
Terminal 3-folds that are not Cohen-Macaulay
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An important ingredient of the minimal model program is that Kawamata log
terminal singularities in characteristic zero are rational, and in particular Cohen-
Macaulay. In the special case of cone singularities, this fact is related to the Kodaira
vanishing theorem restricted to Fano varieties. It turns out that Kodaira vanishing
fails even for Fano varieties, in every characteristic p > 0 [29]. This led to examples
of klt, and even terminal, singularities that are not Cohen-Macaulay [21, 29, 31].
(Terminal singularities are the smallest class of singularities that can be allowed on
minimal models.)

The most notable example was a terminal singularity of dimension 3 that is not
Cohen-Macaulay. Namely, let X be the quotient (A1 − 0)3/G over the field F2,
where the generator σ of the group G = Z/2 acts by

σ(x1, x2, x3) =

(
1

x1
,

1

x2
,

1

x3

)
.

Then X is terminal but not Cohen-Macaulay [29, Theorem 5.1]. This is the low-
est possible dimension, because every terminal (or just normal) surface is Cohen-
Macaulay. Cohen-Macaulayness and stronger properties such as F -regularity help
to construct contractions of varieties. Partly for this reason, the MMP for 3-folds is
known only in characteristics at least 5 [15, 8, 14]. By Arvidsson–Bernasconi–Lacini,
klt singularities in characteristic greater than 5 are Cohen-Macaulay, whereas there
are klt singularities that are not Cohen-Macaulay in characteristics 2, 3, and 5
[4, 6, 10].

In this paper, we construct terminal 3-fold singularities that are not Cohen-
Macaulay in five new cases: mixed characteristic (0, 2), characteristic 3, mixed char-
acteristic (0, 3), characteristic 5, and mixed characteristic (0, 5) (Theorems 0.1, 6.1,
7.1, 8.1, and 9.1). This is optimal, in view of the result of Arvidsson–Bernasconi–
Lacini. Indeed, the MMP for schemes of dimension 3 was developed in mixed
characteristic when the residue characteristic is greater than 5 [7, 28]. This raised
the question of whether vanishing theorems for 3-folds hold in mixed characteristic.
Given our counterexample over F2, one might expect an example of dimension 4,
flat over the 2-adic integers Z2, with fiber over F2 being the 3-fold singularity above.
In fact, each of our examples has dimension 3 as a scheme. For example, over Z2

we have:

Theorem 0.1. Let Y = {(x, y, i) ∈ A3
Z2

: x 6= 0, y 6= 0, i2 = −1}. Let the group
G = Z/2 = {1, σ} act on Y by

σ(x, y, i) = (1/x, 1/y,−i).

Then the scheme Y/G is terminal, not Cohen-Macaulay, of dimension 3, and flat
over Z2.
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Note that an action of a p-group with an isolated fixed point on a positive-
dimensional smooth variety in characteristic p is never formally isomorphic to a
linear action, because a nonzero representation of a p-group G in characteristic p
has nonzero G-fixed subspace. In fact, there are continuous families of inequivalent
actions on smooth varieties in characteristic p, and likewise on regular schemes
of mixed characteristic. For an action of G = Z/p on a regular scheme W of
dimension 3 with an isolated fixed point in characteristic p (as in Theorem 0.1), it
is common for W/G not to be Cohen-Macaulay, essentially because the cohomology
of G contributes to the local cohomology of W/G. The difficulty is to construct
an example with W/G terminal. For a more complicated action of G, the quotient
scheme would usually not be terminal or even log canonical. To find the examples
in this paper, the idea was to look for the simplest possible actions of G = Z/p on a
regular 3-dimensional scheme with an isolated fixed point of residue characteristic
p.

Our examples build on Artin’s examples of the simplest Z/p-actions on smooth
surfaces in characteristic p with isolated fixed points [3]. Namely, he constructed
a Z/2-action in characteristic 2 with quotient a du Val singularity of type D4, a
Z/3-action in characteristic 3 with quotient an E6 singularity, and a Z/5-action in
characteristic 5 with quotient an E8 singularity. These special group actions arise
globally from actions on del Pezzo surfaces, for example Z/5 acting on the quintic
del Pezzo surface (as discussed in section 8).

To show that our 3-dimensional quotients W/G are terminal, the obvious ap-
proach would be to resolve the singularities of W/G and make a calculation. Re-
solving these singularities is hard, however. We can greatly simplify the work by
stopping at a partial resolution of W/G that has toric singularities (specifically,
µp-quotient singularities, which we call tame quotient singularities); those are easy
to analyze in combinatorial terms. (Recent advances suggest that an efficient sub-
stitute for resolving singularities in any characteristic would be to seek a resolution
by a tame stack, rather than by a regular scheme [2, 23, 1].) Our key technical tool
is Theorem 2.2, which gives a sufficient condition for a quotient scheme U/G (where
G = Z/p, in positive or mixed characteristic) to have toric singularities.

These examples should lead to other failures of vanishing theorems. In particu-
lar, by Baudin, Bernasconi, and Kawakami, these examples imply that Frobenius-
stable Grauert-Riemenschneider vanishing fails for terminal 3-folds in characteristic
2, 3, or 5 [5, Theorem 1.1].

This work was supported by NSF grant DMS-2054553, Simons Foundation grant
SFI-MPS-SFM-00005512, and the Charles Simonyi Endowment at the Institute for
Advanced Study.

1 Notation

We use the notation “x = y + I”, for elements x and y of a ring and an ideal I,
to mean that there is an i ∈ I such that x = y + i. We also use variants of this
notation such as “x = (y+ I)(z+J)”. Another variant (modeled on big-O notation
in analysis) is to write “x = y +O(z)” for “x = y + (z)”.

We write R{x1, . . . , xn} for the free module over a ring R with basis elements
x1, . . . , xn.
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For a closed point P in a regular scheme U with residue field kU , we say that
f1, . . . , fn are coordinates for U at P (or a regular system of parameters) if f1, . . . , fn
are elements of the maximal ideal m of O(U) (the regular functions vanishing at P )
that map to a basis for the kU -vector space m /m2.

For a group G acting on a scheme X, G acts on the ring of regular functions
O(X) by (g(f))(x) = f(g−1x), or equivalently g(f) = (g−1)∗(f). The inverse is
needed because of our convention of writing group actions on the left. Throughout
the paper, we write G = Z/p = 〈σ : σp = 1〉 for the cyclic group of prime order
p. We fix the name τ = σ−1, because of the inverse that comes up in writing the
G-action on functions. Write I(f) = σ(f)− f for a function f on a G-scheme.

See section 5 for the definition of the canonical divisor and terminal singularities
on general schemes, following [20, section 2.1].

For a positive integer r, let µr be the group scheme (over any base scheme)
of rth roots of unity. The Reid-Tai criterion is the following description of which
cyclic quotient singularities are canonical or terminal [25, Theorem 4.11]. This is
often stated over a field, but it works even in mixed characteristic for µr-quotient
singularities. The point is that Kato’s theory of log regular schemes provides a
mixed-characteristic analog of toric singularities, which includes the case of µr-
quotient singularities [17]. For such schemes, resolutions of singularities and the
canonical divisor can be described in purely combinatorial terms. In the following
criterion, for a an integer and b a positive integer, consider a mod b as an integer in
the set {0, . . . , b− 1}.

Theorem 1.1. For a positive integer r, let µr act on a regular scheme X, fixing a
closed point P with maximal ideal m. Suppose that µr acts on a basis for m /m2 by
ζ(t1, . . . , tn) = (ζb1t1, . . . , ζ

bntn), for some b1, . . . , bn ∈ Z/r. (The quotient X/µr is
said to be a µr-quotient singularity of type 1

r (b1, . . . , bn).) Assume that the action is

well-formed in the sense that gcd(r, b1, . . . , b̂j , . . . , bn) = 1 for all j = 1, . . . , n. Then
X/µr is canonical (resp. terminal) near the image of P if and only if

n∑
j=1

ibj mod r ≥ r

(resp. > r) for all i = 1, . . . , r − 1.

We sometimes need the extension of the Reid-Tai criterion that describes when
a toric pair is terminal, as follows. The proof is the same as Reid’s: X/µr has a
toric resolution of singularities, and so it suffices to compute discrepancies for toric
divisors over X/µr.

Theorem 1.2. Under the assumptions of Theorem 1.1, let t1, . . . , tn be coordinates
for X at P that are µr-eigenfunctions with weights b1, . . . , bn. For i = 1, . . . , n,
let Di be the irreducible divisor on X/µr that is the image of {ti = 0} in X. Let
c1, . . . , cn be real numbers. Then the pair (X/µr,

∑
cjDj) is terminal near the image

of P if and only if cj < 1 for each j, cj + ck < 1 for each j 6= k, and

n∑
j=1

(1− cj)(ibj mod r) > r

for all i = 1, . . . , r − 1.
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2 Recognizing µp-quotient singularities

Király and Lütkebohmert analyzed when a quotient scheme by Z/p is regular, the
hard case being where the residue characteristic is p [18]. More generally, we now
give a sufficient condition for a quotient by Z/p to be a toric singularity, or in
particular to be a µp-quotient singularity. (Actions of µp are far simpler than
actions of Z/p: they are linearizable near a fixed point, like finite group actions in
characteristic zero, because µp is linearly reductive. Also, µp-quotient singularities
are always Cohen-Macaulay.)

It would be very appealing to find a broader sufficient condition for a quotient
by Z/p to have toric singularities, perhaps necessary and sufficient. Theorem 2.2 is
adapted to the situation where the fixed point scheme is a Cartier divisor E1 = {e =
0} except on a closed subset of E1. When it applies, the theorem can be described
as a Z/p – µp switch.

Here is Király and Lütkebohmert’s main result [18, Theorem 2]. (See Theorem
2.6 for a more detailed statement.)

Theorem 2.1. Let G be a cyclic group of prime order which acts on a regular
scheme X. If the fixed point scheme XG is a Cartier divisor in X, then the quotient
space X/G is regular.

Here is our sufficient condition for toric singularities. Recall that I(f) means
σ(f)− f , for a function f on a scheme with an action of the group G = Z/p = 〈σ :
σp = 1〉.

Theorem 2.2. Let U be a regular scheme with an action of the group G = Z/p =
〈σ : σp = 1〉, for a prime number p. Suppose that G fixes a closed point P with
perfect residue field kU of characteristic p. Write m for the maximal ideal in the
local ring OU,P . Suppose that there are e, s ∈ m−{0} and coordinates x1, . . . , xn for
U at P such that

I(s) = es(unit)

and
I(xi) ∈ (e)

for i = 1, . . . , n. Suppose that p ∈ ep−1m. (For example, that holds if p = 0 on U .)
Then U/G is regular or has a µp-quotient singularity at the image of P .

More precisely, if I(xi)/e is nonzero at P for some i, then U/G is regular near
P . Otherwise, let ϕ(y) = I(y)/e, which gives a linear map from m /m2 to itself.
Then ϕ is diagonalizable, and after multiplying it by some nonzero scalar, its eigen-
values b1, . . . , bn are in Fp ⊂ kU . In this case, U/G has a singularity of the form
1
p(b1, . . . , bn). That is, near the image of P , U/G is the quotient of a regular scheme
by an action of µp with weights b1, . . . , bn at a fixed point.

Theorem 4.1 is a refinement of Theorem 2.2, showing that certain divisors in U
can be viewed as toric divisors in U/G.

We will often use the special case of Theorem 2.2 where e = s = x1 for one of the
coordinates x1; in that case, we are assuming that I(x1) = x21(unit) and I(xi) ∈ (x1)
for i = 1, . . . , n. Then the fixed point scheme UG is the regular divisor {x1 = 0}
except on a closed subset of E1. For other applications in this paper, we need the
greater generality of Theorem 2.2, where (UG)red may be a singular divisor.
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One might ask whether the assumption that p ∈ ep−1m in Theorem 2.2 can be
omitted. Fortunately, this assumption is automatic in characteristic p, and it will
be easy to check in our mixed-characteristic examples.

Proof. The assumption that P is fixed by G means that G preserves m = mU and
acts as the identity on the residue field kU := OU,P /m, which has characteristic p.

For each regular function f in the local ring OU,P , its norm N(f) :=
∏p−1
i=0 σ

i(f)
is G-invariant, and it maps to fp in kU by triviality of the G-action there. So the
residue field kU/G ⊂ kU at the image of the point P contains kpU . Since we assume
that kU is perfect, kU/G is equal to kU . In what follows, we replace U by a G-
invariant open neighborhood of P as needed, since we are only trying to describe
U/G near the image of P (which we also call P ). In particular, we can assume that
U is affine.

The fixed point scheme UG is defined as the closed subscheme of U cut out by
the ideal generated by I(O(U)). The following formulas hold for any action of G
on a commutative ring [18, Remark 3]:

Lemma 2.3. (1) I(xy) = I(x)σ(y) + xI(y).
(2) For m ≥ 0, I(xm) = I(x)

∑m
i=1 σ(x)i−1xm−i.

We are given coordinates x1, . . . , xn for U near P . Under our assumptions (U
regular and kU/G = kU ), the ideal generated by I(OU,P ) in OU,P is generated by
I(x1), . . . , I(xn) [18, Proposition 6]. That is, after shrinking U around P if necessary,
the fixed point scheme UG is the closed subscheme defined by I(x1), . . . , I(xn).

In particular, if I(xi)/e is a unit for some i = 1, . . . , n, then the fixed point
scheme UG is the Cartier divisor {e = 0}, and then Theorem 2.1 gives that U/G is
regular. So we can assume from now on that I(xi) is in em for each i. Equivalently,
after shrinking U around P , I(O(U)) is contained in em. In this case, we will show
that U/G has a µp-quotient singularity at P .

The following lemma is implicit in the statement of Theorem 2.2.

Lemma 2.4. Let U be a regular scheme with an action of the group G = Z/p =
〈σ : σp = 1〉. Suppose that G fixes a closed point P with perfect residue field kU
of characteristic p. Write m for the maximal ideal in the local ring OU,P . Let
e ∈ m, e 6= 0, such that I := σ − 1 satisfies I(m) ⊂ em. Then ϕ(y) := I(y)/e is a
well-defined kU -linear map from m /m2 to itself.

Proof. Since the local ring OU,P is regular, it is a domain, and so I(y)/e is well-
defined for each element y in m. Since G fixes the point P , G maps m into itself.
Since I(m) ⊂ em, Lemma 2.3 gives that I(m2) ⊂ em2. Since I is additive, it follows
that ϕ is a well-defined additive function from m /m2 to itself. By Lemma 2.3,
ϕ is linear over the ring of invariants (OU,P )G. Since that ring has residue field
kU/G = kU , ϕ is kU -linear.

We are given a function s ∈ m−{0} such that I(s) = es(unit). After multi-
plying e by a unit, we can assume that I(s) = es; this does not change the other
assumption that I(xi) ∈ (e) for i = 1, . . . , n. Thus, from now on, we have I(s) = es.
This changes the endomorphism ϕ of m /m2 (which is defined in terms of e) by a
nonzero scalar. Having made this change, we will show that ϕ is diagonalizable,

5



with eigenvalues b1, . . . , bn in Fp ⊂ kU , and that U/G has a µp-quotient singularity
of the form 1

p(b1, . . . , bn).
Let v = σ(s)/s. By our assumptions, v is a unit on U , and v = 1 + e. Since

v = σ(s)/s, v has norm 1 for the action of G. Write (σ/ id)(x) for σ(x)/x; this is the
multiplicative action of σ − 1 ∈ ZG on a commutative ring. In these terms, define
f = (σ/ id)p−2(v). In the group ring ZG, we have (σ − 1)p−1 ≡ σp−1 + · · ·+ σ + 1
(mod p), and so we can define an element α ∈ ZG by

(σ − 1)p−1 = σp−1 + · · ·+ σ + 1− pα. (∗)

It follows that σ(f)/f = N(v)/gp, with g := α(v) (where α acts multiplicatively).
Since v has norm 1, we have σ(f)/f = 1/gp. This formula will be exactly what we
need to construct a µp-torsor W → U with a commuting action of G.

We first analyze the function g in more detail. By equation (*), the sum of the
coefficients of α in ZG is 1. Therefore, g = α(v) is a product of integer powers of
the functions σj(v) = 1 + e(1 + m) with total exponent 1, and so g = 1 + e(1 + m).

Lemma 2.5. For any pth root of unity ζ in O(U), 1− ζ is in em.

Proof. The statement is clear if ζ = 1. So assume that ζ 6= 1. Since O(U) is a
domain and (1−ζ)(1+ζ+· · ·+ζp−1) = 1−ζp = 0, we must have 1+ζ+· · ·+ζp−1 = 0.
That is, we have a homomorphism from the ring of integers Z[ζp] in Q(ζp) to O(U),
taking the primitive pth root of unity ζp to ζ. In Z[ζp], p is (1− ζp)p−1 times a unit
[22, section IV.1], and so the same is true in O(U). We are given that p is in ep−1m.
Since U is regular, OU,P is a unique factorization domain, and so 1 − ζ must be a
multiple of e; write 1 − ζ = ea for some a ∈ OU,P . If a is a unit, then p would be
ep−1 times a unit, a contradiction. So, as an element of OU,P , 1− ζ is in em. After
shrinking U around P if necessary, this gives the same conclusion in O(U).

The reason for constructing units f and g with σ(f)/f = 1/gp is to define a
µp-torsor over U with a commuting action of G. Namely, define a µp-torsor W → U
by wp = f . Here µp acts on W ⊂ A1 × U by ζ(w, x) = (ζw, x), for ζ ∈ µp. Write
τ = σ−1 in G. Since σ(f)/f = 1/gp, W has an action of G that commutes with the
action of µp, by τ(w, x) = (w/g(x), τ(x)). (We check these properties in the next
paragraph.) In particular, σ(w) = τ∗(w) = w/g, by definition of the G-action on
functions. We will show that the scheme Q := W/G is regular. Then U/G = Q/µp
will be a quotient of a regular scheme by µp, as we want.

W
G //

µp
��

Q
µp
��

U
G // U/G.

For convenience, we write P for the closed point of interest in each of these schemes.
(There is a unique closed point in W over P in U , and it maps to a closed point
in Q and in U/G = Q/µp.) We have seen that the points P ∈ U and P ∈ U/G
have the same residue field kU . Since P ∈ W is given by the equations w = 1
and x1 = · · · = xn = 0, we see that P ∈ W has the same residue field kU . Since
kU/G ⊂ kQ ⊂ kW , P ∈ Q also has the same residue field.

For clarity, let us first check that the formulas above give an action of G
on W that commutes with the action of µp. First, to show that σ as above
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maps W = {wp = f} into itself, we have to show that if wp = f(x), then
(w/g(x))p = f(σ−1(x)), or equivalently that wp/gp = σ(f); this follows from the
fact that σ(f)/f = 1/gp. Next, let us show that σp = 1 on W . By induction,
we have σ−i(w, x) = (w/(g(x)g(σ−1x) · · · g(σ1−ix)), σ−ix) for each natural num-
ber i. Therefore, to show that σp is the identity on W (hence that we have an
action of G), it suffices to show that g has norm 1. But that is true, because
v has norm 1 and g is a product of integer powers of σj(v) for integers j. So
we have an action of G on W . Finally, to show that G and µp commute on W :
for ζ ∈ µp, we have ζσ−1(w, x) = ζ(w/g(x), σ−1(x)) = (ζw/g(x), σ−1(x)) while
σ−1ζ(w, x) = σ−1(ζw, x) = (ζw/g(x), σ−1(x)). These are equal as regular functions
on the scheme µp ×W . So we have shown that G and µp commute on W .

We need to show that f is not a pth power in O(U). Suppose it is, say f = up

for a regular function u on U . Since f is a unit, so is u. Then 1/gp = σ(f)/f =
(σ(u)/u)p, and so ζ/g = σ(u)/u for some pth root of unity ζ in O(U). Here ζ =
1+(ζ−1) = 1+em by Lemma 2.5, and 1/g = 1−e(1+m), so σ(u)/u = 1−e(1+m).
Here σ(u)/u = 1 + I(u)/u, so I(u) = −ue(1 + m) = e(unit). This contradicts our
assumption that I(O(U)) is contained in em. So in fact f is not a pth power.

From there, we can show that the scheme W is integral (after shrinking U around
P , if necessary). Namely, since f is not a pth power in O(U), f is also not a pth
power in the function field k(U), and so k(U)[f1/p] is a degree-p field extension of
k(U). Write α for the µp-torsor W → U . Since W = {wp = f}, there is a nonempty
open subset V ⊂ U with α−1(V ) integral. Since W → U is finite and flat, W
is Cohen-Macaulay and equidimensional. By equidimensionality, every irreducible
component of W must dominate U . Since α−1(V ) is irreducible, it follows that W
is irreducible. Since α−1(V ) is reduced, W is reduced in codimension 0; since W is
Cohen-Macaulay, it follows that W is reduced [27, Tag 031R]. Since W is reduced
and irreducible, it is integral.

It is not needed for what follows, but for clarity, let us analyze the singularities
of W in the special case where s = e(1 + m) (for example when s = e), so that
I(e) = e2(1 + m). The equation of W is wp = f . Since v = 1 + e, one can show
by induction from the formula for I(e) that f = (σ/ id)p−2(v) = 1 + ep−1q for some
unit q on U , and so we can rewrite the equation of W as wp = 1 + ep−1q. Let
w0 = w − 1, so that w0 vanishes at the point P of interest in W . In terms of w0,
the equation of W becomes (1 + w0)

p = 1 + ep−1q, that is,

wp0 = ep−1q −
(
p

1

)
w0 − · · · −

(
p

p− 1

)
wp−10 .

We are given that p is in ep−1m, and so this equation has the form wp0 = ep−1s for
some unit s on W . If p = 2 and e 6∈ m2, it follows that W is regular. However, if
p > 2, then W is not normal. For example, if e 6∈ m2, then the singularity of W
looks roughly like the cuspidal curve {wp0 = xp−11 } times a smooth variety.

We will need the following version of Király and Lütkebohmert’s results.

Theorem 2.6.

(1) Let B be a local domain with residue field kB. Let p be a prime number, and
let G = Z/p act nontrivially on B. Suppose that the ideal B ·I(B) that defines
the fixed point scheme in SpecB is generated by one element. Then B is free
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of rank p over the ring of invariants BG. More precisely, for any element t
such that I(t) generates the ideal B · I(B), we have B = A{1, t, . . . , tp−1}.

(2) In addition to the assumptions of (1), assume that B is regular. Then BG is
regular.

(3) In addition to the assumptions of (1), assume that B is noetherian and the
inclusion kBG ⊂ kB is an equality. Then there is a minimal set of generators
y1, . . . , yr for mB such that I(y1) generates the ideal B · I(B) and y2, . . . , yr
are G-invariants.

Proof. Statement (1) is due to Király and Lütkebohmert for B normal, but their
proof works without change for B a domain [18, Theorem 2 and Proposition 5].
They also prove statement (2). They prove statement (3) when B is regular. We
now extend the proof of (3) for B only a domain.

Since the inclusion kBG ⊂ kB is an equality, we have B = BG + mB, and so
I(B) = I(mB). Since the ideal B · I(B) is generated by one element, there is an
element y1 ∈ mB such that I(y1) generates this ideal. By Lemma 2.3, we have
I(m2

B) ⊂ mB I(mB). Here I(mB) is not zero (because the G-action is nontrivial),
and so y1 is not in m2

B.
Since B is noetherian, the ideal mB is finitely generated. Choose elements

z2, . . . , zr in mB such that y1, z2, . . . , zr form a basis for mB /m
2
B. By part (1), we

know that B = BG{1, y1, . . . , yp−11 }. For 2 ≤ i ≤ r, let yi be the projection of zi
to BG with respect to this decomposition. Then yi ≡ zi (mod (y1) + m2

B), and so
y1, . . . yr map to a basis for mB /m

2
B. Thus y1, . . . , yr are a minimal set of generators

for mB (by Nakayama’s lemma), and y2, . . . , yr are G-invariant.

Let us write out the action of G on W . The maximal ideal of P in W is
generated by w0, x1, . . . , xn. We have I(w0) = I(w) = w(1g − 1) = (1 + w0)(

1
g − 1).

Since 1/g = 1 + eu for some unit u on U , we have I(w0) = eu(1 + w0) = e(unit).
We also have I(xi) in the ideal (e) for i = 1, . . . , n; so the fixed point scheme WG is
defined by the single equation e = 0 in W . As a result, even though W is typically
not normal, Theorem 2.6 gives that the morphism W → W/G = Q is finite and
faithfully flat of degree p. It follows that Q is noetherian [27, Tag 033E]. (Beware
that for a general noetherian scheme X with an action of a finite group G, X/G need
not be noetherian, and the morphism X → X/G need not be finite [24, Proposition
0.10]. These properties do hold if X is of finite type over a noetherian ring A and
G acts A-linearly [12, Theorem and Corollary 4].)

The action of µp on the affine scheme Q gives a grading of O(Q) by Z/p. For
each j ∈ Z/p, since O(Q) is noetherian, the ideal in O(Q) generated by the jth
graded piece O(Q)j is finitely generated, and so O(Q)j is a finitely generated module
over O(Q)0 = O(Q/µp). So the whole ring O(Q) is finite over O(Q/µp); that is,
Q → Q/µp is finite. Also, O(Q/µp) is a pure subring (because it is a summand)
of the noetherian ring O(Q), so it is noetherian [16, Proposition 6.15]; that is,
Q/µp = U/G is noetherian. Finally, the composition W → Q → Q/µp = U/G is
finite, and O(U) is a sub-O(U/G)-module of O(W ), so O(U) is a finitely generated
O(U/G)-module; that is, U → U/G is finite.

Let h1, . . . , hr be a minimal set of generators for the maximal ideal at P of O(Q).
(So r is at least the dimension n of Q.)
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Lemma 2.7. The ideals (h1, . . . , hr) and (x1, . . . , xn) in O(W ) are equal. (That is:
the fiber in W over the closed point P ∈ Q is equal to the fiber in W over the closed
point P ∈ U , as a closed subscheme.)

Proof. We have seen that the degree-p morphism W →W/G = Q is finite and flat.
So the fiber in W over the point P in Q has degree p over the residue field of P ∈ Q,
which we have seen is kU . As a set, this fiber is one point P ∈ W , with the same
residue field kU . So the quotient ring O(W )/(h1, . . . , hr) is an artinian local ring of
length p.

The ideal (x1, . . . , xn) in O(W ) defines the fiber in W over the point P in U .
Since W → U is a µp-torsor, this fiber has degree p over the residue field of P ∈ U ,
which is the same field kU . Again, this fiber is one point P ∈ W as a set, with the
same residue field; so O(W )/(x1, . . . , xn) is an artinian local ring of length p. So
if we can show that the ideal (h1, . . . , hr) in O(W ) is contained in (x1, . . . , xn) in
O(W ), then they are equal.

It suffices to show (*) that every function y on W that vanishes at the point P
in W but has nonzero image in O(W )/(x1, . . . , xn) has I(y) 6= 0 (that is, it is not
G-invariant). (Namely, this would imply that the G-invariant functions h1, . . . , hn
on W lie in the ideal (x1, . . . , xn), as we want.) By the formula for the G-action
on W , in particular that σ(w) = w/g where g = 1 + e(1 + m), we see that G fixes
the closed subscheme {e = 0} in W . That is, I maps O(W ) into the ideal (e) in
O(W ). Also, we know that I(xi) ∈ emU = e(x1, . . . , xn) ⊂ O(U) for i = 1, . . . , n.
So ϕ(y) := I(y)/e is a well-defined linear map from O(W )/(x1, . . . , xn) to itself.
Explicitly, by the equation of W , O(W )/(x1, . . . , xn) is a kU -vector space with basis
1, w, . . . , wp−1. Equivalently, in terms of w0 = w− 1 (which vanishes at P in W ), a
basis for O(W )/(x1, . . . , xn) is given by 1, w0, . . . , w

p−1
0 .

The claim (*) will follow if the map ϕ restricted to k{w0, w
2
0, . . . , w

p−1
0 } is in-

jective. Since g = 1 + e(1 + mU ), we have 1/g = 1− e(1 + mU ), and hence I(w0) =
I(w) = (w/g)− w = −ew(1 + mU ) = −e(1 + w0)(1 + mU ). So ϕ(w0) = −(1 + w0).
By Lemma 2.3, for m ≥ 0,

I(wm0 ) = I(w0)

m∑
j=1

σ(w0)
j−1wm−j0

= −e(1 + w0)(1 + mU )
m∑
j=1

(w0 − (1 + w0)e(1 + mU ))j−1wm−j0 .

Since ϕ takes values in O(W )/(x1, . . . , xn) (where e is zero), it follows that ϕ(wm0 ) =
−mwm0 (1 +w0). It is clear that these elements are linearly independent over kU for
m = 1, . . . , p − 2; to show that they are linearly independent for m = 1, . . . , p − 1,
it will suffice to show that wp0 is zero in O(W )/(x1, . . . , xn) = kU{1, w0, . . . , w

p−1
0 }.

(This comes up because wp0 appears in our formula for I(wp−10 ).)
Namely, we have wp0 = (w − 1)p = wp − 1 plus a multiple of p in O(W ). Here

wp − 1 = f − 1 = ep−1(1 + mU ), and p is in ep−1mU , as we assumed; so wp0 =
ep−1(1 + mU ), which is zero in O(W )/(x1, . . . , xn), as we want. Lemma 2.7 is
proved.

The number r of generators h1, . . . , hr for the maximal ideal mQ in the local
ring OQ,P is at least n = dim(Q). On the other hand, Lemma 2.7 implies that the
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extended ideal (h1, . . . , hr) in OW,P can be generated by only n elements, so the
vector space (h1, . . . , hr) ⊗OW,P

kW has dimension at most n. So this vector space
is spanned by n of the hi’s, which we can assume are h1, . . . , hn. By Nakayama’s
lemma, it follows that the extended ideal (h1, . . . , hr) is equal to the extended ideal
(h1, . . . , hn) in OW,P . Since W → Q is faithfully flat, extending and contracting an
ideal inOQ,P gives the same ideal [27, Tag 05CK]. As a result, we have (h1, . . . , hn) =
(h1, . . . , hr) inOQ,P . That is, the maximal ideal mQ can be generated by n = dim(Q)
elements, which means that Q is regular. (This is somewhat surprising, since W is
typically not regular or even normal.)

It remains to show that the point P in Q is a fixed point for µp, with weights
given by the eigenvalues of ϕ. First, let us show that µp fixes the point P in Q.
(This does not seem obvious, since µp does not fix the point P in W ; in fact, µp acts
freely on W .) The functions x1, . . . , xn on W are pulled back from U , hence fixed by
µp. As a result, the ideal (x1, . . . , xn) in O(W ) is preserved by µp. Equivalently, by
Lemma 2.7, the ideal (h1, . . . , hn) in O(W ) is preserved by µp. We have seen that
the morphism W → W/G = Q is faithfully flat. As a result, the ideal (h1, . . . , hn)
in O(Q) is equal to the intersection of the extended ideal (h1, . . . , hn) in O(W ) with
O(Q). Since W → Q is µp-equivariant, it follows that the ideal (h1, . . . , hn) = mQ in
O(Q) is preserved by µp. Also, the residue field of Q/µp at P maps isomorphically
to the residue field of Q at P , and so µp acts trivially on the latter field. That is,
µp fixes the point P in Q, as we want.

We now change our choice of the functions h1, . . . , hn. Since µp is linearly reduc-
tive, we can choose coordinates h1, . . . , hn for Q near P that are µp-eigenfunctions.
That is, each hi has some weight bi ∈ Z/p for the action of µp. In these terms,
Q/µp = U/G is a toric singularity of type 1

p(b1, . . . , bn). It remains to show that the

endomorphism ϕ of mU /m
2
U is diagonalizable, with eigenvalues in Fp ⊂ kU , and

that these eigenvalues are equal to b1, . . . , bn.
Consider h1, . . . , hn as G-invariant functions on W . Here W is a µp-torsor over

U defined by wp = f ; so O(W ) = O(U){1, w, . . . , wp−1}, and this grading by Z/p
describes the action of µp on O(W ). For i = 1, . . . , n, hi has weight bi for the action
of µp, and so we can write hi = giw

bi for some regular function gi on U . (Here we
think of bi as an integer in {0, . . . , p−1}.) Clearly the functions g1, . . . , gn vanish at
P (using that w is a unit). Also, (g1, . . . , gn) is equal to (h1, . . . , hn) as an ideal in
O(W ), and we showed that the latter ideal is equal to (x1, . . . , xn) in O(W ). Since
W → U is faithfully flat, it follows that (g1, . . . , gn) is equal to (x1, . . . , xn) as an
ideal in O(U). That is, g1, . . . , gn form coordinates on U near P .

For 1 ≤ i ≤ n, we have I(gi) ≡ eϕ(gi) ∈ e(mU /m
2
U ), by definition of the

endomorphism ϕ of mU /m
2
U . We showed above that I(w0) = −e(1 +w0)(1 + mU ),

and so I(w) = I(w0) = −ew(1 + mU ). For each b ≥ 0, Lemma 2.3 gives that

I(wb) = I(w)

b∑
m=1

σ(w)m−1wb−m

= −bewb(1 + mU ),

using that e is in mU . Since the function giw
bi is G-invariant on W , we have

0 = I(giw
bi) = σ(gi)I(wbi) + I(gi)w

bi = (gi + I(gi))I(wbi) + I(gi)w
bi . When we

consider this equality modulo em2
U O(W ), the term I(gi)I(wbi) can be omitted.
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Namely, we have

0 ≡ e(−bigiwgi(1 + m) + ϕ(gi)w
gi) (mod em2

U O(W ))

≡ ewgi(−bigi + ϕ(gi)) (mod em2
U O(W )).

Since w is a unit, it follows that 0 ≡ e(−bigi + ϕ(gi)) (mod em2
U O(W )). Since

W → U is faithfully flat, emU /em
2
U → emU O(W )/em2

U O(W ) is injective, and so
0 ≡ e(−bigi + ϕ(gi)) (mod em2

U ). So ϕ(gi) = bigi in mU /m
2
U for each i = 1, . . . , n.

Also, g1, . . . , gn form a basis for mU /m
2
U . So ϕ is diagonalizable, its eigenvalues

b1, . . . , bn are in Fp, and U/G is a µp-quotient singularity of the form 1
p(b1, . . . , bn),

as we want.

3 Review of ramification theory

We recall here how to compute the ramification behavior of a Z/p-covering in char-
acteristic p or mixed characteristic, following Xiao and Zhukov [30].

Let G = Z/p = 〈σ : σp = 1〉 act nontrivially on a normal noetherian integral
scheme Y . Assume that Y is of finite type over a field or over Zp, so that we can talk
about the canonical class KY . Write f for the quotient map Y → Y/G. For each
irreducible divisor E in Y that is mapped into itself by G, let F be its image (as an
irreducible divisor) in Y/G. Assume that p = 0 on E. There are several invariants
we want to compute in this situation: the ramification index of the divisor E in
Y (the positive integer e such that f∗F = eE), and the coefficient c of E in the
ramification divisor (meaning that KY = f∗KY/G + cE near the generic point of
E). Another name for c is the valuation of the different vE(Dk(Y )/k(Y/G)), where
the valuation vE on the function field k(Y ) is the order of vanishing along E. Here
ef = p, where f is the degree of the field extension k(E) over k(F ).

An easy case is where G does not fix E (in other words, where G acts nontrivially
on E). We say that f is unramified along E. In this case, f∗F = E, and KY =
f∗KY/G near the generic point of E.

Define the Artin ramification number i(E) of Y over Y/G along E to be the
coefficient of E in the fixed point scheme Y G. Equivalently, in terms of I(a) =
σ(a)− a:

i(E) = min
a∈OY,E

vE(I(a)).

In the ramified case, the field k(E) is purely inseparable over k(F ), with degree
f equal to 1 or p. We can distinguish the two cases as follows. Since ef = p,
either e = p and f = 1 (called wild ramification) or e = 1 and f = p (called fierce
ramification). Let t be a defining function of E, that is, a rational function on
Y with valuation vE(t) = 1. It is clear that vE(I(t)) ≥ i(E). A very convenient
criterion is: Y → Y/G is wildly ramified along E if and only if equality holds [30,
section 2.1]. Otherwise, it is fiercely ramified.

Furthermore, we can compute the relative canonical class (that is, the valuation
of the different) as follows, correcting a typo in [30, section 2.1].

Lemma 3.1. The valuation of the different is (p− 1)i(E). When Y is regular, so
that Y/G is Q-factorial, we can equivalently say that

KY = f∗KY/G + (p− 1)[Y G],
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where [Y G] denotes the Weil divisor associated to the fixed point scheme.

Proof. If G acts nontrivially on E (the unramified case), then i(E) = 0 and the
statement is clear. So assume that G fixes E. The local ring OY,E is a discrete
valuation ring. The algebra OY,E is generated by one element y as an algebra over
OY/G,F ; one can take y to be a uniformizer in OY,E if E is wildly ramified, and an
element of OY,E whose restriction to k(E) is not in k(F ) if E is fiercely ramified
[30, section 2.1]. By Lemma 2.3, we have i(E) = vE(I(y)).

Let u(X) be the minimal polynomial of y over k(Y/G). In this situation of a
monogenic algebra extension, the different Dk(Y )/k(Y/G) is generated by u′(y) [26,

III, Corollary 2 to Proposition 11]. But u(X) =
∏p−1
j=0(X − σj(y)). So

u′(y) =

p−1∏
j=1

(y − σj(y)),

and hence
vE(Dk(Y )/k(Y/G)) = vE(u′(y)) = (p− 1)i(E),

using that i(E) is unchanged if we replace σ by another generator of G.

4 Toric divisors

In addition to recognizing when a quotient by G = Z/p has a µp-quotient singularity
(as in Theorem 2.2), Theorem 4.1 analyzes when a G-invariant divisor is pulled back
from a divisor on the quotient. Using this, we can view certain G-invariant divisors
as toric divisors on the quotient scheme, which will be convenient for applications.

Theorem 4.1.

(1) Let G = Z/p act on a regular scheme U , with the assumptions of Theorem
2.2. Assume moreover that the function e is the greatest common divisor of
the functions I(xi) for i = 1, . . . , n in the local ring OU,P . Then, for each
y ∈ mU such that {y = 0} is an irreducible divisor E ⊂ U and I(y) ∈ (ey), E
is the pullback of a Weil divisor F in U/G.

(2) If in addition I(xi) ∈ emU for i = 1, . . . , n, so that U/G is the quotient of a
regular scheme Q by µp (by Theorem 2.2), then the pullback of F to Q is the
divisor {h = 0} for some µp-eigenfunction h on Q.

(3) Continue to assume that I(xi) ∈ emU for i = 1, . . . , n, so that U/G is the quo-
tient of a regular scheme Q by µp. Let y1, . . . , yr be functions on U , vanishing
at P , that are linearly independent in mU /m

2
U . Suppose that I(yj) ∈ (eyj)

for j = 1, . . . , r. Then the corresponding µp-eigenfunctions h1, . . . , hr on Q
(from (2)) are linearly independent in mQ /m

2
Q. That is, these functions are

part of a toric coordinate system on Q. Finally, if I(s) = es in Theorem 2.2
(as we can assume), then the µp-weight of hj is equal to the eigenvalue of
ϕ(y) := I(y)/e on yj ∈ mU /m

2
U , which is in Fp.
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Proof. (1) Let E be the irreducible divisor {y = 0} in U . The assumptions imply
that E is mapped into itself by G, and that there is an i ∈ {1, . . . , n} such that
vE(I(y)) > vE(I(xi)). By section 3, f : U → U/G is either unramified (if E is not
fixed by G) or fiercely ramified along E. In either case, there is an irreducible divisor
F on U/G such that E = f∗F , as we want. (The divisor F need not be Cartier,
but the pullback of a Weil divisor is still a Weil divisor (with integer coefficients).
Indeed, F is a Cartier divisor outside a codimension-2 subset of U/G, by normality
of U/G.)

(2) Since Q is regular, the pullback of F to Q is a Cartier divisor, hence (after
shrinking U and Q around P ) of the form {t = 0} for some function t ∈ mQ−{0}.
Clearly the divisor {t = 0} is µp-invariant. I claim that t times some unit is a
µp-eigenfunction on Q. Indeed, in algebraic terms, the action of µp on Q makes
O(Q) a comodule over O(µp), and the ideal (t) is an sub-O(µp)-comodule. Every
O(µp)-comodule (with no finiteness assumption needed) is the direct sum of its
weight spaces, indexed by Z/p. So we can write t = t0 + · · ·+ tp−1 with ti ∈ (t) and
ti of weight i. Since ti ∈ (t), we can write ti = ait for some ai ∈ OQ,P . Since OQ,P
is regular, it is a domain, and hence 1 = a0 + · · ·+ ap−1. So at least one ai is not in
mQ, hence is a unit. Then h := ti = ait is a unit times t and also a µp-eigenfunction
(of weight i), as we want.

(3) After multiplying e by a unit, we can assume that I(s) = es, in the termi-
nology of Theorem 2.2. The assumption that I(yj) ∈ (eyj) for j = 1, . . . , r implies
that y1, . . . , yr in mU /m

2
U are eigenvectors of the map ϕ. By the proof of Theorem

2.2, the corresponding eigenvalues are in Fp ⊂ kU .
For j = 1, . . . , r, we know from (1) that the divisor {yj = 0} on U is pulled

back from a divisor Fj on U/G. (Here Fj is a Weil divisor, but it is a Cartier
divisor outside a codimension-2 subset of U/G, since U/G is normal.) By (2), Fj
pulls back to a divisor {hj = 0} on Q with hj a µp-eigenfunction. It follows that
the Cartier divisors {yj = 0} on U and {hj = 0} on Q have the same pullback
to W ; that is, hj = yj(unit) on W . Since hj is a µp-eigenfunction of some weight
bj ∈ {0, . . . , p− 1}, we have hj = gjw

bj for some function gj on U , in the notation
of the proof of Theorem 2.2. Therefore, gj = yj(unit) on U . Since y1, . . . , yr are
linearly independent in mU /m

2
U , the same is true for g1, . . . , gr. By the proof of

Theorem 2.2, the µp-weight of hj is equal to the eigenvalue of ϕ on the eigenvector
gj ∈ mU /m

2
U . Since gj ∈ mU /m

2
U is a nonzero multiple of yj , this is the same as

the eigenvalue of ϕ on yj .
The ring OW,P is faithfully flat over OU,P and over OQ,P . By Lemma 2.7, the

maximal ideals mU and mQ generate the same ideal in OW,P . Since g1, . . . , gr are
linearly independent in mU /m

2
U , it follows that h1, . . . , hr are linearly independent

in mQ /m
2
Q, as we want.

5 The example over the 2-adic integers

Theorem 5.1. Let Y = {(x, y, i) ∈ A3
Z2

: x 6= 0, y 6= 0, i2 = −1}. Let the group
G = Z/2 = {1, σ} act on Y by

σ(x, y, i) = (1/x, 1/y,−i).

Then the scheme Y/G is terminal, not Cohen-Macaulay, of dimension 3, and flat
over Z2. Also, the canonical class of Y/G over Z2 is Cartier.
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Proof. The scheme Y is regular, being an open subset of the affine plane over the
discrete valuation ring Z2[ζ4] = Z2[i]/(i

2 + 1). Since Y is a normal integral affine
scheme of dimension 3, so is Y/G. The ring O(Y/G) of regular functions is a torsion-
free Z2-module, since it is a subring of the torsion-free Z2-module O(Y ); so Y/G is
flat over Z2. The fixed point scheme of G on Y is defined by: I(x) = (1 − x2)/x,
I(y) = (1 − y2)/y, and I(i) = σ(i) − i = −2i, hence by {x2 = 1, y2 = 1, 2i = 0}.
Together with the equation i2 = −1 on Y , these equations imply set-theoretically
that 2 = 0, x = 1, y = 1, and i = 1; so the fixed point set of G is a single closed
point P in Y , with residue field F2. Since Y is regular, it follows that Y/G is regular
outside the image of P , which we also call P .

For Y/G to be Cohen-Macaulay at P would mean that the local cohomol-
ogy H i

P (Y/G,O) was zero for i < dim(Y/G) = 3. Consider the exact sequence
H1(Y/G,O) → H1(Y/G − P,O) → H2

P (Y/G,O). Since Y/G is affine, we have
H1(Y/G,O) = 0. So Cohen-Macaulayness of Y/G would imply that H1(Y/G −
P,O) = 0.

Fogarty showed that for G = Z/p acting with an isolated fixed point on a
normal scheme W over Fp of dimension at least 3, W/G is not Cohen-Macaulay
[13, Proposition 4]. When W has mixed characteristic (0, p), he needed dim(W ) ≥ 4
to get the same conclusion. Nonetheless, we can build on his ideas to study the 3-
dimensional scheme Y in mixed characteristic.

We first show thatH1(G,O(Y )) is not zero. This cohomology group is ker(tr)/ im(1−
σ) on O(Y ), where the trace is 1 + σ. Since tr(i) = 0, i defines an element of
H1(G,O(Y )). Note that i restricts to 1 ∈ O(P ) = F2 on the fixed point P . There-
fore, i has nonzero image under the restriction map H1(G,O(Y ))→ H1(G,O(P )) ∼=
F2. So i is nonzero in H1(G,O(Y )), as we want.

Since G acts freely on Y outside P , we have a spectral sequence (as discussed
in [13]):

Epq2 = Hp(G,Hq(Y − P,O))⇒ Hp+q(Y/G− P,O).

Here H0(Y −P,O) = O(Y −P ) is equal to O(Y ), since Y is normal and P has codi-
mension 3 in Y (at least 2 would suffice). So H1(G,H0(Y −P,O)) = H1(G,O(Y )) 6=
0. The spectral sequence shows that this group injects into H1(Y/G − P,O), and
so H1(Y/G − P,O) 6= 0. As discussed above, it follows that Y/G is not Cohen-
Macaulay.

It remains to show that Y/G is terminal. Let us recall the definition. For a
normal quasi-projective scheme X over a regular base scheme S, Hartshorne defined
the canonical sheaf ωX/S [20, Definition 1.6]. It is a reflexive sheaf of rank 1, or
equivalently the sheaf associated to a Weil divisor. In this paper, S will be Spec of
the p-adic integers or of a field, and we write KX for ωX/S . Toward the end of the
proof of Theorem 5.1, we compute KX directly from the definition in our example.

A normal scheme X is terminal if KX is Q-Cartier and, for every normal scheme
Z with a proper birational morphism π : Z → X, we have

KZ = π∗(KX) +
∑
j

ajEj

with aj > 0 for every exceptional divisor Ej of π. If X has a resolution of singular-
ities, terminality of X is equivalent to positivity of the discrepancies aj on this one
resolution [20, Corollary 2.12].
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Let Y0 = Y . To prove that our example Y0/G is terminal, one approach would be
to construct an explicit resolution of singularities. As with the analogous example in
characteristic 2 [29, Theorem 5.1], this can be done by making G-equivariant blow-
ups of Y0 along regular closed subschemes. Namely, we can make G-equivariant
blow-ups Y2 → Y1 → Y0 such that Y2/G is regular. That resolution of Y0/G has
dual complex a star, with one edge from a vertex F0 to each of seven other vertices
F1, . . . , F7.

However, we can simplify the proof that Y0/G is terminal by stopping with a
partial resolution with toric singularities. Namely, after only one blow-up Y1 →
Y0, we can recognize the seven singularities of Y1/G as µ2-quotient singularities of
the form 1

2(1, 1, 1), thanks to Theorem 2.2. So Y1/G is terminal, and it is then
straighforward to compute that Y0/G is terminal. This method would also simplify
the proof of terminality for the example in characteristic 2 that we are imitating
[29]. The simplification is more striking for our more complicated examples in
characteristic 3 or mixed characteristic (0, 3) (Theorems 6.1 and 7.1), and even
more significant for our even more complicated examples in characteristic 5 or mixed
characteristic (0, 5) (Theorems 8.1 and 9.1).

We now begin to blow up. To simplify the equations, change coordinates by
x0 := x − 1, x1 := y − 1, and e2 := 1 + i, so that the G-fixed point is defined by
0 = x0 = x1 = e2. Then

Y0 = {(x0, x1, e2) ∈ A3
Z2

: 0 = e22 − 2e2 + 2, 1 + x0 6= 0, 1 + x1 6= 0},

and G acts by

σ(x0, x1, e2) =

(
−x0

1 + x0
,
−x1

1 + x1
, 2− e2

)
.

The blow-up at the G-fixed point is:

Y1 = {((x0, x1, e2), [y0, y1, y2]) ∈ A3
Z2
×Z2 P

2
Z2

: e22 − 2e2 + 2 = 0,

x0y1 = x1y0, x0y2 = e2y0, x1y2 = e2y1, 1 + x0 6= 0, 1 + x1 6= 0}.

The exceptional divisor E0 ⊂ Y1 is isomorphic to P2
F2

. Here G acts on Y1 by

σ((x0, x1, e2), [y0, y1, y2]) =

((
−x0

1 + x0
,
−x1

1 + x1
, 2−e2

)
,

[
−y0

1 + x0
,
−y1

1 + x1
, y2(1−e2)

])
.

First consider the open subset U0 = {y0 = 1} in Y1. Then x1 = x0y1 and
e2 = x0y2, so

U0 = {(x0, y1, y2) ∈ A3
Z2

: 0 = (x0y2)
2 − 2(x0y2) + 2, 1 + x0 6= 0, 1 + x0y1 6= 0}.

Here E0 = {x0 = 0}. The group G = Z/2 acts by

σ(x0, y1, y2) =

(
−x0

1 + x0
,
y1(1 + x0)

1 + x0y1
, −y2(1− x0y2)(1 + x0).

)
.
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The fixed point scheme Y G
1 is defined by: I(x0) = σ(x0) − x0 = x20(−1 − x0y22 +

x20y
3
2)/(1 + x0), I(y1) = x0y1(1− y1), and I(y2) = x0y2(−1− y2 + x0y2 + x0y

2
2). We

know that Y G
1 (as a set) is contained in E0. To focus on the fixed point scheme near

E0, we can say (more simply): I(x0) = x20(1+O(x0)), I(y1) = x0y1(1+y1 +O(x0)),
and I(y2) = x0y2(1 + y2 + O(x0)). We see that the fixed point scheme Y G

1 is
generically the Cartier divisor E0 = {x0 = 0}. The bad locus in E0 (where that
fails) is given by removing a factor of x0 from the equations and setting x0 = 0, so
we have: 0 = x0, 0 = y1(1 + y1), and 0 = y2(1 + y2). (Note that x0 = 0 implies
2 = 0, by the equation for U0.) So the fixed point scheme Y G

1 (in this chart) is
E0 as a Cartier divisor except at the 4 points (x0, y1, y2) equal to (0, 0, 0), (0, 1, 0),
(0, 0, 1), or (0, 1, 1).

The open set U1 = {y1 = 1} works the same way, by the symmetry switching
x0 and x1, hence also switching y0 and y1. Together, that gives 6 bad points
in E0

∼= P2
F2

so far, namely [y0, y1, y2] equal to [1, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 1],
[0, 1, 0], and [0, 1, 1].

Finally, look at the open set U2 = {y2 = 1} in Y1. Then x0 = e2y0, x1 = e2y1,
and so

U2 = {(y0, y1, e2) ∈ A3
Z2

: e22 − 2e2 + 2 = 0, 1 + y0e2 6= 0, 1 + y1e2 6= 0}.

Here E0 = {e2 = 0}. On U2, G acts by

σ(y0, y1, e2) =

(
y0(1− e2)
1 + y0e2

,
y1(1− e2)
1 + y1e2

, 2− e2
)
.

We know that Y G
1 is contained as a set in E0. The fixed point scheme Y G

1 (near
E0) is defined by: I(y0) = y0e2(1 + y0 + O(e2)), I(y1) = y1e2(1 + y1 + O(e2)),
and I(e2) = e22(1 + O(e2)). We see that the fixed point scheme Y G

1 is generically
E0 = {e2 = 0} as a Cartier divisor. The bad locus on E0 (where this fails) is given
by removing a factor of e2 from the equations and setting e2 = 0, so we have: 0 = e2,
0 = y1(1 + y1), and 0 = y2(1 + y2). So there are 4 bad points on E0 = P2

F2
in this

open set: (y0, y1, e2) equal to (0, 0, 0), (1, 0, 0), (0, 1, 0), or (1, 1, 0).
We conclude that the fixed point scheme in Y1 is E0

∼= P2
F2

with multiplicity 1
except at the 7 points:

[y0, y1, y2] = [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1].

(The same thing happens for the first blow-up of the analogous example in char-
acteristic 2 [29].) By Theorem 2.1, Y1/G is regular outside the images of these 7
points.

One further G-equivariant blow-up at each of these 7 points suffices to resolve
Y1/G, but the equations for these blow-ups are a bit messy. Instead, we will use
Theorem 2.2 to show that the 7 singular points of Y1/G are all mixed-characteristic
analogs of the singularity A3/µ2, the simplest terminal singularity whose canonical
class is not Cartier. More precisely, each of these 7 singular points is of the form
1
2(1, 1, 1), meaning that it can be written as Q/µ2 for some regular scheme Q of
dimension 3 (at an isolated fixed point of µ2). As a result, Y1/G is terminal. With
one last calculation, we will deduce that Y0/G is terminal.

We first consider the singularities of Y1/G in the chart U0 = {y0 = 1}, as
above. Here U0 has coordinates (x0, y1, y2) with 0 = (x0y2)

2 + 2(x0y2) − 2, and
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Y0 Y1

E0

Figure 1: The fixed point schemes in Y0 and in the blow-up Y1. Here E0
∼= P2, which we

view as a toric variety; so the three edges of the triangle denote the coordinate lines in P2.
We consider three coordinate charts on Y1, each containing one vertex of the triangle.

E0 = {x0 = 0}. We saw that the fixed point scheme UG0 is the Cartier divisor
E0 = {x0 = 0} except at the 4 points (x0, y1, y2) equal to (0, 0, 0), (0, 0, 1), (0, 1, 0), or
(0, 1, 1). At each of these points P , the G-action has the form required for Theorem
2.2 with e = s := x0, namely that I(x0) = x20(1 + m) and I(zj) = x0(zj + m2)
for j = 1, 2, for some coordinates x0, z1, z2 at P , with m the maximal ideal at P .
Also, since x20y

2
2 = 2(unit), 2 is in the ideal (x20), hence in x0m, which is another

assumption in Theorem 2.2. So the theorem gives that these 4 singular points of
Y1/G are of the form 1

2(1, 1, 1).
The calculations are identical in the chart {y1 = 1} in Y1. They are slightly

different in the chart {y2 = 1}, but the conclusion is the same: the singularities
of Y1/G in this chart are again of the form 1

2(1, 1, 1). Namely, this chart has co-
ordinates (y0, y1, e2) with 0 = e22 − 2e2 + 2, and E0 = {e2 = 0}. The fixed point
scheme Y G

1 is the Cartier divisor E0 except at the 4 points (y0, y1, e2) equal to
(0, 0, 0), (1, 0, 0), (0, 1, 0), or (1, 1, 0). At each of these points P , the G-action has
the form required for Theorem 2.2 with e = s := e2, namely that I(e2) = e22(1 +m)
and I(zj) = e2(zj +m2) for j = 0, 1, for some coordinates (z0, z1, e2) at P , where m
is the maximal ideal at P . Also, the equation for e2 implies that 2 is in the ideal
(e22), hence in e2m, which is another assumption in Theorem 2.2. So the theorem
gives that these 4 singular points of Y1/G are again of the form 1

2(1, 1, 1).
Thus all 7 singular points of Y1/G are of the form 1

2(1, 1, 1). By the Reid-Tai
criterion (Theorem 1.1), they are terminal. (To check that by hand: each singular
point has a resolution Z → U1/G whose exceptional divisor is Ej ∼= P2

F2
with

normal bundle O(−2). As a result, the singularities of Y1/G are terminal, with
KZ = π∗(KY1/G) + 1

2Ej near each Ej .)
Recall that Y0 = Y is the regular scheme of dimension 3 that we started with.

(Thus Y1 is the blow-up of Y0 at the G-fixed point.) We now go on to show that
X = Y0/G is terminal. Write F0 for the image in Y1/G of the exceptional divisor
E0. Note that although G fixes E0 in Y1, the morphism E0 → F0 is a finite
purely inseparable morphism, not necessarily an isomorphism. (Indeed, G = Z/2
is not linearly reductive over Z2. So if G acts on an affine scheme T preserving a
closed subscheme S, the morphism S/G → T/G need not be a closed immersion.
Equivalently, the G-equivariant surjection O(T )→ O(S) need not yield a surjection
O(T )G → O(S)G.)

Write KY0 for the canonical sheaf ωY0/Z2
. Since Y0 is regular, KY0 is a line

bundle, described as follows [20, Definition 1.6]. First, let R = Z2[i]/(i
2 + 1). Then

we have an embedding D = SpecR ⊂ A1
Z2

; write I for the ideal (i2 + 1) ⊂ Z2[i]
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defining this subscheme. Then the adjunction formula KD = (KA1 +D)|D is made
into a definition:

ωR/Z2
= Ω1

Z2[i]/Z2
⊗Z2[i] R⊗R (I/I2)∗.

In these terms, one trivializing section of ωR/Z2
is α := di

i ·f , where f : I/I2 → R =
Z2[i]/I is the map sending i2 + 1 to 1. (Formally, one could think of this section
of ωR/Z2

as 1
i

di
d(i2+1)

.) Next, since π : Y0 → SpecR is smooth of relative dimension

2, we have KY0 = ωY0/Z2
= Ω2

Y0/R
⊗ π∗ωR/Z2

. So one trivializing section of KY0

is β := dx
x ∧

dy
y ∧

di
i · f . I claim that this section is fixed by G. Indeed, if we

extend the action of G on R to A1
Z2

by σ(i) = −i, then σ(f) = f and σ(di) = −di,
so σ(dii f) = di

i f . Also, σ(dx/x) = −dx/x and σ(dy/y) = −dy/y, from which we
see that σ(β) = β as claimed. It follows that the divisor class KY0/G is linearly
equivalent to zero, in particular Cartier. Here KY0/G is the canonical sheaf in the
sense of [20, Definition 1.6]; Y0/G is not Gorenstein, since (as we have shown) it is
not Cohen-Macaulay.

Since KX is Cartier, we can write

KY1/G = π∗KX + a0F0

for an integer a0. Since Y1/G is terminal, X is terminal if and only if the discrepancy
a0 is positive. Here and below, we write π for all the relevant contractions, which
in the formula above means π : Y1/G→ Y0/G = X.

The analogous formula for Y1 is easy. Since Y1 is the blow-up of the regular
3-dimensional scheme Y0 at a closed point,

KY1 = π∗KY0 + 2E0.

Write f for the quotient map Y0 → Y0/G or Y1 → Y1/G. The ramification of f
along E0 can be computed as follows.

Corollary 5.2. Let U and G be as in Theorem 2.2. So U is a regular scheme with
an action of the group G = Z/p = 〈σ : σp = 1〉, for a prime number p, and assume
that UG is generically a regular divisor E1 = {x1 = 0} and that I(x1) = x21(unit).
Assume that U is of finite type over a regular base scheme S and that G acts on U
over S. Write KU and KU/G for the canonical classes over S. Then U → U/G is
fiercely ramified along E1. In particular, the image F1 of E1 in U/G is Q-Cartier,
and f : U → U/G satisfies f∗F1 = E1 and KU = f∗KU/G + (p− 1)E1.

Proof. The norm N(x1) is a function on U/G that defines a positive multiple of the
divisor F1, and so F1 is Q-Cartier. Since the fixed point scheme UG is generically
the Cartier divisor E1, the ramification divisor of f is (p − 1)E1 by Lemma 3.1.
That is, KU = f∗KU/G + (p − 1)E1. Also, the fixed point scheme is generically
E1 = {x1 = 0} with coefficient 1, whereas I(x1) vanishes to order 2 along E1;
so section 3 gives that the ramification of f along E1 is fierce. In particular, the
ramification index e is 1, meaning that f∗F1 = E1.

In particular, returning to our example with p = 2, we have seen that the divisor
E0 has multiplicity 1 in the fixed point scheme (Y1)

G. Also, Corollary 5.2 gives that
f : Y1 → Y1/G is fiercely ramified along E0. So we have

KY1 = f∗KY1/G + E0
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and f∗F0 = E0. (The same is true for the example in characteristic 2 that we are
imitating [29].)

Since f : Y0 → Y0/G is étale in codimension 1, we have KY0 = f∗KY0/G. It
follows that

f∗KY1/G = KY1 − E0

= (π∗KY0 + 2E0)− E0

= π∗f∗KY0/G + E0

= f∗(π∗KY0/G + F0).

Therefore,
KY1/G = π∗KY0/G + F0.

Because the coefficient of the exceptional divisor F0 is positive, and Y1/G is terminal
as shown above, X = Y0/G is terminal.

6 Characteristic 3

Theorem 6.1. Let the group G = Z/3 with generator τ act on P2 over F3 by

τ([u0, u1, u2]) = [u1, u2, u0]

and on P1 by
τ([y0, y1]) = [y0, y0 + y1].

Then (P2 ×P1)/G is terminal, not Cohen-Macaulay, and of dimension 3 over F3.

Proof. We work throughout over k = F3. Write G = Z/3 = 〈σ : σ3 = 1〉, with
τ := σ−1. Let Y0 = P2 × P1 and X = Y0/G. The only fixed point of G on Y0 is
P = ([1, 1, 1], [0, 1]). So X is normal of dimension 3, and X is smooth over k outside
the image of P , which we also call P . Also, 3KX is Cartier. By Fogarty, since P is
an isolated fixed point of G = Z/p on a smooth 3-fold in characteristic p, X is not
Cohen-Macaulay at P [13, Proposition 4].

It remains to show that X is terminal. One can resolve the singularities of X by
performing G-equivariant blow-ups of Y0. However, as in section 5, we will shorten
the proof by recognizing that, after two G-equivariant blow-ups Y2 → Y1 → Y0,
the singularities of Y2/G become toric, namely quotients of a regular scheme by
µ3. That makes it easy to check that Y0/G is terminal, without having to continue
making G-equivariant blow-ups.

Before this approach, I found a G-equivariant blow-up Y18 → · · · → Y0 with
Y18/G regular, but the construction involved 18 blow-ups along points or curves.
The approach here, looking for toric singularities instead of regularity, saves a lot
of work.

To put the fixed point at the origin, we change coordinates on Y0 by: x0 =
(u0 + u1 + u2)/u1, x1 = (−u1 + u2)/u1, and x2 = y0/y1. Then G acts on the open
subset U of Y0 given by

U = {(x0, x1, x2) ∈ A3 : 1 + x2 6= 0, 1− x2 6= 0, 1 + x1 6= 0, 1 + x0 − x1 6= 0}.
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The G-action on U is given by

τ(x0, x1, x2) =

(
x0

1 + x1
,
x1 + x0
1 + x1

,
x2

1 + x2

)
.

As we blow up, we will not need to keep track of the precise affine open set on which
G acts, since we are only concerned with the action near the fixed point set.

Let Y1 be the blow-up of Y0 at the G-fixed point, which is the origin in these
coordinates. Then the open subset of Y1 over U ⊂ Y0 is

{((x0, x1, x2), [y0, y1, y2]) ∈ U ×P2 : x0y1 = x1y0, x0y2 = x2y0, x1y2 = x2y1}.

Clearly the fixed point set Y G
1 is contained in the exceptional divisor E0

∼= P2.
It turns out to be a curve isomorphic to P1. We need three coordinate charts
to cover E0. First consider the open subset {y0 = 1} in Y1. Here (x0, x1, x2) =
(x0, x0y1, x0y2), and G acts by

τ(x0, y1, y2) =

(
x0

1 + x0y1
, 1 + y1,

y2(1 + x0y1)

1 + x0y2

)
.

By the action on the y1 coordinate, there are no fixed points in this open set.
Next, work in the open set {y1 = 1} ⊂ Y1. Here (x0, x1, x2) = (y0x1, x1, y2x1),

E0 = {x1 = 0}, and G acts by

τ(y0, x1, y2) =

(
y0

1 + y0
,
x1(1 + y0)

1 + x1
,

y2(1 + x1)

(1 + y0)(1 + x1y2)

)
.

The fixed point scheme Y G
1 is defined by: I(y0) = −y20/(1 + y0), I(x1) = x1(y0 +

O(x1)), and I(y2) = y2(−y0 + O(x1))/(1 + y0 + O(x1)). Since we know that the
fixed point set Y G

1 is contained in E0 = {x1 = 0}, we read off that the fixed point
set is the line {0 = y0 = x1} in E0.

Finally, consider the open set {y2 = 1}. Then (x0, x1, x2) = (x2y0, x2y1, x2), and
G acts by

τ(y0, y1, x2) =

(
y0(1 + x2)

1 + y1x2
,

(y0 + y1)(1 + x2)

1 + y1x2
,

x2
1 + x2

)
.

In these coordinates, the exceptional divisor E0
∼= P2 in Y1 is {x2 = 0}. The fixed

point scheme of G is defined by: I(y0) = y0x2(1− y1 +O(x2)), I(y1) = y0 +O(x2),
and I(x2) = x22(−1 +O(x2)). We know that the fixed point set is contained in E0,
and these equations imply that the fixed point set is the line {0 = y0 = x2} in E0,
the same line as in the previous chart. Thus we have shown that the fixed point set
in all of Y1 is a curve isomorphic to P1.

Let Y2 be the blow-up of Y1 along the (reduced) G-fixed curve, with exceptional
divisor E1 ⊂ Y2. It is clear that Y G

2 is contained in E1 as a set. Write E0 for
the strict transform of E0 ⊂ Y1 in Y2. It turns out that the fixed point scheme
Y G
2 is equal to the Cartier divisor E1 except at six points in E1, three over the

point [y0, y1, y2] = [0, 1, 0] in E0 ⊂ Y1 and one each over [y0, y1, y2] equal to [0, 1, 1],
[0, 1,−1], or [0, 0, 1]. Since E1 is a P1-bundle over P1, we will need to look at four
affine charts to see all of it. (See Figure 2. Each affine chart we consider in Y2
contains exactly one of the four vertices of the square.)
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Y0 Y1

E0

Y2

E0 E1

Figure 2: For j = 0, 1, 2, G acts freely on Yj outside the shaded or marked loci; Yj/G is
regular outside the marked loci; and Yj/G has toric singularities outside the red loci.

First work over the chart {y1 = 1} in Y1. We wrote out the G-action on this
chart above, with coordinates (y0, x1, y2). Here E0 = {x0 = 0}. We defined Y2 as
the blow-up of Y1 along the G-fixed curve {0 = y0 = x1} in E0. So, over this open
subset of Y1, Y2 is an open subset of

{((y0, x1, y2), [w0, w1]) ∈ A3 ×P1 : y0w1 = x1w0}.

First look at the chart {w0 = 1} in Y2 over {y1 = 1} in Y1. (This chart contains
the upper left vertex of E1, in Figure 2.) Then (y0, x1, y2) = (y0, y0w1, y2), and
G = Z/3 acts by

τ(y0, w1, y2) =

(
y0

1 + y0
,
w1(1 + y0)

2

1 + y0w1
,

y2(1 + y0w1)

(1 + y0w1y2)(1 + y0)

)
.

Here E0 = {w1 = 0} and E1 = {y0 = 0}. The fixed point scheme is defined by:
I(y0) = y20(−1 + O(y0)), I(w1) = y0w1(−1 − w1 + O(y0)), and I(y2) = y0y2(−1 +
w1 − w1y2 + O(y0)). So the fixed point scheme (near E1) is E1 with multiplicity 1
except at points with 0 = y0, 0 = w1(w1 + 1), and 0 = y2(1 − w1 + w1y2). Thus
the bad points are (y0, w1, y2) = (0, 0, 0) in E0 ∩E1, (0,−1, 0), and (0,−1,−1). We
have found three bad points in E1, with the first one in E0 ∩ E1.

The other chart over {y1 = 1} in Y1 is {w1 = 1} in Y2 (the chart containing the
upper right vertex of E1 in Figure 2). Then (y0, x1, y2) = (w0x1, x1, y2), and G acts
by

τ(w0, x1, y2) =

(
w0(1 + x1)

(1 + w0x1)2
,
x1(1 + w0x1)

1 + x1
,

y2(1 + x1)

(1 + x1y2)(1 + w0x1)

)
.

Here E0 does not appear, and E1 = {x1 = 0}. The fixed point scheme is defined
(near E1) by: I(w0) = w0x1(1 + w0 + O(x1)), I(x1) = x21(−1 + w0 + O(x1)), and
I(y2) = x1y2(1−w0−y2 +O(x1)). So Y G

2 is E1 with multiplicity 1 except at points
where 0 = x1, 0 = w0(1 + w0), and 0 = y2(1 − w0 − y2). Thus the bad points in
this chart are (w0, x1, y2) equal to (0, 0, 0), (0, 0, 1), (−1, 0, 0), and (−1, 0,−1). The
points with w0 6= 0 appeared in the previous chart, {w0 = 1}. So we have two new
bad points, (w0, x1, y2) equal to (0, 0, 0) or (0, 0, 1), for a total of five so far.

To see all of E1 in Y2, we also need to work over {y2 = 1} ⊂ Y1. The coordinates
are (y0, y1, x2), and E0 = {x2 = 0}. The corresponding open subset of Y2 is an open
subset of

{((y0, y1, x2), [z0, z2]) ∈ A3 ×P1 : y0z2 = x2z0}.
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First consider {z0 = 1} in Y2, the chart containing the lower left vertex of E1 in
Figure 2. Then (y0, y1, x2) = (y0, y1, y0z2), and G acts by

τ(y0, y1, z2) =

(
y0(1 + y0z2)

1 + y0y1z2
,

(y0 + y1)(1 + y0z2)

1 + y0y1z2
,
z2(1 + y0y1z2)

(1 + y0z2)2

)
.

Here E0 = {z2 = 0} and E1 = {y0 = 0}. The fixed point scheme Y G
2 is defined

(near E1) by: I(y0) = y20z2(1−y1 +O(y0)), I(y1) = y0(1+y1z2−y21z2 +O(y0)), and
I(z2) = y0z

2
2(1 + y1 +O(y0)). This is equal to E1 with multiplicity 1 except at the

point (y0, y1, z2) = (0,−1,−1). This appeared in the chart {w0 = 1} over {y1 = 1}
(as the point (y0, w1, y2) = (0,−1,−1)).

The other chart is {z2 = 1} in Y2, which contains the lower right vertex of E1

in Figure 2. Then (y0, y1, x2) = (z0x2, y1, x2), and G acts by

τ(z0, y1, x2) =

(
z0(1 + x2)

2

1 + y1x2
,

(y1 + z0x2)(1 + x2)

1 + y1x2
,

x2
1 + x2

)
.

In this open set, E0 does not appear, and E1 = {x2 = 0}. The fixed point scheme
Y G
2 is defined by: I(z0) = z0x2(−1− y1 +O(x2)), I(y1) = x2(z0 + y1− y21 +O(x2)),

and I(x2) = x22(−1 + O(x2)). We know that Y G
2 is contained in E1 = {x2 = 0} as

a set. We read off that the fixed point scheme Y G
2 is generically the Cartier divisor

E1. The bad locus (where that fails) is given, in E1, by: 0 = x2, 0 = z0(1 + y1),
and 0 = z0 + y1 − y21. So we see three bad points in E1: (z0, y1, x2) = (0, 1, 0),
(−1,−1, 0), or (0, 0, 0). The first two points appeared in the chart {w1 = 1} in Y2
over {y1 = 1} in Y1 (as (w0, x1, y2) = (0, 0, 1) or (−1, 0,−1), respectively). On the
other hand, the origin in this chart is new; so we have a total of six bad points.

Thus the fixed point scheme Y G
2 is E1 with multiplicity 1 except at six points

on E1. We will use Theorem 2.2 to recognize the resulting six singularities of Y2/G
as toric; so we have no further need for G-equivariant blow-ups.

First consider three of the six bad points of E1 ⊂ Y2, the ones with [y0, y1, y2]
equal to [0, 0, 1], [0, 1, 1], or [0, 1,−1]. In these cases, our calculation of the action
of G shows (by Theorem 2.2) that the singularity of Y2/G at these points is of
the form 1

3(1, 1, 2). (For example, for the point [y0, y1, y2] = [0, 0, 1], work in the
chart {z2 = 1} in Y2 over {y2 = 1} in Y1. Here we have coordinates (z0, y1, x2),
(Y2)

G
red is {x2 = 0}, and the point we are considering is the origin. As above,

we have I(z0) = z0x2(−1 − y1 + O(x2)), I(y1) = x2(z0 + y1 − y21 + O(x2)), and
I(x2) = x22(−1+O(x2)). So Theorem 2.2 applies, with e = s := x2. The linear map
ϕ in the theorem is given by: ϕ(z0) = −z0, ϕ(y1) = z0 + y1, and ϕ(x2) = −x2. This
map has eigenvalues −1, 1,−1 in F3, and so Theorem 2.2 gives that the singularity
of Y2/G at this point is of the form 1

3(−1, 1,−1) ∼= 1
3(1, 1, 2).) By the Reid-Tai

criterion (Theorem 1.1), this singularity is terminal.
Next, consider the chart {w1 = 1} in Y2 over {y1 = 1} in Y1. As shown above,

in coordinates (w0, x1, y2), the points (0, 0, 0) and (−1, 0, 0) are bad for the action
of G on Y2, and (Y2)red = {x1 = 0}. Here again, the singularity of Y2/G at these
points is of the form 1

3(1, 1, 2). (For example, for the point (w0, x1, y2) = (0, 0, 0),
we saw that I(w0) = w0x1(1 + w0 + O(x1)), I(x1) = x21(−1 + w0 + O(x1)), and
I(y2) = x1y2(1− w0 − y2 +O(x1)). So Theorem 2.2 applies with e = s := x1. The
linear map ϕ in the theorem is given by ϕ(w0) = w0, ϕ(x1) = −x1, and ϕ(y2) = y2.
This has eigenvalues 1,−1, 1, and so the theorem gives that the singularity of Y2/G
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at this point is of the form 1
3(1,−1, 1) ∼= 1

3(1, 1, 2).) In particular, these two points
are terminal. Thus Y2/G is terminal at five of its six singular points.

Finally, we consider the last singular point of Y2/G. In the chart {w0 = 1} in Y2
over {y1 = 1} in Y1, the point P is (y0, w1, y2) = (0, 0, 0), and (Y2)

G
red = {y0 = 0}.

In this case, our calculation of the action of G shows (by Theorem 2.2) that the
singularity of Y2/G is of the form 1

3(1, 1, 1). (As above, we have I(y0) = y20(−1 +
O(y0)), I(w1) = y0w1(−1−w1 +O(y0)), and I(y2) = y0y2(−1+w1−w1y2 +O(y0)).
So Theorem 2.2 applies with e = s := y0. The linear map ϕ in the theorem is given
by ϕ(y0) = −y0, ϕ(w1) = −w1, and ϕ(y2) = −y2. So Theorem 2.2 gives that the
singularity of Y2/G at this point is of the form 1

3(−1,−1,−1) ∼= 1
3(1, 1, 1).) By the

Reid-Tai criterion (Theorem 1.1), Y2/G is canonical at this point, but not terminal.
We can now begin the proof that Y0/G is terminal. Write f for any of the

quotient maps Yj → Yj/G. The fixed point scheme Y G
2 is the Cartier divisor E1

except at six points on E1. Clearly 3KY2/G is Cartier. Write E0 ⊂ Y2 for the strict
transform of E0 ⊂ Y1. For j = 0, 1 in Y2, let Fj be the image (as an irreducible
divisor) of Ej in Y2/G. Since G acts nontrivially on E0, we have f∗F0 = E0. The
divisor E1 is fixed by G. By Corollary 5.2, f is fiercely ramified along E1. So the
ramification divisor is p − 1 times E1, meaning that KY2 = f∗(KY2/G) + 2E1, and
we have f∗F1 = E1.

Write πij for the birational morphism Yi → Yj or Yi/G → Yj/G (with i > j).
Since π20 : Y2 → Y0 is defined by blowing up points and smooth curves on a smooth
3-fold, we have:

KY1 = π∗10(KY0) + 2E0

and

KY2 = π∗21(KY1) + E1

= π∗20(KY0) + 2(E0 + E1) + E1

= π∗20(KY0) + 2E0 + 3E1.

Therefore,

f∗π∗20KY0/G = π∗20f
∗KY0/G

= π∗20KY0

= KY2 − 2E0 − 3E1

= f∗(KY2/G) + 2E1 − 2E0 − 3E1

= f∗(KY2/G)− 2E0 − E1

= f∗(KY2/G − 2F0 − F1).

So
KY2/G = π∗20(KY0/G) + 2F0 + F1.

Here every exceptional divisor of the birational morphism Y2/G → Y0/G has
positive coefficient. Also, we have shown that Y2/G is terminal outside one point
which is canonical, and that point lies on F1. Therefore, Y0/G is terminal. We
showed earlier that it is not Cohen-Macaulay. Theorem 6.1 is proved.

Remark 6.2. The divisor class π∗KY0/G = KY2/G − 2F0 − F1 has some non-integer
discrepancies, for example over the origin in the chart {z2 = 1} in Y2 over {y2 = 1}

23



in Y1. As a result, KY0/G is not Cartier (as one can also check directly), in contrast
to our examples in residue characteristic 2 ([29, Theorem 5.1] and Theorem 5.1).
I expect that there is also a 3-fold X over F3 that is terminal and non-Cohen-
Macaulay with KX Cartier. Namely, one should replace P1 in Theorem 6.1 by the
“Harbater-Katz-Gabber” curve C = {0 = yp− yzp−1−xp−1z} in P2

Fp
[9], here with

p = 3, which has a Z/p-action by τ([x, y, z]) = [x, y+ z, z] that preserves a nonzero
1-form near the fixed point [1, 0, 0]. For p = 3, C is a supersingular elliptic curve.

7 The example over the 3-adic integers

Theorem 7.1. Let G be the group G = Z/3 with generator τ . Let R = Z3[e]/(e
3−

3e2 + 3), which is the ring of integers in a Galois extension of Q3 with group G =
Z/3. Let G act on the scheme P2

R by

τ([u0, u1, u2], e) = ([u1, u2, u0], 3 + e− e2).

Then the scheme P2
R/G is terminal, not Cohen-Macaulay, of dimension 3, and flat

over Z3.

This example behaves much like the example over F3, Theorem 6.1. Theorem
8.1. In particular, Figure 2 accurately depicts the blow-ups we make in mixed char-
acteristic (0, 3), just as in characteristic 3. We can view R as the subring Z3[ζ9]

+

of the cyclotomic ring Z3[ζ9] fixed by ζ9 7→ ζ−19 , with e = ζ9+1+ζ−19 . Informally, R
is the simplest ramified Z/3-extension of Z3. More broadly, this action of G on P2

R

was chosen as possibly the simplest action of Z/3 on a 3-fold in mixed characteristic
(0, 3) with an isolated fixed point. The simplicity helps to ensure that the quotient
scheme is terminal.

Proof. We write G = Z/3 = 〈σ : σ3 = 1〉, with τ := σ−1. Let Y0 = P2
R with G

acting diagonally on P2 and on R, and let X = Y0/G. Write e2 for the generator e
of R, to fit better with our numbering of coordinates on Y0; so we have

0 = e32 − 3e22 + 3.

The only fixed point ofG on Y0 is the closed point P ∼= SpecF3 given by ([u0, u1, u2], e2) =
([1, 1, 1], 0). So X is normal of dimension 3, and X is regular outside the image of
P , which we also call P . Clearly 3KX is Cartier.

It is not automatic from Fogarty’s results [13], but we can use his methods to
show that X is not Cohen-Macaulay at P . As in the proof of Theorem 5, using that
G has an isolated fixed point on the 3-fold Y0, it suffices to show that H1(G,O(Y0))
is not zero. This cohomology group is ker(tr)/ im(1 − σ) on O(Y0), where the
trace is 1 + σ + σ2. The equation 0 = e32 − 3e22 + 3 (specifically, the coefficient
of e22) implies that e2 has trace 3. So tr(1 − e2) = 0, and hence 1 − e2 defines
an element of H1(G,O(Y0)). Note that 1 − e2 restricts to 1 ∈ O(P ) = F3 on
the fixed point P . Therefore, 1 − e2 has nonzero image under the restriction map
H1(G,O(Y0))→ H1(G,O(P )) ∼= F3. So H1(G,O(Y0)) is not zero, and hence Y0/G
is not Cohen-Macaulay.

It remains to show that X is terminal. One can resolve the singularities of X by
performing G-equivariant blow-ups of Y0. However, as in sections 5 and 6, we will
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shorten the proof by recognizing that, after two G-equivariant blow-ups Y2 → Y1 →
Y0, the singularities of Y2/G become toric (in Kato’s mixed-characteristic sense),
namely quotients of a regular scheme by µ3. That makes it easy to check that Y0/G
is terminal, without having to continue making G-equivariant blow-ups.

To put the fixed point at the origin, we change coordinates on Y0 by: x0 =
(u0 + u1 + u2 − 3)/u1 and x1 = (−u1 + u2)/u1. Then G acts on

U := {(x0, x1, e2) ∈ A3
Z3

: 0 = 3− 3e22 + e32, 1 + x1 6= 0, 1 + x0 − x1 6= 0}

by

τ(x0, x1, e2) =

(
x0 − 3x1
1 + x1

,
x0 − 2x1
1 + x1

, 3 + e2 − e22
)
.

In what follows, we will often not need to keep track of the precise open set on
which G acts, because we are only concerned with the G-fixed point scheme.

The blow-up Y1 → Y0 at the G-fixed point is, over the open set U ⊂ Y0:

{((x0, x1, e2), [y0, y1, y2]) ∈ U ×Z3 P
2
Z3

: x0y1 = x1y0, x0y2 = e2y0, x1y2 = e2y1}.

Clearly the fixed point set Y G
1 is contained in the exceptional divisor E0

∼= P2
F3

.
It turns out to be a curve isomorphic to P1

F3
. We need three coordinate charts to

cover E0. First look at the open set U0 = {y0 = 1} in Y1. Then (x0, x1, e2) =
(x0, x0y1, x0y2), and so

U0 = {(x0, y1, y2) ∈ A3
Z3

: 0 = x30y
3
2 − 3x20y

2
2 + 3, 1 + x0y1 6= 0, 1 + x0 − x0y1 6= 0}.

The exceptional divisor E0 is {x0 = 0}. Here G acts by

τ(x0, y1, y2) =

(
x0(1− 3y1)

1 + x0y1
,

1− 2y1
1− 3y1

,
y2(1 + 2x0y2 − x20y22)(1 + x0y1)

1− 3y1

)
.

We know that the fixed point scheme Y G
1 is contained in E0 = {x0 = 0} as a set, and

that 3 = 0 on E0. The fixed point scheme is defined by: I(x0) = x20y1(−1 +O(x0)),
I(y1) = 1 +O(x0), and I(y2) = x0y2(y1− y2 +O(x0)). By the second equation, Y G

1

is empty in this open set.
Next, consider the open set U1 = {y1 = 1} in Y1. Then (x0, x1, e2) = (x1y0, x1, x1y2),

and G acts on

U1 = {(y0, x1, y2) ∈ A3
Z3

: 0 = 3− 3x21y
2
2 + x31y

3
2, 1 + x1 6= 0, 1− x1 + x1y2 6= 0}.

Namely, G acts by

τ(y0, x1, y2) =

(
y0 − 3

y0 − 2
,
x1(y0 − 2)

1 + x1
,
y2(1 + x1)(1 + 2x1y2 − x21y22)

y0 − 2

)
.

Here E0 = {x1 = 0}. We know that Y G
1 is contained in E0 = {x1 = 0}, as a

set (and hence 3 = 0 on (Y1)
G
red). More precisely, the fixed point scheme Y G

1 is
defined by: I(y0) = (−y20 + O(x1))/(1 + y0 + O(x1)), I(x1) = x1(y0 + O(x1)), and
I(y2) = y2(−y0 + O(x1))/(1 + y0 + O(x1)). So Y G

1 is the line {y0 = x1 = 0}, as a
set.
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Finally, consider the chart {y2 = 1} in Y1. We have coordinates (y0, y1, e2), with
(x0, x1, e2) = (e2y0, e2y1, e2), and E0 = {e2 = 0}. Here G acts on the open set

U2 = {(y0, y1, e2) ∈ A3
Z3

: 0 = 3− 3e22 + e32, 1 + e2y0 6= 0, 1 + e2y0 − e2y1 6= 0}.

Namely, G acts by

τ(y0, y1, e2) =

(
(y0 − 3y1)(1 + e2 − e22)

1 + e2y1
,

(y0 − 2y1)(1 + e2 − e22)
1 + e2y1

, 3 + e2 − e22
)
.

The fixed point scheme Y G
1 is defined by: I(y0) = e2(y0 − y0y1 + O(e2)), I(y1) =

y0+O(e2), and I(e2) = e22(−1+O(e2)). We know that the fixed point set is contained
in E0 = {e2 = 0}. We read off that the fixed point set is the line 0 = y0 = e2, which
is the same line seen in the previous chart. Thus we have shown that the fixed point
set in all of Y1 is a curve isomorphic to P1

F3
in E0.

Seeking to make the fixed point set a divisor, we let Y2 be the blow-up of Y1
along the (reduced) G-fixed curve, with exceptional divisor E1 ⊂ Y2. It is clear that
Y G
2 is contained in E1 as a set. We will see that the fixed point scheme Y G

2 is equal
to the Cartier divisor E1 except at six points on E1. These correspond exactly to
the six bad points that occur in the example over F3 (Figure 2). Since E1 is a
P1-bundle over P1

F3
, we will need to look at four affine charts to see all of it.

First work over the open subset {y1 = 1} in Y1, with coordinates (y0, x1, y2),
where E0 = {x1 = 0}. Since Y2 is the blow-up of Y1 along the G-fixed curve
{0 = y0 = x1}, this part of Y2 is given by

{((y0, x1, y2), [w0, w1]) ∈ A3
Z3
×P1

Z3
: 0 = 3− 3x21y

2
2 + x31y

3
2, y0w1 = x1w0}.

First consider the open set {w0 = 1} ⊂ Y2 over {y1 = 1} ⊂ Y1. Then
(y0, x1, y2) = (y0, y0w1, y2), E0 = {w1 = 0}, and E1 = {y0 = 0}. Also, e2 = y0w1y2,
and so 3 = 3y20w

2
1y

2
2 − y30w3

1y
3
2. Here G acts by

τ(y0, w1, y2) =

(
y0 − 3

y0 − 2
,

w1(y0 − 2)2

(1 + y0w1)(1− 3y0w2
1y

2
2 + y20w

3
1y

3
2)
,

y2(1 + y0w1)(1 + 2y0w1y2 − y20w2
1y

2
2)

y0 − 2

)
.

The fixed point scheme Y G
2 (near E1) is defined by: I(y0) = y20(−1 + O(y0)),

I(w1) = y0w1(−1−w1 +O(y0)), and I(y2) = y0y2(−1 +w1−w1y2 +O(y0)). So Y G
2

is the Cartier divisor E1 except where 0 = y2(1− w1 + w1y2) and 0 = w1(1 + w1).
So we have found three bad points, (y0, w1, y2) = (0, 0, 0) in E0 ∩E1 and (0,−1, 0),
and (0,−1,−1) in E1.

The other chart over {y1 = 1} in Y1 is {w1 = 1} in Y2. Then (y0, x1, y2) =
(w0x1, x1, y2), E0 does not appear, and E1 = {x1 = 0}. Also, e2 = x1y2, and so
3 = 3x21y

2
2 − x31y32. Here G acts by

τ(w0, x1, y2) =

(
(w0 − 3x1y

2
2 + x21y

3
2)(1 + x1)

(w0x1 − 2)2
,
x1(w0x1 − 2)

1 + x1
,

y2(1 + x1)(1 + 2x1y2 − x21y22)

w0x1 − 2

)
.
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So the fixed point scheme Y G
2 (near E1) is defined by: I(w0) = x1(w0+w2

0 +O(x1)),
I(x1) = x21(−1 + w0 + O(x1)), and I(y2) = x1y2(1 − w0 − y2 + O(x1)). So Y G

2 is
the Cartier divisor E1 except where x1 = 0 (so 3 = 0), 0 = w0(1 + w0), and
0 = y2(1−w0−y2). So the bad points are (w0, x1, y2) = (0, 0, 0), (0, 0, 1), (−1, 0, 0),
and (−1, 0,−1). The points with w0 6= 0 appeared in the previous chart, {w0 = 1}.
So we have two new bad points, (w0, x1, y2) equal to (0, 0, 0) or (0, 0, 1), for a total
of five so far.

To see all of E1 in Y2, we also have to work over the open set {y2 = 1} ⊂ Y1,
with coordinates (y0, y1, x2), where E0 = {x2 = 0}. The corresponding open subset
of Y2 is an open subset of

{((y0, y1, e2), [z0, z2]) ∈ A3
Z3
×Z3 P

1
Z3

: 0 = 3− 3e22 + e32, y0z2 = e2z0}.

First consider the chart {z0 = 1} ⊂ Y2. Then (y0, y1, e2) = (y0, y1, y0z2), E0 =
{z2 = 0}, and E1 = {y1 = 0}. Also, e2 = y0z2, and so 0 = 3 − 3y20z

2
2 + y30z

3
2 . Here

G acts by

τ(y0, y1, z2) =

(
(y0 − 3y1)(1 + y0z2 − y20z22)

1 + y0y1z2
,

(y0 − 2y1)(1 + y0z2 − y20z22)

1 + y0y1z2
,
z2(4 + y0z2 − y20z22)(1 + y0y1z2)

1− 3y0y1z22 + y20y1z
3
2

)
.

The fixed point scheme (near E1) is defined by: I(y0) = y20z2(1 − y1 + O(y0)),
I(y1) = y0(1 + y1z2 − y21z2 + O(y0)), and I(z2) = y0z

2
2(1 + y1 + O(y0)). So Y G

2

is the Cartier divisor E1 except where y0 = 0 (so 3 = 0), 0 = 1 + y1z2 − y21z2,
and 0 = z22(1 + y1). So we have one bad point in this open set, (y0, y1, z2) =
(0,−1,−1). This already appeared in the chart {w0 = 1} over {y1 = 1} (as the
point (y0, w1, y2) = (0,−1,−1)).

The other chart is {z2 = 1} ⊂ Y2 over {y2 = 1} in Y1, with coordinates
(z0, y1, e2). Here y0 = e2z0, E0 does not appear, and E1 = {e2 = 0}. Here G
acts by

τ(z0, y1, e2) =

(
(z0 − 3e2y1 + e22y1)(−2− e2 + 2e22)

1 + e2y1
,

(e2z0 − 2y1)(1 + e2 − e22)
1 + e2y1

, 3 + e2 − e22
)
.

We know that the fixed point scheme Y G
2 is contained in E1 as a set. (Also, 3 =

O(e2) by the equation for Y2.) Explicitly, the fixed point scheme (near E2) is
defined by: I(z0) = e2(−z0 − z0y1 + O(e2)), I(y1) = e2(z0 + y1 − y21 + O(e2)), and
I(e2) = e22(−1 + O(e2)). So Y G

2 is the Cartier divisor E1 except where e2 = 0 (so
3 = 0), 0 = z0(1 + y1), and 0 = z0 + y1 − y21. So we see three bad points in E1:
(z0, y1, x2) = (0, 1, 0), (−1,−1, 0), or (0, 0, 0). The first two points appeared in the
chart {w1 = 1} in Y2 over {y1 = 1} in Y1 (as (w0, x1, y2) = (0, 0, 1) or (−1, 0,−1),
respectively). On the other hand, the origin in this chart is new; so we have a total
of six bad points.

Thus the fixed point scheme Y G
2 is E1 with multiplicity 1 except at six points

on E1. As in Theorem 6.1, Theorem 2.2 shows that five of the singular points of
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Y2/G are toric singularities of the form 1
3(1, 1, 2) (hence terminal), while the sixth is

a toric singularity of the form 1
3(1, 1, 1) (hence canonical). In fact, our calculations

of I = σ− 1 on the coordinates in this section are identical to those in section 6, to
the accuracy we state. We also need to check the assumption in Theorem 2.2 that
p ∈ ep−1m, that is, that 3 ∈ e2m. This is true because 3 = e32(unit) on Y2, and e2
is a multiple of the function e defining E1 in each coordinate chart; so 3 is in the
ideal (e3), hence in e2m at each of the bad points. As a result, Theorem 2.2 gives
the conclusions above about the 6 singular points of Y2/G.

The calculation of the discrepancies of Y0/G is likewise identical to the calcu-
lation in section 6. Therefore, Y0/G is terminal. We showed earlier that it is not
Cohen-Macaulay. Theorem 7.1 is proved.

Remark 7.2. In Theorem 7.1, the canonical class of Y0/G is not Cartier. I expect
that there is also a 3-dimensional scheme X, flat over Z3, that is terminal and non-
Cohen-Macaulay with KX Cartier. Namely, one should replace the p-adic integer
ring R = Z3[ζ9]

Z/2 in Theorem 7.1 by S = Z3[ζ9], with the action of G = Z/3 ⊂
(Z/9)∗. The point is that the canonical sheaf of S over Z3 has a G-equivariant
trivialization.

8 Characteristic 5

Theorem 8.1. Let the group G = Z/5 with generator τ act on the quintic del Pezzo
surface S5 over F5 by an embedding of G into the symmetric group Σ5 = Aut(S5),
and let G act on P1 by

τ([y0, y1]) = [y0, y0 + y1].

Then (S5 ×P1)/G is terminal, not Cohen-Macaulay, and of dimension 3 over F5.

We define the quintic del Pezzo surface (over any field) as the moduli space M0,5

of 5-pointed stable curves of genus 0. That makes it clear that the symmetric group
Σ5 acts on this surface.

Proof. We work throughout over k = F5. Write G = Z/5 = 〈σ : σ5 = 1〉, with
τ := σ−1. Let Y0 = S5 × P1 and X = Y0/G. In characteristic 5, G has only one
fixed point in S5, and so G has only one fixed point P in Y0. So X is normal of
dimension 3, and X is smooth over k outside the image of P (which we also call P ).
Also, 5KX is Cartier. By Fogarty, since P is an isolated fixed point of G = Z/p on
a smooth 3-fold in characteristic p, X is not Cohen-Macaulay at P [13, Proposition
4].

It remains to show that X is terminal. This example is more complicated than
those in characteristics 2 and 3, and it may be impossible to resolve the singularities
of X by performing G-equivariant blow-ups of Y0. (Indeed, in the simpler situation
of actions of G = Z/p in characteristic zero, one cannot always resolve the singu-
larities of a quotient Y/G via G-equivariant blow-ups of Y when p ≥ 5 [19, Claim
2.29.2].) Fortunately, as in earlier sections, we can reach toric singularities after
some G-equivariant blow-ups. It will then be easy to check that Y0/G is terminal.
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The G-action on S5 over k is given on an open subset isomorphic to an open
subset of A2 by:

τ(s0, s1) =

(
s0 − s1 + s20 + s0s1

(1− 2s0)(1− s0 − s1)
,

s1 − 2s20 − 2s0s1
(1− 2s0)(1− s0 − s1)

)
.

Here the fixed point is at the origin. (Section 9 explains where this formula comes
from.) So the G-action on an open subset U ⊂ Y0 is given (on an open neighborhood
of the origin in A3) by:

τ(s0, s1, s2) =

(
s0 − s1 + s20 + s0s1

(1− 2s0)(1− s0 − s1)
,

s1 − 2s20 − 2s0s1
(1− 2s0)(1− s0 − s1)

,
s2

1 + s2

)
.

As we blow up, we will not need to keep track of the precise affine open set on which
G acts, since we are only concerned with the action near the fixed point set.

Let Y1 be the blow-up of Y0 at the G-fixed point, which is the origin in these
coordinates. Then the open subset of Y1 over U ⊂ Y0 is

{((s0, s1, s2), [y0, y1, y2]) ∈ U ×P2 : s0y1 = s1y0, s0y2 = s2y0, s1y2 = s2y1}.

The exceptional divisor E0 is isomorphic to P2. It turns out that the fixed point
set of G on Y1 is a curve isomorphic to P1 in E0. To check that, first work in the
open subset {y0 = 1} in Y1. Here (s0, s1, s2) = (s0, s0y1, s0y2), and G acts by

τ(s0, y1, y2) =

(
s0(1 + s0 − y1 + s0y1)

(1− 2s0)(1− s0 − s0y1)
,
−2s0 + y1 − 2s0y1
1 + s0 − y1 + s0y1

,

y2(1− 2s0)(1− s0 − s0y1)
(1 + s0y2)(1 + s0 − y1 + s0y1)

)
.

Here E0 = {s0 = 0}. The fixed point scheme Y G
1 is defined by the vanishing

of: I(s0) = s0(−y1 + O(s0)), I(y1) = (y21 + O(s0))/(1 − y1 + O(s0)), and I(y2) =
y2(y1 + O(s0))/(1 − y1 + O(s0)). We know that Y G

1 is contained (as a set) in E0

(since Y G
0 is only the origin). So the fixed point set is the line {0 = s0 = y1}, in

this chart.
In the chart {y1 = 1} in Y1, we have s0 = s1y0 and s2 = s1y2, so we have

coordinates (y0, s1, y2). Here E0 = {s1 = 0}. We can write the action of G in these
coordinates (for example using Magma). We find that the fixed point scheme Y G

1 is
defined by: I(y0) = −1+O(s1), I(s1) = s21(1+y0−2y20), and I(y2) = s1y2(−1−y0−
y2+2y20). Since Y G

1 is contained (as a set) in E0, the first equation shows that Y G
1 is

empty, in this chart. In the last chart {y2 = 1} in Y1, we have coordinates (y0, y1, s2),
and E0 = {s2 = 0}. The fixed point scheme is defined by: I(y0) = −y1 + O(s2),
I(y1) = s2(y1 + y21 + y0y1 − 2y20 +O(s2)), and I(s2) = s22(−1 +O(s2)). Since Y G

1 is
contained (as a set) in E0, the fixed point set is the line {0 = y1 = s2}, the same
line seen in an earlier chart.

Thus (Y G
1 )red is isomorphic to P1. Our criterion for a quotient by G to have

toric singularities (Theorem 2.2) requires the G-fixed locus to have codimension 1;
so let Y2 be the blow-up of Y1 along this P1. Clearly G continues to act on Y2. The
exceptional divisor E1 in Y2 is a P1-bundle over P1, and so the natural way to cover
E1 by affine charts involves 4 charts, as follows.
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Figure 3: For j = 0, 1, 2, G acts freely on Yj outside the red loci.

Over the open set {y0 = 1} in Y1, Y2 is the blow-up along the G-fixed curve
{0 = s0 = y1}, so Y2 has coordinates ((s0, y1, y2), [w0, w1]). First take {w0 = 1},
so y1 = s0w1, and we have coordinates (s0, w1, y2). Here E0 does not appear,
and E1 = {s0 = 0}. The fixed point scheme Y G

2 is defined by: I(s0) = s20(−1 −
w1 + O(s0)), I(w1) = −2 + O(s0), and I(y2) = s0y2(1 + w1 − y2 + O(s0)). We
know that the fixed point set is contained in E1, and so the formula for I(w1)
implies that Y G

2 is empty, in this chart. In the other chart {w1 = 1} in Y2 over
the same open set in Y1, we have s0 = y1w0, and so Y2 has coordinates (w0, y1, y2).
Here E0 = {w0 = 0} and E1 = {y1 = 0}. The fixed point scheme is defined
by I(w0) = w0(2w0 + O(y1))/(1 − 2w0 + O(y1)), I(y1) = y1(−2w0 + O(y1)), and
I(y2) = y1y2(1 + w0 − w0y2 + O(y1)). So Y G

2 is the line {0 = w0 = y1} = E0 ∩ E1,
in this chart.

To see the rest of E1 ⊂ Y2, work over the open set {y2 = 1} in Y1. Here
Y2 is the blow-up along the G-fixed curve {0 = y1 = s2}, so Y2 has coordinates
((y0, y1, s2), [r1, r2]). First take {r1 = 1} in Y2, so s2 = y1r2, and we have coordinates
(y0, y1, r2). Here E0 = {r2 = 0} and E1 = {y1 = 0}. Here Y G

2 is given by
I(y0) = y1(−1 + y0r2 − y20r2 + O(y1)), I(y1) = y1r2(−2y20 + O(y1)), and I(r2) =
r22(2y20 +O(y1))/(1− 2y20r2 +O(y1)). We know that the fixed point set is contained
in E1, and we read off that it is the union of the two lines {0 = y1 = r2} = E0 ∩E1

and {0 = y0 = y1} in E1. The first curve appeared in an earlier chart, and the
second is new. Finally, the other open set is {r2 = 1} in Y2, so y1 = s2r1, and
we have coordinates (y0, r1, s2). Here E0 does not appear, and E1 = {s2 = 0}.
Here Y G

2 is given by I(y0) = s2(y0 − r1 − y20 + O(s2)), I(r1) = −2y20 + O(s2),
and I(s2) = s22(−1 + O(s2)). We read off that the fixed point set is the curve
{0 = y0 = s2}, which is the second curve in the previous chart.

Thus (Y2)
G as a set is the union of two P1’s meeting at a point. We are trying

to make the fixed locus have codimension 1, and so our next step is to blow up
one of those curves. Namely, let Y3 be the blow-up of Y2 along the G-fixed curve
E0 ∩ E1. The exceptional divisor E2 in Y3 is a P1-bundle over P1, and so we need
to look at four affine charts to see all of it.

First, work over the open set {r1 = 1} in Y2 over {y2 = 1} in Y1. Then Y3 is
the blow-up along the curve {0 = y1 = r2} = E0 ∩ E1, and so Y3 has coordinates
(y0, y1, r2), [z1, z2]. First take {z1 = 1}, so r2 = y1z2, and we have coordinates
(y0, y1, z2). Here E0 = {z2 = 0}, E1 does not appear, and E2 = {y1 = 0}. The fixed
point scheme Y G

3 is defined by: I(y0) = y1(−1+O(y1)), I(y1) = y21z2(−2y20+O(y1)),
and I(z2) = y1z

2
2(−y20 +O(y1)). These equations are equivalent to y1 = 0, near E2;

so the fixed point scheme Y G
2 is the Cartier divisor E2, in this chart. (Thus, by

Theorem 2.1, Y2/G is smooth over k = F5, in this open set.)
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Figure 4: For j = 3, 4, G acts freely on Yj outside the shaded or marked loci; Yj/G is
regular outside the marked loci; and Yj/G has toric singularities outside the red loci.

The other chart is {z2 = 1} in Y3, so y1 = r2z1, and we have coordinates
(y0, z1, r2). Here E0 does not appear, E1 = {z1 = 0}, and E2 = {r2 = 0}. The fixed
point scheme Y G

3 is given by I(y0) = z1r2(−1+O(r2)), I(z1) = z1r2(y
2
0+O(r2)), and

I(r2) = r22(2y20 +O(r2)). The fixed point scheme is generically E2 with multiplicity
1, together with the other fixed curve we knew from Y2, here given by {0 = y0 =
z1} ⊂ E1. In more detail, the “bad locus” where the scheme Y G

3 is not just E2 as
a Cartier divisor is given by removing a factor of r2 from these equations, yielding:
0 = z1(−1 + O(r2)), 0 = z1(y

2
0 + O(r2)), and 0 = r2(2y

2
0 + O(r2)). We know the

fixed locus away from E2, so assume that r2 = 0; then these equations show that
the bad locus inside E2 is the curve {0 = z1 = r2} = E1 ∩ E2.

Fortunately, Theorem 2.2 implies that Y3/G has toric singularities at points of
E1 ∩ E2 outside the origin. Namely, let e = r2 and s = z1; then I(s) = es(unit)
near E1 ∩E2 = {0 = z1 = r2} outside the origin. The theorem gives that Y3/G has
singularity 1

5(0, 1, 2) at points of E1 ∩ E2 outside the origin.
To see all of E2, we also have to work over {w1 = 1} in Y2, with coordinates

(w0, y1, y2), over {y0 = 1} in Y1. Here Y3 is the blow-up along the G-fixed curve
{0 = w0 = y1} = E0 ∩ E1, so Y3 has coordinates (w0, y1, y2), [v0, v1]. First take
{v0 = 1}, so y1 = w0v1, and we have coordinates (w0, v1, y2) on Y3. Here E0

does not appear, E1 = {v1 = 0}, and E2 = {w0 = 0}. The fixed point scheme
is defined by: I(w0) = w2

0(2 − 2v1 + O(w0)), I(v1) = w0v1(1 − 2v1 + O(w0)), and
I(y2) = w0v1y2(1+O(w0)). In the chart we are working over in Y2, the fixed set Y G

2

is only the curve E0 ∩E1 we are blowing up, and so Y G
3 (in this chart) is contained

in E2 as a set. By the equations, Y G
3 is generically the Cartier divisor E2, and the

bad locus (where that fails) is given by 0 = w0, 0 = v1(1 − 2v1), and 0 = v1y2. So
the bad locus is the union of the curve {0 = w0 = v1} = E1 ∩ E2 and the point
(w0, v1, y2) = (0,−2, 0) in E2. By Theorem 2.2 (using e = s = w0), Y3/G has
singularity 1

5(2, 1, 0) everywhere on the curve E1 ∩E2 (in this chart), in agreement
with an earlier calculation.

To analyze the bad point above, change coordinates temporarily by t1 = v1 + 2;
then the bad point becomes the origin in coordinates (w0, t1, y2). In these coordi-
nates, we have I(w0) = w2

0(1− 2t1 +O(w0)), I(t1) = I(v1) = (−t1 − 2t21 +O(w0)),
and I(y2) = w0y2(−2+O(w0)). Theorem 2.2 applies, with s = e = w0, and we read
off that Y3/G has singularity 1

5(1,−1,−2) at this point. That is terminal, by the
Reid-Tai criterion (Theorem 1.1).
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The last chart we need to consider in Y3 is the other open set {v1 = 1} over
the open set above in Y2, {w1 = 1} ⊂ Y2 over {y0 = 1} ⊂ Y1. So w0 = y1v0, and
we have coordinates (v0, y1, y2). Here E0 = {v0 = 0}, E1 does not appear, and
E2 = {y1 = 0}. Here Y G

3 is defined by: I(v0) = v0y1(2 − v0 + O(y1)), I(y1) =
y21(1 − 2v0 + O(y1)), and I(y2) = y1y2(1 + O(y1)). As in the previous chart, we
know that Y G

3 is contained in E2 as a set. By the equations, Y G
3 is generically

the Cartier divisor E2, and the bad locus (where that fails) is given by 0 = y1,
0 = v0(2− v0), and 0 = y2. Thus there are two bad points in this chart, (v0, y1, y2)
equal to (2, 0, 0) ∈ E2 or (0, 0, 0) ∈ E0 ∩ E2. The first is the bad point from the
previous chart, but the second one is new. Theorem 2.2 works to analyze the second
point (the origin), with e = s = y1. We read off that Y3/G has singularity 1

5(2, 1, 1)
at this point.

That finishes the analysis of Y3. In particular, as a set, Y G
3 is the union of the

divisor E2 and a curve in E1. It is tempting to blow up the G-fixed curve next,
but that leads to a large number of blow-ups over one point of the curve, where the
fixed point scheme is especially complicated. We therefore define Y4 as the blow-up
at that point, and only later blow up the whole curve. This leads more efficiently
to toric singularities.

Namely, let Y4 be the blow-up of Y3 at the origin in the chart {r2 = 1} in Y2 (un-
changed in Y3), with coordinates (y0, r1, s2). So Y4 has coordinates (y0, r1, s2), [q0, q1, q2].
The exceptional divisor E3 is isomorphic to P2, and so it is covered by 3 affine charts.
First take {q0 = 1} in Y4, so r1 = y0q1 and s2 = y0q2, and we have coordinates
(y0, q1, q2). Here E1 = {q2 = 0} and E3 = {y0 = 0}. The fixed point scheme Y G

4

is defined by: I(y0) = y20q2(1 − q1 + O(y0)), I(q1) = y0(−2 + q1q2 + q21q2 + O(y0)),
and I(q2) = y0q

2
2(−2 + q1 +O(y0)). So Y G

4 is generically the Cartier divisor E3; the
G-fixed curve in E1 does not appear in this chart. The bad locus (where the scheme
Y G
4 is not just E3) is given by 0 = y0, 0 = −2+q1q2 +q21q2, and 0 = q22(−2+q1). By

the second equation, q2 6= 0, and so the third equation gives that q1 = 2. Then the
second equation gives that 0 = −2 + 2q2− q2 = −2 + q2, so q2 = 2. That is, there is
only one bad point in this chart, (y0, q1, q2) = (0, 2, 2) ∈ E3. To analyze that point,
change coordinates temporarily by s1 = q1−2 and s2 = q2−2. In these coordinates,
I(y0) = y20(−2−s1−s2−s1s2 +O(y0)), I(s1) = I(q1) = y0(s2 +2s21 +s21s2 +O(y0)),
and I(s2) = I(q2) = y0(−s1−s1s2+s1s

2
2+O(y0)). By Theorem 2.2, with e = s = y0,

Y4/G has a µ5-quotient singularity. Explicitly, the linear map ϕ over k in the theo-
rem is ϕ(y0) = −2y0, ϕ(s1) = s2, and ϕ(s2) = −s1, which has eigenvalues −2, 2,−2.
So Y4/G has singularity 1

5(−2, 2,−2) at this point. This is terminal, by the Reid-Tai
criterion.

Next, take the open set {q1 = 1} in Y4, so y0 = r1q0 and s2 = r1q2, and Y4
has coordinates (q0, r1, q2). Here E1 = {q2 = 0} and E3 = {r1 = 0}. The fixed
point scheme Y G

4 is defined by: I(q0) = r1(−q2 − q0q2 + 2q30 + O(r1)), I(r1) =
r21(2q2 − 2q20 + O(r1)), and I(q2) = r1q2(2q2 + 2q20 + O(r1)). So Y G

4 is generically
the Cartier divisor E3, together with the G-fixed curve {0 = q0 = q2} in E1. The
bad locus in E3 is given by 0 = r1, 0 = −q2 − q0q2 + 2q30, and 0 = q2(2q2 + 2q20).
This yields two bad points, (q0, r1, q2) equal to (−2, 0, 1) or (0, 0, 0). The first one
is the bad point from the previous chart, and the second is not surprising, as it is
the intersection point of E3 with the G-fixed curve.

Finally, take the open set {q2 = 1} in Y4, so y0 = s2q0 and r1 = s2q1, and
we have coordinates (q0, q1, s2). Here E1 does not appear, and E3 = {s2 = 0}.
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Figure 5: For j = 5, 6, G acts freely on Yj outside the shaded or marked loci; Yj/G is
regular outside the marked loci; and Yj/G has toric singularities outside the red loci.

The fixed point scheme Y G
4 is defined by: I(q0) = s2(2q0 − q1 + O(s2)), I(q1) =

s2(−2q1 − 2q20 +O(s2)), and I(s2) = s22(−1 +O(s2)). So Y G
4 is generically E3. The

bad locus in E3 is given by: 0 = s2, 0 = 2q0 − q1, and 0 = −2q1 − 2q20. This yields
two bad points, (q0, q1, s2) equal to (−2, 1, 0) (seen in the previous two charts) or
(0, 0, 0), which is new. Theorem 2.2 applies at this new point, with e = s = s2. The
k-linear map ϕ is given by ϕ(q0) = 2q0 − q1, ϕ(q1) = −2q1, and ϕ(s2) = −s2. So
ϕ has eigenvalues (2,−2,−1), and hence Y4/G has singularity 1

5(2,−2,−1) at this
point. This is terminal, by the Reid-Tai criterion.

That completes our description of Y4. Next, let Y5 be the blow-up of Y4 along
the G-fixed curve in E1. The exceptional divisor E4 in Y5 is a P1-bundle over P1,
and so it is covered by four affine charts. First work over the open set {z2 = 1} in Y3
(unchanged in Y4), with coordinates (y0, z1, r2); this contains the point where the
G-fixed curve in E1 = {z1 = 0} meets E2 = {r2 = 0}. Here Y5 is the blow-up along
the G-fixed curve {0 = y0 = z1}, and so Y5 has coordinates (y0, z1, r2), [n0, n1]. First
take the open set {n0 = 1} in Y5, so z1 = y0n1, and we have coordinates (y0, n1, r2).
Here E1 = {n1 = 0}, E2 = {r2 = 0}, and E4 = {y0 = 0}. The fixed point scheme
Y G
5 is defined by: I(y0) = y0n1r2(−1 + O(y0)), I(n1) = n1r2(n1 + O(y0))/(1 −
n1r2 +O(y0)), and I(r2) = y0r

2
2(−2n1r2 +O(y0)). So Y G

5 , as a set, is the union of
the divisor E2 and the curve {0 = y0 = n1} = E1 ∩ E4. (In particular, the fixed
point set is still not all of codimension 1.) We have analyzed the bad locus of E2

in previous steps, but we have to add here that the bad locus of E2 is disjoint from
E2 ∩E4 except for the point where E2 meets the G-fixed curve, by the formula for
I(n1).

The other chart is {n1 = 1} in Y5, so y0 = z1n0, and we have coordinates
(n0, z1, r2). Here E1 does not appear, E2 = {r2 = 0}, and E4 = {z1 = 0}. The fixed
point scheme Y G

5 is defined by: I(n0) = r2(−1+O(z1)), I(z1) = z21r2(−2r2+O(z1)),
and I(r2) = z1r

2
2(−2r2 +O(z1)). These equations reduce to r2 = 0 near E4, and so

Y G
5 is the Cartier divisor E2, in this chart.

To finish our description of E4 in Y5, we work over the open set where the
G-fixed curve in Y4 meets E3, namely {q1 = 1} in Y4. Here Y4 has coordinates
(q0, r1, q2), E1 = {q2 = 0}, E3 = {r1 = 0}, and the G-fixed curve is {0 = q0 = q2} in
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E1. So the blow-up Y5 along the G-fixed curve has coordinates (q0, r1, q2), [u0, u2].
First take {u0 = 1} in Y5, so q2 = q0u2, and we have coordinates (q0, r1, u2). Here
E1 = {u2 = 0}, E3 = {r1 = 0}, and E4 = {q0 = 0}. The fixed point scheme
Y G
5 is defined by: I(q0) = q0r1(−u2 + O(q0)), I(r1) = q0r

2
1(2u2 + O(q0)), and

I(u2) = r1u
2
2(1 +O(q0))/(1− r1u2 +O(q0)). We know the fixed set outside E4, and

so we read off that the fixed set is the divisor E3 together with the G-fixed curve
E1 ∩E4 found earlier. We have analyzed the bad set of E3 away from E4 in earlier
blow-ups, and we see from the formula for I(u2) that the bad set of E3 near E3∩E4

is only the point E1 ∩ E3 ∩ E4 where the G-fixed curve meets E3.
The other chart is {u2 = 1} in Y5. Here q0 = q2u0, and so we have coordinates

(u0, r1, q2). Here E1 does not appear, E3 = {r1 = 0}, and E4 = {q2 = 0}. The fixed
point scheme Y G

5 is defined by: I(u0) = r1(−1 + O(q2)), I(r1) = r21q2(2 + O(q2)),
and I(q2) = r1q

2
2(2 +O(q2)). These equations reduce to r1 = 0 near E4, and so the

fixed point scheme Y G
5 is the Cartier divisor E3, in this chart.

That completes our description of Y5. Let Y6 be the blow-up of Y5 along the G-
fixed curve E1∩E4. The exceptional divisor E5 in Y6 is a P1-bundle over P1, covered
by four affine charts. First take the open set {n0 = 1} in Y5, which contains the
point where the G-fixed curve meets E2. Here Y5 has coordinates (y0, n1, r2), with
E1 = {n1 = 0}, E2 = {r2 = 0}, and E4 = {y0 = 0}. Since Y6 is the blow-up along
the G-fixed curve {0 = y0 = n1} = E1∩E4, Y6 has coordinates (y0, n1, r2), [m0,m1].
First take {m0 = 1} in Y6, so n1 = y0m1, and we have coordinates (y0,m1, r2).
Here E1 = {m1 = 0}, E2 = {r2 = 0}, E4 does not appear, and E5 = {y0 = 0}.
The fixed point scheme Y G

6 is defined by: I(y0) = y20m1r2(−1 + O(y0)), I(m1) =
y0m1r2(2m1 + O(y0)), and I(r2) = y20r

2
2(2 − 2m1r2 + O(y0)). We know the fixed

point set away from E5, and so we read off that the fixed point scheme is generically
the Cartier divisor E2 +E5. (Since E5 is fixed by G, we have finally made the fixed
point set of codimension 1.) Let e = y0r2. The bad locus (where the scheme Y G

6 is
more than the Cartier divisor E2 +E5), on E5, is given by factoring out e from the
equations and setting y0 = 0, so we get: 0 = y0 and 0 = 2m2

1. So, as a set, the bad
locus is the curve {0 = y0 = m1} = E1 ∩ E5. Theorem 2.2 does not seem to apply
to this curve, and so Y6/G might not have toric singularities there; we will have to
blow up one more time.

For now, look at the other open set, {m1 = 1} in Y6. So s0 = n1m0, and we
have coordinates (m0, n1, r2). Here E1 does not appear, E2 = {r2 = 0}, E4 =
{m0 = 0}, and E5 = {n1 = 0}. The fixed point scheme Y G

6 is defined by: I(m0) =
m0n1r2(−2 + O(n1)), I(n1) = n21r2(1 + O(n1)), and I(r2) = m0n

2
1r

2
2(2m0 − 2r2 +

O(n1)). Since we know the fixed point set outside E5, we read off that the fixed
point scheme is generically the Cartier divisor E2 + E5. Let e = n1r2. The bad
locus (where the scheme Y G

6 is more than the Cartier divisor E2 +E5) is the curve
{0 = m0 = n1} = E4 ∩ E5. Fortunately, Theorem 2.2 applies, with s = m0. We
read off that Y6/G has singularity 1

5(−2, 1, 0) along the whole curve E4∩E5, in this
chart.

To finish describing E5 ⊂ Y6, we have to work over the open set {u0 = 1}
in Y5, where the G-fixed curve E1 ∩ E4 in Y5 meets E3. Here Y5 has coordinates
(q0, r1, u2), with E1 = {u2 = 0}, E3 = {r1 = 0}, and E4 = {q0 = 0}. Then
Y6 is the blow-up along the G-fixed curve {0 = q0 = u2} = E1 ∩ E4, so Y6 has
coordinates (q0, r1, u2), [t0, t2]. First take {t0 = 1} in Y6, so u2 = q0u2 and we have
coordinates (q0, r1, t2). Here E1 = {t2 = 0}, E3 = {r1 = 0}, E4 does not appear,
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Figure 6: G acts freely on Y7 outside the shaded or marked loci, and Y7/G is regular outside
the marked loci. Here Y7/G has toric singularities.

and E5 = {q0 = 0}. The fixed point scheme is defined by: I(q0) = q20r1(−t2+O(q0)),
I(r1) = q20r

2
1(−2 + 2t2 +O(q0)), and I(t2) = q0r1t2(2t2 +O(q0)). So the fixed point

scheme is generically E3 + E5. Let e = q0r1. The bad locus (where the scheme Y G
6

is more than the Cartier divisor E3 +E5), in E5, is given by 0 = q0 and 0 = 2t22, so
(as a set) it is the curve {0 = q0 = t2} = E1 ∩E5, which we met in an earlier chart.

The other chart is {t2 = 1} in Y6, so q0 = u2t0, and we have coordinates
(t0, r1, u2). Here E1 does not appear, E3 = {r1 = 0}, E4 = {t0 = 0}, and E5 =
{u2 = 0}. The fixed point scheme Y G

6 is defined by: I(t0) = t0r1u2(−2 + O(u2)),
I(r1) = t0r

2
1u

2
2(2− 2t0 +O(u2)), and I(u2) = r1u

2
2(1 +O(u2)). So Y G

6 is generically
E3 + E5. Let e = r1u2. The bad locus (where the scheme Y G

6 is more than the
Cartier divisor E3 + E5), in E5, is the curve {0 = t0 = u2} = E4 ∩ E5, which
we met in an earlier chart. Theorem 2.2 applies, with s = t0. Namely, Y6/G has
singularity 1

5(−2, 0, 1) everywhere on the curve E4 ∩E5 in this chart (including the
origin, which did not appear in the earlier chart).

That completes our description of Y6. In particular, the G-fixed locus has codi-
mension 1 in Y6, and Y6/G has toric singularities outside the image of the curve
E1 ∩ E5. Let Y7 be the blow-up of Y6 along that curve. The exceptional divisor
E6 in Y7 is a P1-bundle over P1, and so we will cover E6 with four affine charts.
First, work over the open set {m0 = 1} in Y6, where the bad curve E1 ∩ E5 meets
E2. Here Y6 has coordinates (y0,m1, r2), with E1 = {m1 = 0}, E2 = {r2 = 0}, and
E5 = {y0 = 0}. Since Y7 is the blow-up along the curve {0 = y0 = m1} = E1 ∩ E5,
Y7 has coordinates (y0,m1, r2), [j0, j1].

First take {j0 = 1} in Y7, so m1 = y0j1, and we have coordinates (y0, j1, r2).
Here E1 = {j1 = 0}, E2 = {r2 = 0}, E5 does not appear, and E6 = {y0 = 0}.
The fixed point scheme Y G

7 is defined by: I(y0) = y30j1r2(−1 + O(y0)), I(j1) =
y20j1r2(1 − 2j1 + O(y0)), and I(r2) = y20r

2
2(2 + O(y0)). So Y G

7 is generically the
Cartier divisor E2 + 2E6. Let e = y20r2. The bad locus (where the scheme Y G

7 is
more than the Cartier divisor E2 + 2E6), in E6, is given by 0 = y0, 0 = j1(1− 2j1),
and 0 = r2, so it consists of the two points (y0, j1, r2) equal to (0, 0, 0) = E1∩E2∩E6

or (0,−2, 0) ∈ E2∩E6. At the first point, Theorem 2.2 applies, with s = r2. We read
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off that Y7/G has singularity (0, 1, 2) everywhere on the curve E1∩E2 (including the
origin, which did not appear when we saw E1 ∩E2 in an earlier chart). To analyze
the second point, change coordinates temporarily by s1 = j1 + 2; then that point
becomes the origin in coordinates (y0, s1, r2). We have I(y0) = y30r2(2−s1 +O(y0)),
I(s1) = I(j1) = y20r2(−s1 − 2s21 + O(y0)), and I(r2) = y20r

2
2(2 + O(y0)). Theorem

2.2 applies, with s = r2. We read off that Y7/G has singularity 1
5(2,−1, 2) at this

point.
The other open set is {j1 = 1} in Y7, so y0 = m1j0, and we have coordinates

(j0,m1, r2). Here E1 does not appear, E2 = {r2 = 0}, E5 = {j0 = 0}, and E6 =
{m1 = 0}. The fixed point scheme Y G

7 is defined by: I(j0) = j20m
2
1r2(2−j0+O(m1)),

I(m1) = j0m
3
1r2(2 + j0 + O(m1)), and I(r2) = j20m

2
1r

2
2(2 + O(m1)). So Y G

7 is
generically E2 + E5 + 2E6. Let e = j0m

2
1r2. The bad locus (where the scheme

Y G
7 is more than the Cartier divisor E2 + E5 + 2E6), on E6, is given by: 0 = m1,

0 = j0(2− j0), and 0 = j0r2. So the bad locus is the union of the curve {0 = j0 =
m1} = E5 ∩ E6 and the point (j0,m1, r2) = (2, 0, 0) in E2 ∩ E6. That point is the
one we analyzed in the previous chart. For the curve, Theorem 2.2 applies, using
s = j0. We read off that Y7/G has singularity 1

5(2, 2, 0) everywhere on the curve
E5 ∩ E6, in this chart.

Last, work over the open set {t0 = 1} in Y6, where the bad curve E1 ∩ E5

meets E3. Here Y6 has coordinates (q0, r1, t2), with E1 = {t2 = 0}, E3 = {r1 = 0},
and E5 = {q0 = 0}. We obtain Y7 by blowing up along the curve {0 = q0 =
t2} = E1 ∩ E5, so Y7 has coordinates (q0, r1, t2), [x0, x2]. First take {x0 = 1},
so t2 = q0x2, and we have coordinates (q0, r1, x2). Here E1 = {x2 = 0}, E3 =
{r1 = 0}, E5 does not appear, and E6 = {q0 = 0}. The fixed point scheme
Y G
7 is defined by: I(q0) = q30r1(2 − x2 + O(q0)), I(r1) = q20r

2
1(−2 + O(q0)), and

I(x2) = q20r1x2(1 − 2x2 + O(q0)). So Y G
7 is generically E3 + 2E6. Let e = q20r1.

The bad locus (where the scheme Y G
7 is more than the Cartier divisor E3 + 2E6),

in E6, is given by: 0 = q0, 0 = r1, and 0 = x2(1 − 2x2), so it consists of the
two points (q0, r1, x2) equal to (0, 0, 0) = E1 ∩ E3 ∩ E6 or (0, 0,−2) in E3 ∩ E6.
Since I(r1) = er1(unit), Theorem 2.2 applies at both points. At the origin, the
theorem gives that Y7/G has singularity 1

5(2,−2, 1), which is terminal. For the
other point, change coordinates temporarily by y2 = x2 + 2, so that the point
becomes the origin in coordinates (q0, r1, y2). We have I(q0) = q30r1(−1−y2+O(q0)),
I(r1) = q20r

2
1(−2+O(q0)), and I(y2) = I(x2) = q20r1(−y2−2y22+O(q0)). So Theorem

2.2 gives that Y7/G has singularity 1
5(−1,−2,−1) at this point.

The other chart is {x2 = 1} in Y7, so q0 = t2x0, and we have coordinates
(x0, r1, t2). Here E1 does not appear, E3 = {r1 = 0}, E5 = {x0 = 0}, and E6 =
{t2 = 0}. The fixed point scheme Y G

7 is defined by: I(x0) = x20r1t
2
2(2− x0 +O(t2)),

I(r1) = x20r
2
1t

2
2(−2+O(t2)), and I(t2) = x0r1t

3
2(2−2x0+O(t2)). So Y G

7 is generically
E3 +E5 + 2E6. Let e = x0r1t

2
2. The bad locus (where Y G

7 is more than the Cartier
divisor E3+E5+2E6), in E6, is given by: 0 = t2, 0 = x0(2−x0), and 0 = x0r1, which
is the union of the curve {0 = x0 = t2} = E5∩E6 and the point (x0, r1, t2) = (2, 0, 0)
in E3 ∩ E6. We analyzed that point in the previous chart. Theorem 2.2 applies to
the curve, using s = x0. We read off that Y7/G has singularity 1

5(2, 0, 2) everywhere
on the curve E5∩E6 (including the origin, which did not appear in the earlier chart
where we met this curve).

That completes our analysis of Y7; we have shown that Y7/G has toric singular-
ities. It will now be straightforward to show that Y0/G is terminal.
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First, we can compute the canonical class of Y7, since Y7 is obtained from Y0
by a sequence of blow-ups along points and smooth curves. Write Ej for the strict
transform of the exceptional divisor in Yj+1 to any higher model. Write πij for the
morphism Yi → Yj (with i > j), and also for the resulting morphism Yi/G→ Yj/G.
First, KY1 = π∗10KY0 + 2E0, since Y1 → Y0 is the blow-up of a smooth 3-fold at a
point. Next, KY2 = π∗21KY1 + E1, since Y2 → Y1 is the blow-up along a smooth
curve, and we have π∗21E0 = E0 +E1 because the curve being blown up is contained
in E0. Likewise, we have:

KY3 = π∗32KY2 + E2, π
∗
32E0 = E0 + E2, π

∗
32E1 = E1 + E2,

KY4 = π∗43KY3 + 2E3, π
∗
43E0 = E0, π

∗
43E1 = E1 + E3, π

∗
43E2 = E2,

KY5 = π∗54KY4 + E4, π
∗
54E0 = E0,π

∗
54E1 = E1 + E4, π

∗
54E2 = E2, π

∗
54E3 = E3,

KY6 = π∗65KY5 + E5, π
∗
65Ej = Ej for j ∈ {0, . . . , 4} − {1, 4},

π∗65E1 = E1 + E5, π
∗
65E4 = E4 + E5,

KY7 = π∗76KY6 + E6, π
∗
76Ej = Ej for j ∈ {0, . . . , 5} − {1, 5},

π∗76E1 = E1 + E6, π
∗
76E5 = E5 + E6.

Combining these equations gives that

KY7 = π∗70KY0 + 2E0 + 3E1 + 6E2 + 5E3 + 4E4 + 8E5 + 12E6.

Write f for any of the quotient maps Yj → Yj/G. First, KY0/G is Q-Cartier since
Y0 is smooth, and KY0 = f∗KY0/G because f : Y0 → Y0/G is étale in codimension

1. Next, we computed that the fixed point scheme Y G
7 is the Cartier divisor E2 +

E3 + E5 + 2E6 outside a codimension-2 subset of Y7. By section 3, it follows that

KY7 = f∗KY7/G + (p− 1)(E2 + E3 + E5 + 2E6)

= f∗KY7/G + 4E2 + 4E3 + 4E5 + 8E6.

For each j ∈ {0, . . . , 7}, let Fj be the image of Ej in Y7/G, as an irreducible divisor.
For j ∈ {0, 1, 4}, G acts nontrivially on Ej (so f is unramified along Ej), and hence
Ej = f∗Fj . For the other j’s, in {2, 3, 5, 6}, section 3 and our calculations imply that
f is fiercely ramified along Ej , and so again we have Ej = f∗Fj . (For example, for
E2, use the first chart where E2 appeared, {z1 = 1} in Y3. There E2 is the divisor
{y1 = 0}, and Y G

3 has multiplicity 1 along E2, but I(y1) = y21z2(−2y20 + O(y1))
vanishes to order 2 > 1 along E2; so section 3 gives that f is fiercely ramified along
E2.)

We can combine these results to compute the discrepancies of the morphism
Y7/G→ Y0/G. Namely, we have

f∗(KY7/G − π
∗
70KY0/G) = f∗KY7/G − π

∗
70f
∗KY0/G

= KY7 − 4E2 − 4E3 − 4E5 − 8E6 − π∗70KY0

= 2E0 + 3E1 + 2E2 + E3 + 4E4 + 4E5 + 4E6

= f∗(2F0 + 3F1 + 2F2 + F3 + 4F4 + 4F5 + 4F6).

Therefore, KY7/G = π∗70(KY0/G) + 2F0 + 3F1 + 2F2 + F3 + 4F4 + 4F5 + 4F6. In
particular, these coefficients are all positive, which is part of showing that Y0/G is
terminal. (That would be all we need if Y7/G were smooth.)
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To show that Y0/G is terminal, it now suffices to show that the pair (Y7/G,D)
is terminal, where D := −2F0 − 3F1 − 2F2 − F3 − 4F4 − 4F5 − 4F6. Because the
coefficients of D are negative (which works to our advantage), this is clear at points
where Y7/G is terminal. There are 6 subvarieties (points or curves) where Y7/G is
not terminal, as we now address.

(1) Along the curve E1 ∩ E2, Y7/G has singularity 1
5(0, 1, 2), with F1 a toric

divisor of weight 1 and F2 a toric divisor of weight 2, using Theorem 4.1. To show
that (Y7/G,D) = (Y7/G,−3F1 − 2F2 − · · · ) is terminal along this curve, we need
to show that 4(i mod 5) + 3(2i mod 5) > 5 for i = 1, . . . 4, by Theorem 1.2. This is
clear, since the left side is ≥ 4 + 3 = 7 > 5.

(2) At a point in E0 ∩ E2, Y7/G has singularity 1
5(2, 1, 1), with F0 of weight 2

and F2 of weight 1. To show that (Y7/G,D) = (Y7/G,−2F0−2F2−· · · ) is terminal,
we need that 3(2i mod 5) + 3(i mod 5) + (i mod 5) > 5 for i = 1, . . . 4. Indeed, the
left side is ≥ 3 + 3 + 1 = 7 > 5.

(3) Along the curve E4∩E5, Y7/G has singularity 1
5(−2, 1, 0), with E4 of weight

−2 and E5 of weight 1. To show that (Y7/G,D) = (Y7/G,−4F4 − 4F5 − · · · ) is
terminal, we need that 5(−2i mod 5) + 5(i mod 5) > 5 for i = 1, . . . 4. Indeed, the
left side is ≥ 5 + 5 = 10 > 5.

(4) At a point in E2∩E6, Y7/G has singularity 1
5(2,−1, 2), with E2 and E6 both

of weight 2. To show that (Y7/G,D) = (Y7/G,−2F2 − 4F6 − · · · ) is terminal, we
need that 3(2i mod 5) + 5(2i mod 5) + (−i mod 5) > 5 for i = 1, . . . 4. Indeed, the
left side is ≥ 3 + 5 + 1 = 9 > 5.

(5) Along the curve E5 ∩ E6, Y7/G has singularity 1
5(2, 2, 0), with E5 and E6

both of weight 2. To show that (Y7/G,D) = (Y7/G,−4F5 − 4F6 − · · · ) is terminal,
we need that 5(2i mod 5) + 5(2i mod 5) > 5 for i = 1, . . . 4. Indeed, the left side is
≥ 5 + 5 = 10 > 5.

(6) At a point in E3∩E6, Y7/G has singularity 1
5(−1,−2,−1), with E3 of weight

−2 and E6 of weight −1. To show that (Y7/G,D) = (Y7/G,−F3 − 4F6 − · · · ) is
terminal, we need that 2(−2i mod 5)+5(−i mod 5)+(−i mod 5) > 5 for i = 1, . . . 4.
Indeed, the left side is ≥ 2 + 5 + 1 = 8 > 5.

That completes the proof that Y0/G is terminal. Theorem 8 is proved.

Remark 8.2. The divisor class π∗KY0/G = KY7/G + D happens to be Cartier on
the loci (1)–(6), above. However, it is not Cartier at the terminal singularity
1
5(2,−2,−1) in E3; one can compute that some discrepancies at divisors over that
point are not integers. As a result, KY0/G is not Cartier (as one can also check
directly). I expect that there is also a 3-fold X over F5 that is terminal and non-
Cohen-Macaulay with KX Cartier. Namely, one should replace P1 in Theorem 8.1
by the Harbater-Katz-Gabber curve of Remark 6.2, now with p = 5.

9 The example over the 5-adic integers

Theorem 9.1. Let the group G = Z/5 act on the quintic del Pezzo surface S5
over Z5 by an embedding of G into the symmetric group Σ5 = Aut(S5). Let R =
Z5[e]/(e

5− 5e4 + 25e2− 25e+ 5), which is the ring of integers in a Galois extension
of Q5 with group G = Z/5. Let G act on the scheme (S5)R by the diagonal action
on S5 and on R. Then the scheme (S5)R/G is terminal, not Cohen-Macaulay, of
dimension 3, and flat over Z5.
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We define the quintic del Pezzo surface S5 (over any commutative ring) as the
moduli space M0,5 of 5-pointed stable curves of genus 0. That makes it clear that
the symmetric group Σ5 acts on S5.

This example behaves much like the example over F5, Theorem 8.1. In par-
ticular, the figures in section 8 accurately depict the blow-ups we make in mixed
characteristic (0, 5), just as in characteristic 5. We can view R as the subring of
the cyclotomic ring Z5[ζ25] fixed by the automorphism ζ25 7→ ζ725 of order 4, with
e = 1 + ζ25 + ζ−125 + ζ725 + ζ−725 . Informally, R is the simplest ramified Z/5-extension
of Z5. More broadly, this action of G on (S5)R was chosen as possibly the simplest
action of Z/5 on a 3-fold in mixed characteristic (0, 5) with an isolated fixed point.
The simplicity helps to ensure that the quotient scheme is terminal.

Proof. We work throughout over Z5. Write G = Z/5 = 〈σ : σ5 = 1〉, with τ := σ−1.
By de Fernex [11], the action of G on S5 is conjugate to the birational action of G
on P2 by

τ([x, y, z]) = [x(z − y), z(x− y), xz].

The fixed point over F5 is [−2, 1,−1]. Let us change variables over Z5 to move
that point to [0, 0, 1] (although it is only fixed over F5). Namely, let v0 = x + 2y,
v1 = z − x− y, and v2 = y. In these coordinates, the action of G becomes

τ [v0, v1, v2] = [3v20 + 3v0v1 − 12v0v2 − 8v1v2 + 10v22,

− v20 − v0v1 + 5v0v2 + 3v1v2 − 5v22, (v0 + v1 − v2)(v0 − 3v2)].

Therefore, in affine coordinates (s0, s1) := (v0/v2, v1/v2), G acts by

τ(s0, s1) =

(
10− 12s0 − 8s1 + 3s20 + 3s0s1

(3− s0)(1− s0 − s1)
,
−5 + 5s0 + 3s1 − s20 − s0s1

(3− s0)(1− s0 − s1)

)
.

This reduces modulo 5 to the formula for the action of G on S5 over F5 in section
8.

Let Y0 = (S5)R, with the diagonal action of G on S5 and on R. Write e2 for the
generator e of R, to fit with our numbering of coordinates on Y0; so we have

0 = e52 − 5e42 + 25e22 − 25e2 + 5.

Then G acts on an affine neighborhood U of the origin by:

τ(s0, s1, e2) =

(
10− 12s0 − 8s1 + 3s20 + 3s0s1

(3− s0)(1− s0 − s1)
,
−5 + 5s0 + 3s1 − s20 − s0s1

(3− s0)(1− s0 − s1)
,

1

7
(20− 53e2 + 8e22 + 9e32 − 2e42)

)
.

(The last expression is a generator of the Galois group of R over Z5, as one can check
via Magma. The denominator 7 occurs because the ring of integers of Q(ζ25)

Z/4

is not monogenic, hence not generated over Z by e2. This causes no difficulties,
because we are working over Z5.) Note that U is written with three variables over
Z5, but this is a regular scheme of dimension 3 because of the equation satisfied by
e2:

0 = e52 − 5e42 + 25e22 − 25e2 + 5.
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We will apply Theorem 2.2 repeatedly to recognize the singularities of Yj/G,
for various blow-ups Yj of Y0. We remark now that the assumption in Theorem 2.2
that p ∈ ep−1m will be valid in each case, that is, that 5 ∈ e4m. Indeed, we have
5 = e52(unit) on Y0, hence on each blow-up Yj , and e2 is a multiple of the function
e defining the Weil divisor [Y G

j ] in each case, that being the function e we will use

for Theorem 2.2. So 5 is in the ideal (e5), hence in e4m at each of the bad points.
Let X = Y0/G. Since G acts freely on SpecR outside its closed point, the only

fixed point of G on Y0 is the closed point P ∼= SpecF5 given by (s0, s1, e2) = (0, 0, 0).
So X is normal of dimension 3, and X is regular outside the image of P , which we
also call P . Also, 5KX is Cartier.

It is not automatic from Fogarty’s results [13], but we can use his methods to
show that X is not Cohen-Macaulay at P . As in the proof of Theorem 5, using that
G has an isolated fixed point on the 3-fold Y0, it suffices to show that H1(G,O(Y0))
is not zero. This cohomology group is ker(tr)/ im(1− σ) on O(Y0), where the trace
is 1 + σ + · · · + σ4. The equation 0 = e52 − 5e42 + 25e22 − 25e2 + 5 (specifically, the
coefficient of e42) implies that e2 has trace 5. So tr(1 − e2) = 0, and hence 1 − e2
defines an element of H1(G,O(Y0)). Note that 1− e2 restricts to 1 ∈ O(P ) = F5 on
the fixed point P . Therefore, 1 − e2 has nonzero image under the restriction map
H1(G,O(Y0)) → H1(G,O(P ) ∼= F5. So H1(G,O(Y0)) is not zero, and hence Y0/G
is not Cohen-Macaulay.

It remains to show that Y0/G is terminal. This example is complicated, and
it may be impossible to resolve the singularities of X by performing G-equivariant
blow-ups of Y0. Fortunately, as in earlier sections, we can make Y7/G have toric
singularities after some G-equivariant blow-ups Y7 → · · · → Y0, exactly parallel to
those in the characteristic 5 example (section 8). In fact, all the formulas we write
for the fixed point loci will look identical to those in the characteristic 5 example,
because we only need to write those formulas modulo suitable error terms. It will
then be easy to check that Y0/G is terminal.

The blow-up Y1 → Y0 at the G-fixed point is, over the open set U ⊂ Y0:

{((x0, x1, e2), [y0, y1, y2]) ∈ U ×Z5 P
2
Z5

: x0y1 = x1y0, x0y2 = e2y0, x1y2 = e2y1}.

We will see that the fixed point set in Y1 is a curve isomorphic to P1
F5

. To check
that, first work in the open subset {y0 = 1} in Y1, with coordinates (s0, y1, y2); here
(s0, s1, e2) = (s0, s0y1, s0y2). This is an open neighborhood of the origin in

SpecZ5[s0, y1, y2]/((s0y2)
5 − 5(s0y2)

4 + 25(s0y2)
2 − 25(s0y2) + 5),

by the equation for e2. Since e2 = s0y2, e2 is in the ideal (s0), and hence 5 is also
in (s0) (which lets us simplify formulas written modulo (s0)). It is straightforward
to compute how G acts in this chart, but we do not write it out, for brevity. The
exceptional divisor E0 is {s0 = 0}, in this chart (and so E0 is isomorphic to P2

over F5). The fixed point scheme Y G
1 is defined by the vanishing of: I(s0) =

s0(−y1 + O(s0)), I(y1) = (y21 + O(s0))/(1 − y1 + O(s0)), and I(y2) = y2(y1 +
O(s0))/(1− y1 +O(s0)). We know that Y G

1 is contained (as a set) in E0 (since Y G
0

is only the origin in characteristic 5). So the fixed point set is the line {0 = s0 = y1},
in this chart.

In the chart {y1 = 1} in Y1, we have s0 = s1y0 and e2 = s1y2, so we have
coordinates (y0, s1, y2). Here E0 = {s1 = 0}. We can write the action of G in these

40



coordinates (for example using Magma). We find that the fixed point scheme Y G
1 is

defined by the vanishing of: I(y0) = −1 +O(s1), I(s1) = s21(1 + y0 − 2y20 +O(s1)),
and I(y2) = s1y2(−1−y0−y2+2y20 +O(s1)). Since Y G

1 is contained (as a set) in E0,
the first equation shows that Y G

1 is empty, in this chart. In the last chart {y2 = 1}
in Y1, we have coordinates (y0, y1, e2), and E0 = {e2 = 0}. The fixed point scheme
is defined by: I(y0) = −y1 + O(e2), I(y1) = e(y1 + y21 + y0y1 − 2y20 + O(e2)), and
I(e2) = e22(−1 +O(e2)). Since Y G

1 is contained (as a set) in E0, the fixed point set
is the line {0 = y1 = e2}, the same line seen in an earlier chart.

Thus (Y G
1 )red is isomorphic to P1

F5
. Our criterion for a quotient by G to have

toric singularities (Theorem 2.2) requires the G-fixed locus to have codimension 1;
so let Y2 be the blow-up of Y1 along this P1. Clearly G continues to act on Y2. The
exceptional divisor E1 in Y2 is a P1-bundle over P1

F5
, and so the natural way to

cover E1 by affine charts involves 4 charts, as follows. (See Figure 3, which applies
to the current example as well.)

Over the open set {y0 = 1} in Y1, Y2 is the blow-up along the G-fixed curve
{0 = s0 = y1}, so Y2 has coordinates ((s0, y1, y2), [w0, w1]). First take {w0 = 1}, so
y1 = s0w1, and we have coordinates (s0, w1, y2). As in every other chart, there are
three variables over Z5, but this is a regular scheme of dimension 3 because of the
equation satisfied by e2. In this case, we have e2 = s0y2, and so

0 = (s0y2)
5 − 5(s0y2)

4 + 25(s0y2)
2 − 25(s0y2) + 5.

In this chart, E0 does not appear, and E1 = {s0 = 0}. The fixed point scheme
Y G
2 is defined by: I(s0) = s20(−1 − w1 + O(s0)), I(w1) = −2 + O(s0), and I(y2) =
s0y2(1 +w1− y2 +O(s0)). We know that the fixed point set is contained in E1, and
so the formula for I(w1) implies that Y G

2 is empty, in this chart.
In the other chart {w1 = 1} in Y2 over the same open set in Y1, we have

s0 = y1w0, and so Y2 has coordinates (w0, y1, y2). Here E0 = {w0 = 0}, E1 =
{y1 = 0}. Also, e2 = w0y1y2. The fixed point scheme is defined by I(w0) =
w0(2w0+O(y1))/(1−2w0+O(y1)), I(y1) = y1(−2w0+O(y1)), and I(y2) = y1y2(1+
w0 − w0y2 + O(y1)). So Y G

2 is the line {0 = w0 = y1} = E0 ∩ E1 over F5, in this
chart.

To see the rest of E1 ⊂ Y2, work over the open set {y2 = 1} in Y1. Here
Y2 is the blow-up along the G-fixed curve {0 = y1 = e2}, so Y2 has coordinates
((y0, y1, e2), [r1, r2]). First take {r1 = 1} in Y2, so e2 = y1r2, and we have coordinates
(y0, y1, r2). Here E0 = {r2 = 0} and E1 = {y1 = 0}. Here Y G

2 is given by
I(y0) = y1(−1 + y0r2 − y20r2 + O(y1)), I(y1) = y1r2(−2y20 + O(y1)), and I(r2) =
r22(2y20 +O(y1))/(1− 2y20r2 +O(y1)). We know that the fixed point set is contained
in E1, and we read off that it is the union of the two lines {0 = y1 = r2} = E0 ∩E1

and {0 = y0 = y1} in E1. The first curve appeared in an earlier chart, and the
second is new. Finally, the other open set is {r2 = 1} in Y2, so y1 = e2r1, and
we have coordinates (y0, r1, e2). Here E0 does not appear, and E1 = {e2 = 0}.
Here Y G

2 is given by I(y0) = e2(y0 − r1 − y20 + O(e2)), I(r1) = −2y20 + O(e2),
and I(e2) = e22(−1 + O(e2)). We read off that the fixed point set is the curve
{0 = y0 = e2}, which is the second curve in the previous chart.

Thus (Y2)
G as a set is the union of two P1’s over F5 meeting at a point. We

are trying to make the fixed locus have codimension 1, and so our next step is to
blow up one of those curves. Namely, let Y3 be the blow-up of Y2 along the G-fixed
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curve E0 ∩ E1. The exceptional divisor E2 in Y3 is a P1-bundle over P1
F5

, and so
we need to look at four affine charts to see all of it. (See Figure 4, which applies to
the current example as well.)

First, work over the open set {r1 = 1} in Y2 over {y2 = 1} in Y1. Then Y3 is
the blow-up along the curve {0 = y1 = r2} = E0 ∩ E1, and so Y3 has coordinates
(y0, y1, r2), [z1, z2]. First take {z1 = 1}, so r2 = y1z2, and we have coordinates
(y0, y1, z2). As in every other chart, there are three variables over Z5, but this is a
regular scheme of dimension 3 because of the equation satisfied by e2. In this case,
we have e2 = y21z2, and so

0 = (y21z2)
5 − 5(y21z2)

4 + 25(y21z2)
2 − 25(y21z2) + 5.

In this chart, E0 = {z2 = 0}, E1 does not appear, and E2 = {y1 = 0}. The fixed
point scheme Y G

3 is defined by: I(y0) = y1(−1+O(y1)), I(y1) = y21z2(−2y20+O(y1)),
and I(z2) = y1z

2
2(−y20 +O(y1)). These equations are equivalent to y1 = 0, near E2;

so the fixed point scheme Y G
2 is the Cartier divisor E2, in this chart. (Thus, by

Theorem 2.1, Y2/G is regular, in this open set.)
The other chart is {z2 = 1} in Y3, so y1 = r2z1, and we have coordinates

(y0, z1, r2). Here E0 does not appear, E1 = {z1 = 0}, and E2 = {r2 = 0}. Also,
e2 = z1r

2
2. The fixed point scheme Y G

3 is given by I(y0) = z1r2(−1 + O(r2)),
I(z1) = z1r2(y

2
0 + O(r2)), and I(r2) = r22(2y20 + O(r2)). The fixed point scheme

is generically E2 with multiplicity 1, together with the other fixed curve we knew
from Y2, here given by {0 = y0 = z1} ⊂ E1. In more detail, the “bad locus”
where the scheme Y G

3 is not just E2 as a Cartier divisor is given by removing a
factor of r2 from these equations, yielding: 0 = z1(−1 +O(r2)), 0 = z1(y

2
0 +O(r2)),

and 0 = r2(2y
2
0 + O(r2)). We know the fixed locus away from E2, so assume

that r2 = 0; then these equations show that the bad locus inside E2 is the curve
{0 = z1 = r2} = E1 ∩ E2.

Fortunately, Theorem 2.2 implies that Y3/G has toric singularities at points of
E1 ∩ E2 outside the origin. Namely, let e = r2 and s = z1; then I(s) = es(unit)
near E1 ∩E2 = {0 = z1 = r2} outside the origin. The theorem gives that Y3/G has
singularity 1

5(0, 1, 2) at points of E1 ∩ E2 outside the origin.
To see all of E2 ⊂ Y3, we also have to work over {w1 = 1} in Y2, with coordinates

(w0, y1, y2), over {y0 = 1} in Y1. Here Y3 is the blow-up along the G-fixed curve
{0 = w0 = y1} = E0 ∩ E1, so Y3 has coordinates (w0, y1, y2), [v0, v1]. First take
{v0 = 1}, so y1 = w0v1, and we have coordinates (w0, v1, y2) on Y3. Here E0 does
not appear, E1 = {v1 = 0}, and E2 = {w0 = 0}. Also, e2 = w2

0v1y2. The fixed point
scheme is defined by: I(w0) = w2

0(2− 2v1 +O(w0)), I(v1) = w0v1(1− 2v1 +O(w0)),
and I(y2) = w0v1y2(1 + O(w0)). In the chart we are working over in Y2, the fixed
set Y G

2 is only the curve E0 ∩ E1 we are blowing up, and so Y G
3 (in this chart) is

contained in E2 as a set. By the equations, Y G
3 is generically the Cartier divisor

E2, and the bad locus (where that fails) is given by 0 = w0, 0 = v1(1 − 2v1), and
0 = v1y2. So the bad locus is the union of the curve {0 = w0 = v1} = E1 ∩ E2

and the point (w0, v1, y2) = (0,−2, 0) in E2. By Theorem 2.2 (using e = s = w0),
Y3/G has singularity 1

5(2, 1, 0) everywhere on the curve E1 ∩ E2 (in this chart), in
agreement with an earlier calculation.

To analyze the bad point above, change coordinates temporarily by t1 = v1 + 2;
then the bad point becomes the origin in coordinates (w0, t1, y2). In these coordi-
nates, we have I(w0) = w2

0(1− 2t1 +O(w0)), I(t1) = I(v1) = (−t1 − 2t21 +O(w0)),
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and I(y2) = w0y2(−2+O(w0)). Theorem 2.2 applies, with s = e = w0, and we read
off that Y3/G has singularity 1

5(1,−1,−2) at this point. That is terminal, by the
Reid-Tai criterion (Theorem 1.1).

The last chart we need to consider in Y3 is the other open set {v1 = 1} over the
open set above in Y2, {w1 = 1} ⊂ Y2 over {y0 = 1} ⊂ Y1. So w0 = y1v0, and we
have coordinates (v0, y1, y2). Here E0 = {v0 = 0}, E1 does not appear, and E2 =
{y1 = 0}. Also, e2 = v0y

2
1y2. Here Y G

3 is defined by: I(v0) = v0y1(2− v0 +O(y1)),
I(y1) = y21(1− 2v0 +O(y1)), and I(y2) = y1y2(1 +O(y1)). As in the previous chart,
we know that Y G

3 is contained in E2 as a set. By the equations, Y G
3 is generically

the Cartier divisor E2, and the bad locus (where that fails) is given by 0 = y1,
0 = v0(2− v0), and 0 = y2. Thus there are two bad points in this chart, (v0, y1, y2)
equal to (2, 0, 0) ∈ E2 or (0, 0, 0) ∈ E0 ∩ E2. The first is the bad point from the
previous chart, but the second one is new. Theorem 2.2 works to analyze the second
point (the origin), with e = s = y1. We read off that Y3/G has singularity 1

5(2, 1, 1)
at this point.

That finishes the analysis of Y3. In particular, as a set, Y G
3 is the union of the

divisor E2 and a curve in E1. It is tempting to blow up the G-fixed curve next,
but that leads to a large number of blow-ups over one point of the curve, where the
fixed point scheme is especially complicated. We therefore define Y4 as the blow-up
at that point, and only later blow up the whole curve. This leads more efficiently
to toric singularities.

Namely, let Y4 be the blow-up of Y3 at the origin in the chart {r2 = 1} in Y2 (un-
changed in Y3), with coordinates (y0, r1, e2). So Y4 has coordinates (y0, r1, e2), [q0, q1, q2].
The exceptional divisor E3 is isomorphic to P2

F5
, and so it is covered by 3 affine

charts. First take {q0 = 1} in Y4, so r1 = y0q1 and e2 = y0q2, and we have coor-
dinates (y0, q1, q2). As in every other chart, there are three variables over Z5, but
this is a regular scheme of dimension 3 because of the equation satisfied by e2. In
this case, we have e2 = y0q2, and so

0 = (y0q2)
5 − 5(y0q2)

4 + 25(y0q2)
2 − 25(y0q2) + 5.

Here E1 = {q2 = 0} and E3 = {y0 = 0}. The fixed point scheme Y G
4 is

defined by: I(y0) = y20q2(1 − q1 + O(y0)), I(q1) = y0(−2 + q1q2 + q21q2 + O(y0)),
and I(q2) = y0q

2
2(−2 + q1 +O(y0)). So Y G

4 is generically the Cartier divisor E3; the
G-fixed curve in E1 does not appear in this chart. The bad locus (where the scheme
Y G
4 is not just E3) is given by 0 = y0, 0 = −2+q1q2 +q21q2, and 0 = q22(−2+q1). By

the second equation, q2 6= 0, and so the third equation gives that q1 = 2. Then the
second equation gives that 0 = −2 + 2q2− q2 = −2 + q2, so q2 = 2. That is, there is
only one bad point in this chart, (y0, q1, q2) = (0, 2, 2) ∈ E3. To analyze that point,
change coordinates temporarily by s1 = q1−2 and s2 = q2−2. In these coordinates,
I(y0) = y20(−2−s1−s2−s1s2+O(y0)), I(s1) = I(q1) = y0(s2+2s21+s

2
1s2+O(y0)), and

I(s2) = I(q2) = y0(−s1 − s1s2 + s1s
2
2 + O(y0)). By Theorem 2.2, with e = s = y0,

Y4/G has a µ5-quotient singularity. Explicitly, the linear map ϕ over F5 in the
theorem is ϕ(y0) = −2y0, ϕ(s1) = s2, and ϕ(s2) = −s1, which has eigenvalues
−2, 2,−2. So Y4/G has singularity 1

5(−2, 2,−2) at this point. This is terminal, by
the Reid-Tai criterion.

Next, take the open set {q1 = 1} in Y4, so y0 = r1q0 and e2 = r1q2, and Y4
has coordinates (q0, r1, q2). Here E1 = {q2 = 0} and E3 = {r1 = 0}. The fixed
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point scheme Y G
4 is defined by: I(q0) = r1(−q2 − q0q2 + 2q30 + O(r1)), I(r1) =

r21(2q2 − 2q20 + O(r1)), and I(q2) = r1q2(2q2 + 2q20 + O(r1)). So Y G
4 is generically

the Cartier divisor E3, together with the G-fixed curve {0 = q0 = q2} in E1. The
bad locus in E3 is given by 0 = r1, 0 = −q2 − q0q2 + 2q30, and 0 = q2(2q2 + 2q20).
This yields two bad points, (q0, r1, q2) equal to (−2, 0, 1) or (0, 0, 0). The first one
is the bad point from the previous chart, and the second is not surprising, as it is
the intersection point of E3 with the G-fixed curve.

Finally, take the open set {q2 = 1} in Y4, so y0 = e2q0 and r1 = e2q1, and
we have coordinates (q0, q1, e2). Here E1 does not appear, and E3 = {e2 = 0}.
The fixed point scheme Y G

4 is defined by: I(q0) = e(2q0 − q1 + O(e2)), I(q1) =
e(−2q1 − 2q20 + O(e2)), and I(e2) = e22(−1 + O(e2)). So Y G

4 is generically E3. The
bad locus in E3 is given by: 0 = e2, 0 = 2q0 − q1, and 0 = −2q1 − 2q20. This yields
two bad points, (q0, q1, e2) equal to (−2, 1, 0) (seen in the previous two charts) or
(0, 0, 0), which is new. Theorem 2.2 applies at this new point, with e = s := e2.
The F5-linear map ϕ is given by ϕ(q0) = 2q0 − q1, ϕ(q1) = −2q1, and ϕ(e2) = −e2.
So ϕ has eigenvalues (2,−2,−1), and hence Y4/G has singularity 1

5(2,−2,−1) at
this point. This is terminal, by the Reid-Tai criterion.

That completes our description of Y4. Next, let Y5 be the blow-up of Y4 along
the G-fixed curve in E1. The exceptional divisor E4 in Y5 is a P1-bundle over P1

F5
,

and so it is covered by four affine charts. First work over the open set {z2 = 1} in Y3
(unchanged in Y4), with coordinates (y0, z1, r2); this contains the point where the
G-fixed curve in E1 = {z1 = 0} meets E2 = {r2 = 0}. Here Y5 is the blow-up along
the G-fixed curve {0 = y0 = z1}, and so Y5 has coordinates (y0, z1, r2), [n0, n1].
First take the open set {n0 = 1} in Y5, so z1 = y0n1, and we have coordinates
(y0, n1, r2). As in every other chart, there are three variables over Z5, but this is a
regular scheme of dimension 3 because of the equation satisfied by e2. In this case,
we have e2 = y0n1r

2
2, and so

0 = (y0n1r
2
2)5 − 5(y0n1r

2
2)4 + 25(y0n1r

2
2)2 − 25(y0n1r

2
2) + 5.

In this chart, E1 = {n1 = 0}, E2 = {r2 = 0}, and E4 = {y0 = 0}. The fixed
point scheme Y G

5 is defined by: I(y0) = y0n1r2(−1 + O(y0)), I(n1) = n1r2(n1 +
O(y0))/(1 − n1r2 + O(y0)), and I(r2) = y0r

2
2(−2n1r2 + O(y0)). So Y G

5 , as a set, is
the union of the divisor E2 and the curve {0 = y0 = n1} = E1 ∩E4. (In particular,
the fixed point set is still not all of codimension 1.) We have analyzed the bad locus
of E2 in previous steps, but we have to add here that the bad locus of E2 is disjoint
from E2∩E4 except for the point where E2 meets the G-fixed curve, by the formula
for I(n1). (See Figure 5, which applies to the current example as well.)

The other chart is {n1 = 1} in Y5, so y0 = z1n0, and we have coordinates
(n0, z1, r2). Here E1 does not appear, E2 = {r2 = 0}, and E4 = {z1 = 0}. Also,
e2 = z1r

2
2. The fixed point scheme Y G

5 is defined by: I(n0) = r2(−1 + O(z1)),
I(z1) = z21r2(−2r2 + O(z1)), and I(r2) = z1r

2
2(−2r2 + O(z1)). These equations

reduce to r2 = 0 near E4, and so Y G
5 is the Cartier divisor E2, in this chart.

To finish our description of E4 in Y5, we work over the open set where the
G-fixed curve in Y4 meets E3, namely {q1 = 1} in Y4. Here Y4 has coordinates
(q0, r1, q2), E1 = {q2 = 0}, E3 = {r1 = 0}, and the G-fixed curve is {0 = q0 = q2} in
E1. So the blow-up Y5 along the G-fixed curve has coordinates (q0, r1, q2), [u0, u2].
First take {u0 = 1} in Y5, so q2 = q0u2, and we have coordinates (q0, r1, u2). Here
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E1 = {u2 = 0}, E3 = {r1 = 0}, and E4 = {q0 = 0}. Also, e2 = q0r1u2. The fixed
point scheme Y G

5 is defined by: I(q0) = q0r1(−u2+O(q0)), I(r1) = q0r
2
1(2u2+O(q0)),

and I(u2) = r1u
2
2(1 + O(q0))/(1 − r1u2 + O(q0)). We know the fixed set outside

E4, and so we read off that the fixed set is the divisor E3 together with the G-fixed
curve E1 ∩ E4 found earlier. We have analyzed the bad set of E3 away from E4 in
earlier blow-ups, and we see from the formula for I(u2) that the bad set of E3 near
E3 ∩ E4 is only the point E1 ∩ E3 ∩ E4 where the G-fixed curve meets E3.

The other chart is {u2 = 1} in Y5. Here q0 = q2u0, and so we have coordinates
(u0, r1, q2). Here E1 does not appear, E3 = {r1 = 0}, and E4 = {q2 = 0}. Also,
e2 = r1q2. The fixed point scheme Y G

5 is defined by: I(u0) = r1(−1 + O(q2)),
I(r1) = r21q2(2 + O(q2)), and I(q2) = r1q

2
2(2 + O(q2)). These equations reduce to

r1 = 0 near E4, and so the fixed point scheme Y G
5 is the Cartier divisor E3, in this

chart.
That completes our description of Y5. Let Y6 be the blow-up of Y5 along the

G-fixed curve E1 ∩ E4. The exceptional divisor E5 in Y6 is a P1-bundle over P1
F5

,
covered by four affine charts. First take the open set {n0 = 1} in Y5, which contains
the point where the G-fixed curve meets E2. Here Y5 has coordinates (y0, n1, r2),
with E1 = {n1 = 0}, E2 = {r2 = 0}, and E4 = {y0 = 0}. Since Y6 is the
blow-up along the G-fixed curve {0 = y0 = n1} = E1 ∩ E4, Y6 has coordinates
(y0, n1, r2), [m0,m1]. First take {m0 = 1} in Y6, so n1 = y0m1, and we have
coordinates (y0,m1, r2). As in every other chart, there are three variables over Z5,
but this is a regular scheme of dimension 3 because of the equation satisfied by e2.
In this case, we have e2 = y20m1r

2
2, and so

0 = (y20m1r
2
2)5 − 5(y20m1r

2
2)4 + 25(y20m1r

2
2)2 − 25(y20m1r

2
2) + 5.

In this chart, E1 = {m1 = 0}, E2 = {r2 = 0}, E4 does not appear, and E5 =
{y0 = 0}. The fixed point scheme Y G

6 is defined by: I(y0) = y20m1r2(−1 + O(y0)),
I(m1) = y0m1r2(2m1 + O(y0)), and I(r2) = y20r

2
2(2 − 2m1r2 + O(y0)). We know

the fixed point set away from E5, and so we read off that the fixed point scheme
is generically the Cartier divisor E2 + E5. (Since E5 is fixed by G, we have finally
made the fixed point set of codimension 1.) Let e = y0r2. The bad locus (where the
scheme Y G

6 is more than the Cartier divisor E2 + E5), on E5, is given by factoring
out e from the equations and setting y0 = 0, so we get: 0 = y0 and 0 = 2m2

1. So, as
a set, the bad locus is the curve {0 = y0 = m1} = E1 ∩ E5. Theorem 2.2 does not
seem to apply to this curve, and so Y6/G might not have toric singularities there;
we will have to blow up one more time.

For now, look at the other open set, {m1 = 1} in Y6. So s0 = n1m0, and we
have coordinates (m0, n1, r2). Here E1 does not appear, E2 = {r2 = 0}, E4 =
{m0 = 0}, and E5 = {n1 = 0}. Also, e2 = y0m

2
1r

2
2. The fixed point scheme

Y G
6 is defined by: I(m0) = m0n1r2(−2 + O(n1)), I(n1) = n21r2(1 + O(n1)), and
I(r2) = m0n

2
1r

2
2(2m0 − 2r2 +O(n1)). Since we know the fixed point set outside E5,

we read off that the fixed point scheme is generically the Cartier divisor E2 + E5.
Let e = n1r2. The bad locus (where the scheme Y G

6 is more than the Cartier divisor
E2 +E5) is the curve {0 = m0 = n1} = E4 ∩E5. Fortunately, Theorem 2.2 applies,
with s = m0. We read off that Y6/G has singularity 1

5(−2, 1, 0) along the whole
curve E4 ∩ E5, in this chart.

To finish describing E5 ⊂ Y6, we have to work over the open set {u0 = 1}
in Y5, where the G-fixed curve E1 ∩ E4 in Y5 meets E3. Here Y5 has coordinates

45



(q0, r1, u2), with E1 = {u2 = 0}, E3 = {r1 = 0}, and E4 = {q0 = 0}. Then
Y6 is the blow-up along the G-fixed curve {0 = q0 = u2} = E1 ∩ E4, so Y6 has
coordinates (q0, r1, u2), [t0, t2]. First take {t0 = 1} in Y6, so u2 = q0u2 and we have
coordinates (q0, r1, t2). Here E1 = {t2 = 0}, E3 = {r1 = 0}, E4 does not appear,
and E5 = {q0 = 0}. Also, e2 = q20r1t2. The fixed point scheme is defined by: I(q0) =
q20r1(−t2 +O(q0)), I(r1) = q20r

2
1(−2 + 2t2 +O(q0)), and I(t2) = q0r1t2(2t2 +O(q0)).

So the fixed point scheme is generically E3 + E5. Let e = q0r1. The bad locus
(where the scheme Y G

6 is more than the Cartier divisor E3 +E5), in E5, is given by
0 = q0 and 0 = 2t22, so (as a set) it is the curve {0 = q0 = t2} = E1 ∩ E5, which we
met in an earlier chart.

The other chart is {t2 = 1} in Y6, so q0 = u2t0, and we have coordinates
(t0, r1, u2). Here E1 does not appear, E3 = {r1 = 0}, E4 = {t0 = 0}, and E5 =
{u2 = 0}. Also, e2 = q20r1t2. The fixed point scheme Y G

6 is defined by: I(t0) =
t0r1u2(−2 +O(u2)), I(r1) = t0r

2
1u

2
2(2− 2t0 +O(u2)), and I(u2) = r1u

2
2(1 +O(u2)).

So Y G
6 is generically E3 +E5. Let e = r1u2. The bad locus (where the scheme Y G

6 is
more than the Cartier divisor E3+E5), in E5, is the curve {0 = t0 = u2} = E4∩E5,
which we met in an earlier chart. Theorem 2.2 applies, with s = t0. Namely, Y6/G
has singularity 1

5(−2, 0, 1) everywhere on the curve E4 ∩E5 in this chart (including
the origin, which did not appear in the earlier chart).

That completes our description of Y6. In particular, the G-fixed locus has codi-
mension 1 in Y6, and Y6/G has toric singularities outside the image of the curve
E1 ∩ E5. Let Y7 be the blow-up of Y6 along that curve. The exceptional divisor
E6 in Y7 is a P1-bundle over P1

F5
, and so we will cover E6 with four affine charts.

First, work over the open set {m0 = 1} in Y6, where the bad curve E1 ∩ E5 meets
E2. Here Y6 has coordinates (y0,m1, r2), with E1 = {m1 = 0}, E2 = {r2 = 0}, and
E5 = {y0 = 0}. Since Y7 is the blow-up along the curve {0 = y0 = m1} = E1 ∩ E5,
Y7 has coordinates (y0,m1, r2), [j0, j1]. (See Figure 6, which applies to the current
example as well.)

First take {j0 = 1} in Y7, so m1 = y0j1, and we have coordinates (y0, j1, r2).
As in every other chart, there are three variables over Z5, but this is a regular
scheme of dimension 3 because of the equation satisfied by e2. In this case, we have
e2 = y30j1r

2
2, and so

0 = (y30j1r
2
2)5 − 5(y30j1r

2
2)4 + 25(y30j1r

2
2)2 − 25(y30j1r

2
2) + 5.

In this chart, E1 = {j1 = 0}, E2 = {r2 = 0}, E5 does not appear, and E6 =
{y0 = 0}. The fixed point scheme Y G

7 is defined by: I(y0) = y30j1r2(−1 + O(y0)),
I(j1) = y20j1r2(1− 2j1 +O(y0)), and I(r2) = y20r

2
2(2 +O(y0)). So Y G

7 is generically
the Cartier divisor E2 + 2E6. Let e = y20r2. The bad locus (where the scheme Y G

7 is
more than the Cartier divisor E2 + 2E6), in E6, is given by 0 = y0, 0 = j1(1− 2j1),
and 0 = r2, so it consists of the two points (y0, j1, r2) equal to (0, 0, 0) = E1∩E2∩E6

or (0,−2, 0) ∈ E2∩E6. At the first point, Theorem 2.2 applies, with s = r2. We read
off that Y7/G has singularity (0, 1, 2) everywhere on the curve E1∩E2 (including the
origin, which did not appear when we saw E1 ∩E2 in an earlier chart). To analyze
the second point, change coordinates temporarily by s1 = j1 + 2; then that point
becomes the origin in coordinates (y0, s1, r2). We have I(y0) = y30r2(2−s1 +O(y0)),
I(s1) = I(j1) = y20r2(−s1 − 2s21 + O(y0)), and I(r2) = y20r

2
2(2 + O(y0)). Theorem

2.2 applies, with s = r2. We read off that Y7/G has singularity 1
5(2,−1, 2) at this

point.
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The other open set is {j1 = 1} in Y7, so y0 = m1j0, and we have coordinates
(j0,m1, r2). Here E1 does not appear, E2 = {r2 = 0}, E5 = {j0 = 0}, and
E6 = {m1 = 0}. Also, e2 = j20m

3
1r

2
2. The fixed point scheme Y G

7 is defined by:
I(j0) = j20m

2
1r2(2 − j0 + O(m1)), I(m1) = j0m

3
1r2(2 + j0 + O(m1)), and I(r2) =

j20m
2
1r

2
2(2 + O(m1)). So Y G

7 is generically E2 + E5 + 2E6. Let e = j0m
2
1r2. The

bad locus (where the scheme Y G
7 is more than the Cartier divisor E2 + E5 + 2E6),

on E6, is given by: 0 = m1, 0 = j0(2 − j0), and 0 = j0r2. So the bad locus is the
union of the curve {0 = j0 = m1} = E5 ∩E6 and the point (j0,m1, r2) = (2, 0, 0) in
E2 ∩ E6. That point is the one we analyzed in the previous chart. For the curve,
Theorem 2.2 applies, using s = j0. We read off that Y7/G has singularity 1

5(2, 2, 0)
everywhere on the curve E5 ∩ E6, in this chart.

Last, work over the open set {t0 = 1} in Y6, where the bad curve E1 ∩E5 meets
E3. Here Y6 has coordinates (q0, r1, t2), with E1 = {t2 = 0}, E3 = {r1 = 0}, and
E5 = {q0 = 0}. We obtain Y7 by blowing up along the curve {0 = q0 = t2} = E1∩E5,
so Y7 has coordinates (q0, r1, t2), [x0, x2]. First take {x0 = 1}, so t2 = q0x2, and
we have coordinates (q0, r1, x2). Here E1 = {x2 = 0}, E3 = {r1 = 0}, E5 does
not appear, and E6 = {q0 = 0}. Also, e2 = q30r1x2. The fixed point scheme
Y G
7 is defined by: I(q0) = q30r1(2 − x2 + O(q0)), I(r1) = q20r

2
1(−2 + O(q0)), and

I(x2) = q20r1x2(1 − 2x2 + O(q0)). So Y G
7 is generically E3 + 2E6. Let e = q20r1.

The bad locus (where the scheme Y G
7 is more than the Cartier divisor E3 + 2E6),

in E6, is given by: 0 = q0, 0 = r1, and 0 = x2(1 − 2x2), so it consists of the
two points (q0, r1, x2) equal to (0, 0, 0) = E1 ∩ E3 ∩ E6 or (0, 0,−2) in E3 ∩ E6.
Since I(r1) = er1(unit), Theorem 2.2 applies at both points. At the origin, the
theorem gives that Y7/G has singularity 1

5(2,−2, 1), which is terminal. For the
other point, change coordinates temporarily by y2 = x2 + 2, so that the point
becomes the origin in coordinates (q0, r1, y2). We have I(q0) = q30r1(−1−y2+O(q0)),
I(r1) = q20r

2
1(−2+O(q0)), and I(y2) = I(x2) = q20r1(−y2−2y22+O(q0)). So Theorem

2.2 gives that Y7/G has singularity 1
5(−1,−2,−1) at this point.

The other chart is {x2 = 1} in Y7, so q0 = t2x0, and we have coordinates
(x0, r1, t2). Here E1 does not appear, E3 = {r1 = 0}, E5 = {x0 = 0}, and E6 =
{t2 = 0}. Also, e2 = x20r1t

3
2. The fixed point scheme Y G

7 is defined by: I(x0) =
x20r1t

2
2(2 − x0 + O(t2)), I(r1) = x20r

2
1t

2
2(−2 + O(t2)), and I(t2) = x0r1t

3
2(2 − 2x0 +

O(t2)). So Y G
7 is generically E3 +E5 + 2E6. Let e = x0r1t

2
2. The bad locus (where

Y G
7 is more than the Cartier divisor E3 + E5 + 2E6), in E6, is given by: 0 = t2,

0 = x0(2−x0), and 0 = x0r1, which is the union of the curve {0 = x0 = t2} = E5∩E6

and the point (x0, r1, t2) = (2, 0, 0) in E3 ∩ E6. We analyzed that point in the
previous chart. Theorem 2.2 applies to the curve, using s = x0. We read off that
Y7/G has singularity 1

5(2, 0, 2) everywhere on the curve E5∩E6 (including the origin,
which did not appear in the earlier chart where we met this curve).

That completes our analysis of Y7; we have shown that Y7/G has toric singu-
larities. The sequence of blow-ups and the descriptions of the singularities of Y7/G
are identical to those in the characteristic 5 example, Theorem 8.1. Given that, the
proof that Y0/G is terminal is unchanged from that of the characteristic 5 example.
Theorem 9.1 is proved.

Remark 9.2. As in Remark 7.2, I expect that there is also a 3-dimensional scheme X,
flat over Z5, that is terminal and non-Cohen-Macaulay with KX Cartier. Namely,
one should replace the p-adic integer ring R = Z5[ζ25]

Z/4 in Theorem 9.1 by S =

47



Z5[ζ25], with the action of Z/5 ⊂ (Z/25)∗.
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