 ≤ i ≤ m. A Z-basis
for AH1 is given by the basis for AG together with si + s2m+1+i for 1 ≤ i ≤ m. For
AH2 , we have the basis for AG together with si + s3m+1+i for 1 ≤ i ≤ m, and for
AH3 we have the basis for AG together with si + s4m+1+i for 1 ≤ i ≤ m,

Define a ZG-linear map from P := ⊕3
a=1Z[G/Ha]

⊕m to A, sending the ZG-
module generators to si + s2m+1+i, si + s3m+1+i, and si + s4m+1+i. We read off
that PH → AH is surjective for every subgroup H of G. Therefore, the kernel of
P → A is coflasque. By Lemma 4.1, it follows that H2i

M(BG,P (i))→ H2i
M(BG,A(i))

is surjective. Using that lemma again for the coflasque resolution 0 → A → B →
Ω−mF2 → 0, we find that

H2i
M(BG,P (i))→ H2i

M(BG,B(i))→ H2i
M(BG,Ω−mF2(i))→ 0

is exact.
Since P and B are permutation modules, we can rewrite this exact sequence as

⊕3
a=1CH

i(BHa)
⊕m → CH i(Spec k)⊕m⊕CH i(BG)⊕m+1 → H2i

M(BG,Ω−mF2(i))→ 0.

For i > 0, we have CH i(Spec k) = 0, and the maps from CH iBHa to CH iBG
are multiples of the transfer map. But transfer from CH iBHa to CH iBG is zero
for i > 0, using that these groups are killed by 2 and restriction from CH iBG to
CH iBHa is surjective. Therefore, we have an isomorphism

CH i(BG)⊕m+1 ∼= H2i
M(BG,Ω−mF2(i))

for i > 0. (By inspection, this also holds for i = 0.)
In particular, H2

M(BG,Ω−mF2(1)) ∼= (F2)2m+2. By Theorem 13.1, we have
CH1(BG,Ω−mF2) ∼= (F2)m+3. Thus, for m ≥ 2, the surjection

H2
M(BG,Ω−mF2(1))→ CH1(BG,Ω−mF2)

from Corollary 4.5 is not injective. The map

H2
M(BG,Ω−mF2(1))→ H2

et(BG,Ω
−mF2(1))

factors through CH1(BG,Ω−mF2), and so it is also not injective. We have now
proved two parts of the theorem.

It remains to show that the sequence CH1(X,A)→ CH1(X,B)→ CH1(X,Ω−mF2)
is not exact, even though A is coflasque. Because the surjection P → A has coflasque
kernel, we know that CH1(X,P ) → CH1(X,A) is surjective (Theorem 3.1). So it
is equivalent to show that CH1(X,P ) → CH1(X,B) → CH1(X,Ω−mF2) is not
exact. Since P and B are permutation modules, we have to show that the sequence

⊕3
a=1CH

1(BHa)
⊕m → CH1(Spec k)⊕m⊕CH1(BG)⊕m+1 → CH1(BG,Ω−mF2)→ 0.
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The first map is a linear combination of transfers from the subgroups Ha to G,
and so it is zero, as shown above. Therefore, we want to show that CH1(BG)⊕m+1 →
CH1(BG,Ω−mF2) is not an isomorphism. The first group is isomorphic to (F2)2m+2

and the second is (F2)m+3. Since m ≥ 2, this is not an isomorphism. The third
part of the theorem is proved.

Remark 14.2. Let us compare the advantages of twisted Chow groups CH i(X,E)
and twisted motivic cohomology H2i

M(X,E(i)). Assume here that E is a locally
constant étale sheaf on a smooth variety X over a field k.

(1) When E is the constant sheaf corresponding to an abelian group, both
theories agree with the usual Chow groups, CH i(X)⊗Z E.

(2) Twisted motivic cohomology has a long exact sequence associated to a
short exact sequence of locally constant étale sheaves 0 → A → B → C → 0
if A is coflasque (Lemma 4.1). For twisted Chow groups, we can only say that
CH i(X,A) → CH i(X,B) → CH i(X,C) is exact if A is invertible (Theorems 3.1
and 14.1).

(3) The cycle map CH1(X,E)→ H2
et(X,E(1)) is injective, whereasH2

M(X,E(1))→
H2

et(X,E(1)) need not be injective (Theorems 10.1 and 14.1). More broadly, twisted
Chow groups should be closer to étale cohomology than twisted motivic cohomology
is.

A The residue on étale motivic cohomology

Here we construct the residue homomorphism on étale motivic cohomology twisted
by a locally constant sheaf E,

∂v : Ha(F,E(a))→ Ha−1(k(v), E(a− 1))

(Corollary A.3). This requires extra effort when k(v) has characteristic p > 0 and
p does not act invertibly on E. We use the residue homomorphism in section 1 to
show that Chow groups with twisted coefficients have the desired formal properties
in full generality. This appendix uses no results from the rest of the paper.

Lemma A.1. Let Ov be a discrete valuation ring, and let i : Spec k(v)→ SpecOv
be the inclusion of the closed point. For each a ≥ 1,

Z(a− 1)k(v)[−2] ∼= τ≤a+2i
!Z(a)

in Det(k(v)).

Here i! is the exceptional inverse image functor on derived categories, sometimes
called Ri!.

Proof. First, Z(a− 1)k(v) is concentrated in degrees at most a− 1 in Det(k(v)), and
so Z(a−1)[−2] is concentrated in degrees at most a+1. Next, using the Bloch-Kato
conjecture (Voevodsky’s theorem), Geisser showed that the canonical map

Z(a− 1)k(v)[−2]→ τ≤a+1i
!Z(a)

in Det(k(v)) is an isomorphism. Also, the truncation is unnecessary after inverting
the exponential characteristic e [16, Theorem 1.4]. (These results imply the lemma
when k(v) has characteristic zero.)
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It remains to show that M := Ha+2(i!Z(a)Ov) is zero. Here M is an étale sheaf
on Spec k(v), and so it suffices to show that the stalk of M at the separable closure
k(v)s is zero. This stalk is isomorphic to Ha+2(k(v)s, i

!Z(a)Onr), where Onr is the
maximal unramified extension of Ov (that is, the strict henselization of Ov), and
we use the same name i for the inclusion i : Spec k(v)s → SpecOnr [36, Theorem
03Q9]. Let j : SpecFnr → SpecOnr be the inclusion of the generic point. There is
an exact triangle

i∗i
!E → E → j∗j

∗E

for every object E in Det(Onr). Applying this to E = Z(a)Onr , we have a long exact
sequence

· · · → Hj−1
et (Fnr,Z(a))→ Hj

et(k(v)s, i
!Z(a))→ Hj

et(Onr,Z(a))→ Hj
et(Fnr,Z(a))→ · · · .

Consider the map from Zariski to étale cohomology:

Hj−1
Zar (Onr,Z(a)) //

��

Hj−1
Zar (Fnr,Z(a)) //

��

Hj
Zar(k(v)s, i

!Z(a)) //

��

Hj
Zar(Onr,Z(a)) //

��

Hj
Zar(Fnr,Z(a))

��

Hj−1
et (Onr,Z(a)) // Hj−1

et (Fnr,Z(a)) // Hj
et(k(v)s, i

!Z(a)) // Hj
et(Onr,Z(a)) // Hj

et(Fnr,Z(a))

Voevodsky proved the Beilinson-Lichtenbaum conjecture for smooth schemes over
a field, and Geisser deduced it for smooth schemes over a discrete valuation ring (in
particular, for a DVR itself) [41, Theorem 6.18], [16, Theorem 1.2(2)]. Thus, for
both Onr and Fnr, the map from Zariski to étale cohomology is an isomorphism for
j ≤ a+ 1 and injective for j = a+ 2. By the commutative diagram above, it follows
that Hj

Zar(k(v)s, i
!Z(a))→ Hj

et(Y, i
!Z(a)) is an isomorphism for j ≤ a+ 1. But, by

localization in Zariski motivic cohomology, the first group is ∼= Hj
Zar(k(v)s,Z(a −

1)[−2]) ∼= Hj
et(k(v)s,Z(a − 1)[−2]) for j ≤ a + 1, using the Beilinson-Lichtenbaum

conjecture again. Thus, in Det(k(v)s), the map Hj(Z(a − 1)[−2]) → Hj(i!Z(a)) is
an isomorphism for j ≤ a+ 1.

Next, consider the diagram above for j = a+ 1. In this case, we have the extra
information that Ha+2

Zar (Onr,Z(a)) = Ha+2
et (Onr,Z(a)) = 0, because Onr is strictly

henselian and Z(a) is concentrated in degrees at most a. Then the diagram above
implies that Ha+2

Zar (k(v)s, i
!Z(a))→ Ha+2

et (k(v)s, i
!Z(a)) is an isomorphism. The first

group is ∼= Ha+2
Zar (k(v)s,Z(a− 1)[−2]) = 0, using that Z(a− 1)[−2] is concentrated

in degrees at most a+ 1. This completes the proof that the map

Z(a− 1)[−2]→ τ≤a+2i
!Z(a)

in Det(k(v)) is an isomorphism.

Lemma A.2. Let Ov be a discrete valuation ring, and let E be a locally constant
étale sheaf on SpecOv. For each a ≥ 1,

E(a− 1)k(v)[−2] ∼= τ≤a+1i
!E(a)

in Det(k(v)).

Proof. Let M = i!Z(a) in Det(Y ). Note that E ⊗LZ M is isomorphic to i!E(a),
and that E(a − 1)k(v)[−2] is concentrated in degrees at most a + 1. The result
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follows from Lemma A.1, by the universal coefficient theorem applied to stalks at
any geometric point:

0→ E ⊗Z Hj(M)→ Hj(E ⊗LZ M))→ TorZ1 (E,Hj+1(M))→ 0.

Corollary A.3. Let Ov be a discrete valuation ring, k(v) the residue field, and F
the fraction field. Let E be a locally constant étale sheaf on SpecOv. Then, for each
a ≥ 1, we define a residue homomorphism

∂v : Ha(F,E(a))→ Ha−1(k(v), E(a− 1)).

Proof. By the basic exact triangle for i!, there is a natural map Ha(F,E(a)) →
Ha+1(k(v), i!E(a)). The latter group is (trivially) isomorphic toHa+1(k(v), τ≤a+1i

!E(a)).
By Lemma A.2, that is isomorphic to Ha+1(k(v), E(a− 1)[2]) ∼= Ha−1(k(v), E(a−
1)).

B Purity for étale motivic cohomology

We prove here some purity properties of étale motivic cohomology. The subtleties
occur only for varieties in characteristic p > 0. The point is that we only have the
localization sequence in its usual form for étale motivic cohomology after inverting p
(by Cisinski–Déglise). Nonetheless, we prove some purity results without inverting
p, building on work of Geisser, Gros, and Levine [16, 17, 19]. We use these results
to define the étale cycle map for twisted Chow groups on regular schemes, without
inverting p (Theorem 6.1).

Lemma B.1. Let X be a regular noetherian scheme of finite type over a field k.
Let i : Y → X be the inclusion of a regular subscheme of codimension r. For each
a ≥ r, the canonical morphism

Z(a− r)[−2r]→ τ≤a+r+1i
!Z(a)

is an isomorphism in Det(Y ).

Proof. We can reduce to the case where the field k is perfect. Indeed, if k has
characteristic zero, then k is already perfect. If k has characteristic p > 0, then X
and Y can be defined over some finitely generated field k over Fp. We can view k
as the function field of a variety B over Fp. After shrinking B, X is the generic
fiber of a regular scheme U of finite type over B, and likewise Y is the generic fiber
of a regular subscheme V of codimension r in U . Then U and V are smooth over
the perfect field Fp, and it suffices to prove the lemma for V inside U .

So we can assume that X and Y are smooth over a perfect field k. In the
Zariski topology, we have Z(a−r)[−2r] ∼= i!Z(a) in DZar(Y ); that is a reformulation
of the localization sequence for motivic cohomology. This determines a morphism
ϕ : Z(a−r)[−2r]→ i!Z(a) in Det(Y ). The object Z(a−r) in Det(Y ) is concentrated
in degrees at most a − r, and so Z(a − r)[−2r] is concentrated in degrees at most
a+ r.
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By Cisinski and Déglise, ϕ becomes an isomorphism after inverting the expo-
nential characteristic of k. That completes the proof for k of characteristic zero. So
we now assume that k has characteristic p > 0. Let C be the cofiber of ϕ. Then we
know that C[1/p] = 0; that is, Hj(C) is p-power torsion for each integer j.

Tensoring ϕ over Z with Fp gives a morphism Fp(a − r)[−2r] → i!Fp(a) in
Det(Y ). The object Fp(a) inDet(X) is concentrated in degree p; namely, by Geisser–
Levine, it is isomorphic in Det(X) to Ωa

X,log[−a], where Ωa
X,log is the subsheaf of Ωa

X

generated locally by logarithmic differentials df1/f1 ∧ · · · dfa/fa for units f1, . . . , fa
[17]. (This is a sheaf of Fp-vector spaces, not an OX -module.)

In thsee terms, using that k is perfect, Gros showed that the morphism Fp(a−
r)[−2r]→ τ≤a+ri

!Fp(a) in Det(Y ) is an isomorphism [19, eq. II.3.5.3, Th. II.3.5.8].

(In his notation, this is the statement that Hj
Y (X,Ωa

X,log) is zero for j < r and

isomorphic to Ωa−r
Y,log for j = r.) By the octahedral axiom for triangulated categories,

we have an exact triangle Fp(a−r)[−2r]→ i!Fp(a)→ C/p in Det(Y ). It follows that
Hj(C/p) = 0 for j ≤ a+ r, where in the case j = a+ r we use that Ha+r+1(Fp(a−
r)[−2r]) = 0. By the exact triangle C −→

p
C → C/p, it follows that multiplication

by p is an isomorphism on Hj(C) for j ≤ a+ r and is injective on Ha+r+1(C). But
Hj(C) is p-power torsion for all j. SoHj(C) = 0 for j ≤ a+r+1. By definition of C,
it follows that Hj(Z(a− r)[−2r])→ Hj(i!Z(a)) is an isomorphism for j ≤ a+ r+ 1.
We conclude that

Z(a− r)[−2r]→ τ≤a+r+1i
!Z(a)

is an isomorphism in Det(Y ).

Lemma B.2. Let X be a regular noetherian scheme of finite type over a field k. Let
i : Y → X be the inclusion of a closed subset of codimension at least r everywhere.
For each a < r,

τ≤2a+2i
!Z(a) = 0

in Det(Y ).

Proof. As in the proof of Lemma B.1, we can reduce to the case where X is smooth
over a perfect field k. In this case, we can stratify Y into pieces that are smooth
over k. By induction, it suffices to consider the case where Y is a smooth subvariety
of codimension at least r in X.

By the localization sequence for étale motivic cohomology, with the exponential
characteristic e inverted, for a < r, we have Ri!Z(a)[1/e] ∼= ⊕l≤eQl/Zl(a− r)[−1−
2r]. It follows that τ≤2a+2i

!Z(a) becomes zero after inverting e. That completes the
proof for k of characteristic zero. So we can assume that k has characteristic p > 0.
In this case, we have shown that Hj(i!Z(a)) is p-power torsion for each j ≤ 2a+ 2.

We use again Geisser–Levine’s result that Fp(a) is isomorphic to Ωa
log[−a] in

Det(X). Using that a < r, Gros showed (using that a < r) that τ≤a+ri
!Fp(a) =

0 [19, eq. II.3.5.3, Th. II.3.5.8]. (In his terms, when a < r, he showed that
Hj
Y (X,Ωa

log) = 0 for j ≤ r.) By the exact triangle Z(a) −→
p

Z(a)→ Fp(a) in Det(X),

it follows that the p-torsion subgroup of Hj(i!Z(a)) is zero for j ≤ a + r + 1. We
have shown that this group is p-power torsion, and so in fact Hj(i!Z(a)) is zero for
j ≤ a + r + 1. That is, τ≤a+r+1i

!Z(a) = 0 in Det(Y ). Since a < r, it follows that
τ≤2a+2i

!Z(a) = 0.
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Corollary B.3. Let X be a regular scheme of finite type over a field k. Let E be a
locally constant étale sheaf on X.

(1) Let i : Y → X be the inclusion of a regular subscheme of codimension r. For
each a ≥ r, the canonical morphism

E(a− r)[−2r]→ τ≤a+ri
!E(a)

is an isomorphism in Det(Y ).
(2) Let i : Y → X be the inclusion of a closed subset of codimension at least r

everywhere. For each a < r,
τ≤2a+1i

!E(a) = 0

in Det(Y ).

Proof. By definition, E(a) = E⊗LZZ(a) in Det(X). Since Z(a−r)[−2r] in Det(Y ) is
concentrated in degrees at most (a−r)+2r = a+r, so is E(a−r)[−2r]. Given that,
(1) and (2) follow from Lemmas B.1 and B.2, together with the universal coefficient
theorem (applied to the stalks at any geometric point):

0→ E ⊗Z Hj(i!Z(a))→ Hj(i!E(a))→ TorZ1 (E,Hj+1(i!Z(a)))→ 0.

Here we have used that E ⊗LZ i!Z(a) ∼= i!E(a).

C Twisted motivic cohomology and twisted Chow groups:
conjectures

In this section, we propose a general notion of “twist” which should make it possible
to define twisted motivic cohomology and twisted Chow groups; the two theories do
not always agree. Namely, it should be possible to twist by any birational sheaf with
transfers E in the sense of Kahn–Sujatha [27, Definition 2.3.1]. Some cases have
been worked out, including the notion of twisting by an Azumaya algebra [26, 14],
as well as by a locally constant étale sheaf. This paper has focused on the latter
case.

This section is not logically necessary for the rest of the paper. In this section,
we assume that the exponential characteristic e of the base field k acts invertibly
on E, in order to use the good properties of categories of motives with e inverted.
(By definition, e = 1 if k has characteristic zero, and e = p if k has characteristic
p > 0.) I hope that inverting e can be avoided. When E is a locally constant étale
sheaf (the main focus of this paper), section 1 defines twisted Chow groups without
inverting e.

Let X be a noetherian scheme of finite dimension. Building on Voevodsky’s
ideas, Cisinski and Déglise defined the derived category of motives DM(X) [5,
Definition 11.1.1]. The definition is based on an abelian category Shtr(X,Z), the
category of Nisnevich sheaves with transfers [5, Definition 10.4.2]. These are Nis-
nevich sheaves of abelian groups on the category of smooth separated schemes of
finite type over X, with transfers for finite correspondences in a precise sense.

For a presheaf with transfers E over X, we define the contraction E−1 (following
Voevodsky) by

E−1(Y ) := coker(E(Y ×A1)→ E(Y ×Gm))
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for Y smooth over X. This is also a presheaf with transfers [30, Lecture 23], [27,
Definition 2.4.1]. (These references assume that X = Spec k for a field k, but the
same argument applies.) If E is a homotopy invariant sheaf with transfers, then so
is E−1.

Define a homotopy invariant sheaf with transfers E over X to be birational
if E−1 = 0. The name is motivated by Kahn–Sujatha’s result that for a perfect
field k, a homotopy invariant sheaf with transfers E over k has E−1 = 0 if and

only if E(Y )
∼=−→ E(U) for every dense open subset U of a smooth k-scheme Y [27,

Proposition 2.5.2]. It is clear over any base scheme X that a homotopy invariant
sheaf with transfers that has the latter property has E−1 = 0, hence is “birational”
in our sense.

Write HI(X) for the full subcategory of homotopy invariant Nisnevich sheaves
with transfers. By construction, there is a fully faithful functor HI(X)→ DM(X).
As a result, we get a definition of motivic cohomology twisted by an object E in
HI(X):

H i
M(X,E(j)) := HomDM(X)(1X , E(j)[i]),

for integers i and j. In particular, we have this definition for E a birational sheaf
with transfers.

On the other hand, we can also define twisted Chow groups. One could de-
fine these to be equal to H2i

M(X,E(i)); but we consider a different notion, inspired
by Rost’s ideas, which mixes the étale and Zariski topologies. Then it becomes
an interesting question to compare twisted motivic cohomology and twisted Chow
groups; see the examples below.

The idea is that étale sheafification gives a functor from HI(X) to HIet(X),
the category of homotopy invariant étale sheaves with transfers over X. (For X =
Spec k, this is [30, Theorem 6.17].) Moreover, (Eet)−1

∼= (E−1)et, and so this
functor takes birational Nisnevich sheaves with transfer to birational étale sheaves
with transfer. There is a tensor product on the abelian category of étale sheaves
with transfer, and hence a derived tensor product on the derived category of étale
sheaves with transfer, written ⊗tr

L,et, or ⊗tr for short. (These tensor products are
part of the structure of “premotivic category” constructed in [6, Corollary 2.1.12
and section 2.2.4].)

Suppose that X is a separated scheme of finite type over a field k. In this case,
Rost defined the abelian category of cycle modules over X [34].

Conjecture C.1. Let E be a birational Nisnevich sheaf with transfers over X. For
every field F over X, define

H∗[E](F ) = ⊕j≥0H
j
et(F,E(j)).

Then this is a cycle module over X.

Here Z(j) denotes Voevodsky’s motivic cohomology complex, and E(j) := E⊗tr

Z(j). (The derived tensor product is meant there, since Z(j) with j ≥ 0 is a complex
of sheaves with transfer, not just a sheaf. Indeed, Z(j) itself can be defined as the
derived tensor product of j copies of Z(1) ∼= Gm[−1], Z(j) = Z(1)⊗tr · · · ⊗tr Z(1).)
Conjecture C.1 involves the étale sheafification of these objects, considered over
fields. Part of the difficulty for the conjecture is that the relation between Rost’s
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cycle modules and the derived category of motives has only been worked out over
a field, not over a more general scheme X [9, 10].

Given the conjecture, Rost’s theory gives a definition of twisted Chow groups
CHi(X,E), meaning Ai(X,H

∗[E])−i in Rost’s notation. That is, CHi(X,E) is
defined as the cokernel of the residue homomorphism

⊕x∈X(i+1)
H1

et(k(x), E(1))→ ⊕x∈X(i)
H0

et(k(x), E).

When X is smooth over k, we define CH i(X,E) likewise in terms of codimension;
so CH i(X,E) ∼= CHn−i(X,E) if X is smooth of dimension n everywhere.

One could define a different notion of twisted Chow groups using the Nisnevich
rather than the étale topology on fields; but that would be less interesting, as it
would always coincide with twisted motivic cohomology (in bidegree (2i, i)). Our
definition of twisted Chow groups sits between twisted motivic cohomology and
twisted étale cohomology, as follows. Given Conjecture C.1, the proof is the same
as that of Corollary 4.5 and Theorem 6.1.

Lemma C.2. Let X be a smooth scheme of finite type over a field k. Assume
Conjecture C.1. Then for every birational Nisnevich sheaf with transfers E over X,
we have natural homomorphisms

H2i
M(X,E(i))→ CH i(X,E)→ H2i

et (X,E(i)).

Neither map is an isomorphism, in general. In the following examples, let X be
a smooth scheme over k.

• Let E be the constant sheaf ZX . Then both H2i
M(X,Z(i)) and CH i(X,ZX)

can be identified with the usual Chow group, CH i(X). (For CH i(X,ZX), this
follows from the definition by generators and relations: H0

et(k(x),ZX) ∼= Z
and H1

et(k(x),ZX(1)) ∼= H0
et(k(x), Gm) ∼= k(x)∗.) The homomorphism from

CH i(X) to H2i
et (X,Z(i)) is rationally an isomorphism, but not integrally, in

general. For example, there are smooth complex varieties X with CH2(X)/l
infinite for a prime number l [35, 38], whereas H4

et(X,Z(2))/l is contained in
H4

et(X,Z/l(2)), which is finite.

• Let A be an Azumaya algebra over X, and let E = ZA be the Nisnevich sheaf
over X associated to KA

0 . By Kahn–Levine and Elmanto–Nardin–Yakerson,
this can also be described as the subsheaf of ZX that is the image of the rank
homomorphism KA

0 → ZX [14, Lemma 2.17]. Then the étale sheafification
of ZA is simply ZX , because the Azumaya algebra A is étale-locally trivial.
So the homomorphism H2i

M(X,ZA(i)) → CH i(X,ZA) is a homomorphism
to the usual Chow groups, CH iX. This homomorphism was considered by
Kahn and Levine [26, section 5.9]. It is not always an isomorphism, even for
i = 0. Namely, for a smooth variety X over k, the image of H0

M(X,ZA(0))→
CH0(X) = Z is a subgroup of index equal to the index of A over the function
field k(X), which can be greater than 1.

• Let E be a birational étale sheaf with transfers over X. Then E is in particular
a birational Nisnevich sheaf with transfers over X, and so the definitions above
apply. In this case, H2i

M(X,E(i)) → CH i(X,E) is surjective, by inspection
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of the generators of CH i(X,E). One main result of this paper is that this
surjection need not be an isomorphism, even for i = 1.

In particular, let E be a locally constant étale sheaf over X. (We only consider
sheaves of abelian groups.) Then E has transfers in a natural way; for X =
Spec k, this is [30, Lemma 6.11]. So every locally constant étale sheaf E
can be viewed as a birational étale sheaf with transfers. We have seen that
H2

M(X,E(1))→ CH1(X,E) need not be an isomorphism, even in this special
case (Theorem 14.1).

References

[1] A. Adem and R. J. Milgram. Cohomology of finite groups, 2nd ed. Springer
(2004). 25

[2] D. Benson. Representations and cohomology, 2 vols. Cambridge (1998). 29, 30,
32

[3] D. Benson and J. Carlson. Products in negative cohomology. J. Pure Appl.
Algebra 82 (1992), 107–129. 27, 30

[4] K. Brown. Cohomology of groups. Springer (1982). 25, 27, 29
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discrets. Dix exposés sur la cohomologie des schémas, 215–305. North-Holland
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