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An algebraic variety is rational if it becomes isomorphic to projective space after
removing lower-dimensional subvarieties from both sides. Little is known about how
rationality behaves in families. In particular, given a family of projective varieties
for which the geometric generic fiber is rational, is every fiber geometrically rational?
(“Geometric” refers to properties of a variety after extending its base field to be
algebraically closed.)

Matsusaka proved that the analogous question for geometric ruledness has a
positive answer [5, Theorem IV.1.6]. (By definition, a variety is ruled if it is bira-
tional to the product of the projective line with some variety.) That is, ruledness
specializes in families of varieties. For example, Kollár used Matsusaka’s theorem
to show that a large class of Fano hypersurfaces are not ruled and therefore not
rational [5, Theorem V.5.14]. By contrast, rationality does not specialize in this
generality, as shown by a family of cubic surfaces over the complex numbers C with
most fibers smooth and one fiber the projective cone over a smooth cubic curve.
Every smooth cubic surface is rational, but the cone over a smooth cubic curve E
is birational to E ×P1, which is not rational because it has a nonzero holomorphic
1-form.

Note, however, that the cone over a cubic curve has a fairly bad singularity: it
is log canonical but not klt (Kawamata log terminal). This suggests the question
of whether rationality specializes among varieties with milder singularities. Indeed,
it follows from de Fernex and Fusi [2, Theorem 1.3] and Hacon and McKernan [3,
Corollary 1.5] that rationality specializes among klt complex varieties of dimension
at most 3.

Extending work of Voisin [9] and Colliot-Thélène and Pirutka [1], [8, Theorem
2.1] showed that a large class of Fano hypersurfaces X are not stably rational. (That
is, no product of X with projective space is rational.) As an application, suggested
by de Fernex and Fusi [2, Example 3.4], [8, Corollary 4.1] showed that rationality
does not specialize among klt varieties of dimension 4 or higher.

In this paper, we find that the results of [8] are strong enough to imply that
rationality does not specialize even among terminal varieties. Terminal singulari-
ties form the narrowest class of singularities that comes up in the minimal model
program. The examples are in any dimension at least 5.

Some natural remaining questions are: Does rationality specialize among termi-
nal 4-folds? Does rationality specialize among smooth varieties?

Here we are asking whether rationality is a closed condition in families. At this
writing, it is also unknown whether rationality is an open condition in families of
smooth complex projective varieties.
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1 The example

Theorem 1.1. There is a flat projective morphism f : X → C with C a Zariski
open subset of the complex affine line such that 0 is in C, all fibers of f have terminal
singularities, all fibers of f over C − 0 are rational, and the fiber F over 0 is not
rational.

Such examples exist with F of any dimension at least 5. There is also a family
of 4-folds with canonical singularities over a Zariski open subset C of A1

C such that
all fibers over C − 0 are rational and the fiber F over 0 is not rational.

In other words, rationality does not specialize among terminal varieties of dimen-
sion at least 5, or among canonical varieties of dimension at least 4. (Throughout,
we are talking about families of projective varieties.)

Remark 1.2. Theorem 1.1 was inspired by an example proposed by de Fernex and
Fusi [2, Example 3.4], before the technology of [8] was available. Note, however, that
the degeneration considered in [2, Example 3.4] has general fiber Pn and special fiber
the projective cone S over (W,O(n)), where W is a smooth hypersurface of degree
n in Pn. The special fiber is not the projective cone T ⊂ Pn+1 over (W,O(1)), as
one sees by a computation of degrees. Here T has canonical singularities, while S
is klt but not canonical. As a result, we need a different degeneration (with general
fiber not just projective space) in order to prove Theorem 1.1.

Proof. (Theorem 1.1)
We start with the following old observation.

Lemma 1.3. If X is a hypersurface of degree d in Pn+1 over a field k such that X
has multiplicity equal to d− 1 at some k-rational point p, and if the singular locus
of X has codimension at least 2, then X is rational over k.

Proof. The assumption on the singular locus ensures that X is irreducible. The
assumption on the multiplicity of X at p implies that a general line through p
meets X in exactly one other point. That gives a birational map over k from the
projective space Pn of lines through p to X.

We return to the proof of Theorem 1.1. By [8, Theorem 2.1], a very general
quartic 4-fold in P5

C is not stably rational. Choose one smooth quartic 4-fold Y over
C which is not stably rational. Let X0 be the projective cone over Y in P6. Then X0

is a quartic 5-fold, and X0 is not rational because it is birational to P1×Y . Also, X0

is terminal, because Y has Fano index 2 which is greater than 1, meaning that the
anticanonical bundle −KY is given by −KY

∼= −(KP5+Y )|Y = O(6−4)|Y = O(2)|Y
[6, Lemma 3.1].

Let Y be defined by the equation f4(x0, . . . , x5) = 0. Then X0 is defined by the
same equation in P6 = {[x0, . . . , x6]}. Let g3(x0, . . . , x5) be a nonzero cubic form
over C. Consider the pencil of quartics in P6 given by the equation

f4(x0, . . . , x5) + ag3(x0, . . . , x5)x6 = 0

for a in the affine line A1
C. This gives a flat family f : X → A1 of hypersurfaces,

and the fiber over 0 is the cone X0. Since “terminal” is a Zariski-open condition
in families [7, Corollary VI.5.3], there is a Zariski open neighborhood C of 0 in A1
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such that all fibers of the restricted family f : XC → C are terminal. In particular,
the fibers are normal and hence have singular locus of codimension at least 2.

Finally, for all a 6= 0 in C, the fiber Xa is a hypersurface of degree 4 in P6 with
multiplicity equal to 3 at the point [0, . . . , 0, 1]. By Lemma 1.3, it follows that Xa

is rational for all a 6= 0 in C. Since X0 is not rational, this completes the proof that
rationality does not specialize among terminal varieties.

The example given is a family of 5-folds. Multiplying the family with any projec-
tive space Pm shows that rationality does not specialize among terminal varieties of
any dimension at least 5. (Here again, it is important that Y is not stably rational,
so that X0 ×Pm is not rational.)

Finally, replace the 4-fold Y by a smooth quartic 3-fold (again called Y ) in P4
C

which is not stably rational. Such a variety exists, by Colliot-Thélène and Pirutka
[1]. It follows that the projective cone X0 over Y in P5 (rather than P6) is not
rational. Since Y has Fano index 1, X0 has canonical but not terminal singularities.
Also, “canonical” is a Zariski open condition in families [4]. A pencil of hypersurfaces
in P5 given by the same formula as above shows that rationality does not specialize
among 4-folds with canonical singularities.
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