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Completing earlier work by Albert, Shimura found all the possible endomor-
phism algebras (tensored with the rationals) for complex abelian varieties of a given
dimension [12, Theorem 5]. In five exceptional cases, every abelian variety on which
a certain algebra acts has “extra endomorphisms”, so that the full endomorphism
algebra is bigger than expected.

Complex abelian varieties X up to isogeny are equivalent to polarizable Q-Hodge
structures of weight 1, with Hodge numbers (n, n) (where n is the dimension of X).
In this paper, we generalize Shimura’s classification to determine all the possible
endomorphism algebras for polarizable Q-Hodge structures with Hodge numbers
(n, 0, . . . , 0, n). For Hodge structures of odd weight, the answer is the same as for
abelian varieties. For Hodge structures of even weight, the answer is similar but
not identical. The proof combines ideas from Shimura with Green-Griffiths-Kerr’s
approach to computing Mumford-Tate groups [4, Proposition VI.A.5].

As with abelian varieties, the most interesting feature of the classification is that
in certain cases, every Hodge structure on which a given algebra acts must have extra
endomorphisms. (Throughout this discussion, we only consider polarizable Hodge
structures.) One known case (pointed out to me by Beauville) is that every Q-
Hodge structure with Hodge numbers (1, 0, 1) has endomorphisms by an imaginary
quadratic field and hence is of complex multiplication (CM) type, meaning that
its Mumford-Tate group is commutative. More generally, every Q-Hodge structure
with Hodge numbers (n, 0, n) that has endomorphisms by a totally real field F of
degree n has endomorphisms by a totally imaginary quadratic extension field of F ,
and hence is of CM type. Another case, which seems to be new, is that a Q-Hodge
structure V with Hodge numbers (2, 0, 2) that has endomorphisms by an imaginary
quadratic field F0 must have endomorphisms by a quaternion algebra over Q. In
this case, V need not be of CM type; there is a period space isomorphic to CP1

of Hodge structures of this type, whereas there are only countably many Hodge
structures of CM type.

To motivate the results of this paper on endomorphism algebras, consider the
geometric origin of Hodge structures. A Hodge structure comes from geometry if it is
a summand of the cohomology of a smooth complex projective variety defined by an
algebraic correspondence. Griffiths found (“Griffiths transversality”) that a family
of Hodge structures coming from geometry can vary only in certain directions,
expressed by the notion of a variation of Hodge structures [15, Theorem 10.2].
In particular, any variation of Hodge structures of weight at least 2 with Hodge
numbers (n, 0, . . . , 0, n) (so there is at least one 0) is locally constant; more generally,
this holds whenever there are no two adjacent nonzero Hodge numbers. This has
the remarkable consequence that only countably many Hodge structures of weight
at least 2 with Hodge numbers (n, 0, . . . , 0, n) come from geometry. Very little is
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known about this countable subset of the period domain of all Hodge structures.
One way to produce a Hodge structure with Hodge numbers (n, 0, n) is from a

smooth complex projective surface X with maximal Picard number, meaning that
the Picard number is equal to h1,1(X). (Then H2(X,Q) modulo the subspace of
Hodge classes, or equivalently of divisors, is a Hodge structure with Hodge num-
bers (pg(X), 0, pg(X)) that comes from geometry.) A recent survey of surfaces with
maximal Picard number is Beauville [2]. Many of these examples give Hodge struc-
tures of CM type. For example, since all Q-Hodge structures with Hodge numbers
(1, 0, 1) are of CM type, all complex K3 surfaces with Picard number 20 give Hodge
structures (with Hodge numbers (1, 0, 1)) that are of CM type.

Thus, one might ask whether all Hodge structures with Hodge numbers (n, 0, n)
that come from geometry are of CM type. The answer is almost certainly no.
Indeed, a classical modular form f (more precisely, a normalized eigenform) of
weight k ≥ 2 and level N determines a motive over Q with coefficients in the
field E = Q(f) of coefficients of f [11]. This motive has weight k − 1 and Hodge
numbers (1, 0, . . . , 0, 1). In particular, a modular form of weight 3 and some level
N determines an E-Hodge structure with Hodge numbers (1, 0, 1), and hence a Q-
Hodge structure with Hodge numbers (n, 0, n), where n = [E : Q]. (Explicitly, this
motive occurs in H2 of the elliptic modular surface of level N .)

Ribet explained how to check from the coefficients of a modular form whether
the associated Galois representation Gal(Q/Q) → GL(2, E ⊗Q Ql) is of CM type,
meaning that the image of the representation has an open abelian subgroup [9].
From Stein’s tables of modular forms, one can read off many forms which are not of
CM type, such as the unique newform of weight 3 and level 9, with E = Q(

√
−3)

[14]. It would follow from the Hodge conjecture, or from the weaker conjecture that
every Hodge cycle is absolute Hodge, that the associated E-Hodge structure with
Hodge numbers (1, 0, 1) is not of CM type. Without conjectures, it is an attractive
problem, not addressed here, to show that this Hodge structure (which comes from
geometry) is not of CM type. The problem amounts to proving the irrationality of
a suitable period of the given modular form.

All this motivates the topic of this paper: the unexpected symmetries of Hodge
structures with Hodge numbers (n, 0, . . . , 0, n). Several examples of “extra” endo-
morphisms in our classification were suggested by Ribet’s analysis of the Galois
representation associated to a modular form; in those cases, the extra endomor-
phisms come from algebraic cycles [9]. In particular, the quaternionic structure on
the motive of a form of odd weight comes from the outer automorphism of the group

Γ1(N) given by the “W -operator” W =

(
0 −1
N 0

)
. It would be interesting to show

that the extra endomorphisms of Hodge structures which we construct come from
algebraic cycles for other Hodge structures with Hodge numbers (n, 0, . . . , 0, n) that
come from geometry, as the Hodge conjecture would predict.

The results of this paper have some of the flavor of the Kuga-Satake construction,
which shows that all polarizable Q-Hodge structures with Hodge numbers (1, b, 1)
are in the tensor category generated by the cohomology of curves (or, equivalently,
the cohomology of abelian varieties). But in fact the situation of this paper is very
different. Namely, a Q-Hodge structure of weight at least 2 with Hodge numbers
(n, 0, . . . , 0, n) which is not of CM type is not in the tensor category generated by
the cohomology of curves (Corollary 4.2).
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1 Notation

A Q-Hodge structure V is a rational vector space of finite dimension together with
a decomposition of VC := V ⊗Q C as a direct sum of complex linear subspaces

V a,b for integers a, b such that V a,b = V b,a and such that the grading by a + b,
called the weight grading, is defined over Q. A reference on Hodge structures is
Voisin [15, Chapter 7]. A Hodge structure is pure of weight m if V a,b = 0 for
a + b 6= m. Hodge structures can also be defined in terms of the Hodge filtration
F j(VC) = ⊕a≥j,b∈ZV a,b. A smooth complex projective variety X has a Hodge
structure of weight m on Hm(X,Q), for any m. The Tate Hodge structure Q(j) for
an integer j is V = Q with VC = V −j,−j .

A polarization of a Q-Hodge structure V of weight m is a bilinear form 〈, 〉 : V ×
V → Q which is symmetric if m is even, alternating if m is odd, and which satisfies
the properties [15, section 7.1.2]:
(i) 〈V a,b, V a′,b′〉 = 0 for a′ 6= m− a;
(ii) ia−b(−1)m(m−1)/2〈x, x〉 > 0 for all nonzero elements x of V a,b.
Here we write 〈, 〉 for the complex bilinear form on V ⊗Q C associated to the given
form on V . For example, an ample line bundle on a smooth complex projective
variety X determines a polarization of Hm(X,Q) for all m. The polarizable Q-
Hodge structures form a semisimple abelian category. In this paper, all the Q-Hodge
structures we consider will be polarizable, unless stated otherwise.

A Q-Hodge structure V (ignoring the polarization) can also be described as a
Q-vector space with a homomorphism of R-groups RC/RGm → GL(VR) [7, section
1.3]. The Mumford-Tate group of a Hodge structure V is the Q-Zariski closure of
the image of this homomorphism. The book [4] uses “Mumford-Tate group” for a
slightly smaller group which we call the Hodge group: the Q-Zariski closure of the
circle group ker(N : RC/RGm → Gm) → GL(VR) [7, section 1.11]. For example, if
V is pure of nonzero weight, then the Mumford-Tate group is the product in GL(V )
of the Hodge group with the group Gm of scalars. The Mumford-Tate group of a
polarizable Hodge structure V is a connected reductive group over Q; in a sense, it
describes the complexity of a Hodge structure.

For a polarized Q-Hodge structure V , the endomorphism algebra L = EndQ-HS(V )
is a semisimple Q-algebra with an involution f 7→ f given by

〈fx, y〉 = 〈x, fy〉.

This is called the Rosati involution. The Rosati involution is positive in the sense
that L has finite dimension as a Q-vector space and the reduced trace trL/Q(xx) is
positive for all nonzero x in V [7, Remark 1.20]. It follows, for example, that if L
is a field, then it must be either totally real or else a CM field (a totally imaginary
quadratic extension of a totally real number field), and the involution must be
complex conjugation. A convenient reference on algebras with positive involution,
in connection with endomorphisms of abelian varieties, is Mumford [8, section 21].
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For a central simple algebra A over a field F0 with involution , define

Sym(A, ) = {x ∈ A : x = x}
Alt(A, ) = {x ∈ A : x = −x}.

Let q be the degree of A over F0, meaning that A has dimension q2 as an F0-
vector space. Let F be the subfield of F0 fixed by the involution. Following the
Book of Involutions, the involution on A is said to be orthogonal if F0 = F and
dimFSym(A, ) = q(q+1)/2, symplectic if F0 = F and dimFSym(A, ) = q(q−1)/2,
and unitary if F0 6= F [5, Proposition I.2.6]. These are the only possibilities.

By Albert, every division algebra L with positive involution falls into one of four
types [8, section 21]. Type I: L is equal to F , a totally real field. Type II: L is a
totally indefinite quaternion algebra over a totally real field F , with an orthogonal
involution. (“Totally indefinite” means that L is split at every real place of F .)
Type III: L is a totally definite quaternion algebra over a totally real field F , with
a symplectic involution. Type IV: L is a central simple algebra of degree q over a
CM field F0, and the involution on F0 is complex conjugation.

Let (, ) be a symmetric bilinear form on a vector space V of dimension n over a
field F . The determinant of the form is

det(V ) := det((ei, ej))1≤i,j≤n ∈ F ∗/(F ∗)2,

for any basis e1, . . . , en for V . The discriminant of the form is the signed determi-
nant:

disc(V ) = (−1)n(n−1)/2 det(V ) ∈ F ∗/(F ∗)2.

For a central simple algebra A of even degree n = 2m over a field F with orthogonal
involution, the Book of Involutions defines the determinant as the reduced norm of
any alternating unit, det(A, ) = NrdAF (a) ∈ F ∗/(F ∗)2 for a ∈ Alt(A, ) ∩ A∗. The
discriminant is the signed determinant:

disc(A, ) = (−1)m det(A, ) ∈ F ∗/(F ∗)2.

For a vector space V of even dimension over a field F with a symmetric bilinear
form, the discriminant of V is equal to the discriminant of the adjoint involution on
EndF (V ).

Let E be a number field. We define an E-Hodge structure V to be a Q-Hodge
structure together with a homomorphism E → EndQ-HS(V ) of Q-algebras.

Let K be a number field which is either totally real or a CM field. Write a 7→ a
for the involution of K given by complex conjugation, which is the identity if K is
totally real. A polarized K-Hodge structure V means a polarized Q-Hodge structure
V together with a homomorphism K → EndQ-HS(V ) of Q-algebras with involution.
That is, the form 〈, 〉 : V × V → Q satisfies

〈ax, y〉 = 〈x, ay〉

for all a in K and x, y in V . There does not seem to be a reasonable notion of
a polarized E-Hodge structure for a number field E which is not totally real or
a CM field, although one could require the underlying Q-Hodge structure to be
polarizable.
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Let E be a totally real or CM field, and let V be a polarized E-Hodge structure
of weight m. Then there is a unique (−1)m-hermitian form (, ) : V × V → E such
that 〈x, y〉 = trEQ(x, y). By a (−1)m-hermitian form, we mean that (ax, y) = a(x, y),

(x, ay) = a(x, y), and (x, y) = (−1)m(y, x) for x, y ∈ V and a ∈ E; thus (, ) is a
bilinear form if E is totally real. The existence and uniqueness of (, ) follow by
observing that for x, y in V , (x, y) must be the unique element u ∈ E such that
〈ax, y〉 = trEQ(au) for all a ∈ E. This uniquely determines u, because a, b 7→ trEQ(ab)
is a nondegenerate bilinear form on E as a Q-vector space.

A Q-Hodge structure V is of CM type if it is polarizable and its Mumford-Tate
group is commutative. In particular, if there is a CM field K such that V is a
K-Hodge structure and dimKV = 1, then V is of CM type [4, Proposition V.3].
There are only countably many isomorphism classes of Hodge structures of CM
type. They all come from geometry, in fact (up to Tate twists) from the rational
cohomology of abelian varieties with complex multiplication, by Serre [6, section
1.7]. More strongly, by Abdulali, every effective Hodge structure of CM type occurs
in the cohomology of some abelian variety with complex multiplication, with no
Tate twist needed [1].

We say that a Q-Hodge structure V has Hodge numbers (a0, . . . , am) if V has
weight m, dimCV

j,m−j = aj for 0 ≤ j ≤ m, and all other subspaces V a,b are
zero. Let V be a Q-Hodge structure of weight 2 with Hodge numbers (n, 0, n), the
main situation considered in this paper. Then the bilinear form 〈, 〉 on V is positive
definite. Conversely, for a Q-vector space V of dimension 2n with a positive definite
symmetric bilinear form 〈, 〉, a Hodge structure with Hodge numbers (n, 0, n) on
(V, 〈, 〉) is equivalent to an isotropic C-linear subspace V 2,0 ⊂ V ⊗QC of dimension
n. (The positivity property 〈x, x〉 > 0 for nonzero x in V 2,0 is automatic; in fact,
〈x, x〉 > 0 for all nonzero x in V ⊗Q C.) Therefore, the period domain of Hodge
structures with Hodge numbers (n, 0, n) on (V, 〈, 〉) is the isotropic Grassmannian
Grisot(n, 2n) over C.

Let E be a number field which is totally real or a CM field, and let r = [E :
Q]. Let V be an E-Hodge structure. Then V a,b is an E ⊗Q C-module for each
a, b ∈ Z. The ring E ⊗Q C is isomorphic to a product of copies of C, indexed
by the embeddings σ1, . . . , σr of E into C. Therefore, the complex vector space
V a,b splits as a direct sum indexed by the embeddings σl (the subspace where E
acts through its embedding σl in C). We say that an E-Hodge structure V has
Hodge numbers (a0, . . . , an) if, for each embedding σl : E ↪→ C, the summand of
V j,n−j corresponding to σl has complex dimension aj . It follows that, as a Q-Hodge
structure, V has Hodge numbers (ra0, . . . , ran).

In general, an E-Hodge structure need not have a single set of Hodge numbers
(a0, . . . , an) in this sense. For example, if X is an elliptic curve with complex
multiplication by an imaginary quadratic field K, then V = H1(X,Q) can be
viewed as a K-Hodge structure, of dimension 1 as a K-vector space. This K-Hodge
structure has Hodge numbers (1, 0) under one complex embedding of K and Hodge
numbers (0, 1) under the conjugate embedding.
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2 Polarizations

Lemma 2.1. Let K be a number field which is either totally real or a CM field. Let
V be a K-Hodge structure such that the underlying Q-Hodge structure is polarizable.
Then V is polarizable as a K-Hodge structure.

Proof. We can assume that V is pure of some weight m. Let 〈, 〉 be a polarization of
V as a Q-Hodge structure. We have to produce another polarization 〈, 〉2 : V ×V →
Q such that 〈ax, y〉2 = 〈x, ay〉2 for all a in K and x, y in V . Here a denotes complex
conjugation on K, which is the identity if K is totally real.

For a, b in K, define 〈a, b〉 = trKQ(ab). This is a positive definite symmetric
bilinear form on K as a Q-vector space. In what follows, write K∗ for the dual of
K as a Q-vector space. Then the form we defined on K gives an identification of K
with K∗. As a result, the identity map 1K ∈ K∗ ⊗Q K corresponds to a canonical
element B ∈ K ⊗Q K. We can write B explicitly in terms of a basis e1, . . . , er
for K as a Q-vector space. Let f1, . . . , fr be the dual basis for K, meaning that
trKQ(eifj) = δi,j for all i, j. Then B =

∑
j fj ⊗ ej .

We use B to “average” the given polarization on V . Explicitly, define

〈x, y〉2 =

r∑
j=1

〈fjx, ejy〉.

We want to show that 〈ux, y〉2 = 〈x, uy〉2 for all u in K and x, y in K. That
is, we have to show that

∑
j〈fjux, ejy〉 =

∑
j〈fjx, ejuy〉. It suffices to show that∑

j fju ⊗ ej =
∑

j fj ⊗ uej in K ⊗Q K. We can identify K ⊗Q K with Qr2 as a
Q-vector space by pairing the first variable with ej and the second variable with
fk, for any given j, k ∈ {1, . . . , r}, using the bilinear form on K. Thus it suffices to
show that

〈ej , fku〉 = 〈uej , fk〉 ∈ Q

for all j and k. This is true, since the left side is trKQ(ejfku) and the right side is

trKQ(uejfk).
It remains to check that 〈, 〉2 is a polarization of V as a Q-Hodge structure, using

that 〈, 〉 is a polarization. First, the formula B =
∑

j fj ⊗ ej for the tensor B above
works using any basis for K as a Q-vector space in place of e1, . . . , er and the dual
basis in place of f1, . . . , fr. In particular, B can also be written as B =

∑
j ej ⊗ fj .

From that it is clear that 〈, 〉2 is (−1)m-symmetric, since 〈, 〉 is (−1)m-symmetric.
Since the action of K on V sends each subspace V a,b of V ⊗Q C into itself, the

definition of 〈, 〉2 shows that we have 〈V a,b, V a′,b′〉2 = 0 for a′ 6= m−a. To prove the
positivity property of 〈, 〉2, it is convenient to choose an orthogonal basis e1, . . . , er
for K as a Q-vector space. Then aj := 〈ej , ej〉 ∈ Q is positive, and the dual basis
for K is given by fj = ej/aj . So

〈x, y〉2 =
r∑
j=1

1

aj
〈ejx, ejy〉

for x, y in V . That implies the same identity for the associated complex bilinear
form 〈, 〉2 on V ⊗Q C. It follows that

ia−b(−1)m(m−1)/2〈x, x〉2 > 0
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for all nonzero elements x of V a,b, from the corresponding inequality for 〈, 〉. (Note
that ejx = ejx for x in V ⊗Q C, because ej ∈ K is a Q-linear endomorphism of
V .)

3 Endomorphism algebras

In the following theorem and proof, we follow Shimura’s notation where possible
[12, Theorem 5]. In particular, for a division algebra L and a subfield K of the
center of L, write [L : K] for the dimension of L as a K-vector space.

Since the abelian category of polarizable Q-Hodge structures is semisimple, the
endomorphism algebras of all polarizable Q-Hodge structures with Hodge numbers
(n, 0, . . . , 0, n) are determined if we can find the endomorphism algebras of all simple
Q-Hodge structures with Hodge numbers of that form (including smaller values of
n). That is solved by Theorem 3.1.

Let V be a simple polarizable Q-Hodge structure of weight w ≥ 1 with Hodge
numbers (n, 0, . . . , 0, n). The endomorphism algebra L of V is a division algebra
with positive involution. We use Albert’s classification of L into Types I through
IV (section 1). Let F0 be the center of L, which is a CM field or a totally real field,
and let F be the subfield of F0 fixed by complex conjugation.

Write g = [F : Q], 2n = m[L : Q], and q2 = [L : F0]. For V of Type IV,
L ⊗Q C is isomorphic to the product of 2g copies of Mq(C). Write the simple
L⊗QC-modules, each of complex dimension q, as χ1, . . . , χg, χ1, . . . , χg. Let rν and
sν be the multiplicities of χν and χν , respectively, in the representation of F0 on
V w,0 ⊂ V ⊗Q C. Then rν + sν = mq for ν = 1, . . . , g.

As in Shimura, the proof does something more precise than determining the
possible endomorphism algebras. Rather, for each division algebra L with positive
involution, we describe the Mumford-Tate domain D of Q-Hodge structures with
a given bilinear form and a given action of L. For each connected component of
D, we determine whether a very general Q-Hodge structure in that component has
endomorphism algebra equal to L or bigger than L. In Type IV, the components
of D are indexed by the numbers rν and sν defined above.

Theorem 3.1. Let V be a simple polarizable Q-Hodge structure of weight w ≥ 1
with Hodge numbers (n, 0, . . . , 0, n). Let L be the endomorphism algebra of V , and
define F0 and F as above. Then [L : Q] divides 2n and [F : Q] divides n.

Conversely, every division algebra with positive involution satisfying these two
bounds is the endomorphism algebra of some simple polarizable Q-Hodge structure
of weight w and Hodge numbers (n, 0, . . . , 0, n), except for five cases when w is odd
and seven cases when w is even, as follows.

Odd weight exceptional cases:
(a) Type III and m = 1. Then the Q-Hodge structure V is isomorphic to a

direct sum W⊕2, where W has endomorphisms by a CM quadratic extension F0 of
F and dimF0(W ) = 1. In particular, V is of CM type.

(b) Type III, m = 2, disc(B, ) = 1 in F ∗/(F ∗)2, where B is the centralizer of L
in EndF (V ) and is its involution, coming from the L-invariant symmetric bilinear
form 〈, 〉 on V . In all but 2 of the 2g connected components of the Mumford-Tate
domain of L-invariant Hodge structures on (V, 〈, 〉), a generic Q-Hodge structure V
has the “expected” endomorphism algebra L. In the other 2 components, a generic
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Q-Hodge structure V is a direct sum W⊕2, where W is simple and has endomor-
phism algebra a Type II quaternion algebra over F .

(c) Type IV and
∑g

ν=1 rνsν = 0. Then the Q-Hodge structure V is isomorphic

to a direct sum W⊕mq
2

such that W has endomorphisms by the CM field F0 and
dimF0(W ) = 1. In particular, V is of CM type.

(d) Type IV, m = 2, q = 1, rν = sν = 1 for ν = 1, . . . , g. Then V is generically
simple, with endomorphism algebra a Type II quaternion algebra over F .

(e) Type IV, m = 1, q = 2, rν = sν = 1 for ν = 1, . . . , g. Then V is isomorphic
to the direct sum W⊕2, where W is generically simple, with endomorphism algebra
a Type II quaternion algebra over F .

Even weight exceptional cases:
(a’) Type II and m = 1. Then the Q-Hodge structure V is isomorphic to a direct

sum V = W⊕2, where W has endomorphisms by a CM quadratic extension F0 of
F , and dimF0W = 1. In particular, V is of CM type.

(b’) Type II, m = 2, disc(B, ) = 1 in F ∗/(F ∗)2, where B is the centralizer of L
in EndF (V ) and is its involution, coming from the L-invariant symmetric bilinear
form 〈, 〉 on V . In all but 2 of the 2g connected components of the Mumford-Tate
domain of L-invariant Hodge structures on (V, 〈, 〉), a generic Q-Hodge structure V
has the “expected” endomorphism algebra L. In the other 2 components, a generic
Q-Hodge structure V is a direct sum W⊕2, where W is simple and has endomor-
phism algebra a Type III quaternion algebra over F .

(c’) Type IV and
∑g

ν=1 rνsν = 0. Then V is a direct sum V = W⊕mq
2

for a
Q-Hodge structure W with endomorphisms by F0 such that dimF0(W ) = 1. So V
is of CM type.

(d’) Type IV, m = 2, q = 1, rν = sν = 1 for ν = 1, . . . , g. Then V generically
has endomorphism algebra a Type III quaternion algebra over F .

(e’) Type IV, m = 1, q = 2, rν = sν = 1 for ν = 1, . . . , g. Then the Q-Hodge
structure V is a direct sum V = W⊕2, and W generically has endomorphism algebra
a Type III quaternion algebra over F .

(f ’) Type I and m = 2. Then the Q-Hodge structure V has endomorphisms by
a CM quadratic extension F0 of F . Since dimF0(V ) = 1, V is of CM type.

(g’) Type I, m = 4, and (V, (, )) has discriminant 1 in F ∗/(F ∗)2. In all but 2
of the 2g connected components of the Mumford-Tate domain of F -invariant Hodge
structures on (V, 〈, 〉), a generic Q-Hodge structure V has the “expected” endomor-
phism algebra F . In the other 2 components, a generic Q-Hodge structure V is
simple and has endomorphism algebra a Type III quaternion algebra over F .

Proof. At first, we consider a more general situation. Let V be any simple po-
larizable Q-Hodge structure. Fix a polarization 〈, 〉 : V × V → Q. Then L :=
EndQ-HS(V ) is an algebra with positive involution, by section 1. Since V is a vector
space over the division algebra L, the dimension [L : Q] divides dimQV . When V
has Hodge numbers (n, 0, . . . , 0, n), this proves that [L : Q] divides 2n.

Let F0 be the center of L, which is a totally real field or a CM field, and let F
be the subfield of F0 fixed by complex conjugation (which is also the restriction of
the involution on L). Let g = [F : Q]. Then F is totally real, and so F ⊗Q C is
the product of copies of C indexed by the embeddings σ1, . . . , σg : F ↪→ R. Each
summand V b,c of V ⊗Q C is a module over F ⊗Q C. So V b,c splits as a direct sum
of complex linear subspaces on which F acts by σ1, . . . , σg, respectively.
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For any integers b and c, V b,c is the complex conjugate of V c,b in V ⊗QC. Let x
be an an element of V b,c on which L acts by an embedding σj . Since each element

a in F acts Q-linearly on V , we have a(x) = ax = σj(a)x = σj(a)x for all a in F ,
where the last equality uses that σj(a) is real. So each embedding L ↪→ R occurs
with the same multiplicity in V b,c as in V c,b. Also, V is a free F -module, and so
V ⊗Q C is a free F ⊗Q C-module. That is, each embedding F ↪→ R occurs the
same number of times in V ⊗Q C.

We now make our assumption that V has weight w and Hodge numbers (n, 0, . . . , 0, n).
(To prove the following bound, it would suffice to assume that V w/2,w/2 = 0.) Then
the previous paragraph implies that each embedding F ↪→ R occurs the same num-
ber of times in V ⊗Q C ∼= C2n, and this number is even. Therefore, [F : Q] divides
n, which proves the first part of the theorem.

For any positive integer w, the category of Q-Hodge structures of weight 1 and
Hodge numbers (n, n) can be identified with the category of Q-Hodge structures
of weight w and Hodge numbers (n, 0, . . . , 0, n), just by renaming V 1,0 ⊂ V ⊗Q C
as V w,0. For even weights w, this equivalence does not preserve polarizability and
hence is of little interest. But for odd weights w, this equivalence does preserve
polarizability. Therefore, the endomorphism algebras of the simple polarizable Q-
Hodge structures of odd weight w and Hodge numbers (n, 0, . . . , 0, n) are the same
as the endomorphism algebras of the simple abelian varieties of dimension n. These
were determined by Shimura [12, Theorem 5], giving the answer in the theorem.

Our proof in even weight is analogous to Shimura’s argument, but we use the
language of Mumford-Tate groups so that fewer explicit calculations are required.
(The reader could apply the same method to reprove Shimura’s classification.)

There is an equivalence of categories between Q-Hodge structures with Hodge
numbers (n, 0, n) and Q-Hodge structures of any even weight w = 2m and Hodge
numbers (n, 0, . . . , 0, n), just by renaming V 2,0 ⊂ V ⊗QC as V 2m,0. This equivalence
preserves polarizability; we just need to replace a polarization 〈, 〉 on V of weight 2
by (−1)m〈, 〉. Therefore, the same endomorphism algebras occur in any even weight.

It would be easy to argue directly with V of any even weight, but we choose to
work with V of weight 2 and Hodge numbers (n, 0, n). In this case, the polarization
〈, 〉 of V is a positive definite symmetric bilinear form on the Q-vector space V , by
section 1. For each positive definite symmetric bilinear form 〈, 〉 on V , the space of
Hodge structures on (V, 〈, 〉) with Hodge numbers (n, 0, n) is the space Grisot(n, 2n)
of all isotropic n-dimensional C-linear subspaces in V ⊗Q C ∼= C2n.

Let L be a division algebra with positive involution. Let F0 be the center of L,
and let F be the subfield of F0 fixed by complex conjugation, or equivalently by
the involution on L. Assume that [L : Q] divides 2n and [F : Q] divides n. Let V
be a Q-vector space of dimension 2n. By the first assumption, we can give V the
structure of a left L-vector space; choose such an action of L on V . Then there is
a positive definite symmetric bilinear form 〈, 〉 : V × V → Q which is L-invariant,
meaning that 〈ux, y〉 = 〈x, uy〉 for all u in L and x, y in V . Indeed, L itself has an
L-invariant positive definite symmetric bilinear form given by 〈x, y〉 = trLQ(xy), and
we can view V as the direct sum of copies of L.

Fix any positive definite symmetric bilinear form 〈, 〉 on the Q-vector space V
which is L-invariant. We will show that there is an L-invariant Q-Hodge structure
on (V, 〈, 〉) with endomorphism algebra equal to L, apart from the exceptions listed
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in the theorem. This is slightly stronger than the theorem as stated, since we are
fixing the action of L and the symmetric bilinear form on V .

Write g = [F : Q], 2n = m[L : Q] where m is a positive integer (which is even
for V of Type I by our assumption that [F : Q] divides n), and q2 = [L : F0]. For
V of Type IV, recall the definition of rν and sν for ν = 1, . . . , g from before the
theorem.

We can describe the “Mumford-Tate domain” of all L-invariant Hodge structures
on (V, 〈, 〉). It helps to observe that the ring L⊗Q R is isomorphic to:

Type I: R× · · · ×R

Type II: M2(R)× · · · ×M2(R)

Type III: H× · · · ×H

Type IV: Mq(C)× · · · ×Mq(C),

where there are g factors in each case, and the involution on the right is the identity
in Type I, X 7→ Xt on each copy of M2(R) in Type II, X 7→ trHR(x) − x on each
copy of the quaternions H in Type III, and X 7→ Xt on each copy of Mq(C) in
Type IV [8, pp. 201-202]. Recall from section 1 that the period domain of all Hodge
structures on (V, 〈, 〉) is the isotropic Grassmannian Grisot(n, 2n). We deduce that
the Mumford-Tate domain D of L-invariant Hodge structures on (V, 〈, 〉) is:

Type I: Grisot(m/2,m)g

Type II: Grisot(m, 2m)g

Type III: GrLag(m, 2m)g

Type IV:

[ mq∐
j=0

Gr(j,mq)

]g
.

Here Grisot(a, b) is the space of isotropic linear subspaces of dimension a in a complex
vector space of dimension b with a nondegenerate symmetric bilinear form, and
GrLag(m, 2m) is the space of isotropic subspaces of dimension m in a complex vector
space of dimension 2m with a nondegenerate alternating bilinear form. We see that
the number of connected components of the Mumford-Tate domain D is 2g in Type
I, 2g in Type II, 1 in Type III, and (mq + 1)g in Type IV.

Let d be the complex dimension of the Mumford-Tate domain. Then:

Type I: n =
m

2
g, d =

1

2

m

2

(
m

2
− 1

)
g

Type II: n = 2mg, d =
1

2
m(m− 1)g

Type III: n = 2mg, d =
1

2
m(m+ 1)g

Type IV: n = q2mg, d =

g∑
ν=1

rνsν .

Shimura’s formula for the dimensions of the analogous Mumford-Tate domains in
the period domain of abelian varieties is similar, but with the expressions x(x+1)/2
switched with x(x − 1)/2 [12, section 4.1]. This is related to the switch between
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symplectic and orthogonal groups, in comparing polarizable Hodge structures of
odd weight with those of even weight.

Let D0 be a connected component of the Mumford-Tate domain D of Q-Hodge
structures with Hodge numbers (n, 0, n) on (V, 〈, 〉) with endomorphisms by the
given homomorphism L → EndQ(V ) of algebras with involution. For each larger
subalgebra L′ of EndQ(V ), the subspace of D0 of Hodge structures with endomor-
phisms by L′ is a closed analytic subspace of D0. Therefore, there is a well-defined
algebra with involution A ⊂ EndQ(V ), the generic endomorphism algebra for D0,
which is the endomorphism algebra of a very general Q-Hodge structure V in D0.
(That is, A is the endomorphism algebra of every Hodge structure in D0 outside
countably many closed analytic subspaces not equal to D0.) Clearly A contains L.
The main part of the theorem is to show that A is equal to L in most cases.

It is also convenient to consider the generic Hodge group M of D0, defined as
the Hodge group (section 1) of a very general Q-Hodge structure in D0. We know
that A is the commutant of M in EndQ(V ). Since L is contained in A and M is a
connected Q-group, M is contained in the connected component H of the centralizer
of L in the Q-group O(V ). We call H the expected Hodge group. (The Q-group H
depends on (V, 〈, 〉, L), but not on the particular component D0.)

A crucial observation is that the generic endomorphism algebra A ⊂ EndQ(V )
and the generic Hodge groupM ⊂ O(V ) are determined by (V, 〈, 〉, L→ EndQ(V ), D0).
Since H(Q) preserves these data, H(Q) normalizes both A and M ; for D0, this uses
that H is connected. Since H is a connected group over the perfect field Q, H(Q)
is Zariski dense in H [3, Corollary 18.3], and so A and M are in fact normalized by
the algebraic group H. Since M ⊂ H, we can say that M is a connected normal Q-
subgroup of H. Thus, if H is Q-simple, then M must be either 1 or H. But M can
never be 1; that would mean that the generic Hodge structure V in D0 has V a,b = 0
for a 6= b, whereas in fact V 2,0 is not zero. So if H is Q-simple, then the generic
Hodge group M is equal to H. (This argument is inspired by Green-Griffiths-Kerr’s
approach to computing generic Mumford-Tate groups, although they exclude the
non-connected period domains which we encounter here [4, Proposition VI.A.5].)
As a result, when H is Q-simple, we know the generic endomorphism algebra A: it
is the centralizer of the “known” Q-group H in EndQ(V ). In most cases, that will
imply that A is equal to L, as we want.

Suppose that L is of Type I, so L = F . Then the expected Hodge group
H is RF/QSO(FV ), where FV denotes V as an F -vector space. Suppose that
m = dimF (V ) (which is even in this case) is at least 6, or that m = 4 and V has
discriminant not equal to 1 in F ∗/(F ∗)2. Then SO(FV ) is F -simple (for m = 4, use
[5, Theorem 15.7 and section 26.B]), and so H is Q-simple. By the argument above,
the generic Hodge group M of Q-Hodge structures in each component D0 must be
equal to H. So the generic endomorphism algebra A is equal to the centralizer
of RF/QSO(FV ) in EndQ(V ). Clearly A contains F . To show that A is equal to
F , note that A ⊂ EndQ(V ) must commute with the Lie algebra of RF/QSO(FV ),
which is so(FV ), and so it commutes with the Q-algebra generated by this Lie
algebra. The F -algebra generated by so(FV ) is equal to EndF (V ), just using that
dimF (V ) is at least 3 (so that FV is an absolutely irreducible representation of
so(FV )). So A ⊂ EndQ(V ) must be contained in the commutant of EndF (V ) in
EndQ(V ), which is equal to F . Thus we have shown that for L of Type I with
m ≥ 6, or with m = 4 and V of discriminant not equal to 1 ∈ F ∗/(F ∗)2, the generic
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endomorphism algebra is equal to L (= F ). At the same time, we found that the
generic Hodge group is equal to RF/QSO(FV ).

For a semisimple algebra A with involution , define the group of isometries to
be

Iso(A, ) = {g ∈ A∗ : g = g−1}.
Following the Book of Involutions [5], we write

Iso(A, ) =


O(A, ) if is of orthogonal type,

Sp(A, ) if is of symplectic type,

U(A, ) if is of unitary type.

For an algebra A with orthogonal involution, with center F and [A : F ] = q2, the
subgroup O+(A, ) = ker(Nrd: O(A, )→ {±1}) (as an algebraic group) is a form
of SO(q) over F (meaning that the two groups become isomorphic over an algebraic
closure of F ). For A with symplectic involution, q must be even, and Sp(A, ) is a
form of the symplectic group Sp(q) over F . Finally, if A has a unitary involution
over F0 and [A : F0] = q2, with F ⊂ F0 the subfield fixed by the involution, then
the unitary group U(A, ) is a form of GL(q) over F .

Next, let (V, 〈, 〉, L,D0) be of Type II. Thus L is a totally indefinite quaternion
algebra over a totally real field F , and 2n = m[L : Q]. By definition, the “expected
Hodge group” H is the connected component of the centralizer of L in SO(VQ).
Thus the Lie algebra of H is the antisymmetric part of the centralizer B of L in
EndQ(V ), or equivalently in EndF (V ). Here B is isomorphic to Mm(Lop), with an
orthogonal involution. So the expected Hodge group H is RF/QO

+(B, ). Here
O+(B, ) is an F -form of SO(2m).

Recall from section 1 the discriminant of a central simple algebra B of even
degree n = 2m with orthogonal involution.

Suppose that m ≥ 3, or that m = 2 and disc(B, ) 6= 1 ∈ F ∗/(F ∗)2. Then
O+(B, ) is F -simple (for m = 2, use [5, Theorem 15.7 and section 26.B]), and so
H is Q-simple. By the argument above, the generic Hodge group M is equal to H.

So the generic endomorphism algebra A is the centralizer of RF/QO
+(B, ) in

EndQ(V ). Clearly L is contained in A. To see that equality holds, note that A
commutes with the Lie algebra so(B, ) = Alt(B, ) ⊂ EndQ(V ), hence with the
algebra generated by Alt(B, ). This algebra is all of B, as one can check over an

algebraic closure F of F , using that F
2m

is an irreducible representation of SO(2m)
for m ≥ 2. So A is contained in the commutant of B ∼= Mm(Lop) in EndQ(V ) or
equivalently in EndF (V ), which is equal to L. We have shown that in Type II with
m ≥ 3, the generic endomorphism algebra is equal to L, as we want.

Next, let (V, 〈, 〉, L,D0) be of type III. Thus L is a totally definite quaternion
algebra over a totally real field F , and 2n = m[L : Q]. Let B be the centralizer
of L in EndQ(V ) or equivalently in EndF (V ); then B ∼= Mm(Lop) with a sym-
plectic involution. The “expected Hodge group” H is defined to be the connected
component of the centralizer of L in SO(VQ), that is, the connected component of
B∩SO(VQ). So H = RF/QSp(B, ). Since Sp(B, ) is an F -form of the symplectic
group Sp(2m), it is absolutely simple for all m ≥ 1. So H is Q-simple. After that,
the argument is the same as in Type II. We conclude that the generic Hodge group
is RF/QSp(B, ) and the generic endomorphism algebra is L, for L of Type III with
any m ≥ 1.
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Finally, let (V, 〈, 〉, L,D0) be of Type IV. Thus L is a central division algebra
over a CM field F0, L has a unitary involution, and 2n = m[L : Q]. We write [L :
F0] = q2. Let B ∼= Mm(Lop) be the centralizer of L in EndQ(V ), or equivalently in
EndF0(V ). The “expected Hodge group” H is defined as the connected component
of the centralizer of L in SO(VQ), that is, connected component of the identity in
B ∩ SO(VQ). So H = RF/QU(B, ). Since U(B, ) is an F -form of GL(mq), Type
IV is more subtle, in that H is never Q-simple. It is the product of the Q–simple
group RF/QSU(B, ) with a torus.

The dimension of the Mumford-Tate domain D0 is
∑g

ν=1 rνsν . Suppose that
this is positive. Since there are only countably many Hodge structures of CM
type, a very general Hodge structure V in D0 is not of CM type. So the generic
Hodge group is not commutative. Since the generic Hodge group is normal in
RF/QU(B, ), it must contain RF/QSU(B, ), since this is Q-simple for all m ≥ 1.
The generic endomorphism algebra A contains L, and is contained in the central-
izer of RF/QSU(B, ) in EndQ(V ). So A must commute with the Lie algebra

su(B, ) = ker(trBF0
: Alt(B, ) → F0) ⊂ EndQ(V ), hence with the algebra gener-

ated by su(B, ).
Suppose that mq ≥ 3. Then su(B, ) generates B as an algebra [5, Lemma

2.26]. So the generic endomorphism algebra A is contained in the commutant of B
in EndQ(V ), or equivalently in EndF0(V ), which is L. Since L is contained in A,
we have shown that the generic endomorphism algebra A is equal to L in Type IV
when

∑g
ν=1 rνsν > 0 and mq ≥ 3.

We now turn to the remaining cases, which involve Hodge structures of low
dimension over the totally real field F . For example, case (d’): let L be of Type IV
with m = 2 and q = 1, while rν = sν = 1 for ν = 1, . . . , g. Thus L is a CM field F0,
and V has dimension 2 as an L-vector space.

The component D0 of the Mumford-Tate domain of Q-Hodge structures on
(V, 〈, 〉, L) given by rν = sν = 1 is isomorphic to Gr(1, 2)g ∼= (CP1)g. I claim that
every Hodge structure in D0 has extra endomorphisms; more precisely, the generic
endomorphism algebra for Q-Hodge structures in D0 is of Type III, a totally definite
quaternion algebra L2 over the totally real field F . Here [L2 : Q] = 2[L : Q] and
so V has dimension 1 as an L2-vector space. We showed above that the Type
III period domain for (V, 〈, 〉, L2) is GrLag(1, 2)g ∼= (CP1)g, and that the generic
endomorphism algebra for Q-Hodge structures in that domain is equal to L2. So
it suffices to show that there is an inclusion L ⊂ L2 of algebras with involution,
compatibly with the actions of L and L2 on V . (Then there is an obvious inclusion
from the period domain for L2 into the one for L, which must be an isomorphism
since both domains are isomorphic to (CP1)g.)

For convenience, we work at first with the weaker assumption that m = 2, q = 1,
and

∑g
ν=1 rνsν > 0.

One way to find L2 is that SU(B, ) is a form of SL(2) over F , and so it is
isomorphic to SL(1, L2) for a unique quaternion algebra L2 over F [5, Theorem
26.9]. By our earlier discussion of Type IV, the generic Hodge group M for D0

is normal in the “expected Hodge group” H = RF/QU(B, ). Since the period
domain D0 has dimension g > 0, M is not commutative (as there are only countably
many Q-Hodge structures of CM type). Since H is the product of the Q-simple
group RF/QSU(B, ) = RF/QSL(1, L2) with an abelian subgroup, M must contain
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RF/QSL(1, L2). We have M ⊂ H ⊂ SO(VQ), where SO(VQ) is R-anisotropic
(equivalently, its group of real points is compact) because 〈, 〉 is positive definite on
V . So M is also R-anisotropic, which means that the quaternion algebra L2 over
F is totally definite, that is, of Type III.

Therefore, the generic endomorphism algebraA forD0 commutes withRF/QSL(1, L2).
So A commutes with the Q-algebra generated by the Lie algebra of RF/QSL(1, L2),
which is ker(tr : L2 → F ). That algebra is equal to L2.

The homomorphism SL(1, L2) → SU(B, ) gives a homomorphism L2 → B →
EndQ(V ) of algebras with involution. Since [L2 : Q] = 2[L : Q], V has dimension 1
as an L2-vector space. So the commutant of L2 in EndQ(V ) is isomorphic to Lop

2 .
So L ⊂ A ⊂ Lop

2 . Since [Lop
2 : Q] = 2[L : Q], the generic endomorphism algebra A

for D0 must be either L or Lop
2 .

We have an inclusion from the Mumford-Tate domain for (V, 〈, 〉, Lop
2 ) into the

one for (V, 〈, 〉, L). The first is isomorphic to (CP1)g and the second is isomorphic
to D = (

∐2
rν=0 Gr(rν , 2))g, as shown earlier. So the Mumford-Tate domain for Lop

2

must be equal to the unique component D0 of D of dimension g, the one with
rν = sν = 1 for ν = 1, . . . , g. We have thus shown that every Q-Hodge structure
in that component D0 has extra endomorphisms, with the generic endomorphism
algebra being the Type III quaternion algebra Lop

2 over F . At the same time, the
argument shows that when

∑
ν rνsν is greater than 0 but less than g, the generic

endomorphism algebra for that component of D is equal to the “expected” algebra
L.

Next, consider case (e’): let L be of Type IV with m = 1 and q = 2, while
rν = sν = 1 for ν = 1, . . . , g. Thus L is a quaternion algebra over a CM field F0,
and V has dimension 1 as an L-vector space.

The component D0 of the Mumford-Tate domain of Q-Hodge structures on
(V, 〈, 〉, L) corresponding to rν = sν = 1 is isomorphic to Gr(1, 2)g ∼= (CP1)g. I
claim that every Hodge structure in this domain has extra endomorphisms. More
precisely, every Hodge structure in D0 is non-simple, with V = W⊕2. The generic
endomorphism algebra for W is of Type III, a totally definite quaternion algebra
which we call Lop

2 over the totally real field F . Here [Lop
2 : Q] = [L : Q]/2 and

so W has dimension 1 as an Lop
2 -vector space. We showed above that the Type

III period domain for (W, 〈, 〉, Lop
2 ) is GrLag(1, 2)g ∼= (CP1)g, and that the generic

endomorphism algebra for Q-Hodge structures in that domain is equal to Lop
2 . So it

suffices to show that there is an inclusion L ⊂M2(L
op
2 ) of algebras with involution,

compatibly with the actions of L and M2(L
op
2 ) on V . (Then there is an obvious

inclusion from the period domain for Lop
2 into the one for L, which must be an

isomorphism since both domains are isomorphic to (CP1)g.)
For convenience, we work at first with the weaker assumption that m = 1, q = 2,

and
∑g

ν=1 rνsν > 0.
As in case (d’), the assumptions imply that the generic Hodge group M for the

given component D0 contains RF/QSU(B, ), and that SU(B, ) is isomorphic to
SL(1, L2) for a unique totally definite quaternion algebra L2 over the totally real
field F . As in case (d’), the generic endomorphism algebra A for D0 commutes with
RF/QSL(1, L2) and hence with the algebra L2 ⊂ EndQ(V ).

The homomorphism SL(1, L2) → SU(B, ) gives a homomorphism L2 → B →
EndQ(V ) of algebras with involution. Since [L2 : Q] = [L : Q]/2, V has dimension
2 as an L2-vector space. So the commutant of L2 in EndQ(V ) is isomorphic to
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M2(L
op
2 ). So L ⊂ A ⊂ M2(L

op
2 ). Since [M2(L

op
2 ) : Q] = 2[L : Q], the generic

endomorphism algebra A for D0 must be either L or M2(L
op
2 ).

We have an inclusion from the Mumford-Tate domain for (W, 〈, 〉, Lop
2 ) into the

one for (V, 〈, 〉, L), by sending W to V := W⊕2. The first is isomorphic to (CP1)g

and the second is isomorphic to D = (
∐2
rν=0 Gr(rν , 2))g, as shown earlier. So the

Mumford-Tate domain for L2 must be equal to the unique component D0 of D of
dimension g, the one with rν = sν = 1 for ν = 1, . . . , g. We have thus shown that in
case (e’), every Q-Hodge structure in that component D0 has extra endomorphisms,
with V being a direct sum V = W⊕2 of Q-Hodge structures and W generically
having endomorphism algebra equal to the Type III quaternion algebra Lop

2 over
F . At the same time, the argument shows that when

∑
ν rνsν is greater than 0 but

less than g, the generic endomorphism algebra for that component of D is equal to
the “expected” algebra L.

Next, consider case (g’), with L of Type I, m = 4, and disc(V ) = 1 ∈ F ∗/(F ∗)2.
So L is equal to F , a totally real field. The Mumford-Tate domain D for (V, 〈, 〉, L)
is Grisot(2, 4)g ∼= (CP1∐CP1)g.

For each component D0 of D, the generic Hodge group M is normal in the “ex-
pected” Hodge group H = RF/QSO(FV ), as shown earlier. Since FV has discrimi-
nant 1 in F ∗/(F ∗)2, SO(FV ) is the product of two subgroups, SL(1, L2)SL(1, Lop

2 ),
where L2 is a quaternion algebra over F [5, Corollary 15.12]. We know that M is
nontrivial, since a Hodge structure V in D0 has V 2,0 6= 0; so the generic Hodge group
M for D0 is either RF/QSL(1, L2), RF/QSL(1, Lop

2 ), or all of H. The generic endo-
morphism algebra for D0 is the centralizer of the generic Hodge group in EndQ(V ).
So the generic endomorphism algebra is Lop

2 , L2, or F , respectively. (Here we are
thinking of EndF (V ) as L2 ⊗F Lop

2 ; of course, Lop
2 is isomorphic to L2, because L2

is a quaternion algebra.)
Since V has dimension 1 as an L2-vector space, the Mumford-Tate domain for

(V, 〈, 〉, L2) is isomorphic to (CP1)g. The generic endomorphism algebra for that
domain of Type III is L2. Likewise, the Mumford-Tate domain for (V, 〈, 〉, Lop

2 ) is
a different copy of (CP1)g inside D. We conclude that the generic endomorphism
algebra for these two connected components of D is isomorphic to L2 (∼= Lop

2 ), while
the generic endomorphism algebra for each of the other 2g − 2 components of D is
the “expected” algebra L = F .

Next, consider case (b’), with L of Type II, m = 2, and disc(B, ) = 1 ∈
F ∗/(F ∗)2. So L is a totally indefinite quaternion algebra over the totally real
field F . Let S1, . . . , Sg be the simple modules (of real dimension 2) for the ring
L⊗QR ∼= (M2(R))g. The Mumford-Tate domain D for (V, 〈, 〉, L) is Grisot(2, 4)g ∼=
(CP1∐CP1)g.

For each component D0 of D, the generic Hodge group M is normal in the
“expected” Hodge group H = RF/QO

+(B, ), as shown earlier. Since (B, ) has dis-
criminant 1 in F ∗/(F ∗)2, O+(B, ) is the product of two subgroups, SL(1, L2)SL(1, L3),
where L2 and L3 are quaternion algebras over F [5, Corollary 15.12]. We know that
M is nontrivial, since a Hodge structure V in D0 has V 2,0 6= 0; so the generic
Hodge group M for D0 is either RF/QSL(1, L2), RF/QSL(1, L3), or all of H. The
generic endomorphism algebra for D0 is the centralizer of the generic Hodge group
in EndQ(V ). So the generic endomorphism algebra is M2(L

op
2 ), M2(L

op
3 ), or L, re-

spectively. (Here we are thinking of B as L2⊗F L3, where L2 and L3 both have the
canonical symplectic involution. The whole algebra EndF (V ) is the tensor product
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L⊗F L2 ⊗F L3, in this situation.)
Using the algebra M2(L

op
2 ) ⊂ EndQ(V ), we can view the Q-vector space V

as a direct sum V = W⊕22 . Since W2 has dimension 1 as an Lop
2 -vector space,

the Mumford-Tate domain for (W2, 〈, 〉, Lop
2 ) is isomorphic to (CP1)g. The generic

endomorphism algebra for W2 in that domain of Type III is Lop
2 , as have shown.

Likewise, the inclusion M2(L
op
3 ) ⊂ EndQ(V ) gives a different decomposition V =

W⊕23 . We can view the Mumford-Tate domain for (W3, 〈, 〉, Lop
3 ) as a different copy

of (CP1)g inside D. We conclude that in case (b’), the generic Q-Hodge structure
in each of these two connected components of D is non-simple, of the form W⊕2

where W has endomorphism algebra Lop
2 or Lop

3 of Type III, respectively. We also
see that the generic endomorphism algebra for each of the other 2g − 2 components
of D is the “expected” algebra L.

It remains to consider the cases where the generic Q-Hodge structure with endo-
morphisms by L is in fact of CM type. Every component D0 of the Mumford-Tate
domain contains a CM point [4, Lemma VI.C.1], and there are only countably many
CM points in any Mumford-Tate domain. So the generic Hodge structure in D0 is
of CM type if and only if D0 is a point. By the formula for the dimension of D0,
these cases are:
(f’) Type I, m = 2.
(a’) Type II, m = 1.
(c’) Type IV,

∑g
ν=1 rνsν = 0.

Let (V, 〈, 〉, L) be in case (f’). So L is a totally real field F and dimF (V ) =
2. The “expected” Hodge group H as defined earlier is RF/QSO(FV ), which is
commutative. Since the Hodge group M of V is a normal subgroup of H, we see
directly that M is commutative; that is, V is of CM type.

As an F -vector space of dimension 2, V has a canonical symmetric bilinear
form (, ) (Lemma 2.1). This form is positive definite, and so its discriminant (the
negative of the determinant, in this case) is totally negative in F ∗/(F ∗)2. So F0 :=
F (
√

disc(FV )) is a totally imaginary quadratic extension of F . The “expected”
endomorphism algebra of V is the centralizer of RF/QSO(FV ) in EndQ(V ), which is
the CM field F0. The actual endomorphism algebra contains F0. Since dimF0(V ) =
1, we have constructed enough endomorphisms to show again that V is of CM type.

Next, let (V, 〈, 〉, L) be in case (a’): Type II and m = 1. So L is a totally
indefinite quaternion algebra over a totally real field F , and dimL(V ) = 1. Let B
be the centralizer of L in EndQ(V ), or equivalently in EndF (V ). The “expected”
Hodge group H as defined earlier is RF/QO

+(B, ), which is commutative since
O+(B, ) is an F -form of SO(2m) = SO(2). So we see directly that V is of CM
type.

The discriminant disc(B, ) in F ∗/(F ∗)2 is totally negative, using the positiv-
ity of the symmetric bilinear form (, ) on the 4-dimensional F -vector space V . So
F0 := F (

√
disc(B, )) is a totally imaginary quadratic extension field of F . The “ex-

pected” endomorphism algebra as defined earlier is the centralizer of RF/QO
+(B, ),

which is the matrix algebra M2(F0). The actual endomorphism algebra of the Q-
Hodge structure V contains M2(F0). We conclude that the Q-Hodge structure V
is isomorphic to a direct sum V = W⊕2, where W has endomorphisms by the CM
field F0, and dimF0W = 1. We have constructed enough endomorphisms to see
again that V is of CM type.

Finally, let (V, 〈, 〉, L) be in case (c’): Type IV with
∑g

ν=1 rνsν = 0. So L is
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a central simple algebra with unitary involution over a CM field F0. We write
2n = m[L : Q] and [L : F0] = q2. Let B ∼= Mm(Lop) be the centralizer of L in
EndQ(V ), or equivalently in EndF0(V ). The “expected Hodge group” H as defined
earlier is H = RF/QU(B, ); here U(B, ) is an F -form of GL(mq). The Hodge
group M of V is a normal connected Q-subgroup of H, and we also know that M
is commutative because the given component D0 of the Mumford-Tate domain has
dimension zero. So M is a subgroup of the center of H, which is the torus RF/QT ,
where T is the 1-dimensional torus ker(N : RF0/FGm → Gm) over F .

So the endomorphism algebra of the Q-Hodge structure V contains the central-
izer of RF/QT in EndQ(V ), which is the matrix algebra EndF0(V ) ∼= Mmq2(F0).

Therefore, the Q-Hodge structure V is a direct sum V = W⊕mq
2

for a Q-Hodge
structure W with endomorphisms by F0 such that dimF0(W ) = 1. Thus we have
constructed enough endomorphisms to see again that V is of CM type.

Remark 3.2. As an addendum to Theorem 3.1, we can say when a CM Hodge
structure has more than the expected endomorphism algebra. For CM abelian
varieties, this was worked out by Shimura [13, Proposition 26]. Namely, let X be
a complex abelian variety of dimension g with a homomorphism F0 → End(X)Q
for a CM field F0 of degree 2g over Q. The isogeny type of X is described by a
CM type on F0, meaning a set Φ of g complex embeddings of F0 such that every
complex embedding is in Φ ∪ Φ. Then End(X)Q is strictly larger than F0 if and
only if there is a strictly smaller CM subfield K0 of F0, with subfield K fixed by
complex conjugation, such that any two elements of Σ which agree on K also agree
on K0. When this happens, X is isogenous to a power of the CM abelian variety
with endomorphisms by K0 and CM type Σ|K0 .

Essentially the same statement holds for CM Hodge structures of any weight
w ≥ 1 with Hodge numbers (g, 0, . . . , 0, g). Namely, the CM Hodge structures with
Hodge numbers (g, 0, . . . , 0, g) and with a homomorphism F0 → EndQ-HS(V ) for
a CM field F0 of degree 2g are classified by CM types on F0, just as in weight
1. (In particular, these Hodge structures are all polarizable.) It follows that the
equivalence of categories from Hodge structures with Hodge numbers (g, g) to Hodge
structures with Hodge numbers (g, 0, . . . , 0, g) given by renaming V 1,0 ⊂ V ⊗QC as
V w,0 restricts to an equivalence from the CM Hodge structures of weight 1 to those
of weight w. Therefore, we have the same criterion as in the previous paragraph for
when a CM Hodge structure with Hodge numbers (g, 0, . . . , 0, g) has more than the
expected endomorphism algebra.

4 Hodge structures not generated by curves

In this section, we show that the Q-Hodge structures considered in this paper,
those of weight at least 2 with Hodge numbers (n, 0, . . . , 0, n), are not in the tensor
category generated by curves (or equivalently by abelian varieties), except when
they are of CM type.

Define the tensor category of Q-Hodge structures generated by curves to be the
subcategory of Hodge structures generated by H1 of smooth complex projective
curves together with the Hodge structure Q(j) for integers j by taking direct sums,
tensor products, and direct summands. This can also be described as the tensor
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category generated by abelian varieties. Every Hodge structure of CM type belongs
to the tensor category generated by curves. The Kuga-Satake construction shows
that every polarizable Q-Hodge structure with Hodge numbers (1, b, 1) is in the
tensor category generated by curves [16].

We use the following result of Deligne’s [10, Lemma 5]. We say that a Hodge
structure V has type {(a1, b1), . . . , (am, bm)} if VC = ⊕jV aj ,bj . Thus we do not
specify the actual Hodge numbers.

Theorem 4.1. Let V be a Q-Hodge structure which belongs to the tensor category
generated by curves. Then the Hodge structure on the Lie algebra of the Mumford-
Tate group of V is of type {(−1, 1), (0, 0), (1,−1)}.

Corollary 4.2. Let V be a Q-Hodge structure of weight w ≥ 2 with Hodge numbers
(n, 0, . . . , 0, n). If V is not of CM type, then it is not in the tensor category generated
by curves.

Proof. The Hodge structure on EndQ(V ) is of type {(−w,w), (0, 0), (w,−w)}. The
Lie algebra mt of the Mumford-Tate group MT(V ) is a sub-Hodge structure of
EndQ(V ). If the Hodge structure V is in the tensor category generated by curves,
then in particular it is polarizable. Also, by Theorem 4.1, mt is of type {(−1, 1),
(0, 0), (1,−1)}, and so mt must be of type {(0, 0)}. Equivalently, the homomorphism
RC/RGm → MT(V )R → GL(mt) that describes the Hodge structure on mt is trivial.
Since RC/RGm is Zariski dense in the Mumford-Tate group as a Q-group, it follows
that the conjugation homomorphism MT(V ) → GL(mt) is trivial. That is, the
connected Q-group MT(V ) is commutative. So V is of CM type.
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