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We give examples of semidirect product groups G⋉A such that the Hochschild-
Serre spectral sequence H∗(G,H∗A) ⇒ H∗(G⋉A) for Z/p-cohomology has nonzero
differentials. Until now, few such examples have been known, especially when the
normal subgroup A is abelian. In particular, Benson and Feshbach [2] mentioned
that in all known semidirect products with A abelian, the spectral sequence satisfies:

(1) All differentials after d2 are 0.
(2) All differentials are 0 if A = (S1)n. (To be consistent with the notation for

discrete groups A, H∗A here means the cohomology of the classifying space of A.)
(3) All differentials are 0 if A = (Z/2)n and we consider cohomology with Z/2

coefficients.
We give examples to show that all three statements can fail. In fact, there can

be nonzero differentials at dp or later in all of these cases. I expect that there can
be nonzero differentials arbitrarily far along in the spectral sequence in all of these
cases, but the problem remains open. (For semidirect products G ⋉ A with A not
abelian, Benson and Feshbach [2] gave examples of nonzero differentials arbitrarily
far along in the spectral sequence for Z/2-cohomology.)

It turns out that there is a very general reason why there will be nonzero differ-
entials in some examples. If X is a G-space, then H∗(G,C∗(X)) admits Steenrod
operations compatible with those on H∗G because it is the cohomology of the space
(X × EG)/G, whereas there is no reason for H∗(G,M) to have Steenrod opera-
tions for a general G-module M . Thus Steenrod operations provide a fundamental
obstruction for a G-module to be the representation of G on the cohomology of
a G-space, as G. Carlsson found [4]; there is a useful exposition by Benson and
Habegger [3]. If a semidirect product G ⋉ A has the G-action on A given by the
dual of such a G-module, we can show that there must be nonzero differentials in
the Hochschild-Serre spectral sequence.

It is interesting to contrast these examples with Nakaoka’s theorem that the
Hochschild-Serre spectral sequence has no differentials for any wreath product G⋉

Hn ([6], p. 50). Here G and H are any finite groups and G acts on Hn through a
permutation representation G →֒ Sn. It would be good to characterize algebraically
the class of G-modules M over Z/p, say for a p-group G, such that the semidirect
product G ⋉M has no differentials in the spectral sequence: it seems to be fairly
close to the class of permutation modules, but there are some other interesting
examples.

I would like to thank J. L. Alperin, Steve Siegel, and Peter Sin for many conver-
sations on group cohomology. Steve Siegel read an early version of this paper and
made useful suggestions. Also, this work was partially supported by the NSF.
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1 Lemma on Steenrod operations

Let p be a prime number. Throughout this paper we write H∗X for H∗(X,Z/p).
Also, let H˙X be H∗(X,Z/2) if p = 2, and let it be the even-dimensional subring
Hev(X,Z/p) is p is odd. Thus H˙X is always a commutative ring. Finally, for p
odd, P i : HnX → Hn+2(p−1)iX are the usual Steenrod operations, and for p = 2
we use the same notation P i to mean P i = Sqi : HnX → Hn+iX.

We need the following lemma, which is a variant of Proposition 3 in Landweber
and Stong [7]. The proof is short enough to repeat here. Recall that the radical of
an ideal I in a commutative ring R is the set of a ∈ R such that an ∈ I for some
n ≥ 1.

Lemma 1 Let p be a prime number, and let H∗X denote H∗(X,Z/p). Let X → Y
be a map of spaces. Let M ⊂ H∗X be any finitely generated graded H˙ Y -submodule.

Then the radical of the annihilator of M is an ideal in H˙ Y which is closed under

the Steenrod operations P i, i ≥ 0.

The interesting thing is that M is not assumed to be closed under the Steenrod
operations, and as a result the annihilator of M is generally not closed under the
Steenrod operations; but the radical of the annihilator of M behaves better.

Proof. It suffices to prove that the radical of the annihilator in H˙ Y of a single
element x ∈ H∗X is closed under all P i’s. For 2i > dim x (or i > dim x, in case
p = 2) we have P ix = 0. So there is a positive integer r large enough that P ix = 0
for i ≥ pr. Then, for any a ∈ H˙ Y and i ≥ 0, we have

P ipr(ap
r

x) = (P ia)p
r

x.

This follows from the Cartan identity for Steenrod operations, which says that the
total Steenrod operation P = 1+P 1 +P 2+ · · · is a ring homomorphism from H∗X
to itself, so that

P (ap
r

x) = P (a)p
r

P (x)

= (
∑

k≥0

(P ka)p
r

)(
∑

0≤l<pr

P lx).

The earlier identity follows by equating terms in the appropriate dimension. Now if
a belongs to the radical of the annihilator of x, we may assume that ap

r

x = 0. The
identity then shows that P ia is in the radical of the annihilator of x for all i ≥ 0.
QED

2 Cohomology of semidirect product groups

Let G⋉A be a semidirect product of groups, where we need not assume that A is
abelian, although that is where I have applications for the theorem. Let H∗G =
H∗(G,Z/p) for a fixed prime number p, and let H˙G be H∗G for p = 2, HevG for
p odd.

A group G is defined to be of type VFP for Z/p-coefficients if it has a subgroup
of finite index whose total cohomology with coefficients in any module of finite
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dimension over Z/p is finite-dimensional. Finite groups as well as arithmetic groups,
such as GLnZ, are examples of groups of type VFP.

Theorem 1 Suppose that G has type V FP for Z/p and that H iA is finite-dimensional

for each i. Let r be the smallest number ≥ 1 such that HrA 6= 0. If the Hochschild-

Serre spectral sequence for computing H∗(G⋉A) has all differentials into H∗(G,HrA)
equal to 0, then the radical of the annihilator of the H˙G-module H∗(G,HrA) is

closed under the Steenrod operations P i.

Proof. Venkov and Evens proved that for finite groups G, H˙G is a noetherian
ring and H∗(G,M) is a finitely generated H˙G-module for all Z/pG-modules M
of finite dimension over Z/p ([1], p. 130). The Hochschild-Serre spectral sequence
shows that these properties generalize to groups G of type VFP for Z/p.

Since we have a semidirect product, the 0th row of the spectral sequence, H∗G,
splits off from H∗(G⋉A) as an H∗G-module in a natural way. The remaining piece
of H∗(G ⋉ A) has a filtration by H∗G-submodules, with the bottom piece of the
filtration isomorphic to H∗(G,HrA)/(all differentials). If, as we assume, there are
no differentials mapping into the rth row, then we have exhibited H∗(G,HrA) as
an H∗G-submodule of H∗(G⋉A).

By Lemma 1, even though the Steenrod operations need not map H∗(G,HrA)
into itself, the radical of the annihilator of H∗(G,HrA) in H˙G is closed under the
Steenrod operations. QED

Corollary 1 For each prime number p, there are semidirect products (Z/p)2 ⋉

(Z/p)n, (Z/p)2 ⋉ Zn, and (Z/p)2 ⋉ (S1)n such that the Hochschild-Serre spec-

tral sequence with Z/p coefficients does not degenerate. More precisely there will

be nonzero differentials mapping into H∗(G,H1A) in the first two cases and into

H∗(G,H2A) in the last case. We can take n = 2p2.

Proof. Let G = (Z/p)2. Following Benson [1], pp. 190-195, we will exhibit a
ZG-module Lζ which is free as a Z-module such that the radical of the annihilator
of the H˙G-module H∗(G,Lζ ⊗ Z/p) is not closed under the Steenrod operations
P i. (One can define a module Lζ with this property for any finite group G of
p-rank ≥ 2, but we will just prove what we need for G = (Z/p)2.) Then, if we
define an abelian group A with G-action by A = Hom(Lζ ,Z/p), A = Hom(Lζ ,Z),
or A = BHom(Lζ ,Z) (in the last case A ∼= (S1)n), then the lowest-dimensional
cohomology of A (HrA where r = 1, 1, 2, respectively) is isomorphic to Lζ ⊗Z/p as
a G-module. By Theorem 1, there are nonzero differentials in the spectral sequence
of the extension G⋉A with Z/p coefficients in these three cases. In fact there are
nonzero differentials mapping into H∗(G,HrA).

We define the ZG-module Lζ as follows. Let x, y ∈ H2G span the space of
Bocksteins of elements of H1, so that x and y generate a polynomial subring of
H∗G, and let ζ be a homogenous irreducible polynomial in x, y over Z/p of degree
d > 1. Then ζ gives an element of H2dG, which even lifts to H2d(G,Z) since x and
y are integral classes. Fix such a lift. Let

· · · → P1 → P0 → Z → 0
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be a projective resolution of Z as a ZG-module, and let ΩiZ be the image of Pi in
Pi−1; it may depend on the resolution, although that is irrelevant to us. Then the
lift of ζ in H2d(G,Z) can be represented by a map Ω2dZ → Z of ZG-modules. Let
Lζ be the kernel, so that we have a short exact sequence of ZG-modules,

0 → Lζ → Ω2dZ → Z → 0.

These are torsion-free abelian groups, because Ω2dZ is a submodule of P2d−1. The
cohomology of G with coefficients in (Ω2dZ)⊗Z/p is just H∗G shifted up by 2d, at
least in dimensions ≥ 2d+ 1, and the map

ζ : (Ω2dZ)⊗ Z/p → Z/p

gives a map
H iG = H i+2d(G, (Ω2dZ)⊗ Z/p) → H i+2d(G,Z/p)

which is multiplication by ζ ∈ H2dG. Multiplication by ζ is an injective map on
H∗G (for p = 2, H∗G is a polynomial ring; for p odd, H∗G is the tensor product of a
polynomial ring and an exterior algebra, with ζ in the polynomial subring). So the
short exact sequence above, which remains exact on tensoring with Z/p, determines
H∗(G,Lζ ⊗ Z/p) in high dimensions: for i ≥ 2d+ 2,

H i(G,Lζ ⊗ Z/p) = H i−1G/(ζ).

Knowing H∗(G,Lζ ⊗ Z/p) in dimensions ≥ 2d + 2 is enough if we only want to
know the radical of the annihilator of the H˙G-module H∗(G,Lζ ⊗ Z/p); namely,
this radical is the ideal (

√
ζ) in H˙G = H∗G for p = 2, or (ζ) in H˙G = HevG for

p odd. But Serre [11] showed that if an ideal in H˙G is closed under the Steenrod
operations, then the corresponding algebraic subset of Spec H˙G = A2

Z/p
is a finite

union of Z/p-linear subspaces. Since the polynomial ζ is irreducible of degree > 1
over Z/p, Serre’s theorem shows that the radical of the annihilator of the H˙G-
module H∗(G,Lζ ⊗ Z/p) is not closed under the Steenrod operations, which is the
property of Lζ we want.

Specifically, let ζ be an irreducible quadratic polynomial over Z/p, so that d = 2
above. There is a resolution of Z over ZG, where G = (Z/p)2, of the form

· · · → (ZG)3 → (ZG)2 → (ZG)1 → Z → 0,

and one computes that Ω4Z is a ZG-module of Z-rank 2p2 + 1 for this resolution.
So Lζ is a ZG-module of Z-rank 2p2, and we can take A = (Z/p)2p

2

, A = Z2p2 , or

A = (S1)2p
2

for our example. QED

Steve Siegel pointed out to me that in the special case of semidirect products
(Z/2)2 ⋉ (Z/2)n, we can take the cohomology classes x and y in the above con-
struction to be in H1 rather than H2, with the result that there is a semidirect
product of this type with nonzero Hochschild-Serre differentials for n = 4, rather
than n = 2p2 = 8.
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3 Comments

At this point we have answered negatively two of the three questions raised in [2]:
the spectral sequence of a semidirect product G ⋉ A does not always degenerate
for A = (S1)n, nor for A = (Z/2)n with Z/2 coefficients. (Examples where the
differential d2 was nonzero were known before for A = Zn ([5] and [9], pp. 28-29)
and for A = (Z/p)n, at least when p ≥ 5 [10].)

We can also answer no to the remaining question asked in [2], whether the
d2 differential is the only one which can be nonzero in the spectral sequence for
semidirect products by an abelian group. The point is that for cohomology with
Z/p coefficients, the only differentials which can be nonzero in the spectral sequence
for a semidirect product G ⋉ Zn are the di’s with i ≡ 1 (mod p − 1), starting
with dp. This is an easy consequence of Lieberman’s trick, that is, of the action
of the multiplicative monoid of the positive integers on G ⋉ Zn by fixing G and
acting in the obvious way on Zn ([8], p. 262). Thus, for the semidirect products
(Z/p)2 ⋉ Zn produced in Corollary 1, there is a nonzero differential at dp or later.
The same argument shows that for (Z/p)2 ⋉ (S1)n as in Corollary 1, there is a
nonzero differential at d2p−1 or later. (In this case the possibly nonzero differentials
are di for i ≡ 1 (mod 2(p − 1)).)

Also, for semidirect products G ⋉ (Z/p)n as constructed in Corollary 1, there
will be a nonzero differential at dp or later. The point is that, in the Corollary, the
G-action on (Z/p)n lifts to an action on A = Zn. The resulting homomorphism
G⋉A → G⋉ (A/p) gives a map of spectral sequences which is an isomorphism on
row 1 of the E2 term:

H i(G,H1(A/p))
∼=→ H i(G,H1A).

Since there are no differentials into H i(G,H1A) until dp or later, there are no
differentials into H i(G,H1(A/p)) until dp or later. Moreover Corollary 1 says that
there will be a nonzero differential into H i(G,H1(A/p)) sometime, thus necessarily
at dp or later.

The question remains whether the Z/p-cohomology spectral sequence for semidi-
rect products G⋉ (Z/p)n or G⋉Zn can have nonzero differentials after dp. I expect
that there can be nonzero differentials arbitrarily far along in the spectral sequence.
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