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The torsion index is a positive integer associated by Grothendieck to any con-
nected compact Lie group G [10]. Knowing the torsion index of a group has direct
consequences for the integral cohomology of the classifying space BG, the complex
cobordism of BG, the Chow ring of BG, and the classification of G-torsors over
fields. These applications of the torsion index are summarized in my paper [25],
section 1. The best upper bounds for the torsion index so far have been those of Tits
[21]. In this paper, we show in particular that the exceptional group E8 has torsion
index equal to 26325 = 2880. Together with my paper on the spin groups [25], this
completes the calculation of the torsion index for all simply connected compact Lie
groups. We also compute the torsion index of the groups PSO(2n), E6/(Z/3), and
E7/(Z/2) in this paper, which completes the calculation of the torsion index for all
compact Lie groups of adjoint type.

The calculation of the torsion index of E8 implies the optimality of my result
that every E8-torsor over a field becomes trivial over some field extension of de-
gree dividing 26325 [24]. (Equivalently, every algebraic group of type E8 over a
field becomes split over some field extension of degree dividing 26325.) Indeed, by
Grothendieck’s theorem on the torsion index [10] together with this paper’s calcu-
lation, there is a field k and an E8-torsor X over k such that any finite extension
field over which X becomes trivial has degree a multiple of 26325 over k. Until now
the best estimates of this number were that it must be between 223 · 5 = 60 and
29335 = 69120, by Tits [21].

The prime numbers p dividing the torsion index of G are precisely those such that
the integral cohomology of the classifying space BG has p-torsion, or equivalently
those such that the integral cohomology of G itself has p-torsion. These “torsion
primes” are known for all compact Lie groups, the final answer being given by Borel
in 1961 [5]: they are the primes dividing the order of the torsion subgroup of the
fundamental group of G, together with 2 if the universal cover of G has a simple
factor of type Spin(n) for n ≥ 7 or G2, 2 and 3 in the cases F4, E6, and E7, and 2,
3, and 5 in the case E8.

To define the torsion index, let T be a maximal torus in a compact Lie group
G, and let N be the complex dimension of the flag manifold G/T . Each character
of the torus T determines a complex line bundle on G/T . Consider the subring of
the integral cohomology of G/T generated by the Chern classes in H2(G/T,Z) of
these line bundles. Then the torsion index of G is defined as the smallest positive
integer t(G) such that t(G) times the class of a point in H2N (G/T,Z) belongs to
this subring.

Let me sum up the calculations that have been made of the torsion index. Prob-
ably the most important early result, although it was stated somewhat differently,
is an upper bound for the torsion index in terms of the torsion index of a subgroup
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of maximal rank (Lemma 2.2), due to Borel in 1955 [4]. Demazure gave a different
proof of this upper bound (Lemma 7 in [8]), in order to reprove Borel’s calculation
of the primes dividing the torsion index. Marlin in 1974 gave an upper bound for
the torsion index of SO(n) which turns out to be an equality (see section 2), a fairly
good upper bound for the torsion index of the spin groups, and calculations of the
torsion index for G2 and F4, although the result for F4 is mistaken [14]. Finally,
Tits in 1992 found the best results so far on the torsion index [21]. In particu-
lar, his Proposition 2 implies the calculations (for the simply connected groups):
t(G2) = 2, t(F4) = 2 · 3, t(E6) = 2 · 3, and t(E7)|223. In fact, we will show without
much difficulty that t(E7) = 223.

After Tits’s paper, the remaining simply connected simple groups were the group
E8 and the spin groups. For E8, the known result that the Dynkin index is 60
implies that the torsion index of E8 is a multiple of 60 = 223 · 5, as Serre showed by
a different argument in ([22], Proposition 9). For an upper bound, Tits only shows
that the torsion index of E8 divides 29335. He suggests the “hypothèse optimiste”
that the torsion index of E8 is 60. The main result of this paper is that E8 is much
more complex than that, both 2- and 3-locally: the torsion index of E8 is 26325.
The hardest part is to prove the lower bound 26 for the 2-part of the torsion index
of E8.

This completes the calculation of the torsion index for all simply connected
compact Lie groups. First, the torsion index of the product of two groups is the
product of the torsion indices, and so it suffices to consider simply connected simple
groups. Of these, the groups SU(n) and the symplectic groups have torsion index
1, and we have just stated the torsion indices of the simply connected exceptional
groups. The remaining simply connected simple groups are the spin groups. Here
is the result, from my paper [25]:

Theorem 0.1 Let l be a nonnegative integer. The groups Spin(2l+1) and Spin(2l+
2) have the same torsion index, of the form 2c(l). For all l, c(l) is either

l −
⌊
log2

((
l + 1

2

)
+ 1
)⌋

or that expression plus 1. The second case arises only for certain numbers l (ini-
tially: l = 8, 16, 32, 33, . . .) which are equal to or slightly larger than a power of
2. Precisely, the second case arises if and only if l = 2e + b for some nonnegative
integers e, b such that 2b− c(b) ≤ e− 3.

Finally, we compute the torsion index for all compact Lie groups of adjoint
type. The known cases are PU(n) = SU(n)/(Z/n), which has torsion index n,
and Sp(2n)/(Z/2) (where Sp(2n) denotes the symplectic group of rank n), which
has torsion index 21+ord2(n). These two calculations follow, using that the universal
cover has torsion index 1, from Merkurjev [16], 4.1 and 4.3. In this paper, we
compute that the torsion index of PSO(2n) is 2n−1 for all n not a power of 2, and
2n if n is a power of 2 and n ≥ 2. Also, we show that E6/(Z/3) has torsion index
2 · 33 and E7/(Z/2) has torsion index 233. These results complete the calculation
of the torsion index for all compact Lie groups of adjoint type.

I checked some elementary but long calculations in this paper using the computer
algebra program Macaulay 2. My thanks go to the authors, Dan Grayson and Mike
Stillman. Also, thanks to Jean-Pierre Serre for some useful comments.
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1 Notation

We define a Levi subgroup of a compact Lie group G to be the centralizer of a torus
in G. This name has become standard, by analogy with complex algebraic groups.
The complexification of a Levi subgroup of a compact Lie group G, in this sense, is
a Levi subgroup of a parabolic subgroup of the complexification of G.

2 Easy bounds for the torsion index

A convenient fact is that the calculation of the torsion index for any compact con-
nected Lie group reduces easily to the case of semisimple groups, as follows.

Lemma 2.1 For any compact connected Lie group G, the torsion index of G is
equal to the torsion index of the derived group Gder = [G, G] ⊂ G.

Proof. By definition, the torsion index of G is the smallest positive integer
t(G) such that t(G) times the class of a point in H∗(G/T,Z) is in the image of
H∗(BT,Z), which is the polynomial algebra over the integers generated by the
group of characters X∗(T ) = H2(BT,Z). We have a commutative diagram of
fibrations,

Gder/T ∩Gder −−−−→ B(T ∩Gder) −−−−→ BGdery y y
G/T −−−−→ BT −−−−→ BG,

where T is a maximal torus in G. Here Gder/T ∩Gder maps isomorphically to G/T .
So the lemma will follow if we can show that the restriction map

H∗(BT,Z) → H∗(B(T ∩Gder),Z)

is surjective. For that, it suffices to show that the homomorphism of groups of
characters,

X∗(T ) → X∗(T ∩Gder),

is surjective. That follows from the inclusion T ∩Gder ⊂ T , since these groups are
diagonalizable. QED

The following lemma, essentially due to Borel [4], gives good bounds for the
torsion index very easily in some cases.

Lemma 2.2 Let H be a closed connected subgroup of maximal rank in a compact
connected Lie group G. Then the torsion index t(G) divides t(H)χ(G/H), where χ
denotes the topological Euler characteristic.

Proof. As mentioned in the introduction, there are several ways to prove this.
We follow the oldest way, due to Borel [4], which is formulated in somewhat different
terms. We consider the fibration G/H → BH → BG, where G/H is a closed real
manifold. The tangent bundle along the fibers is a real vector bundle on BH. In
fact, it is the vector bundle associated to the representation of H on the quotient of
Lie algebras g/h. Since H is connected, this representation of H maps into SO(g/h),
and so we can choose an orientation of the associated real vector bundle on BH.
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Let y ∈ Hn(BH,Z) be the Euler class of this oriented real vector bundle, where n is
the dimension of G/H. The restriction of y to G/H is the Euler class of the tangent
bundle of G/H, which is χ(G/H) times the class of a point in Hn(G/H,Z) ∼= Z.

Now consider the fibration of closed manifolds H/T → G/T → G/H. The
restriction of y to BT gives an element y ∈ Hn(BT,Z) whose image in Hn(G/T,Z)
is χ(G/H) times the class of a fiber H/T ⊂ G/T . Also, let m be the dimension
of H/T . By definition of the torsion index, there is an element z ∈ Hm(BT,Z)
whose image in Hm(H/T,Z) is t(H) times the class of a point. So the element
yz ∈ Hm+n(BT,Z) restricts to χ(G/H)t(H) times the class of a point in G/T .
Therefore t(G)|χ(G/H)t(H). QED

Hopf and Samelson in 1940 found a simple algebraic interpretation of the Euler
characteristic χ(G/H): it is nonzero if and only if H has maximal rank in G, and
in that case it equals the index of the Weyl group WH as a subgroup of WG [11].
See the textbook [17], p. 393, for example.

When it works, Lemma 2.2 is an ideally simple way to bound the torsion in-
dex. For example, to estimate the torsion index of G = SO(2n), use the subgroup
H = U(n) of maximal rank. We have |WSO(2n)| = 2n−1n!, |WU(n)| = n!, and so
χ(SO(2n)/U(n)) = 2n−1. Since the integral cohomology of BU(n) is torsion-free,
we have t(U(n)) = 1, and so Lemma 2.2 gives that t(SO(2n)) divides 2n−1. Like-
wise, considering U(n) ⊂ SO(2n+1), we find that t(SO(2n+1)) divides 2n. These
are both equalities, as follows from Merkurjev [16], 4.2 and 4.4; other proofs were
given by Reichstein-Youssin ([19], 5.2) and me ([25], 3.2). This calculation clears up
a possible misunderstanding: the torsion subgroup of H∗(BSO(n),Z) is killed by 2
for all n (see [17], p. 145), so the torsion index of a group G is only a (multiplicative)
upper bound for the order of torsion elements in the integral cohomology of BG.
Notice, however, that the primes p dividing the torsion index are exactly those for
which there is p-torsion in H∗(BG,Z), by Borel [5].

Let us go through some further cases in which Lemma 2.2 is all we need to
find the optimal upper bound for the torsion index. We can use the subgroups
of maximal rank in simple compact Lie groups that are listed by Borel and de
Siebenthal [6], or more explicitly (giving the group, not just the Lie algebra) in [17],
pp. 304–306. For example, the group G2 has a torsion-free subgroup SU(3), with

χ(G2/SU(3)) = [WG2 : WSU(3)] = 12/6 = 2,

and so t(G2)|2; since G2 does have 2-torsion, we have t(G2) = 2.
The group PU(n) = SU(n)/(Z/n) contains the torsion-free subgroup SU(n−1),

with χ(PU(n)/SU(n−1)) = χ(CPn−1) = n, and so t(PU(n)) divides n. This is an
equality for the very simple reason that t(PU(n)) kills the torsion in H∗(BPU(n),Z)
and we have

H3(BPU(n),Z) ∼= H2(PU(n),Z) ∼= Hom(π1PU(n), S1) ∼= Z/n.

Notice, however, that this last argument would only give the lower bound 2 for the
torsion index of SU(4)/(Z/2) ∼= SO(6), while in fact that torsion index is 4. More
generally, one can check that for any divisor a of n, the torsion index of SU(n)/(Z/a)
is the product of all primes dividing a, raised to the powers to which they occur in
n.
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For the exceptional groups F4, E6, E7, we get some information about the torsion
index from Lemma 2.2. However, Tits has already given the optimal upper bounds
in these cases: by his Proposition 2 [21], the torsion index of F4, E6, E7 divides
2 · 3, 2 · 3, 22 · 3 respectively. (This implication uses Grothendieck’s interpretation of
the torsion index; see [10] or Theorem 1.1 in my paper [25].) Since these groups do
have 2- and 3-torsion [5], it follows that F4 and E6 have torsion index 2 · 3. To see
that E7 has torsion index 22 · 3 rather than 2 · 3, we can use the calculation of its
Dynkin index, as follows.

In general, the Dynkin index of a homomorphism G → H between simply con-
nected simple groups is defined to be the integer corresponding to the homomor-
phism H4(BH,Z) → H4(BG,Z), both groups being canonically isomorphic to Z.
The Dynkin index of a simply connected simple group G is defined to be the great-
est common divisor of the Dynkin indices of all representations G → SU(N). The
Dynkin indices of all simply connected compact Lie groups were computed by Laszlo
and Sorger ([13], Proposition 2.6), using Dynkin’s calculations. It is 1 for SU(n)
and Sp(2n), 2 for Spin(n) for n ≥ 7, and 2, 2 · 3, 2 · 3, 223, 223 · 5 for the exceptional
groups G2, F4, E6, E7, E8.

Lemma 2.3 For any simply connected compact Lie group G, the Dynkin index
divides the torsion index.

Proof. We use the theorem of Atiyah-Hirzebruch-Segal that the topological
K-theory of BG is the completed representation ring [3]. Let u denote a generator
of H4(BG,Z) ∼= Z. Then, by Atiyah-Hirzebruch-Segal’s theorem, the Dynkin index
is the smallest positive integer d(G) such that d(G)u is a permanent cycle in the
Atiyah-Hirzebruch spectral sequence H∗(BG,Z) ⇒ K∗(BG).

On the other hand, we know that the product of any element of H∗(BG,Z) with
the torsion index t(G) lies in the image of MU∗BG, by Corollary 1.4 in my paper
[25]. Moreover, classes in the image of MU∗BG are automatically permanent cycles
in the Atiyah-Hirzebruch spectral sequence. Therefore d(G) divides t(G). QED

For E8, the Levi subgroup H = (E7 × S1)/(Z/2) has χ(E8/H) = 243 · 5. Since
E7 has torsion index 223, Lemma 2.1 shows that H also has torsion index 223. So
the torsion index of E8 divides (243 · 5)(223) = 26325. The upper bound at 5 is
optimal since E8 does have 5-torsion. We will show later that the upper bounds at
2 and 3 are also optimal, the calculation of the torsion index of E8 at the prime 2
being the central part of this paper. Lemma 2.3 on the Dynkin index only shows
that the torsion index of E8 is a multiple of 223 · 5 = 60.

Here is one approach to proving the desired lower bound for the torsion index of
E8 at the prime 2 which seems not to work. Namely, we can consider the semispin
group Ss(16), which is a maximal-rank subgroup of E8. Here χ(E8/Ss(16)) = 335,
and so the 2-part of the torsion index of E8 divides that of the semispin group Ss(16).
The group Ss(16) is much smaller than E8, and it is much easier to compute the
torsion index of Ss(16): it turns out to be 26. It is tempting to think that this
implies that the torsion index of E8 is a multiple of 26, but in fact there seems to be
no argument in this direction. (When H is a Levi subgroup of G, Demazure showed
that the torsion index of H divides that of G ([8], Lemma 7).)

In fact, there is a counterexample to a similar statement. The simply connected
group E7 has a maximal-rank subgroup isomorphic to SL(8)/(Z/2). Here E7 has
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torsion index 22 ·3, while SL(8)/(Z/2) has torsion index 23. Thus the torsion index
of a maximal-rank subgroup does not in general divide the torsion index of the
whole group.

3 The torsion index of E8 at the prime 3

We showed in section 2 that the 3-part of the torsion index of E8 divides 32; here
we will show that it is actually equal to 32. We use the following method. By
Atiyah-Hirzebruch-Segal, we know that for any compact Lie group G, the topolog-
ical K-theory of BG is the completed representation ring of G [3]. As a result, if
a cohomology class x ∈ H2i(BG,Z) is a permanent cycle in the Atiyah-Hirzebruch
spectral sequence from integral cohomology to K-theory, then there is a virtual
complex representation W of G such that x is the bottom term of the Chern char-
acter of W (assuming that x is nonzero in rational cohomology). That is, the Chern
character chjW ∈ H2j(BG,Q) is 0 for j < i and equal to x for j = i.

On the other hand, we know that multiplying any element of H∗(BG,Z) by the
torsion index t(G) lies in the image of MU∗BG, by Corollary 1.4 in my paper [25].
Moreover, classes in the image of MU∗BG are automatically permanent cycles in
the Atiyah-Hirzebruch spectral sequence. So, to show that the torsion index of E8

at the prime 3 is a multiple of 32, it suffices to find an i ≥ 0 and an element of
3 · H2i(BG,Z) whose image in H2i(BG,Q) is not the bottom term of the Chern
character of any virtual representation of G.

The known calculation that E8 has Dynkin index 60 = 223 · 5 means that
ch2(W ) ∈ 60 · H4(BE8,Z) for every virtual representation W of E8. In particu-
lar, ch2(W ) ≡ 0 (mod 3) for all virtual representations W of E8. (We will write
x ≡ y (mod 3r), for x, y ∈ H∗(BE8,Q), to mean that x − y is in the image of
3rH∗(BE8,Z).) We need to make an analogous calculation in H8, as expressed in
the following lemma. To formulate this, we will use the known calculation of the co-
homology of BE8 in low dimensions. Namely, there is a map BE8 → K(Z, 4) which
is 16-connected ([17], Theorem VI.7.15, p. 362). In particular, let u be the generator
of H4(BE8,Z) ∼= Z such that the adjoint representation of E8 has ch2 = 60u. Then
H8(BE8,Z(3)) is isomorphic to Z(3), generated by u2.

Lemma 3.1 For any virtual representation W of E8, we have ch2W ≡ 0 (mod 3)
and

u ch2W ≡ ch4W (mod 32).

This lemma implies the desired lower bound for the torsion index of E8 at the
prime 3. Indeed, it implies that any virtual representation W of E8 with chjW = 0
for j < 4 has ch4W ≡ 0 (mod 32). Thus the element 3u2 ∈ H8(BE8,Z), as well as
the product of this element with any integer prime to 3, is not a permanent cycle in
the Atiyah-Hirzebruch spectral sequence. Therefore, the 3-part of the torsion index
of E8 is a multiple of 32 by the argument above.

Proof of lemma. The fact that all virtual representations W of E8 have
ch2W ≡ 0 (mod 3) follows from the known calculation that E8 has Dynkin index
60 = 223 ·5. We can also prove it at the same time as we prove that uch2W ≡ ch4W
(mod 32). As a preliminary step, used in the following calculations, we know that

6



all virtual representations of E8 have Chern character chi equal to 0 in H∗(BE8,Q)
for i odd, just because H∗(BE8,Q) is zero in these degrees.

We use that the Chern character takes sums of virtual representations to sums
in H∗(BE8,Q) and tensor products to products. It is straightforward to check that
the property of the Lemma is preserved under sums and products (using that ch0

of a virtual representation is its rank, which is an integer). So it suffices to prove
the lemma for any set of virtual representations which generate the representation
ring R(E8) as a Z-algebra.

Next, we show that if the property of the Lemma holds for one virtual repre-
sentation W , then it holds for all exterior powers ΛiW . In view of the identity
Λi(W + 1) = ΛiW + Λi−1W , it suffices to prove this statement for virtual represen-
tations W of rank 0. In that case, the formulas for the Chern character are fairly
simple, using that the Chern character of W is 0 in odd degrees:

ch2ΛiW = (−1)i+1i ch2W

ch4ΛiW = (−1)i+1i3ch4W + (−1)i i(i
2 − 1)
12

(ch2W )2.

Thus, suppose that W has rank 0 and satisfies the property of the Lemma. Then,
for i a multiple of 3, these formulas show that ch2ΛiW and ch4ΛiW are both 0
modulo 32, and so ΛiW satisfies the property of the Lemma. Likewise, if i is
not a multiple of 3, then these formulas show that ch2ΛiW = (−1)i+1i ch2W and
ch4ΛiW = (−1)i+1i ch4W (mod 32), using that i2 = 1 (mod 3). So again ΛiW
satisfies the property of the Lemma.

Thus, it suffices to check the Lemma for any virtual representations of E8 which
generate the representation ring as λ-ring. By Adams [1], Corollary 2, the repre-
sentation ring of E8 is generated as a λ-ring by 3 irreducible representations, those
whose highest weight is a fundamental weight corresponding to an “extremity” of
the Dynkin diagram (in Bourbaki’s notation [7], ω8, ω1, and ω2). Therefore, it suf-
fices to compute the Chern character of these 3 representations (of dimensions 248,
3875, and 147250) in degrees at most 4.

To make the calculation a little easier, we can identify the representation ring
of E8 with the invariants of the Weyl group W on a maximal torus T . Then it
is clear that there is a virtual representation of E8 whose character is exactly the
sum of the weights in the Weyl group orbit of ω8, or of ω1, or of ω2. Also, it is
clear that these virtual representations ρ8, ρ1, ρ2 generate the representation ring
of E8 as a λ-ring, since they differ from the above irreducible representations by
“lower” terms. So it suffices to compute to compute the Chern characters of these
three virtual representations in degrees at most 4. Since the ring H∗(BE8,Q) is
generated by u in this range, we just need to compute the coefficients of 1, u, and
u2, and we can do so by restricting the given virtual representations to a suitable
1-dimensional torus inside T . The result is:

ch(ρ8) = 240 + 60u + 6u2 + · · ·
ch(ρ1) = 2160 + 1080u + 216u2 + · · ·
ch(ρ2) = 17280 + 17280u + 6912u2 + · · ·
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Thus ρ1 and ρ2 have ch2 and ch4 equal to 0 (mod 32), and ρ8 has ch2 equal to 0
(mod 3) and ch4 equal to uch2 (mod 32). Thus the property of the Lemma holds for
these three virtual representations of E8, and hence for all virtual representations
of E8. QED

4 The torsion index of E8 at the prime 2

Theorem 4.1 The torsion index of E8 is 26325 = 2880.

We know that the torsion index of E8 divides 26325, and also that the 3- and
5-parts of the torsion index are exactly 32 and 5. So it remains to show that the
torsion index of E8 is a multiple of 26. That will be the main part of this paper.

The basis of the proof is Toda’s theorem that H∗(E8/T,Z) is a complete inter-
section ring, with generators and relations in known degrees [23]. Building on Toda’s
result, Kono and Ishitoya gave an explicit calculation of the ring H∗(E8/T,Z/2),
with an error that we now correct [12].

Kono-Ishitoya’s error is in their formula for δ in 3.11 and 5.11: they say that
the element γ15 of H∗(E8/T,Z/2) which they define has square equal to γ2

3c4
4c

8
1; in

fact, its square is γ2
3c4

4c
8
1 + γ2

3c6
4. This is the result of some mistaken calculations

of Steenrod operations, which one easily corrects. (In their Theorem 5.9, Sq8γ15

should be γ3(c4
4 + c3

4c
4
1 + c2

4c
8
1); Sq16γ15 should be γ3(c5

4 + c4
4 + c4

1 + c3
4c

8
1) + γ5c6c

2
4c

4
1;

and then redoing the proof of Corollary 5.11 yields the above corrected formula for
δ.) It is reassuring that this error became visible naturally, upon comparing Kono
and Ishitoya’s calculation to my calculation of H∗(E8/A8,Z/2), below.

Even after finding an explicit description of the ring H∗(E8/T,Z(2)) by gener-
ators and relations, it would still be a massive task to compute the torsion index;
a priori, we would have to consider all monomials of degree 120 (since E8/T has
complex dimension 120) in 8 variables, so that a direct approach would be impossi-
ble. We therefore proceed to simplify the problem. First, we note that it suffices to
analyze the ring H∗(E8/A8,Z(2)), where A8 denotes the subgroup of E8 isomorphic
to SU(9)/(Z/3). Next, we compute the relations in this ring explicitly, in fact in a
useful form, making up a “Gröbner basis” for the ring. Finally, by inspecting these
relations modulo 4, we define a new valuation on the ring H∗(E8/A8,Z(2)). This
valuation is just barely strong enough to prove that all monomials of top degree in
the appropriate elements are multiples of 26. This will mean that the torsion index
of E8 is a multiple of 26, as we want.

First, we explain how the torsion index of E8 can be computed using the homo-
geneous space E8/A8. This uses Lemma 2.1 in my paper [25]:

Lemma 4.2 Let G be a compact connected Lie group, p a prime number, and H
a closed connected subgroup of maximal rank in G such that p does not divide the
torsion index of H. Then the Z(p)-cohomology of G/H is torsion-free and concen-
trated in even dimensions, and the p-part of the torsion index of G is equal to the
index in the top degree of the image of H∗(BH,Z(p)) in the ring H∗(G/H,Z(p)).

Clearly the torsion index of the subgroup A8 = SU(9)/(Z/3) in E8 is prime to
2. So the lemma gives that the 2-part of the torsion index of E8 is equal to the
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index in the top degree of the image of H∗(BA8,Z(2)) in the ring H∗(E8/A8,Z(2)).
To compute this, we will compute the ring H∗(E8/A8,Z(2)) explicitly.

First, we note that the natural map BSU(9) → BA8 = B(SU(9)/(Z/3)) is an
isomorphism on Z(2)-cohomology, and so we have

H∗(BA8,Z(2)) = Z(2)[d2, . . . , d9],

where the di’s are the Chern classes of the natural representation of SU(9).
The calculation of the cohomology of E8/A8 begins with Toda’s theorems on

the cohomology of homogeneous spaces ([23], 3.2, 2.1), which give the following
statement for the space E8/A8. (To be precise, Toda’s Proposition 3.2 considers
homogeneous spaces G/H with H torsion-free. In the case at hand, the subgroup
A8 is only 2-locally torsion free, and so Toda’s arguments apply to Z(2)-cohomology
rather than to Z-cohomology.)

Theorem 4.3 The Z(2)-cohomology ring of E8/A8 is generated by the elements
d2, . . . , d9 together with elements g3, g5, g9, and g15, where gi is in degree i (mean-
ing H2i). There are relations ρi in degrees 2, 8, 12, 14, 18, 20, 24, 30, these being
the fundamental degrees of E8, together with relations in degrees 3, 5, 9, 15 of the
form 2gi + δi = 0, where the elements δi can be taken to be polynomials in lower-
dimensional generators which reduce modulo 2 to the following: δ3 ≡ Sq2ρ2, δ5 ≡
Sq4δ3, δ9 ≡ Sq8δ5, and δ15 ≡ Sq14ρ8 (mod 2).

We will combine Toda’s theorem with a calculation of the rational cohomol-
ogy of E8/A8 to get an explicit calculation of the Z(2)-cohomology of E8/A8. We
know that the rational cohomology of E8/A8 is the quotient of the polynomial ring
H∗(BA8,Q) = Q[d2, . . . , d9] by the image of H∗(BE8,Q) in positive degrees, thus
by a regular sequence in degrees 2, 8, 12, 14, 18, 20, 24, 30, these being the funda-
mental degrees of E8. (In this statement, we continue the convention that H2i has
degree i.)

One way to exhibit elements of the rational cohomology of BE8 is by taking the
Chern character of the adjoint representation of E8, of dimension 248. To see how
these cohomology classes restrict to BA8, we restrict the adjoint representation to
A8 = SU(9)/(Z/3). It is straightforward to compute that this restriction is the
representation

E := (V ⊗ V ∗ − 1) + Λ3V + Λ3V ∗

of SU(9), where V denotes the standard 9-dimensional representation of SU(9).
(Here V ⊗ V ∗ − 1 is the adjoint representation of SU(9).) In particular, we can
compute the Chern character chi of E for i equal to 2, 8, 12, 14, 18, 20, 24, 30, al-
though this is only practical by computer. We find that these 8 elements of
H∗(BSU(9),Q) ∼= H∗(BA8,Q) form a regular sequence. This calculation implies
that H∗(BE8,Q), which we know to be a polynomial ring on generators in degrees
2, 8, 12, 14, 18, 20, 24, 30, is in fact the polynomial ring generated by the Chern char-
acter chi of the adjoint representation in those degrees i. (A priori, one might have
to consider other representations.)

The fact that H∗(BE8,Q) is generated by the Chern character of the adjoint
representation was proved in a computer-free way by Mehta [15]. More precisely,
he proved the equivalent statement that one can take as generating set for the ring
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of invariants of the Weyl group of E8 the sums of the kth powers of the roots, for
k = 2, 8, . . . , 30.

This calculation implies that the rational cohomology of E8/A8 is the quotient
of H∗(BA8,Q) = Q[d2, . . . , d9] by the Chern character chi of the representation E
in the above degrees i. That is:

H∗(E8/A8,Q) ∼= Q[d2, . . . , d9]/(−60d2,

13/840d4
2 +3/140d2d

2
3−1/35d2

2d4 +1/21d2
4−1/14d3d5 +1/35d2d6−3/7d8, . . .).

The relations take a few pages to write out in this form; I don’t write them out
here, since I will write them in a shorter and more useful form below.

In particular, since the Z(2)-cohomology of E8/A8 is torsion-free, the first relation
here implies that d2 = 0 in H∗(E8/A8,Z(2)). Applying Steenrod operations to this
relation, as in Toda’s theorem, produces several more relations in Z/2-cohomology:
d3 = 0, d5 = 0, and d9 = 0 in H∗(E8/A8,Z/2). Therefore, the following classes are
in H∗(E8/A8,Z(2)):

g3 := d3/2
g5 := d5/2
g9 := (d9 + d5d4 + d6d3)/2

We have chosen these particular generators so that they reduce modulo 2 to elements
in H∗(E8/A8,Z/2) which were considered by Kono and Ishitoya in their partial
computation of that ring ([12], Lemma 5.5). They called these classes γ3, γ5, γ9.

Similarly, the relation in degree 8 in H∗(E8/A8,Q) implies that

d8 = 1/9 d2
4 − 2/3 g3g5

in H∗(E8/A8,Q). Since H∗(E8/A8,Z(2)) is torsion-free, the same relation holds in
Z(2)-cohomology. Applying Sq14 to this relation, as suggested by Toda’s theorem,
shows that d8d7 = 0 in H∗(E8/A8,Z/2). Therefore the class

g15 := d8d7/2

is in H∗(E8/A8,Z(2)). Again, this element reduces modulo 2 to one considered by
Kono and Ishitoya, which they called γ15 ([12], Lemma 5.5).

By Toda’s theorem, H∗(E8/A8,Z(2)) is the Z(2)-subalgebra of H∗(E8/A8,Q)
generated by the classes d2, . . . , d9, g3, g5, g9, and g15. In fact, by the relations
we have mentioned, this is also the subring generated by d4, d6, d7, g3, g5, g9, g15.
We can rewrite the relations defining H∗(E8/A8,Q) in terms of these generators.
Simplifying these relations in a carefully chosen way (as we will see), we get the
following description of H∗(E8/A8,Q).

Lemma 4.4 H∗(E8/A8,Q) is isomorphic to the quotient of Q[g15, g9, g5, g3, d7, d6, d4]

10



by the relations:

(d2
6 − 25/81 d3

4 + 2(15g9g3 + 1/3 g4
3 − 5/3 g5d7 − 125/9 g5g3d4) + 22(−23/3 g2

3d6),

d2
7 − 1/3 d6d

2
4 + 2(−9g9g5 + 9g5g3d6 + 1/3 g3d7d4) + 22(−1/9 g2

3d
2
4) + 23(1/3 g5g

3
3 + 7/3 g2

5d4),

d7d
2
4 + 2(−9g15 − 3g5g3d7),

g2
9 + 25/2187 d6d

3
4 + 2(−1/3 g15g3 − 157/1215 g6

3 − 31/45 g9g3d6 + 1/405 g5d7d6)

+ 22(−377/135 g9g
3
3 + 337/1215 g5g

2
3d7 + 3473/1215 g4

3d6 + 5/27 g2
5d

2
4)

+ 23(1/81 g3
5g3 + 35/243 g5g3d6d4) + 24(−1/9 g9g5d4 + 467/729 g5g

3
3d4 + 53/6561 g2

3d
3
4),

g4
5 − 1/27 d5

4 + 2(−159g15g5 − 27g9g5d6 + 9g9d7d4 + 27g2
5d6d4 − 9g3d7d6d4)

+ 22(−387g9g5g
2
3 − 35/3 g5g

5
3 + 17g2

5g3d7 + 355g2
5g

2
3d4 − 3g9g3d

2
4 + 3g2

3d6d
2
4 + 67/9 g5g3d

3
4)

+ 23(199g5g
3
3d6 − 1/3 g3

3d7d4) + 24(1/9 g4
3d

2
4),

g8
3 − 235/1445121 d6

4 + 2(24255/5947 g15g9 − 3855/5947 g9g5d6d4 + 566695/1445121 g5g3d
4
4)

+ 22(68499/5947 g9g
5
3 − 69969/5947 g6

3d6 − 12991/17841 g5g
2
3d7d6 − 105395/53523 g15g5d4

+ 55645/160569 g2
5g3d7d4 + 1342735/160569 g2

5g
2
3d

2
4 − 47675/481707 g4

3d
3
4)

+ 23(−335/939 g15g
3
3 + 5155/160569 g3

5g
3
3 + 2145/5947 g9g5g3d7 − 39167/53523 g5g

4
3d7

− 35/17841 g3
5g3d6 + 2875/17841 g2

5d6d
2
4 − 805/17841 g9g3d

3
4 + 7895/160569 g2

3d6d
3
4)

+ 24(−3085/5947 g15g3d6 + 567/5947 g9g
3
3d6 − 13615/5947 g9g5g

2
3d4)

+ 25(5/5947 g9g
3
5 − 220885/160569 g5g

5
3d4) + 27(15115/53523 g5g

3
3d6d4),

g2
15 − 4423646851/37005741 g2

3d
6
4 + 2(−6688025/152287 g15g

3
5 + 42564773535/152287 g15g9g

2
3

− 664821/152287 g15g9d6 − 1971/152287 g9g
3
5d6 + 371445/152287 g9g

2
5d7d4

+ 1957715/456861 g15g5d6d4 − 7703714311/152287 g9g5g
2
3d6d4 + 1047393557/1370583 g2

5g3d7d6d4

+ 2939006257/456861 g9g
2
5g3d

2
4 + 1831149342661/1370583 g2

5g
4
3d

2
4 − 34405219/4111749 g15g3d

3
4

− 80699929051/12335247 g3
5g3d

3
4 + 59584614437/37005741 g6

3d
3
4 + 31947038297/4111749 g4

3d6d
3
4

+ 270247/1370583 g9g5d
4
4 + 916241713331/37005741 g5g

3
3d

4
4) + 22(30654145/152287 g9g

3
5g

2
3

− 122749825/4111749 g3
5g

5
3 − 575158605/152287 g15g5g3d7 − 29792441557/4111749 g5g

6
3d7

− 60140331/152287 g9g5g3d7d6 − 332646887695/456861 g9g5g
4
3d4 − 265228485653/12335247 g5g

7
3d4

+ 187962435235/4111749 g2
5g

3
3d7d4 + 3077559069377/4111749 g5g

5
3d6d4

+ 90822041303/4111749 g2
5g

2
3d6d

2
4 − 5373504349/1370583 g9g

3
3d

3
4) + 23(2686640435/152287 g9g5g

3
3d7

− 15326689/152287 g3
5g

3
3d6 − 94853486069/1370583 g15g5g

2
3d4 + 3340711/152287 g9g3d6d

3
4

− 1815079/37005741 g2
5d

5
4) + 25(−3548969723/1370583 g15g

5
3) + 26(−1330132295/152287 g15g

3
3d6

− 998302129/456861 g5g
4
3d7d6)).

In Lemma 4.4, we have written all the relations as Z(2)-polynomials in the ele-
ments g15, g9, g5, g3, d7, d6, d4. Since H∗(E8/A8,Z(2)) is torsion-free, these relations
also hold in H∗(E8/A8,Z(2)). Let R be the quotient of Z(2)[g15, g9, g5, g3, d7, d6, d4]
by the relations listed in Lemma 4.4. Then we have a homomorphism from R to
H∗(E8/A8,Z(2)), which is surjective by Toda’s theorem.

By reducing these relations modulo 2, we find that the ring R/2 has a very short
description:

11



R/2 = Z/2[g15, g9, g5, g3, d7, d6, d4]/

(d2
6 + d3

4, d
2
7 + d6d

2
4, d7d

2
4, g

2
9 + d6d

3
4, g

4
5 + d5

4, g
8
3 + d6

4, g
2
15 + g2

3d
6
4).

In particular, it is easy to check that R/2 is a complete intersection ring, with gener-
ators in degrees 3, 4, 5, 6, 7, 9, 15 and relations in degrees 12, 14, 15, 18, 20, 24, 30. So
we know the Hilbert series of R/2. Also we know the Hilbert series of H∗(E8/A8,Z/2).
Indeed, E8/A8 has no 2-torsion in its cohomology, and so this Hilbert series is the
same as the Hilbert series of H∗(E8/A8,Q). The latter ring is a complete inter-
section ring with generators in degrees 2, 3, 4, 5, 6, 7, 8, 9 and relations in degrees
2, 8, 12, 14, 18, 20, 24, 30, these being the fundamental degrees of E8. As a result,
R/2 has the same Hilbert series as H∗(E8/A8,Z/2). Since we have a surjective
homomorphism from R/2 to H∗(E8/A8,Z/2), this homomorphism must be an iso-
morphism. Thus we have a complete calculation of H∗(E8/A8,Z/2), as follows.
Earlier, Kono and Ishitoya computed this ring in degrees at most 23 (meaning H i

for i at most 46) ([12], 5.5).

Theorem 4.5

H∗(E8/A8,Z/2) = Z/2[g15, g9, g5, g3, d7, d6, d4]/

(d2
6 + d3

4, d
2
7 + d6d

2
4, d7d

2
4, g

2
9 + d6d

3
4, g

4
5 + d5

4, g
8
3 + d6

4, g
2
15 + g2

3d
6
4).

Moreover, we have a surjection from the above ring R to H∗(E8/A8,Z(2)) which
becomes an isomorphism after reducing modulo 2. Since H∗(E8/A8,Z(2)) is torsion-
free, it follows that R maps isomorphically to H∗(E8/A8,Z(2)). That is, we have
shown:

Theorem 4.6 The Z(2)-cohomology ring of E8/A8 is the quotient of the polynomial
ring Z(2)[g15, g9, g5, g3, d7, d6, d4] by the relations listed in Lemma 4.4.

Fortunately, only a small part of the information in these relations will be needed
for our calculation of the torsion index of E8. We will only need to know these
relations modulo 4, at most.

The simple description of the ring H∗(E8/A8,Z/2) in Theorem 4.5 determines a
basis for this ring as a Z/2-vector space, in the following way. Consider the “reverse
lexicographic” ordering of the monomials of a given degree, based on the order of
variables g15, g9, g5, g3, d7, d6, d4. This means that we define one monomial to be
smaller than another if it has a higher power of d4, or the same power of d4 and
a higher power of d6, and so on. We say that a monomial is “reduced” if it is not
equal in H∗(E8/A8,Z/2) to a linear combination of smaller monomials. Then it is
clear that the reduced monomials form a basis for H∗(E8/A8,Z/2).

Buchberger gave an algorithm to determine which monomials are reduced, start-
ing from any set of defining relations for a commutative algebra over a field. Buch-
berger’s algorithm is the basis of the theory of Gröbner bases [18]. Our choice of
monomial ordering works well: unusually, the algorithm can be carried out quickly
by hand, as follows. First, from the relations which define H∗(E8/A8,Z/2), we know
that the monomials d2

6, d2
7, d7d

2
4, g2

9, g4
5, g8

3, g2
15 are non-reduced. Next, Buchberger’s
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algorithm says to consider any “overlaps” between these monomials. We find that
in H∗(E8/A8,Z/2), d2

7d
2
4 is equal both to d2

4(d6d
2
4) = d6d

4
4 and to d7(0) = 0. So

d6d
4
4 = 0, and hence the monomial d6d

4
4 is also non-reduced. Next, d2

6d
4
4 is equal

both to d4
4(d

3
4) = d7

4 and to d6(0) = 0. So d7
4 = 0, and hence the monomial d7

4

is also non-reduced. The remaining overlaps between these monomials just yield
that f = f for some polynomials f . That ends Buchberger’s algorithm. The result
is that a monomial is non-reduced if and only if it is a multiple of d2

6, d2
7, d7d

2
4,

g2
9, g4

5, g8
3, g2

15, d6d
4
4, or d7

4. We have also found reduced expressions for each of
these monomials; together, these relations are called a “Gröbner basis” for the ring
H∗(E8/A8,Z/2).

d2
6 = d3

4

d2
7 = d6d

2
4

d7d
2
4 = 0

g2
9 = d6d

3
4

g4
5 = d5

4

g8
3 = d6

4

g2
15 = g2

3d
6
4

d6d
4
4 = 0

d7
4 = 0.

Since H∗(E8/A8,Z(2)) is a torsion-free Z(2)-algebra, and the reduced monomials
in g15, g9, g5, g3, d7, d6, d4 form a basis for this ring modulo 2, it follows that the same
reduced monomials form a basis for this ring as a free Z(2)-module. In order to be
able to express any polynomial in the generators in reduced form, we should lift each
of the above Gröbner relations in H∗(E8/A8,Z/2) to a relation in H∗(E8/A8,Z(2)).
In fact, we can now say how we chose a particular way to write the relations defining
this ring in Theorem 4.6 and Lemma 4.4: these relations are the unique relations of
the form m − r such that m is one of the monomials d2

6, d
2
7, d7d

2
4, g

2
9, g

4
5, g

8
3, g

2
15 and

r is a Z(2)-linear combination of reduced monomials. Using these, we can deduce
the corresponding relations involving d6d

4
4 and d7

4. In fact, for our purpose, we only
need to know the relations in Lemma 4.4 modulo 4. Namely, we compute that the
following relations hold in H∗(E8/A8,Z(2)).

d2
6 = d3

4 (mod 2)

d2
7 = 3d6d

2
4 + 2(g9g5 + g5g3d6 + g3d7d4) (mod 22)

d7d
2
4 = 2(g15 + g5g3d7) (mod 22)

g2
9 = d6d

3
4 (mod 2)

g4
5 = d5

4 (mod 2)

g8
3 = d6

4 (mod 2)

g2
15 = 3g2

3d
6
4 + 2(g15g

3
5 + g15g9g

2
3 + g15g9d6 + g9g

3
5d6 + g9g

2
5d7d4 + g15g5d6d4 + g9g5g

2
3d6d4 + g2

5g3d7d6d4

+ g9g
2
5g3d

2
4 + g2

5g
4
3d

2
4 + g15g3d

3
4 + g3

5g3d
3
4 + g6

3d
3
4 + g4

3d6d
3
4 + g9g5d

4
4 + g5g

3
3d

4
4) (mod 22)

d6d
4
4 = 2(g15d7 + g5g3d

2
7 + g9g5d

2
4 + g5g3d6d

2
4 + g3d7d

3
4) mod (22d7, 22d2

4)

d7
4 = 2(g15d7d6 + g5g3d

2
7d6 + g9g5d6d

2
4 + g5g3d

2
6d

2
4 + g3d7d6d

3
4) mod (2d4

4, 2
2d7d6, 22d6d

2
4)
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The formulas for d6d
4
4 and d7

4 could be simplified further, but we have written them
in the form which follows immediately from the first three formulas.

These formulas contain just enough information to prove that the torsion index
of E8 is a multiple of 26, as we want. To do this, we will define a valuation on
the ring H∗(E8/A8,Z(2)), meaning a function v from the ring to R∪ {∞} with the
properties:

v(x) = ∞ ⇐⇒ x = 0.
v(ax) = ord2(a) + v(x) for a ∈ Z(2), x ∈ H∗(E8/A8,Z(2)).
v(x + y) ≥ min(v(x), v(y)).
v(xy) ≥ v(x) + v(y).
Namely, define the valuation on the generators of this algebra by

v(d4) = 0
v(d6) = 0
v(d7) = 0
v(g3) = −1/4
v(g5) = −2/3
v(g9) = −1/3

v(g15) = −1.

Define the valuation of any reduced monomial in the generators to be the sum of
the valuations of the corresponding generators, with multiplicities. Finally, define
the valuation of any element of H∗(E8/A8,Z(2)) by writing it as a sum of reduced
monomials m with coefficients am in Z(2), and defining

v

(∑
m

amm

)
= min

m
(ord2(am) + v(m)).

It is clear that v satisfies the first three properties of a valuation, as listed above.
Let us show that v also satisfies the last property, v(xy) ≥ v(x)+v(y). It suffices to
show that for each of the 9 “basic non-reduced monomials” d2

6, . . . , d
7
4, the valuation

of the reduced expression for the monomial is at least the sum of the valuations of
the generators in the monomial. We check this for each of the basic non-reduced
monomials, using its reduced expression modulo a small power of 2 given above. For
example, we know the relation d2

6 = d3
4 (mod 2). Here 2v(d6) = 0, and so we need to

prove that the reduced expression for d2
6 has valuation at least 0. This is true for the

monomial d3
4, and it is also true for all monomials of degree 12 multiplied by 2. The

latter fact holds because, as we check, all monomials of degree 12 have valuation at
least −1; the worst case is g4

3, which has valuation exactly −1. A similar analysis
works for each of the above 9 formulas expressing a basic non-reduced monomial
modulo small powers of 2. Thus v is a valuation.

To show that the torsion index of E8 is a multiple of 26, it is equivalent to
show that any element of the top degree, 84, in the subring generated by d2, . . . , d9

in H∗(E8/A8,Z(2)) is zero modulo 26, by Lemma 4.2. We observe that v(di) is
nonnegative for i = 2, . . . , 9. This is clear for d4, d6, and d7. For the rest, it
follows from the relations we know. Indeed, d2 is 0, v(d3) = v(2g3) = 3/4, and
v(d5) = v(2g5) = 1/3. Next, we showed earlier that

d8 = 1/9 d2
4 − 2/3 g3g5
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in H∗(E8/A8,Z(2)). So

v(d8) = min (0, 1− 1/4− 2/3)
= 0,

which is nonnegative, as we want. Finally, by the definition of g9, we have

d9 = 2(g9 − g5d4 − g3d6)

and so

v(d9) = 1 + min (−1/3,−2/3,−1/4)
= 1/3.

Thus, v(di) ≥ 0 for i = 2, . . . , 9, and so any element of the subring generated by
d2, . . . , d9 in H∗(E8/A8,Z(2)) has valuation at least 0.

On the other hand, our description of the reduced monomials shows that the
ring H∗(E8/A8,Z(2)) is generated in its top degree, 84, by the reduced monomial
g15g9g

3
5g

7
3d

6
4. This monomial has valuation

v(g15g9g
3
5g

7
3d

6
4) = −1− 1/3− 3(2/3)− 7(1/4)

= −61/12.

Since this is (barely) less than −5, it follows that any top-degree element of the
subring generated by d2, . . . , d9 in H∗(E8/A8,Z(2)) must be a multiple of 26 times
the basis element g15g9g

3
5g

7
3d

6
4. Thus we have shown that the torsion index of E8 is

a multiple of 26. This completes the proof of Theorem 4.1, that the torsion index
of E8 is equal to 26325 = 2880. QED

5 The torsion index of the semispin group Ss(12)

Theorem 5.1 The torsion index of the semispin group Ss(12) divides 22.

By definition, the semispin group Ss(4n) is the quotient of the spin group
Spin(4n) by a central subgroup of order 2 other than the one which gives SO(4n).
(The center of Spin(4n) is isomorphic to (Z/2)2.) We will not try to compute the
torsion index of the semispin groups in general; in fact, that is the main calculation
of torsion indices left open by this paper and [25]. We do this partial calculation
for Ss(12) because it will be used in our calculation for the adjoint group E7/(Z/2)
(Theorem 6.1). The torsion index of Ss(12) is in fact equal to 22, but we do
not include a proof since it is not needed for the application to E7/(Z/2). Note
that Ss(12) is the first “nontrivial” semispin group. Indeed, Ss(4) is isomorphic
to SU(2) × SO(3), so has torsion index 21, and Ss(8) is isomorphic to SO(8) by
triality, so has torsion index 23 (Theorem 3.2 in [25], which follows from results of
Marlin and Merkurjev).

Proof. We use that the semispin group Ss(12) has a Levi subgroup which is
isogenous to the subgroup U(6) in SO(12). More precisely, there are two conjugacy
classes of such subgroups in SO(12) which are switched by the outer automorphism
of SO(12), and these correspond to two conjugacy classes of subgroups in Ss(12)
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which are not isomorphic; one has derived subgroup isomorphic to SU(6) while the
other has derived subgroup SU(6)/(Z/2). Let H be the Levi subgroup of Ss(12)
whose derived subgroup is SU(6).

By Lemma 2.1, the group H has torsion index 1. By Lemma 4.2, the Z(2)-
cohomology of Ss(12)/H = SO(12)/U(6) is torsion-free, and the 2-part of the index
of Ss(12) is equal to the index in the top degree of the image of the Z(2)-cohomology
of BH in that of Ss(12)/H.

The cohomology of Ss(12)/H = SO(12)/U(6) is well known ([17], III.6.9):

H∗(SO(12)/U(6),Z) = Z[e1, . . . , e5]/(e2i−2e1e2i−1+2e2e2i−2−· · ·+(−1)ie2
i = 0, i ≥ 1),

where the Chern classes cj in H∗BU(6) restrict to 2ej for j > 0. Here we understand
ej to mean 0 for j ≥ 6. The element ej is in H2j .

The group H ∼= (SU(6)×S1)/(Z/3) has a 1-dimensional complex representation
which in terms of the isogenous group U(6) is det V , where V denotes the standard
representation of U(6). The group H also has a complex representation of dimension
6 which in terms of the isogenous group U(6) is V ⊗ (detV )1/2. The Chern classes
of these two representations of H give us some integral cohomology classes in BH,
and we can compute their images in the cohomology of Ss(12)/H. First, the 1-
dimensional representation of H shows that c1(V ) = 2e1 is in the image of the
integral cohomology of BH. Next, we compute the Chern classes of the above
6-dimensional representation of H:

c(V ⊗ (detV )1/2) =
6∑

i=0

(1 + c1(detV )1/2)6−iciV

= (1 + e1)6 +
6∑

i=1

(1 + e1)6−i2ei

= 1 + (8e1) + (25e2
1 + 2e2) + · · · .

Therefore, the image of the integral cohomology ring of BH in that of Ss(12)/H =
SO(12)/H contains the elements 2e1 and 25e2

1 + 2e2 = 27e2
1. Working 2-locally, we

can say that this image ring contains 2e1 and e2
1.

Therefore, the image of the Z(2)-cohomology ring of BH in that of Ss(12)/H =
SO(12)/H contains the top-degree element

(2e1)(e2
1)

7 = 2e15
1 .

From our knowledge of the cohomology ring of SO(12)/U(6), we compute that e15
1

is 2 times an odd multiple of a generator of the top-degree cohomology group of
SO(12)/U(6). (This calculation is done in the proof of Lemma 3.3 in [25], for exam-
ple.) Therefore the image of the Z(2)-cohomology ring of BH in that of Ss(12)/H
contains 22 times a top-degree generator. By Lemma 4.2, as discussed earlier, it
follows that the torsion index of Ss(12) divides 22. QED

6 The torsion index of E6/(Z/3) and E7/(Z/2)

Theorem 6.1 The adjoint group E6/(Z/3) has torsion index 2 · 33 = 54. The
adjoint group E7/(Z/2) has torsion index 233 = 24.

16



This completes the calculation of the torsion index for all simple groups of
exceptional type, in view of the calculation that t(G2) = 2, Tits’s calculations
that t(F4) = 2 · 3, t(E6) = 2 · 3, t(E7) = 223, and Theorem 4.1 which says that
t(E8) = 26325.

Proof. We consider E6/(Z/3) first. From the definition of the torsion index,
it is clear that the p-part of the torsion index of E6/(Z/3) is the same as that of
the simply connected group E6 for p 6= 3, so it remains to compute the 3-part. By
Merkurjev [16], 4.5.2, the torsion index of E6/(Z/3) is a multiple of 33. So we need
to show that the 3-adic order of the torsion index of E6/(Z/3) is at most 3.

We use that E6/(Z/3) has a Levi subgroup H which is isogenous to A5×S1. The
homogeneous space (E6/(Z/3))/H has Euler characteristic equal to |W (E6)|/|W (A5)| =
27345/6! = 2332. Therefore, by Lemmas 2.2 and 2.1,

ord3t(E6/(Z/3)) ≤ 2 + ord3t(H)
≤ 2 + ord3t(PSU(6))
≤ 2 + ord3(6)
= 3.

Thus, t(E6/(Z/3)) = 2 · 33, as we want.
Similarly, we know that the p-part of the torsion index of E7/(Z/2) is the same

as that of the simply connected group E7 for p 6= 2, so it remains to compute the
2-part. By Merkurjev [16], 4.5.3, the torsion index of E7/(Z/2) is a multiple of 23.
So we need to show that the 2-adic order of the torsion index of E7/(Z/2) is at
most 2.

We use that E7/(Z/2) has a Levi subgroup H which is isogenous to D6 × S1.
More precisely, the derived subgroup of H is isomorphic to the semispin group
Ss(12). To check this, one can use Adams’s book [2], p. 50 and p. 82: we see that
Spin(12) injects into E7, with centralizer SU(2), and that Spin(12) acts on the Lie
algebra L(E7) by

L(E7) = L(Spin(12))⊕ L(SU(2))⊕∆+

where ∆+ is one of the spin representations of Spin(12). Thus, the image of
Spin(12) in the adjoint group E7/(Z/2) is isomorphic to its image acting on ∆+,
which is the semispin group Ss(12).

The Euler characteristic of the homogeneous space (E7/(Z/2))/H is

|W (E7)|/|W (D6)| = 210345 · 7/29325

= 2 · 327.

Therefore, by Lemmas 2.2 and 2.1, together with Lemma 5.1, we have

ord2t(E7/(Z/2)) ≤ 1 + ord2t(H)
= 1 + ord2t(Ss(12))
≤ 1 + 2
= 3.

Thus, t(E7/(Z/2)) = 233, as we want. QED
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7 The torsion index of PSO(2n)

We now complete the calculation of the torsion index for all compact Lie groups of
adjoint type. The remaining case is PSO(2n) = SO(2n)/{±1}. Let us sum up the
other cases first. The torsion index of SU(n)/(Z/n) is n, and the torsion index of
the group Sp(2n)/(Z/2) of type Cn is 2ord2(n)+1, by Merkurjev [16] as discussed in
the introduction. The group SO(2n + 1) is of adjoint type, and its torsion index
is 2n, by the references in section 2. The simply connected groups G2, F4, and E8

are also of adjoint type, and so we know their torsion indices: 2, 2 · 3, and (by
Theorem 4.1) 26325. Finally, Theorem 6.1 gives that the adjoint groups E6/(Z/3)
and E7/(Z/2) have torsion indices 2 · 33 and 233.

Theorem 7.1 For all n ≥ 2, the torsion index of PSO(2n) is 2n−1 if n is not a
power of 2, and 2n if n is a power of 2.

This is a surprisingly small answer. In particular, it is clear from the definitions
that the torsion index of SO(2n) divides that of PSO(2n), but the theorem says
that these two torsion indices are actually equal for all n not a power of 2. (Here
SO(2n) was known to have torsion index 2n−1 for all n; see the references in section
2.)

Proof. It is immediate from the definition of the torsion index that the odd
part of the torsion index of PSO(2n) is the same as that of SO(2n), that is, 1. So
the torsion index of PSO(2n) is a power of 2.

We will use Lemma 4.2 to compute the torsion index of PSO(2n) using a torsion-
free subgroup K of maximal rank. To simplify the calculation, we want a big
subgroup K with these properties. So let K be the Levi subgroup

K = (U(n− 1)× U(1))/(Z/2) ⊂ U(n)/(Z/2) ⊂ SO(2n)/(Z/2) = PSO(2n).

We know that K is torsion-free because its derived subgroup is SU(n − 1), using
Lemma 2.1. Thus, by Lemma 4.2, the torsion index of PSO(2n) is the index in the
top degree of the image of H∗(BK,Z) in H∗(PSO(2n)/K,Z) = H∗(SO(2n)/U(n−
1)× U(1),Z).

This homogeneous space SO(2n)/U(n− 1)×U(1) is the CPn−1-bundle associ-
ated to the natural vector bundle over the isotropic Grassmannian SO(2n)/U(n).
The cohomology of the isotropic Grassmannian is well known: ([17], III.6.9):

H∗(SO(2n)/U(n),Z) = Z[e1, . . . , en−1]/(e2i−2e1e2i−1+2e2e2i−2−· · ·+(−1)ie2
i , i ≥ 1),

where the Chern classes cj in H∗BU(l) restrict to 2ej for j > 0. Here we understand
ej to mean 0 for j ≥ n. The element ej is in H2j . From this, we deduce the
cohomology of the homogeneous space we need to consider:

H∗(SO(2n)/U(n− 1)× U(1),Z) = Z[t, e1, . . . , en−1]/

(tn−(2e1)tn−1+ · · ·+(−1)n−1(2en−1)t, e2
i −2ei−1ei+1+2ei−2ei+2−· · ·+(−1)ie2i).

Next, we need to know the integral cohomology ring of B(U(n−1)×U(1))/(Z/2).
Clearly the integral cohomology of B(U(n−1)×U(1)) is the polynomial ring gener-
ated by the Chern classes c1Vn−1, . . . , cn−1Vn−1 and c1L, where Vn−1 is the standard
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complex representation of U(n − 1) and L is the standard complex representation
of U(1). To compute the cohomology of B(U(n− 1)×U(1))/(Z/2), we can use the
spectral sequence of the fibration

BU(n− 1) → B(U(n− 1)× U(1))/(Z/2) → BU(1)/(Z/2),

which degenerates since the base and fiber have cohomology concentrated in even
degrees. Using this, it is straightforward to check that the integral cohomology of
B(U(n−1)×U(1))/(Z/2) is the polynomial ring generated by v := c1(L⊗L) = 2c1L
and ui := ci(Vn−1 ⊗ L∗) for i = 1, . . . , n− 1.

We then have to consider the image of this polynomial ring in the cohomology
of SO(2n)/U(n − 1) × U(1). We can simplify the calculation by translating the
problem from the orthogonal groups to the symplectic groups, as I also did when
computing the torsion index of the spin groups ([25], section 4). Let Sp(2n) denote
the simply connected group of type Cn, which topologists usually call Sp(n). The
homogeneous space Sp(2n)/U(n − 1) × U(1) has the following cohomology ring,
similar to that of SO(2n)/U(n− 1)× U(1):

H∗(Sp(2n)/U(n− 1)× U(1),Z) = Z[t, f1, . . . , fn]/

(tn−f1t
n−1+· · ·+(−1)n−1fn−1t+(−1)nfn, f2

i −2fi−1fi+1+2fi−2fi+2−· · ·+(−1)i2f2i),

where fi = 0 for i > n. Here, if we write Vn−1 and L for the standard representa-
tions of U(n − 1) and U(1), then t denotes c1L and fi denotes ci(Vn−1 ⊕ L). We
can define a homomorphism from this cohomology ring to the integral cohomology
ring of SO(2n)/U(n − 1) × U(1) which takes t to t and fi to 2ei, which means in
particular that fn maps to 0. (This homomorphism is not claimed to come from a
map of spaces.) By inspection of the relations, we can see that the quotient ring
H∗(Sp(2n)/U(n−1)×U(1),Z)/(fn) is torsion-free. Also, the map from this quotient
ring to the cohomology of SO(2n)/U(n − 1) × U(1) is rationally an isomorphism.
Therefore the map from the quotient ring H∗(Sp(2n)/U(n− 1)× U(1),Z)/(fn) to
the integral cohomology of SO(2n)/U(n− 1)× U(1) is injective.

It is clear that the homomorphism from the cohomology of B(U(n − 1) ×
U(1))/(Z/2) to the cohomology of SO(2n)/U(n − 1) × U(1) factors through the
quotient ring H∗(Sp(2n)/U(n−1)×U(1),Z)/(fn). We have shown that the torsion
index of PSO(2n) is the index of the first homomorphism in the top degree. So the
torsion index of PSO(2n) is the product of two numbers: the index of the image
of H∗(BU(n − 1) × U(1)/(Z/2),Z) in the top degree of H∗(Sp(2n)/U(n − 1) ×
U(1),Z)/(fn), and the index of the image of H∗(Sp(2n)/U(n− 1)× U(1),Z)/(fn)
in the top degree of H∗(SO(2n)/U(n−1)×U(1),Z). Moreover, the second of these
two numbers is easy to compute. The element tn−1f1 · · · fn−1 is a basis element for
H∗(Sp(2n)/U(n− 1)× U(1),Z)/(fn) in the top degree, and it maps to 2n−1 times
the basis element tn−1e1 · · · en−1 of H∗(SO(2n)/U(n− 1)× U(1),Z).

Therefore, the theorem will follow if we can show that the image of H∗(BU(n−
1)×U(1)/(Z/2),Z) in H∗(Sp(2n)/U(n−1)×U(1),Z)/(fn) contains the top-degree
basis element tn−1f1 · · · fn−1 whenever n is not a power of 2, and contains 2 times
that element but not the element itself when n is a power of 2. In other words, we
have reduced to a calculation modulo 2 for most values of n, and to a calculation
modulo 4 in the worst case, when n is a power of 2. The image of H∗(BU(n −
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1)× U(1)/(Z/2),Z) is the subring generated by v := 2t and ui = ci(Vn−1 ⊗ L∗) for
i = 1, . . . , n− 1. It is convenient to let Vn = Vn−1 ⊕ L; then we can also write

ui = ci(Vn−1 ⊗ L∗)
= ci((Vn − L)⊗ L∗)
= ci(Vn ⊗ L∗ − 1)
= ci(Vn ⊗ L∗)

for u = 1, . . . , n− 1. This is also true for i = n, with the convention that un = 0.
To analyze the above subring, it is helpful to note that the whole quotient ring

H∗(Sp(2n)/U(n − 1) × U(1),Z)/(fn) is generated by t, u1, . . . , un−1, as well as by
t, f1, . . . , fn−1. This is clear from the formulas t = c1L, ui = ci(Vn ⊗ L∗), and
fi = ciVn. It will also be useful to work out the relations among the generators
t, u1, . . . , un−1. The relations defining H∗(Sp(2n)/U(n − 1) × U(1),Z) say, in par-
ticular, that the Chern classes of Vn ⊕ V ∗

n are zero in positive degrees. It follows
that, for i ≥ 1,

ci((Vn ⊕ V ∗
n )⊗ L) = ci(L⊕2n)

=
(

2n

i

)
ti.

Here we can write (Vn⊕V ∗
n )⊗L as (Vn⊗L∗)⊗L⊗2⊕(Vn⊗L∗)∗; so the above formula

shows that the
(
2n
i

)
t2i belongs to the subring of H∗(Sp(2n)/U(n−1)×U(1),Z)/(fn)

generated by the elements ui and v. This becomes particularly simple modulo 2, so
that a bundle and its dual have the same Chern classes. We use that ui = ci(Vn⊗L∗).
The result is that, in H∗(Sp(2n)/U(n− 1)× U(1),Z/2)/(fn), we have

u2
i =

(
2n

2i

)
t2i

=
(

n

i

)
t2i

for i = 1, . . . , n− 1.
This is enough to see that the torsion index of PSO(2n) is 2a for some a ≥ n

when n is a power of 2. (Note that we assume n ≥ 2 throughout.) Namely, from
what we have shown, the torsion index of PSO(2n) is 2n−1 if and only if the subring
of H∗(Sp(2n)/U(n− 1)× U(1),Z/2)/(fn) generated by the elements ui is nonzero
in the top degree; the element v is irrelevant since it is 0 modulo 2. (A top-degree
basis element is tn−1f1 · · · fn−1, in degree

(
n+1

2

)
−1.) Now, if n is a power of 2, then

the relation u2
i =

(
n
i

)
t2i implies that u2

i = 0 for i = 1, . . . , n − 1. So the subring
of H∗(Sp(2n)/U(n − 1) × U(1),Z/2)/(fn) generated by the elements ui is zero in
degrees greater than

(
n
2

)
, the degree of u1 · · ·un−1. Since n ≥ 2, it follows that the

subring generated by the elements ui is 0 in the top degree, degree
(
n+1

2

)
− 1. Thus

we have shown that the torsion index of PSO(2n) is 2a for some a ≥ n when n is
a power of 2.

We now find another relation among t and the elements ui, this time in inte-
gral cohomology (not just modulo 2). We start with the fact that cn(Vn) = 0 in
H∗(Sp(2n)/U(n − 1) × U(1),Z)/(fn); this is what it means to set fn to 0. It fol-
lows that the only nonzero Chern classes in H∗(Sp(2n)/U(n − 1) × U(1),Z)/(fn)
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of the virtual bundle Vn − 1 of rank n − 1 are ci with i ≤ n − 1. So the vir-
tual bundle (Vn − 1) ⊗ L∗ = Vn ⊗ L∗ − L∗ has the same property. In particular,
cn(Vn ⊗ L∗ − L∗) = 0. Since ui = ci(Vn ⊗ L∗), with un = 0 as mentioned earlier,
this gives the following relation in H∗(Sp(2n)/U(n− 1)× U(1),Z)/(fn):

tn + tn−1u1 + · · ·+ tun−1 = 0.

It seems helpful to find a Gröbner basis for the ring H∗(Sp(2n)/U(n − 1) ×
U(1),Z/2)/(fn), using the generators un−1, . . . , u1, t in that order, and the reverse
lexicographic order of monomials. We use Buchberger’s algorithm, as in section 4.
We start with the relations we have found already:

u2
i =

(
n

i

)
t2i

and, using that n ≥ 2,

un−1t = un−2t
2 + · · ·+ u1t

n−1 + tn.

The first overlap between non-reduced monomials is u2
n−1t, which is equal both to(

n
n−1

)
t2n−1 = nt2n−1 and to

u2
n−1t = un−1(un−2t

2 + · · ·+ u1t
n−1 + tn)

= (un−1t)(un−2t + · · ·+ u1t
n−2 + tn−1)

= (un−2t + · · ·+ tn−1)2t

= u2
n−2t

3 + u2
n−3t

5 + · · ·+ t2n−1

=
((

n

n− 2

)
+
(

n

n− 3

)
+ · · ·+

(
n

0

))
t2n−1

= (n + 1)t2n−1.

Thus nt2n−1 = (n + 1)t2n−1, and so t2n−1 = 0. As a result, since we know the ring
H∗(Sp(2n)/U(n − 1) × U(1),Z/2)/(fn) is generated by un−1, . . . , u1, t, this ring is
spanned as a Z/2-vector space by all monomials which are not multiples of u2

i , un−1t,
or t2n−1. We also know the Hilbert series of this ring, from which we deduce that
these monomials actually form a basis for H∗(Sp(2n)/U(n− 1)× U(1),Z/2)/(fn).
Thus we have found the whole Gröbner basis for this ring. In particular, it follows
that the ring is spanned in the top degree by the monomial un−2 · · ·u1t

2n−2.
To prove that PSO(2n) has torsion index only 2n−1 for n not a power of 2, it

is equivalent to show that the subring of H∗(Sp(2n)/U(n − 1) × U(1),Z/2)/(fn)
generated by u1, . . . , un−1 contains the top-degree basis element, un−2 · · ·u1t

2n−2.
We now prove this, by making a good choice of a monomial in u1, . . . , un−1. Let
a = ord2n. Then the binomial coefficient

(
n
2a

)
is nonzero modulo 2, and 1 ≤ 2a ≤

n− 1, since n is not a power of 2. So the relations above imply that

u2
2a = t2

a+1

in H∗(Sp(2n)/U(n − 1) × U(1),Z/2)/(fn). Let b = n/2a, which is an odd integer.
Then we consider the following top-degree monomial in u1, . . . , un−1:

un−1 · · ·u2a+2(u2a)b+2u2a−1 · · ·u1 = un−1 · · ·u2a+2u2a · · ·u1t
(b+1)2a

,
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using that b + 1 is even and that u2
2a = t2

a+1
. Using the above Gröbner relations,

this expression reduces to:

= un−2 · · ·u2a+2u2a · · ·u1t
(b+1)2a−1(un−2t

2 + · · ·+ u1t
n−1 + tn).

Using the relations u2
i =

(
n
i

)
t2i and t2n−1 = 0, where n = 2ab, all the terms here

reduce to 0 except one:
= un−2 · · ·u1t

2n−2.

As we have said, this is the nonzero element in the top degree of H∗(Sp(2n)/U(n−
1)× U(1),Z/2)/(fn). Thus the subring generated by the elements ui is nonzero in
the top degree. This shows that PSO(2n) has torsion index only 2n−1 for n not a
power of 2.

It remains only to show that the torsion index of PSO(2n) divides 2n when n is
a power of 2. Equivalently, we have to show that the subring of H∗(Sp(2n)/U(n−
1)× U(1),Z/4)/(fn) generated by the elements u1, . . . , un−1 and v = 2t is nonzero
in the top degree. As mentioned earlier, we know that this subring contains

(
2n
i

)
ti

for all i. We apply this with i = n; in that case,
(
2n
n

)
≡ 2 (mod 4), using that n is

a power of 2. So the subring of H∗(Sp(2n)/U(n − 1) × U(1),Z/4)/(fn) generated
by u1, . . . , un−1 and v contains 2tn. We consider the following top-degree element
of that subring:

un−1 · · ·u2(2tn).

To show that this is nonzero modulo 4, as we want, it suffices to show that un−1 · · ·u2(tn)
is nonzero modulo 2. So we can use the relations we worked out in H∗(Sp(2n)/U(n−
1)× U(1),Z/2)/(fn):

un−1 · · ·u2(tn) = un−2 · · ·u2t
n−1(un−2t

2 + · · ·+ u1t
n−1 + tn).

Here all but one of the terms are 0, using the relations u2
i =

(
n
i

)
t2i and t2n−1 = 0.

What remains is:
= un−2 · · ·u1t

2n−2,

which is a nonzero element in the top degree of H∗(Sp(2n)/U(n−1)×U(1),Z/2)/(fn).
Therefore the torsion index of PSO(2n) divides 2n when n is a power of 2, and hence
is equal to 2n. QED
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Liescher Gruppen. Comment. Math. Helv. 13 (1941), 240–251.

[12] A. Kono and K. Ishitoya. Squaring operations in mod 2 cohomology of quotients
of compact Lie groups by maximal tori. Algebraic topology (Barcelona, 1986),
192–206, Lecture Notes in Mathematics 1298, Springer (1987).

[13] Y. Laszlo and C. Sorger. The line bundles on the moduli of parabolic G-bundles
over curves and their sections. Ann. Sci. ENS 30 (1997), 499–525.

[14] R. Marlin. Anneaux de Chow des groupes algébriques SU(n), Sp(n), SO(n),
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