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In topology, the normal bundle of a submanifold determines a neighborhood
of the submanifold up to isomorphism. In particular, the normal bundle of a
codimension-one submanifold is trivial if and only if the submanifold can be moved
in a family of disjoint submanifolds. In algebraic geometry, however, there are
higher-order obstructions to moving a given subvariety.

In this paper, we develop an obstruction theory, in the spirit of homotopy theory,
which gives some control over when a codimension-one subvariety moves in a family
of disjoint subvarieties. Even if a subvariety does not move in a family, some positive
multiple of it may. We find a pattern linking the infinitely many obstructions to
moving higher and higher multiples of a given subvariety. As an application, we
find the first examples of line bundles L on smooth projective varieties over finite
fields which are nef (L has nonnegative degree on every curve) but not semi-ample
(no positive power of L is spanned by its global sections). This answers questions
by Keel and Mumford.

Determining which line bundles are spanned by their global sections, or more
generally are semi-ample, is a fundamental issue in algebraic geometry. If a line
bundle L is semi-ample, then the powers of L determine a morphism from the given
variety onto some projective variety. One of the main problems of the minimal
model program, the abundance conjecture, predicts that a variety with nef canonical
bundle should have semi-ample canonical bundle [15, Conjecture 3.12].

One can hope to get more insight into the abundance conjecture by reducing
varieties in characteristic zero to varieties over finite fields, where they become
simpler in some ways. In particular, by Artin, every nef line bundle L with L2 > 0
on a projective surface over the algebraic closure of a finite field is semi-ample
[2, proof of Theorem 2.9(B)]. This is far from true over other algebraically closed
fields, by Zariski [26, section 2]. Keel generalized Artin’s theorem, giving powerful
sufficient conditions for a nef line bundle on a projective variety over Fp to be semi-
ample [12, 13]. As an application, he constructed contractions of the moduli space
of stable curves which exist as projective varieties in every finite characteristic, but
not in characteristic zero.

Keel asked whether a nef line bundle L on a smooth projective surface over Fp

is always semi-ample, the open case being line bundles with L2 = 0. (This is part
of his Question 0.8.2 [13], in view of Theorem 3.3 below.)

Using our obstruction theory, we can see where nef line bundles that are not
semi-ample should be expected and produce them. We obtain the first known
examples of nef but not semi-ample line bundles on smooth projective varieties
over Fp, for any prime number p (Theorem 6.1). Equivalently, we give faces of the
closed cone of curves which have rational slope but cannot be contracted. The line
bundles we construct are effective, of the form O(C) for a smooth curve C of genus
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2 with self-intersection zero on a smooth projective surface. Thus we give the first
examples over Fp of a curve with self-intersection zero such that no multiple of
the curve moves in a family of disjoint curves (which would give a fibration of the
surface over a curve). This answers a question raised by Mumford [20, p. 336].

One can still hope for further positive results about semi-ampleness over finite
fields. Sakai [22] and Maşek [16] gave a positive result when the curve C has genus
at most 1; we give Keel’s proof of their result in Theorem 2.1. (This makes sense
in terms of minimal model theory, since a curve C with C2 = 0 in a surface X has
genus at most 1 exactly when KX · C ≤ 0.)

Building upon our basic example, we exhibit a nef and big line bundle on a
smooth projective 3-fold over Fp which is not semi-ample (Theorem 7.1).

The following question of Keel’s remains open and very interesting [13, Question
0.9]. Let X be a smooth projective surface over Fp with a line bundle L. If
L · C > 0 for every curve C, does it follow that L is ample (or equivalently, that
L2 > 0)? Counterexamples to this statement, using ruled surfaces, were given
over the complex numbers by Mumford [8, Example 10.6], and over uncountable
algebraically closed fields of positive characteristic by Mehta and Subramanian [17,
Remark 3.2].

Thanks to Daniel Huybrechts, Yujiro Kawamata, Sean Keel and James McKernan
for their comments.

1 Notation

Varieties are reduced and irreducible by definition. A curve on a variety means
a closed subvariety of dimension 1. A line bundle L on an n-dimensional proper
variety X over a field is nef if the intersection number L ·C is nonnegative for every
curve C in X. We often use additive notation for line bundles, in which the line
bundle L⊗a is called aL for an integer a. For a nef line bundle L, a curve C is called
L-exceptional if L · C = 0. A line bundle L is big if the rational map associated to
some positive multiple of L is birational. We use the following fact [14, Theorem
VI.2.15].

Lemma 1.1 Let L be a nef line bundle on a proper variety of dimension n over a
field. Then L is big if and only if Ln > 0.

A line bundle L is semi-ample if some positive multiple of L is spanned by its
global sections. A semi-ample line bundle is nef. Also, a semi-ample line bundle de-
termines a contraction: the algebra R(X, L) = ⊕a≥0H

0(X, aL) is finitely generated
by Zariski [26], Y := Proj R(X, L) is a projective variety, and there is a natu-
ral surjection f from X to Y with connected fibers (meaning that f∗OX = OY ).
Conversely, any surjective morphism with connected fibers from X to a projective
variety Y arises in this way from some semi-ample line bundle L on X, by taking
L to be the pullback of any ample line bundle on Y .

Mourougane and Russo gave a useful decomposition of semi-ampleness into two
properties, extending earlier results by Zariski [26] and Kawamata [11]. Let L be a
nef line bundle on a variety X. Define the numerical dimension ν(X, L) to be the
largest natural number ν such that the cycle Lν is numerically nontrivial, that is,
the largest ν such that Lν ·S > 0 for some subvariety S of dimension ν. The Iitaka
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dimension κ(X, L) is defined to be −∞ if H0(X, aL) = 0 for all a > 0. Otherwise,
we define κ(X, L) to be one less than the transcendence degree of the quotient field
of the graded algebra R(X, L), or equivalently the maximum dimension of the image
of X under the rational maps to projective space defined by powers of L. We always
have κ(X, L) ≤ ν(X, L), and L is called good if the two dimensions are equal.

Theorem 1.2 [19, Corollary 1] Let X be a normal proper variety over a field k.
A nef line bundle L on X is semi-ample if and only if it is good and the graded
algebra R(X, L) is finitely generated over k. The finite generation is automatic
when κ(X, L) ≤ 1.

For example, when Ln > 0, in other words when L has maximal numerical
dimension, Lemma 1.1 says that L is automatically good, and so semi-ampleness is
purely a question of finite generation. This paper is about the “opposite” situation,
where L has numerical dimension 1; by Theorem 1.2, semi-ampleness is equivalent
to goodness in this case. On the other hand, problems of semi-ampleness always
have some relation to problems of finite generation. For example, if L is a nef line
bundle on a projective variety X and M is an ample line bundle, then L is semi-
ample if and only if the algebra ⊕a,b≥0H

0(X, aL + bM) is finitely generated, as one
easily checks.

Finally, here is one last standard result.

Lemma 1.3 Every numerically trivial line bundle on a proper scheme over the
algebraic closure of a finite field is torsion.

The proof is based on the fact that an abelian variety has only finitely many
rational points over any given finite field. A reference is [12, Lemma 2.16].

2 Moving elliptic curves on surfaces over finite fields

Sakai [22, Theorem 1, Proposition 5, and Concluding Remark] and Maşek [16,
Theorem 1 and Lemma] showed that for any curve of genus 1 with self-intersection
zero on a smooth projective surface over Fp, some positive multiple of the curve
always moves. In this section we give Keel’s proof of this result. The corresponding
statement is easy for curves of genus 0 on a surface (over any field, in fact) and false
for genus at least 2 (Theorem 6.1).

Theorem 2.1 Let C be a curve of arithmetic genus 1 in a smooth projective surface
X over Fp. If C2 = 0, then L = O(C) is semi-ample. Equivalently, C is a fiber
(possibly a multiple fiber) in some elliptic or quasi-elliptic fibration of X.

This is false over all algebraically closed fields k except the algebraic closure of
a finite field, by some standard examples. First, let C be a smooth cubic curve in
P2, and let X be the blow-up of P2 at 9 points on the curve. Since C2 = 9 in P2,
the proper transform C in X has C2 = 0. By appropriate choice of the points to
blow up, we can make the normal bundle of C in X any line bundle of degree 0
on C. If k is not the algebraic closure of a finite field, this normal bundle can be
non-torsion in the Picard group of C, and so no positive multiple of C moves in
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X. Another example, on a ruled surface, works only in characteristic zero: see the
discussion after Lemma 4.1.

Proof. Since the normal bundle NC/X = L|C has degree 0, it is torsion by
Lemma 1.3 since the base field k is Fp. Let m be the order of L|C in Pic(C). For
any integer a, we have the exact sequence:

H0(C, aL) → H1(X, (a− 1)L) → H1(X, aL) → H1(C, aL).

Since C has genus 1 and the line bundle aL is nontrivial on C for 1 ≤ a ≤ m − 1,
we have H0(C, aL) = 0 and H1(C, aL) = 0 in that range. So the exact sequence
gives isomorphisms

H1(X, O) ∼= H1(X, L) ∼= · · · ∼= H1(X, (m− 1)L).

Next, we have the exact sequence

0 → H0(X, (m− 1)L) → H0(X, mL) → H0(C,mL) → H1(X, (m− 1)L).

Here H0(C,mL) ∼= k. Thus, if H1(X, O) is zero, then H1(X, (m − 1)L) is zero,
and so the sequence shows that the divisor mC moves nontrivially in X. Therefore
κ(X, L) ≥ 1, and L is semi-ample by Theorem 1.2.

In general, we use the idea of “killing cohomology”: for any projective variety
X over a field k of characteristic p > 0, and any element α of H1(X, O), there is
a surjective morphism f : W → X of projective varieties which kills α, meaning
that f∗(α) = 0. Indeed, by Serre, for X smooth one can do this with a finite
flat morphism f (a composite of etale Z/p-coverings and Frobenius morphisms) [23,
Proposition 12 and section 9]. The construction shows that W is smooth since X is.
Then the above proof applied to W shows that κ(W, f∗(L)) ≥ 1. By Ueno, for any
surjective morphism f of normal projective varieties, we have κ(W, f∗(L)) = κ(X, L)
[25, Theorem 5.13]. Thus κ(X, L) ≥ 1 and so L is semi-ample. QED

3 L-equivalence

In this section, we show that L-equivalence (as defined by Keel) is automatically
bounded on a normal projective surface over any field. The definition is given before
Theorem 3.3. (By contrast, Kollár observed that L-equivalence can be unbounded
on a non-normal surface [13, section 5].) The proof is elementary geometry of
surfaces (the Hodge index theorem).

The “reduction map for nef line bundles” of Bauer et al. [3] is a similar appli-
cation of the Hodge index theorem which works in any dimension, but some work
would be needed to go from their theorem to the boundedness of L-equivalence on
normal surfaces. Their theorem is stated over the complex numbers, but the argu-
ment works in any characteristic. The difficulty is that their theorem only applies
to “general” points, meaning points outside a countable union of proper subvarieties
[3, Theorem 2.1, 2.4.2]. For example, it seems to be unknown whether there is a
nef line bundle L on some normal complex projective variety X such that the set
of curves C with L · C = 0 is countably infinite. That does not happen for X of
dimension 2 by Lemma 3.1 below and [24, Theorem 2.1], but the latter result uses
the Albanese map in a way that has no obvious generalization to higher dimensions.
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Let ρ(X) denote the Picard number of a projective variety X, that is, the di-
mension of the real vector space N1(X) generated by line bundles modulo numerical
equivalence.

Lemma 3.1 Let X be a smooth projective surface over a field. Let L be a nef line
bundle on X such that L2 = 0 and L is numerically nontrivial. Then there are at
most 2(ρ(X) − 2) curves A on X such that L · A = 0 and A 6∈ R>0 · L ⊂ N1(X).
(These curves A will all have negative self-intersection.)

If in addition there is no effective 1-cycle in R>0 · L, or if there is a curve C
in X such that every effective 1-cycle in R>0 ·L is a multiple of C as a cycle, then
there are at most ρ(X)− 2 curves A 6= C with L ·A = 0.

Finally, let L be a nef line bundle on a surface with L2 > 0. Then there are at
most ρ(X)− 1 curves A with L ·A = 0.

All these bounds are optimal, as we now check.
Example. Let X be the blow-up of P1 ×P1 at d points whose projections to

the second factor are distinct. Then X has Picard number d + 2. Let L be the
pullback to X of the line bundle O(1) on the second factor of P1. Then there are
exactly 2d curves A with L · A = 0 which are not in the ray R>0 · L ⊂ N1(X),
namely the proper transforms of the fibers containing the d given points, together
with the d exceptional curves. These 2d curves are all (−1)-curves. This shows the
optimality of the first statement in Lemma 3.1.

Next, assume that the base field has characteristic zero, and let X be the ruled
surface over a curve of genus at least 1 associated to a nontrivial extension of the
trivial line bundle by itself. Let C be the section in X with zero self-intersection.
Then every curve in the ray R>0 · C ⊂ N1(X) is a multiple of C as a cycle. In
this case, X has Picard number 2 and, by Lemma 3.1, there is no curve A 6= C
with C ·A = 0. Blowing up X at d points not on C gives a surface M with Picard
number d+2 such that the line bundle L = O(C) on M has exactly d curves A 6= C
with C · A = 0, namely the d exceptional curves. This shows the optimality of the
second statement in Lemma 3.1.

Finally, let X be the blow-up of P2 at d points, and let L be the pullback of the
line bundle O(1) to X, which is nef and big. Then X has Picard number d+1, and
there are exactly d curves on which L has degree zero, namely the d exceptional
curves. This shows the optimality of the last statement of the lemma.

Proof of Lemma 3.1. We have that L2 = 0 and L is numerically nontrivial.
By the Hodge index theorem [7, Theorem V.1.9], the intersection form on N1(X)
passes to a negative definite form on V := L⊥/(R · L). As a result, every curve A
in X with L ·A = 0 and A 6∈ R>0 · L has A2 < 0. Also, for any two distinct curves
A1 and A2 with these properties, we have A1 ·A2 ≥ 0.

We use the following elementary lemma on quadratic forms [4, section V.3.5].

Lemma 3.2 Let V be a real vector space of dimension n with a negative definite
symmetric bilinear form. Let S be a subset spanning V such that any two distinct
elements of S have inner product at least 0. Suppose that S cannot be partitioned
into two nonempty subsets A and B with A orthogonal to B. Then S has either n
or n + 1 elements, and in the latter case 0 is a linear combination of the elements
of S with all coefficients positive.
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By Lemma 3.2, the set S of curves A in X with L · A = 0 and A 6∈ R>0 · L
has at most 2 dim(V ) elements (the extreme case being when S ⊂ V is a union of
dim(V ) pairs of vectors in lines orthogonal to each other). Since V has dimension
ρ(X)− 2, S has order at most 2(ρ(X)− 2), as we want.

We now prove the second statement of Lemma 3.1. In this case, we have the
additional information that 0 ∈ V := L⊥/(R ·L) is not in the convex hull of the set
S. By Lemma 3.2, S has at most dim(V ) = ρ(X)− 2 elements, as we want.

For the third statement of Lemma 3.1, we have L2 > 0. In this case, the Hodge
index theorem gives that the intersection form on L⊥ is negative definite. Let V
denote L⊥ in this case. Here 0 ∈ V is not in the convex hull of the set S of classes
of curves A with L · A = 0, using that X is projective. By Lemma 3.2, S has at
most dim(V ) = ρ(X)− 1 elements. QED

We now recall Keel’s notion of L-equivalence. Let L be a nef line bundle on a
proper scheme X over a field. Two closed points in X are called L-equivalent if they
can be connected by a chain of curves C such that L ·C = 0. Say that L-equivalence
is bounded if there is a positive integer m such that any two L-equivalent points can
be connected by a chain with length at most m of such curves.

Keel’s Question 0.8.2 [13] asks: Given a nef line bundle L on a projective scheme
X over Fp such that L-equivalence is bounded, is L semi-ample? We now check
that on a smooth projective surface over any field, L-equivalence is always bounded
(Theorem 3.3). As a result, the examples in this paper of nef but not semi-ample line
bundles on smooth projective surfaces over Fp give a negative answer to Question
0.8.2.

Theorem 3.3 For any nef line bundle L on a normal proper algebraic space X of
dimension 2 over a field, L-equivalence is bounded.

Proof. First suppose X is smooth and projective. The theorem is clear if L is
numerically trivial, since any two points lie on a curve. Also, if L is big (L2 > 0),
then there are only finitely many L-exceptional curves by Lemma 3.1.

So we can assume that L2 = 0 and L is numerically nontrivial. By Lemma
3.1, there are only finitely many L-exceptional curves A which are not numerically
equivalent to a multiple of L. There may be infinitely many curves C which are
numerically equivalent to a multiple of L, but every such curve is clearly disjoint
from all other L-exceptional curves. Thus L-equivalence is bounded.

Now let X be normal, not necessarily smooth. There is a resolution of singu-
larities f : M → X with M projective. The f∗(L)-exceptional curves on M are
the proper transforms of the L-exceptional curves together with the finitely many
curves contracted by f . This makes it clear that L-equivalence is bounded on X
in the cases where L is numerically trivial or big. For L2 = 0 and L numerically
nontrivial, the previous paragraph’s results applied to f∗(L) on M imply that all
but finitely many L-exceptional curves of X are disjoint from the singular points
of X and from all other L-exceptional curves; so again L-equivalence is bounded.
QED
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4 General remarks on moving divisors

Here we discuss the obstructions to moving codimension-one subvarieties in general
terms, to motivate our main technical result, Theorem 5.1. The main application in
this paper is to construct the first examples of nef line bundles on smooth projective
varieties over finite fields which are not semi-ample.

We want to find a curve C with self-intersection zero in some surface M over
Fp such that no multiple of C moves on M . In order for this to happen, C must
have arithmetic genus at least 2 by Theorem 2.1. Moreover, the normal bundle of
C must be nontrivial by Lemma 4.1, stated by Mumford and discussed below. On
the other hand, the normal bundle of C must be torsion in the Picard group of C,
because it is a line bundle of degree zero over Fp (Lemma 1.3). We might therefore
look for counterexamples in what seems to be the simplest remaining case: where C
is a smooth curve of genus 2 whose normal bundle has order 2 in the Picard group
of C. There are indeed counterexamples of this type over Fp for any prime number
p, but it turns out to be simpler to give counterexamples where C is a curve of
genus 2 with normal bundle of order p equal to the characteristic. We give only the
latter type of counterexample in this paper.

The examples we give are curves of genus 2 in rational surfaces M , obtained by
blowing up P1 ×P1 at 12 points on a smooth curve of genus 2 (so that the proper
transform C has C2 = 0). It is easy to choose the points we blow up to ensure that
the normal bundle of C has order p in the Picard group of C. Theorem 5.1 gives
a Zariski open condition (on the family of such arrangements of points and curves)
which implies that no multiple of C moves on M . That is the key point; a priori, to
prove that no multiple of C moves would require us to check infinitely many open
conditions. In Theorem 6.1, we show that there are indeed surfaces of this type that
have nef line bundles which are not semi-ample, over Fp for every prime number p.

Once we have a rational surface over Fp which has a nef line bundle which is
not semi-ample, we get such line bundles on many other surfaces over Fp, including
surfaces of general type. Take any smooth projective surface S with a surjective
morphism f : S → M ; for example, take a ramified covering of M and resolve
singularities. Let L be a nef line bundle on M which is numerically nontrivial but
has Iitaka dimension κ(M,L) ≤ 0, as in our examples. Then the pullback line
bundle f∗L has the same properties. Indeed, we have κ(S, f∗L) = κ(M,L) for
every surjective morphism f : S → M of normal varieties, by Ueno [25, Theorem
5.13]. Thus the line bundle f∗L is nef but not semi-ample on the surface S.

Here is the lemma stated by Mumford, as mentioned above. He left the proof as
a “curiosity for the reader” [20, Proposition, p. 336]. A proof was given by Maşek
[16, Lemma, p. 682]. The lemma explains our use of curves with nontrivial but
torsion normal bundle in order to construct nef line bundles over finite fields which
are not semi-ample, but it will not actually be used in the rest of the paper. We will
state and prove the lemma in any dimension, using the idea of killing cohomology
as in the proof of Theorem 2.1.

Lemma 4.1 Let D be an effective Cartier divisor in a normal projective variety X
over a field of characteristic p > 0, and let L be the line bundle O(D) on X. Assume
that the restriction of L to D, the normal bundle of D in X, has finite order m in
the Picard group of D (so in particular the normal bundle is numerically trivial).
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Then L is semi-ample on X (so that some positive multiple of D moves in its linear
system with no base points) if and only if the line bundle mprL is trivial on the
subscheme mprD of X for some r ≥ 0.

Here, for any effective Cartier divisor D in a normal scheme X, D will be defined
locally by one equation f = 0; then aD denotes the subscheme of X defined locally
by fa = 0, for any positive integer a. For any integer a, we will write aL for the
line bundle L⊗a = O(aD) on M .

In characteristic zero, it is not true that the triviality of the line bundle mL
on the subscheme mD implies that some multiple of D moves in its linear system.
A counterexample is provided by the P1-bundle over an elliptic curve associated
to a nontrivial extension of the trivial line bundle by itself. Here a section D is
an elliptic curve with trivial normal bundle (that is, L := O(D) is trivial on D)
and yet no multiple of D moves. But there is an analogous result in characteristic
zero, by Neeman. Let D be a curve in a smooth projective surface X over a field k
of characteristic zero such that the normal bundle has finite order m. Then some
positive multiple of D moves in its linear system on X (or, equivalently, L = O(D)
is semi-ample on X) if and only if the line bundle mL is trivial on the subscheme
(m + 1)D [21, Article 2, Theorem 5.1]. Neeman works over the complex numbers
and considers smooth curves, but only minor changes to the argument are needed
to avoid those restrictions.

Proof of Lemma 4.1. First suppose that L is semi-ample on X. Then aL is
basepoint-free on X for some positive integer a, and hence aL is basepoint-free on
the subscheme aD. But L is also numerically trivial on aD, and so aL is trivial
on aD. Clearly a must be a multiple of m, and so we can write a = mprj for
some r ≥ 0 and some positive integer j which is not a multiple of p. The group
ker (Pic(mprjD) → Pic(D)) is p-primary by the exact sequence used in the proof of
Lemma 5.2 below. Since the line bundle mprL is trivial on D and mprjL is trivial
on mprjD, it follows that mprL is trivial on mprjD. A fortiori, mprL is trivial on
mprD.

Conversely, suppose that aL is trivial on aD for a = mpr and some r ≥ 0. By
Lemma 1.2, to show that L is semi-ample on X, it suffices to show that κ(X, L)
is at least 1, which holds if H0(X, nL) has dimension at least 2 for some positive
integer n. By the exact sequence

0 → OX → OX(aD) → OX(aD)|aD → 0

of sheaves on X, we have an exact sequence of cohomology groups

H0(X, O) → H0(X, aL) → H0(aD, aL) → H1(X, O).

Since aL is trivial on aD, we have h0(X, aL) ≥ 2 and hence L is semi-ample if
H1(X, O) = 0. In general, we use the idea of killing cohomology as in the proof
of Theorem 2.1. We find that there is a normal variety Y with a finite morphism
f : Y → X such that the obstruction class in H1(X, O) pulls back to 0 in H1(Y, O).
Therefore κ(Y, f∗L) ≥ 1. By Ueno [25, Theorem 5.13], it follows that κ(X, L) ≥ 1.
Thus L is semi-ample. QED
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5 Obstruction theory for moving divisors

In this section, we prove our main general result of obstruction theory for moving
divisors, Theorem 5.1. It gives a sufficient condition on a divisor D with torsion
normal bundle in a variety X so that no multiple of D moves. (If the normal bundle
is numerically trivial but not torsion, then it is clear that no multiple of D moves.)
The condition is Zariski open on the family of divisors with normal bundle of a
given order. Section 6 will apply this theorem to give nef line bundles which are
not semi-ample on smooth projective varieties over finite fields.

Theorem 5.1 Let D be a connected reduced Cartier divisor in a normal projective
variety X over an algebraically closed field of characteristic p > 0. Let L denote the
line bundle O(D) on X. Suppose that the restriction of L to D has order equal to p
in the Picard group of D (so in particular D has numerically trivial normal bundle).
Suppose that the line bundle pL is nontrivial on the subscheme 2D of X. Finally,
suppose that the Frobenius maps F ∗ : H1(D,−L) → H1(D,−pL) ∼= H1(D,O) and
F ∗ : H1(D,O) → H1(D,O) are injective.

Then L is not semi-ample on X. More precisely, no multiple of D moves in its
linear system on X.

Proof. In view of the inclusions H0(X, O(D)) ⊂ H0(X, O(2D)) ⊂ · · · , it
suffices to show that H0(X, O(pr+1D)) has dimension 1 for all r ≥ 0. By the exact
sequence of sheaves

0 → OX → OX(pr+1D) → OX(pr+1D)|pr+1D → 0,

it suffices to show that H0(pr+1D, pr+1L) = 0 for all r ≥ 0. That will be ac-
complished by Lemma 5.2. The proof of Lemma 5.2 will require a simultaneous
induction to show that every regular function on pr+1D is constant and that pr+1L
is nontrivial on pr+1D. QED

Lemma 5.2 We retain the assumptions of Theorem 5.1. For any integer j and any
r ≥ 0, the group H0(prD,−prjL) is 0 for j not a multiple of p, and it injects into
H0(D,−prjL) ∼= k for j a multiple of p. Also, the line bundle pr+1L is nontrivial
on (pr + 1)D (and hence on pr+1D).

Proof. Since D is connected and reduced, the group H0(D,O) of regular
functions on D is equal to the algebraically closed base field k. For r = 0, the
first statement of the lemma holds because L is a line bundle of order equal to p
in the Picard group of the divisor D. Also, pL is nontrivial on (p0 + 1)D = 2D by
assumption.

For any positive integer a, we have an exact sequence of sheaves supported on
D,

0 → L⊗−a|D → O∗
(a+1)D → O∗

aD → 0.

Part of the long exact sequence on cohomology looks like:

H1(D,−aL) → Pic((a + 1)D) → Pic(aD).

Since the line bundle pL is trivial on D, this sequence shows that the isomorphism
class of pL on 2D is the image of some element η in H1(D,−L). Since pL is
nontrivial on 2D, η is not zero.
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Now let r ≥ 1 and assume the lemma for r − 1. For any positive integers a and
b, we have an exact sequence of sheaves supported on D,

0 → L⊗−a|bD → O(a+b)D → OaD → 0.

Tensoring with a line bundle and taking cohomology gives the following exact se-
quence, for any 1 ≤ i ≤ p− 1 and any integer j:

0 → H0(pr−1D,−pr−1(pj+i)L) → H0(pr−1(i+1)D,−prjL) → H0(pr−1iD,−prjL).

Since pj+i is not a multiple of p, the first H0 group is zero by induction. Combining
these exact sequences for i = 1, . . . , p− 1, we find that H0(prD,−prjL) injects into
H0(pr−1D,−prjL). By our inductive assumption again, the latter group in turn
restricts injectively to H0(D,−prjL) ∼= k. This is the conclusion we want when j
is a multiple of p.

For j not a multiple of p, we use that prL is nontrivial on (pr−1 + 1)D, hence
on prD. The exact sequence

H1(D,−aL) → Pic((a + 1)D) → Pic(aD)

for positive integers a, where H1(D,−aL) is a k-vector space, shows that ker (Pic(prD) →
Pic(D)) is a p-primary group. Therefore prjL is nontrivial on prD for all j not a
multiple of p. Since H0(prD,−prjL) injects into H0(D,−prjL) ∼= H0(D,O) ∼= k, it
follows that H0(prD,−prjL) = 0 (since a nonzero section would give a trivialization
of −prjL over prD). This is what we want for j not a multiple of p.

Recall that η is the nonzero element of H1(D,−L) that describes the isomor-
phism class of the line bundle pL on 2D. By our assumptions on injectivity of
Frobenius maps, (F ∗)r(η) is nonzero in H1(D,−prL). Consider the exact sequence

H0((pr + 1)D,O∗) → H0(prD,O∗) → H1(D,−prL) → Pic((pr + 1)D).

We have shown (by the case j = 0, above) that the group H0(prD,O) of regular
functions on prD consists only of the constants k, and so the first arrow in this
sequence is surjective. Therefore the last arrow is injective, and so the image of
(F ∗)r(η) in Pic((pr + 1)D) is nonzero. This means that pr+1L is nontrivial on
(pr + 1)D, completing the induction. QED

6 Curves with normal bundle of order p

Theorem 6.1 For every prime number p, there is a smooth projective surface M
over Fp and a smooth curve C of genus 2 in M such that C has self-intersection
zero and no positive multiple of C moves in its linear system on M . Therefore the
line bundle L = O(C) is nef but not semi-ample on M .

Thus, there are nef line bundles on smooth projective varieties over finite fields
which are not semi-ample, in every characteristic p > 0. The example here can be
considered optimal, in view of the positive results listed in section 4.

The surface M will be rational. We will start with a smooth curve of genus
2 in X = P1 × P1 and then blow up to make its self-intersection zero. (It seems
easier to start with P1 ×P1 rather than P2, since a curve of geometric genus 2 in
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P2 is always singular.) The following lemma is a first step. We say that a possibly
singular curve C over a field of positive characteristic is ordinary if the Frobenius
map F ∗ : H1(C,O) → H1(C,O) is injective.

Lemma 6.2 Let C be a smooth curve of bidegree (2, 3) in P1×P1 (so C has genus
2) over an algebraically closed field of characteristic p > 0. Suppose that C is
ordinary. Then there is an effective divisor D of degree 12 on C with the following
property. Let M be the blow-up of P1 ×P1 at the 12 points of D, and let L be the
line bundle on M associated to the proper transform of C. Then L (restricted to C)
has order p on C, while the line bundle O(pC) = pL is nontrivial on the subscheme
2C of M .

Proof. We first summarize the argument. We start with a curve C in P1 ×P1

with genus 2 and self-intersection number 12. There are many ways to choose 12
points on C to blow up in order to make the normal bundle of C any degree-zero
line bundle we want, in particular to make it a line bundle of order p. The hard
part is to arrange that p times the line bundle L := O(C) on the blown-up surface
M is nontrivial on the subscheme 2C. We use a formula by Illusie (Lemma 6.3) to
describe the isomorphism class of pL on 2C as a cup product. So we have to show
that certain cup products of cohomology classes on C are nonzero, which ultimately
reduces to Castelnuovo’s theorem on surjectivity of multiplication maps on curves.

As a first step, we have to analyze the tangent bundle of X = P1×P1 restricted
to C. This restriction is an extension of two line bundles, 0 → TC → TX|C →
NC/X → 0. Let β ∈ H1(C, TC −NC/X) be the class of this extension. I claim that
β is highly nontrivial in the sense that for each effective divisor B of degree 4 on C,
the image of β in H1(C, TC −NC/X + B) is nonzero.

We can view this image as the class of the extension 0 → TC → E → NC/X(−B) →
0, where E is a subsheaf of TX|C in an obvious way. If this extension splits, then
we have a nonzero map from the line bundle NC/X(−B) to E and hence to TX|C .
Here NC/X has degree 12 and so NC/X − B is a line bundle of degree 8. On the
other hand, since C has bidegree (2, 3) and TP1 has degree 2, the restriction of
TX = TP1⊕TP1 to C is the direct sum of two line bundles of degrees 4 and 6. So
any map from a line bundle of degree 8 to TX|C is zero. Thus the extension class
β in H1(C, TC −NC/X) is highly nontrivial in the sense claimed.

For the moment, fix a line bundle L of order p on C. (We know that the p-torsion
subgroup of Pic(C) is isomorphic to (Z/p)2, because C is ordinary of genus 2.) We
want to blow up X = P1 ×P1 at a divisor D of degree 12 on C so that the normal
bundle of C in the blow-up M is isomorphic to L. Here L = NC/M = NC/X−D, and
so D must be the divisor of a nonzero section δ ∈ H0(C,NC/X−L). The line bundle
NC/X −L has degree 12, and so this H0 group has dimension 11 by Riemann-Roch;
thus there are many possible divisors D such that NC/M is isomorphic to L.

The restriction of the tangent bundle of the blow-up M to C is the extension

0 → TC → TM |C → NC/X(−D) → 0

which is the restriction of the extension 0 → TC → TX|C → NC/X → 0 denoted
β. (That is, we can view TM |C as a subsheaf of TX|C using the derivative of the
map M → X.) Equivalently, in terms of an identification L ∼= NC/X(−D), we can
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describe the class of the extension TM |C in H1(C, TC −L) as the image under the
cup product

H1(C, TC −NC/X)⊗H0(C,NC/X − L) → H1(C, TC − L)

of (β, δ).
Knowing the class of TM |C as an extension (the Kodaira-Spencer class) amounts

to knowing the isomorphism class of the subscheme 2C of M . Some references are
Morrow-Rossi [18, Theorem 2.5] or, in greater generality, Illusie [9, Theorem 1.5.1].
Therefore, we can hope to describe the class of the line bundle pL on 2C in terms
of this extension, and this is accomplished by Lemma 6.3, a consequence of Illusie’s
results on deformation theory. (Here we write L for the line bundle O(C) on M . In
fact, the line bundle pL on 2C only depends on the line bundle L on C, because pL
is the Frobenius pullback F ∗(L) via the map F : 2C → C.) Since L has order p on
C, the class of pL on 2C lies in ker (Pic(2C) → Pic(C)) ∼= H1(C,−L), by the exact
sequence in the proof of Lemma 5.2. We will use Cartier’s theorem that, for any
smooth proper variety X over an algebraically closed field k of characteristic p > 0,
the p-torsion subgroup Pic(X)[p] tensored with k injects naturally into H0(X, Ω1)
[10, 6.14.3]. Thus, for a curve C, Pic(C)[p] tensored with k injects into H0(C,KC).

We first recall Illusie’s definition of the map Pic(X)[p] → H0(X, Ω1) [10, 6.14].
We are given a line bundle L with a trivialization of L⊗p. Let {Ui} be an open
covering of Y on which we choose trivializations of L. Let eij ∈ O(Ui ∩ Uj)∗ be
the transition functions; then the trivialization of L⊗p gives functions ui ∈ O(Ui)∗

such that ep
ij = uj/ui. It follows that d log uj − d log ui = p d log eij = 0, and so the

1-forms d log ui fit together to give the desired class in H0(Y, Ω1).
The following lemma separates the two roles of L in our problem: a line bundle

of order p on C and the normal bundle of C in M . This yields a clearer and more
general statement.

Lemma 6.3 Let C be a smooth compact subvariety of a smooth variety M over an
algebraically closed field of characteristic p > 0. Let L be a line bundle on M (or
just on 2C) such that pL is trivial on C. Then the class of the line bundle pL in
ker (Pic(2C) → Pic(C)) ∼= H1(C,N∗

C/M ) is the cup product of the class of L in
H0(C,Ω1) with the class of the extension TM |C in H1(C, TC ⊗N∗

C/M ):

H0(C,Ω1
C)⊗H1(C, TC ⊗N∗

C/M ) → H1(C,N∗
C/M ).

Proof. This can be proved by an explicit cocycle calculation, but we will instead
deduce it from Illusie’s general results. Namely, let G be a flat group scheme over a
scheme S. For any extension Y ↪→ Y ′ of a scheme Y over S by a square-zero ideal
sheaf, the obstruction to extending a G-torsor over Y (in the fpqc topology) to Y ′

is the product of the Atiyah class of the G-torsor over Y with the Kodaira-Spencer
class of the extension Y ↪→ Y ′ [9, 2.7.2].

Apply this to the group scheme G = µp of pth roots of unity over a field k of
characteristic p > 0. Using the exact sequence

H1(Y, µp) −−−−→ H1(Y, Gm) −−−−→
p

H1(Y, Gm),

we can rephrase the lemma in terms of the obstruction to extending a µp-torsor from
Y = C to Y ′ = 2C. The analogue of the dual of the Lie algebra of µp in Illusie’s
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theory is the object g∗ = k[1] ⊕ k of the derived category of k [9, Example 4.3.4].
This calculation uses that µp is a codimension-one subgroup of the one-dimensional
group scheme Gm. As a result, the Atiyah class of a µp-torsor on a smooth scheme
Y over k lies in Ext1Y (g∗Y ,Ω1

Y ) = H0(Y, Ω1)⊕H1(Y, Ω1). The Kodaira-Spencer class
of the extension Y ↪→ Y ′ lies in H1(Y, TY ⊗ N∗

Y/Y ′). Finally, the obstruction to
extending a µp-torsor lies in H1(Y, N∗

Y/Y ′)⊕H2(Y, N∗
Y/Y ′). The second part of this

obstruction is the obstruction to extending the line bundle L from C to 2C, which
is zero since we are given a line bundle L on 2C. The first part of this obstruction
is computed by Illusie’s product formula. QED (Lemma 6.3).

We now return to the blow-up M of X = P1×P1. Let β in H1(C, TC−NC/X)
be the class of the extension TX|C , and let δ in H0(C,NC/X−L) be a section whose
zero set is the divisor on C where we blow up. Let γ be the class of the p-torsion
line bundle L in H0(C,KC). By Lemma 6.3 together with our earlier results, the
class of pL in ker (Pic(2C) → Pic(C)) = H1(C,−L) is the product βδγ in:

H1(C, TC −NC/X)⊗H0(C,NC/X − L)⊗H0(C,KC) → H1(C,−L).

The lemma is proved if there is a line bundle L on C of order p (which determines
γ) and a section δ ∈ H0(C,NC/X − L) such that the product βδγ in H1(C,−L) is
not zero. By Serre duality, this product becomes:

H0(C,NC/X − L)⊗H0(C,KC)⊗H0(C,KC + L) → H0(C, 2KC + NC/X)
β−−−−→ k.

We want to show: (*) for some line bundle L on C of order p (which determines γ),
some δ ∈ H0(C,NC/X −L), and some α ∈ H0(C,KC + L), the product β(δγα) ∈ k
is not zero.

Here L is a nontrivial line bundle of degree 0 on the curve C of genus 2, and so
h0(C,KC +L) = 1 by Serre duality. Let BL be the base locus of KC +L on C, that
is, the zero locus of a nonzero section of KC + L; clearly BL is an effective divisor
of degree 2 on C, since KC + L has degree 2. Then it is clear that the image of the
product

H0(C,NC/X − L)⊗H0(C,KC + L) → H0(C,KC + NC/X)

is the subspace H0(C,KC + NC/X − BL) ⊂ H0(C,KC + NC/X) of sections that
vanish on BL.

We can now use the assumption that C is ordinary to deduce that the finite
group Pic(C)[p] ∼= (Z/p)2 spans the k-vector space H0(C,KC) ∼= k2. Let L1 and L2

be two line bundles of order p on C whose classes span H0(C,KC). Let B1 and B2

be the base loci of KX + L1 and KX + L2, respectively, which are effective divisors
of degree 2 on C. Then B := B1 + B2 is an effective divisor of degree 4 on C. For
i = 1 or 2, the image of the product

H0(C,NC/X − Li)⊗H0(C,KC + Li) → H0(C,KC + NC/X)

contains the subspace H0(C,KC + NC/X − B) ⊂ H0(C,KC + NC/X) of sections
that vanish on B, by the previous paragraph.

As a result, the lemma is proved if the product

H0(C,KC + NC/X −B)⊗H0(C,KC) → H0(C, 2KC + NC/X −B) ⊂ H0(C, 2KC + NC/X)
β−−−−→ k
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is nonzero. Indeed, if that holds, then at least one of the two order-p line bundles
L1 or L2 will have class in H0(C,KC) whose product with H0(C,KC + NC/X −B)
has nonzero image under β, which implies the statement (*) above.

By Castelnuovo’s theorem [1, p. 151], the product map

H0(C,KC + NC/X −B)⊗H0(C,KC) → H0(C, 2KC + NC/X −B)

is surjective, because C has genus g at least 2 and KC + NC/X − B has degree
at least 2g + 1 (in fact, it has degree 10, which is at least 2g + 1 = 5). So it
remains only to show that β is nonzero on the subspace H0(C, 2KC +NC/X −B) of
H0(C, 2KC + NC/X) for every effective divisor B of degree 4. This follows by Serre
duality from the property of β in H1(C, TC − NC/X) proved at the beginning of
this proof: the image of β in H1(C, TC −NC/X + B) is nonzero for every effective
divisor B of degree 4 on C. QED (Lemma 6.2).

Lemma 6.4 Let (C,L) be a general pair over Fp with C a smooth ordinary curve
of genus 2 and L a line bundle of order p on C. Then the Frobenius map F ∗ :
H1(C,L) → H1(C, pL) ∼= H1(C,O) is injective. (Here H1(C,L) has dimension 1
and H1(C,O) has dimension 2.)

Note that the moduli space of pairs (C,L) over Fp with C ordinary of genus 2
and L of order p is irreducible, by the irreducibility of the moduli space of curves of
genus 2 together with the theorem that the geometric monodromy homomorphism
for ordinary curves (on the group (Z/p)2 of line bundles killed by p) maps onto
GL2(Z/p) (Faltings-Chai [6, Prop. V.7.1], Ekedahl [5]). As a result, it makes sense
to talk about a general pair (C,L), meaning the pairs outside some proper closed
subset of the moduli space.

Proof. Let C0 be the union of two ordinary elliptic curves E1 and E2 identified
at the origin. Since E1 is ordinary, there is a line bundle L on C0 that has or-
der p on E1 and is trivial on E2. Then H1(C0, O) ∼= H1(E1, O) ⊕ H1(E2, O) ∼=
k2. Also, H1(C0, L) ∼= H1(E1, L) ⊕ H1(E2, O) ∼= k. So the Frobenius map
F ∗ : H1(C0, L) → H1(C0, pL) ∼= H1(C,O) is the Frobenius map H1(E2, O) →
H1(E2, O) ⊂ H1(E1, O) ⊕H1(E2, O). Since E2 is ordinary, this Frobenius map is
nonzero, hence injective.

We can deform C0 to smooth ordinary curves of genus 2. In this deformation,
the Jacobians form a smooth family of ordinary abelian surfaces. Therefore the
line bundle L of order p on C0 can be deformed to a line bundle of order p over
the smooth curves (over an etale open subset of the parameter space). It follows
that F ∗ : H1(C,L) → H1(C, pL) is injective for some pair (C,L) with C smooth
ordinary of genus 2 and L of order p, hence for general such pairs. QED

We can now give the first examples of nef but not semi-ample line bundles on
smooth projective varieties over Fp. We know that a general smooth curve C of
genus 2 is ordinary. It follows from Lemma 6.4 that, for a general ordinary smooth
curve C of genus 2, every line bundle L of order p on C has injective Frobenius map
F ∗ : H1(C,L) → H1(C, pL) ∼= H1(C,O). Let C be an ordinary smooth curve of
genus 2 over Fp that has this injectivity property.

We can imbed this curve, like any smooth curve C of genus 2, as a curve of
bidegree (2, 3) in P1×P1. Explicitly: use the line bundles KC and any line bundle
A of degree 3 that is not of the form KC + p for any point p in C. The line bundles
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KC and A are both basepoint-free and have h0 = 2, and so they give two morphisms
C → P1, hence a morphism C → P1 × P1 of bidegree (2, 3). It is straightforward
to check from the assumption on A that C → P1 ×P1 is an embedding.

By Lemma 6.2, there is a divisor D of degree 12 on C over Fp such that blowing
up P1×P1 at the divisor D gives a surface M with the following property. The line
bundle L := O(C) on M has order p when restricted to C, while pL is nontrivial on
2C. (Here C denotes the proper transform in M of the curve with the same name
in P1 ×P1.)

We have arranged for all the hypotheses of Theorem 5.1. Therefore L = O(C)
is not semi-ample on M , and in fact no multiple of C moves on M . QED

7 Nef and big but not semi-ample

To conclude, it is easy to use our examples in dimension 2 to produce a similar
example in dimension 3, but now involving a nef and big line bundle. In the simplest
example, the 3-fold is rational. By the argument in section 4, this gives examples
on many other varieties, in particular on 3-folds of general type.

Theorem 7.1 For any prime number p, there is a nef and big line bundle L on a
smooth projective 3-fold W over Fp which is not semi-ample.

Equivalently, by Theorem 1.2, the ring R(W,L) = ⊕a≥0H
0(W,aL) is not finitely

generated over Fp. There is no example as in Theorem 7.1 in dimension 2, by Artin
[2, proof of Theorem 2.9(B)] or Keel [12].

Proof. By Theorem 6.1, for every prime number p, there is a smooth projective
surface X over k = Fp and a nef line bundle L1 on X which is not semi-ample.
Equivalently, as mentioned in section 1, if we let L2 be an ample line bundle on X,
then the ring R(X, L1, L2) := ⊕a,b≥0H

0(X, aL1 + bL2) is not finitely generated over
k. Since L2 and L1 + L2 are ample, this ring has Iitaka dimension 3, meaning that
the subspaces of total degree d grow at least like a positive constant times d3.

Let W be the projective bundle P (L1⊕L2) of hyperplanes in L1⊕L2. The line
bundle O(1) on the P1-bundle π : W → X is easily checked to be nef, since L1 and
L2 are nef. We have π∗O(1) = L1⊕L2 and more generally π∗O(d) = Sd(L1⊕L2) =
⊕d

i=0L
⊗i
1 ⊕ L⊗d−i

2 . Therefore

R(W,O(1)) = R(X, L1, L2).

So the ring R(W,O(1)) has Iitaka dimension 3 but is not finitely generated. There-
fore the nef line bundle O(1) on the 3-fold W is big but not semi-ample. QED
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