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Topology of Singular Algebraic Varieties

B. Totaro∗

Abstract

I will discuss recent progress by many people in the program of extending
natural topological invariants from manifolds to singular spaces. Intersection
homology theory and mixed Hodge theory are model examples of such invari-
ants. The past 20 years have seen a series of new invariants, partly inspired by
string theory, such as motivic integration and the elliptic genus of a singular
variety. These theories are not defined in a topological way, but there are
intriguing hints of their topological significance.
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1. Introduction

The most useful fact about singular complex algebraic varieties is Hironaka’s
theorem that there is always a resolution of singularities [20]. It has long been
clear that the non-uniqueness of resolutions poses a difficulty in many applications.
Many different methods have been used to get around this difficulty so as to define
invariants of singular varieties. One approach is to try to describe the relation
between any two resolutions, leading to ideas such as cubical hyperresolutions [18]
and the weak factorization theorem ([1], [31]). Another idea, coming from minimal
model theory, is to insist on the special importance of crepant resolutions, and more
generally to emphasize the role of the canonical bundle. Recently the interplay
between these two approaches has been very successful, as I will describe.

The recent methods tend to be more roundabout than the direct topological
definition of intersection homology groups. It is tempting to try to define suitable
generalizations of intersection homology groups in order to “explain” various results
below (3.2, 3.4, 4.1, 5.2).
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2. The weight filtration

Deligne discovered a remarkable structure on the rational cohomology of any
complex algebraic variety, not necessarily smooth or compact: the weight filtration
[9]. This filtration expresses the way in which the cohomology of any variety is
related to the cohomology of smooth compact varieties. It is a deep fact that the
resulting filtration is well-defined. For example, an immediate consequence of the
well-definedness of the weight filtration on cohomology with compact support is the
following fact, originally conjectured by Serre ([11], [6], [12], p. 92).

Theorem 2.1. For any complex algebraic variety X, not necessarily smooth
or compact, one can define “virtual Betti numbers” aiX ∈ Z for i ≥ 0 such that

(1) if X is smooth and compact, then the numbers aiX are the Betti numbers
biX = dimQHi(X,Q);

(2) for any Zariski-closed subset Y ⊂ X, aiX = aiY + ai(X − Y ).
Using resolution of singularities, it is clear that the numbers aiX are uniquely

characterized by these properties. What is less clear is the existence of such num-
bers. It follows, for example, that if two smooth compact varieties X and Y can be
written as finite disjoint unions of locally closed subsets, X =

∐
Xi and Y =

∐
Yi,

with isomorphisms Xi
∼= Yi for all i, then X and Y have the same Betti numbers.

This is a topological property of algebraic varieties which has no obvious analogue
in a purely topological context.

The existence of the weight filtration, and consequently of the virtual Betti
numbers aiX, was originally suggested by Grothendieck’s approach to the Weil
conjectures on counting rational points on varieties over finite fields. Indeed, the
number of Fq-points of a variety clearly has an additive property analogous to
property (2) above. One proof of the existence of the weight filtration for complex
varieties reduces the problem to the full Weil conjecture for varieties over finite
fields, proved by Deligne [8]. Around the same time, Deligne gave a more direct
proof of the existence of the weight filtration for complex varieties, using Hodge
theory [7]. This is a classic example of the philosophy that the deepest properties
of algebraic varieties can often be proved using either number theory or analysis,
while they have no “purely geometric” proof.

In 1995, however, Gillet and Soulé gave a new proof of the existence of the
weight filtration [13]. They used “only” resolution of singularities and algebraic
K-theory, specifically the Gersten resolution. As a result of their more geometric
proof, they were able to define the weight filtration on the integral cohomology or
Fl-cohomology of a complex algebraic variety, not only on rational cohomology.

To understand what this means, let me describe the weight filtration for a
smooth complex variety U , not necessarily compact. Using resolution of singular-
ities, we can write U as the complement of a divisor with normal crossings D in
some smooth compact variety X. For i ≥ 0, let X(i) be the disjoint union of the
i-fold intersections of divisors. Then there is a spectral sequence

E1 = Hj(X(i), k)⇒ Hi+j
c (U, k)

for any coefficient ring k. The weight filtration on the compactly supported coho-
mology of U is defined as the filtration associated to this spectral sequence. Gillet
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and Soulé show that for any coefficient ring k, this filtration is an invariant of U ,
independent of the choice of compactification U . This is not at all clear from the
known invariance of this filtration for k = Q.

In fact, Gillet and Soulé proved more: for any coefficient ring k, the spectral
sequence is an invariant of U from the E2 term on. For k = Q, the spectral sequence
degenerates at E2, but this is not true with coefficients in Z or Fl. As a result, for
general coefficients k, the groups in the E2 term are interesting new invariants of U
which are not simply the associated graded groups to the weight filtration. They
satisfy Mayer-Vietoris sequences, and so can be considered as a cohomology theory
on algebraic varieties.

I can now explain a new application of the geometric proof that the weight
filtration is well-defined. Namely, one can try to define the weight filtration not
only for algebraic varieties. The point is that resolution of singularities holds more
generally, for complex analytic spaces, and even for real analytic spaces. Gillet
and Soulé’s construction of the weight filtration uses algebraic K-theory as well
as resolution of singularities, and it is not clear how to adapt the argument to
an analytic setting. But Guillen and Navarro Aznar improved Gillet and Soulé’s
argument so as to construct the weight filtration using only resolution of singularities
[17]. The details of their argument use their idea of “cubical hyperresolutions” [18].

Using the method of Guillen and Navarro Aznar, I have been able to define
the weight filtration for complex and real analytic spaces. In more detail, let us
define a compactification of a complex analytic space X to be a compact complex
analytic space X containing X as the complement of a closed analytic subset. Of
course, not every complex analytic space has a compactification in this sense. We
say that two compactifications of X are equivalent if there is a third which lies over
both of them.

Theorem 2.2. Let k be any commutative ring. Then the compactly supported
cohomology H∗c (X, k) has a well-defined weight filtration for every complex analytic
space X with an equivalence class of compactifications.

Any algebraic variety comes with a natural equivalence class of compactifi-
cations, but in the analytic setting this has to be considered as an extra piece of
structure. On the other hand, the theorem says that the weight filtration is well-
defined on all compact complex analytic spaces, with no extra structure needed.

For real analytic spaces, one has the difficulty that there is no natural ori-
entation, unlike the complex analytic situation. This is not a problem if one uses
F2-coefficients, and therefore one can prove:

Theorem 2.3. For every real analytic space X with an equivalence class of
compactifications, the compactly supported cohomology of the space X(R) of real
points with F2 coefficients has a well-defined weight filtration.

In particular, one can define virtual Betti numbers aiX for a real analytic
space X with an equivalence class of compactifications, the integers aiX being the
usual F2-Betti numbers in the case of a closed real analytic manifold.

Example. Let X be the compact real analytic space obtained by identifying
two copies at the circle at a point, and let Y be the compact real analytic space
obtained by identifying two points on a single circle (the figure eight). It is imme-
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diate to compute that a0X = 1 and a1X = 2, whereas a0Y = 0 and a1 = Y . The
interesting point here is that the spaces X(R) and Y (R) of real points are homeo-
morphic. Thus the numbers ai for a compact real analytic space are not topological
invariants of the space of real points. In a similar vein, Steenbrink showed that the
weight filtration on the rational cohomology of complex algebraic varieties is not a
topological invariant, using 3-folds [27].

Nonetheless, it seems fair to say that extending the weight filtration and the
virtual Betti numbers to complex and real analytic spaces helps to bring out more
of the topological meaning of these invariants of algebraic varieties. A real analytic
space has in some ways a weak structure; for example, the classification of closed
real analytic manifolds up to isomorphism is the same as the classification of closed
differentiable manifolds up to diffeomorphism. From this point of view, it is sur-
prising that compactified real analytic spaces have the extra structure of the weight
filtration on their F2-cohomology. It seems natural to ask for an F2-linear abelian
category of “mixed motives” associated to compactified real analytic spaces X, such
that the F2-cohomology groups of X with their weight filtration are determined by
the mixed motive of X. On Beilinson’s conjectured abelian category of mixed mo-
tives in algebraic geometry, see for example Jannsen [21], 11.3, and [22]; on various
approximations to this category, see the triangulated categories defined by Hana-
mura [19], Levine [26], and Voevodsky [29], and the abelian category defined by
Nori.

It should be much easier to define mixed motives for real analytic spaces than
to do so for algebraic varieties. In particular, one might speculate that the mixed
motive of a real analytic space should not involve much more information than the
weight spectral sequence converging to its F2-cohomology (starting at E2), perhaps
considered together with an action of the Steenrod algebra. In low dimensions, one
could hope for precise classifications of mixed motives along these lines.

3. Stringy Betti numbers

The following result of Batyrev’s [4] is related to his famous result that two
birational Calabi-Yau manifolds have the same Betti numbers. The proof uses
Kontsevich’s idea of motivic integration [24], as developed by Denef and Loeser
[10]. To be precise, Batyrev’s statement involves Hodge numbers, but I will only
state what it gives about Betti numbers.

Theorem 3.1. Let Y be a complex projective variety with log-terminal sin-
gularities. Then one can define the “stringy Poincaré function” pstr(Y ), which is a
rational function, such that for any crepant resolution of singularities π : X → Y ,
the stringy Poincaré function of Y is the usual Poincaré polynomial of X.

We recall Reid’s important definitions which are used here. First, let Y be
any normal complex variety such that the canonical divisor KY is Q-Cartier. By
Hironaka, Y has a resolution of singularities π : X → Y such that the exceptional
divisors Ei, i ∈ I, are smooth with normal crossings. The discrepancies ai of Ei are
defined by

KX = π∗KY +
∑

aiEi.
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The variety Y is defined to have log-terminal singularities if and only if ai > −1 for
all i. A resolution X → Y is said to be crepant if KX = π∗KY .

Batyrev defines the stringy Poincaré function of Y by the formula:

pstr(Y ) =
∑
J⊂I

p(E0
J)
∏
j∈J

q − 1
qaj+1 − 1

.

Here E0
J is the open stratum of EJ := ∩j∈JEj , and p(E0

J) denotes the virtual
Poincaré polynomial of E0

J , written as a polynomial in q1/2. Thus pstr(Y ) is a
rational function in q1/2 for Y Gorenstein, and in q1/n for some n in general.

Batyrev’s proof that the stringy Poincaré function of Y is independent of the
choice of resolution, using motivic integration, rests on the additivity properties of
the virtual Poincaré polynomial. Using our extension of virtual Betti numbers to
complex analytic spaces, we find:

Theorem 3.2. The stringy Poincaré function can be defined as a rational
function for any compactified complex analytic space with log-terminal singularities.
For any crepant resolution X → Y with Y compact, the stringy Poincaré function
of Y is the usual Poincaré polynomial of X.

Likewise for real analytic spaces:
Theorem 3.3. An F2-analogue of the stringy Poincaré function can be defined

as a rational function for compactified real analytic spaces with log-terminal singu-
larities. For any crepant resolution X → Y with Y compact, the stringy Poincaré
function of Y is the usual Poincaré polynomial of the F2-cohomology of X.

In particular, this answers part of Goresky and MacPherson’s Problem 7 in
[15]:

Corollary 3.4. Given a compact real algebraic variety Y , the F2-Betti num-
bers of any two projective IH-small resolutions of Y are the same.

This uses the relation between IH-small resolutions and crepant resolutions,
which I worked out in [28] using results of Kawamata [23] and Wisniewski [30].
In the complex situation, the corollary (for Betti numbers with any coefficients)
has a more direct proof, since the Betti numbers of any small resolution of Y are
equal to the dimensions of the intersection homology groups of Y . It is not yet
known whether one can define a new version of intersection homology groups with
F2-coefficients which would be self-dual for all compact real analytic spaces. A
possible framework for defining such a theory has been set up by Banagl [2].

4. The elliptic genus of a singular variety

I found that any characteristic number which can be extended from smooth
compact complex varieties to singular varieties, compatibly with small resolutions,
must be a specialization of the elliptic genus [28]. It was then an important problem
to define the elliptic genus for singular varieties. This was solved in a completely
satisfying way by Borisov and Libgober [5]:

Theorem 4.1. Let Y be a projective variety with log-terminal singularities.
Then one can define the elliptic genus of Y , ϕ(Y ), such that for any crepant reso-
lution X → Y , we have ϕ(Y ) = ϕ(X).
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Here is Borisov and Libgober’s definition of ϕ(Y ). Let π : X → Y be a
resolution whose exceptional divisors Ek have simple normal crossings, and let ak
be the discrepancies as in section 3. Formally, let yl denote the Chern roots of X so
that c(TX) =

∏
l(1 + yl), and let ek be the cohomology classes on X of the divisors

Ek. Then ϕ(Y ) is the analytic function of variables z and τ defined by

ϕ(Y ) =
∫
Y

(
∏
l

( yl
2πi )θ(

yl
2πi − z)θ

′(0)
θ(−z)θ( yl

2πi )
)× (

∏
k

θ( ek2πi − (αk + 1)z)θ(−z)
θ( ek2πi − z)θ(−(αk + 1)z)

)

where θ(z, τ) is the Jacobi theta function. The proof that ϕ(Y ) is independent of
the choice of resolution for log-terminal Y uses the weak factorization theorem of
Abramovich, Karu, Matsuki, and Wlodarczyk ([1], [31]).

In the spirit of earlier sections, the singular elliptic genus extends to compact
complex analytic spaces with log-terminal singularities. But it remains a mystery
how to define the elliptic genus for some topologically defined class of singular spaces
that would include singular analytic spaces with log-terminal singularities.

5. Possible characteristic numbers for real analytic
spaces

In my paper [28], in trying to define characteristic numbers for singular com-
plex varieties, it was very helpful to require that these numbers are compatible with
IH-small resolutions, as Goresky and MacPherson had suggested ([15], Problem 10).
The problem thereby becomes more precise: it may be possible to show that some
characteristic numbers extend to singular varieties and some do not. This can help
to suggest valuable invariants for singular varieties, such as Borisov and Libgober’s
elliptic genus for singular varieties, even if one is not a priori interested in IH-small
resolutions. (The same comments apply to crepant resolutions.)

With this in mind, we here begin to analyze which characteristic numbers
can be defined for real analytic spaces, or for topological spaces with similar sin-
gularities, compatibly with IH-small resolutions. In the complex situation, the
fundamental example of a singularity with two different IH-small resolutions is the
3-fold node; one says that the two IH-small resolutions are related by the simplest
type of “flop.” Likewise, in the real situation, the real 3-fold node has two different
IH-small resolutions. For convenience, let us say that two closed n-manifolds are
related by a “real flop” if they are the two different IH-small resolutions X1 and X2

of a singular space with singular set of real codimension 3 that is locally isomorphic
to the product of the 3-fold node with an (n− 3)-manifold.

Let us first consider characteristic numbers for unoriented spaces. By Thom,
the bordism ring MO∗ for unoriented manifolds is detected by Stiefel-Whitney
numbers. Therefore we can ask which Stiefel-Whitney numbers (meaning F2-linear
combinations of Stiefel-Whitney monomials) are unchanged under real flops. Or,
more or less equivalently: what is the quotient of the bordism ring MO∗ by the
ideal of real flops X1 −X2, for X1 and X2 as above? There is a good answer:
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Theorem 5.1. The F2-vector space of Stiefel-Whitney numbers which are
invariant under real flops of n-manifolds is spanned by the numbers wi1wn−i for
0 ≤ i ≤ n, or equivalently by the numbers wn−2i

1 v2
i for 0 ≤ i ≤ n/2, modulo those

Stiefel-Whitney numbers which vanish for all n-manifolds. Here vi = vi(w1, w2, . . . )
denotes the Wu class. The dimension of this space of invariant Stiefel-Whitney
numbers, modulo those which vanish for all n-manifolds, is 0 for n odd and bn/2c+1
for n even. The quotient ring of MO∗ by the ideal of real flops is isomorphic to:

F2[RP2,RP4,RP8, . . . ]/((RP2a)2 = (RP2)2a for all a ≥ 2).

This class of Stiefel-Whitney numbers has occurred before, in Goresky and
Pardon’s calculation of the bordism ring of locally orientable F2-Witt spaces [16].
To be precise, the latter ring coincides with the above ring in even dimensions but
is also nonzero in odd dimensions. Goresky defined a Wu class vi in intersection
homology for F2-Witt spaces [14], so that the square v2

i lives in ordinary homology,
and the characteristic numbers for locally orientable F2-Witt spaces Y are obtained
by multiplying these homology classes by powers of the cohomology class w1.

This does not explain the invariance of these Stiefel-Whitney numbers for
real flops, however. The problem is that the 3-fold node is not an F2-Witt space.
(Topologically, it is the cone over S1×S1, whereas the cone over an even-dimensional
manifold is a Witt space if and only if the homology in the middle dimension is
zero.) That is, the standard definition of intersection homology is not self-dual on a
space with 3-fold node singularities. This again points to the problem of defining a
new version of intersection homology with F2 coefficients which is self-dual on real
analytic spaces. That should yield an L-class in the F2-homology of such a space,
which we can also identify with the square of the Wu class, and which therefore
should allow the above characteristic numbers to be defined for a large class of real
analytic spaces. There are related results by Banagl [3], for spaces which admit an
extra “Lagrangian” structure.

We now ask the analogous question for oriented singular spaces: what charac-
teristic numbers can be defined, compatibly with IH-small resolutions? We could
begin by asking for the quotient ring of the oriented bordism ring MSO∗ by oriented
real flops X1 − X2, defined exactly as in the unoriented case (X1 and X2 are the
two small resolutions of a family of real 3-fold nodes), except that we require X1

and X2 to be compatibly oriented. It turns out that this is not enough: all Pon-
trjagin numbers are invariant under oriented real flops, whereas they can change
under other changes from one IH-small resolution to another, such as complex flops
(between the two small resolutions of a complex family of complex 3-fold nodes).
By considering both real and complex flops, we get a reasonable answer:

Theorem 5.2. The quotient ring of MSO∗ by the ideal generated by oriented
real flops and complex flops is:

Z[δ, 2γ, 2γ2, 2γ4, . . . ],

where CP2 maps to δ and CP4 maps to 2γ + δ2. This quotient ring is exactly the
image of MSO∗ under the Ochanine elliptic genus ([25], p. 63).
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This result suggests that it should be possible to define the Ochanine genus for
a large class of compact oriented real analytic spaces, or even more general singular
spaces.
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