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Recommended Books:

A. Kirillov - An introduction to Lie groups and Lie algebras

J-P. Serre - Complex semisimple Lie algebra

W. Fulton, J. Harris - Representation theory

Kirillov is the closest to what we will cover, Fulton-Harris is longer but with lots of example, which
provides a good way to understand representation theory.

This course fit in especially well with Differential Geometry and Algebraic Topology.

Definition 1
A Lie group is a group which is also a smooth manifold

Example:
(R,+) is a Lie group of dimension 1
St = {z € C: |z| = 1} under multiplication

Definition 2
The n-sphere S™ = {(z0,...,2,)} € R"™ |22 + ... + 22 = 1} is an n-manifold

Many interesting Lie groups act on S?

Example:

SO(3)=group of rotation in R?® (this is non-abelian)
PGL(2,C) acts on S? = CU{oo} as Mobius transformation
Here SO(3) C PGL(2,C) = GL(2,C)/ {( 0 2 ) ‘a € CX}
2+ 2z, say, is in PGL(2,C) acting on S? = C U{oo}

Examples of Lie groups

(R™,4) any n € N (or any finite dimensional real vector space)

R* = {z € R|x # 0} under multiplication

C* = {x € C|z # 0} under multiplication

GL(n,R) = {A € M,(R)|det A # 0} under mulitiplication

GL(V) - General Linear group, where V is a finite dimensional vector space
SL(n,R) = {A € M,(R)|det A = 1} = {f : R® — R" linear and preserves volume} (Special
Linear group)

O(n) (Orthogonal group)

Sp(2n,R) (Sympletic group)

U(n) (Unitary group)

SU(n) (Special Unitary group)

Remark: SY, S, 53 are the only spheres that are also Lie groups



Orthogonal group

O(n) = {Ac M,(R)AAT =1}
= {f:R" — R"|f linear and preserves distances }
{f :R" = R"[{f(2), f(y)) = (z,y) Yo,y € R"}

where the standard inner product on R" is
(1, s mn), (Y1, yn)) = 2101 + 22y2 + -+ 2pyn ER
Elements of O(n) includes rotations and reflections

Note that det is a homomorphism det : GL(n,R) — R* and this restricts to det : O(n) — {1} since,
AcOm) = 1=det(1) = det(AAT) = det(A) det(AT) = det(A)?

Definition 3
Special orthogonal group

SO(n) = {A e M,(R)|[AAT =1,det A =1}

Elements include rotations but not reflections (on R")
SO(n) is a subgroup of index 2 in O(n).
In fact, O(n) has 2 connected component, the one containing 1 is SO(n)

Also note that SO(2) = S!

Symplectic group

Sp(2n,R) = {f : R*" = R* |w(z,y) = w(f (), f(y))Vz,y € R}

where w is a non-degenerate alternating bilinear form on R*":

n
w((Ql? <oy qnyP1s - - - apn)) (q/17 : '7q;mp/17 s 7p;1,)) = qup; _plq'/L
=1

for some choice of basis.

Remark: Any non-degenerate alternating bilinear form w on R™ must have n even, and after a change
of basis, such a form is given by above formula

Example:

Sp(2n,R) C SL(2n,R)
Sp(2,R) = SL(2,R) = the group of area preserving linear maps

Unitary group

U(n) ={f:C" — C" linear and preserves distance} (= GL(n,C)NO(2n))

Definition 4
The standard inner product on C" is the nondegenerate positive definite Hermitian form

(21, oy 2n)s (W1, .. wy)) = ZzluTl
i=1

Note that the length of a vector z € C"(= R?") is ||z]| = /(2, 2)

(as z = zyy, 27 = |2]? = 22 +¢?)



So, we have

Un) = {f:C"— C" linear [(f(x), f(y)) = (z,y) Vo,y € C"}
= {AeGL(n,C)|AA* =1} (A" =AT)

Special Unitary group
The det of a unitary matrix gives a homomorphism det : U(n) — S c C*

SU(n) = ker det |y(p)

Example
Ul)={z€ M(C)|lzz=1} = S!

SU(2) {(“ 2)) a,b € C, |a|2+|b|2—1}

Wee see that SU(2) is diffeomorphic to S3 = {(zo, 21, 22, 73)|23 + 22 + 23 + 23 = 1}
Remark: SY, S', 83 are the only sphere that are also Lie groups

Some Basics of Smooth Manifold

Definition 5

A subset M C R" is called k-dimensional manifold (in R") if for every point x € M, the following
condition is satisfied:

(M) There is an oen set U 3 z, and open set V C R", and a diffeomorphism h: U — V s.t.

RUNM)=VN[RFx{0})={z V|t =2, =0}
Definition 6
Let U C R™,n > 0 be an open set, a smooth function f: U — R (or C*) if all partial derivatives

5 (=0

are defined and continuous on U

For U C R™ open, a smooth mapping f : U — R" is a function s.t. f = (f1,..., fm), with f; : U = R
smooth function

For U,V C R", a diffeomorphism f : U — V of degree n is a smooth map (on R") with a smooth
inverse

The derivative df|, of a smooth map f : U(C R™) — R™ at a point « € U is a linear map R — R"

given by matrix (gf;)

oh ... Oh

ox1 Oxm, i U1
Ofn ... Of
o1 o0x1 Um Un

composite of the smooth maps is smooth, and d(g o f)|. = dgl @) © df|«

Theorem 7 (Inverse Function Theorem)
Let U C R" open, f: U — R" be a smooth map. Suppose df|, is an isomorphism, for some = € U
Then 3V C U, V 5z, s.t. f(V) is open and f is a diffeomorphism from V to f(V)

Theorem 8 (Implicit Function Theorem)
Let U C R™ open, f: U — R" smooth map. Suppose df|, is surjective at a point z € U (n < m)
Then 3V C U,V > x and diffeomorphism ¢ : W — V (W C R" open), s.t

f(od(z1,. .., xn)) = (T1,. .., 2n)



Definition 9
A submersion is a smooth map which has derivatives being surjective everywhere

A smooth submanifold X C R of dimension n is a subset s.t. V2 € X,3nbhd U 3 z, U C RY and a
submersion F: U - RY " st. XNU =F10)CU

Example:
Claim: The sphere S™ C R""! is a smooth n-dimensional submanifold
Proof
S" = F~1(0), where FoRY R
(205 -y Tp) > X222 1
We have to check that F'is a submersion at points x € S™:

dF = (2x9,2x1,...,2z,) (row matrix)

This is surjective whenever (xq,...,2,) # (0,...,0) =  surjective everywhere on S™ O

Example:
X = {(z,y) € R?|zy = a} is a smooth 1-dimensional submanifold for nonzero a € R, but not for
a = 0, here we have:

F:R> - R
(r,y) — wzy—a

Example:
X = {x € R|z% = 0} is an 0-dimensional submanifold of R, but #? : R — R is not a submersion at 0.
To prove that X is a O-dimensional submanifold, you have to notice that X = {z € R|z = 0}

Definition 10
The tangent space to a smooth n-dimensional submanifold X C RV at a point z € X (if we describe
X as X = F~1(V) for some submersion F : V — RV ") is defined as:

T,X =ker(dF|, : RY — RNV™™)

This is an n-dimensional linear subspace of R

Let X C RY be a smooth n-dimensional submanifold.
A function f: X — R is smooth < near each point z € X, f is the restriction of a smooth function
on an open nbhd of X in RY (0-dimensional submanifold of RY = discrete subset)

For submanifold X € RM, v C RV (dim=m,n resp.) a smooth map f : X — Y has derivative
dfle : T X — Ty(z)Y which is a linear map
A diffeomorphism between 2 submanifolds is a smooth map with smooth inverse.

Fact: (Hausdorff countable basis) Every smooth manifold is diffeomorphic to a submanifold of R

For submanifold X C RM|Y € RY (dim=m,n resp.), the product X x Y € RM x RN = RM+V i5 5
smooth submanifold. It has the product topology
Lie Group

Definition 11
A Lie group G is a smooth manifold which is also a group s.t.

multiplication : G x G — G (g, h) — gh

inverse : G — G g—g !

are smooth maps. We have a point 1 € G (the identity)



Note that a Lie group need not be connected. (0-dimensional submanifold of RY =discrete subset)
In particular, we can view any group (say countable) as a 0-dimensional Lie group.

Lemma 12
Let G be a Lie group, GY be the connected component of G containing 1. Then G < G and G/GP is
discrete (with the quotient topology)

Proof

multiplication : G x G — G is continuous, so it maps connected space G x G° onto connected subset
of GG, which contains 1.

=G'x G- G0

Likewise, inverse : GO — ¢°. Therefore, G° < G

To show GV < G, need to show Vg € G the map Co: G = G _, sends G° to G°
T — gxg
Have Cy smooth=-continuous, and 11
= Oy GO - GY
= G'a@
We have, Vg € G a diffeomorphism Ly:G = G
T — gz

(Can check that L,-1 is an inverse map, using that G is associative)

Therefore, L,(G°) = gG° is the connected component of G containing g.

We know that G is the disjoint union of some of these left cosets gG and G/GY is the set of cosets.
To show that G/GY has discrete topology. I have to show that each component gG° is open in G. In
fact, all connected component in any manifold are open subsets O

Lemma 13
Let G be a connected Lie group, Then G is generated by a neighbourhood of 1 € G

Proof

Let N be an neighbourhood of 1 € G

Let H < G, generated by N

= H open in G because Vh € H hN C H and hN is an open subset of G containing h

In fact, H is alsoclosedin Gifre G-H=azNCG-H

(If zn = h € H for some n € N, then x = hn™!  #)

So H is open and closed and contains 1 = H = @ since G is connected O

ref.: Armstrong, Basic Topology

Definition 14
A homomorphism f: G — H of Lie groups is a group homomorphism which is also smooth

Lemma 15
Let f: G — H be a homomorphism of connected Lie groups. Suppose that

dfly : G - T1H (1)

Then f: G - H

Proof

By the Implicit Function Theorem, f maps some neighbourhood of 1 € G onto some neighbourhood
of 1 € H, so f(G) contains the subgroup of H generated by this neighbourhood which is all of H
because H is connected O

Example:
f:R—= St CC* i e isahomomorphism of Lie groups (It’s smooth, and it’s a hom. because



f(s+1)=f(s)f(t))
Its derivative at 1 is
d(eit)
dt

=ie'|—g =i (2)
t=0
which is an isomorphism R = TyR = T1S' =iR c C
So lemma applies and indeed R —» S*
In fact, S! 2 R /Z where 21 Z = Z = ker f

Definition 16
A closed Lie subgroup H of a Lie group G is a closed submanifold of G which is a subgroup of G

Note that such a subgroup H is a Lie group. Indeed, multi: H x H — H is just the restriction of
multi: G x G — G so it is also smooth, likewise for inverses.

Use this to prove that the classical groups actually are Lie groups

Example:

GL(n,R). This is an open subset of M, R = R™ o it is a smooth n2-dimensional manifold. Multi-
plication of matrices is smooth (in fact, polynomial or mapping smooth)

ailr - Qln bii -+ bin
‘ ' ' _ (anbn + aizba1 + ... )
(07 Ann bnl e bnn

is a smooth function. Inverse is a polynomial in entries of given matrix A and in 1/det A which is a
smooth function of GL(n,R) = {A | det A # 0}. For example,

a B ' 1 d —b
c d ad—bec\—c a

SL(n,R) = {A € GL(nR) | det A = 1} This is a closed Lie subgroup of GL(n,R). Clearly it is a
closed subgroup

To show: SL(n,R) is a smooth submanifold of dimension n? — 1. It suffices to check that SL(n,R) is
a smooth submanifold near 1 € G(n,R) using left translation (see notes for pictures)

It suffices to show that det : GL(n,R) — R* is a submersion near 1.
To do this, we see how det changes as you move from 1 € GL(n,R). So look at A =1+¢B, B € M, R.
We solve the equation

det A = 1(mod €?)

(")
det(l1+eB) = det|1+e¢ _—

(L4 ebr1) -+ (L + ebpp)  (mod €?)
= 1+ebii+-+bp) (modé€)
= ker(d(det)|;) = {Be€ M,R|tr(B)=0}

We compute:

This is a codimension 1 subspace of M, R so det is a submersion at 1 € GL(n,R), so SL(n,R) is a
closed Lie subgroup , and sl(n) = T1SL(n,R) = {B € M,,R | tr(B) = 0}
gl(n) = M, R=T1GL(n,R)



Example:

Orthogonal group O(n). Again this is a closed subgroup of GL(n,R). To show that it is a smooth
submanifold it suffice to check that near 1 € GL(n,R). So we differentiate these equations for O(n) C
GL(n,R)

So, for B € gl(n) we compute where is :

(1+eB)(1+eB)! = 1 (mod é€?) (3)
(1+eB)(1+eB) = 1+¢B+B") (mod é?) (4)

F:GL(n,R) — R

We have O(n) = F~1(1) for some smooth mapping

and we have computing ker(dF) = {B € gl(n) | B+ B! =0}

= dimg(ker(dF')) = dim(zero diagonal matrix) = %_1)

So we would like to say that O(n) is the fibre of a smooth map GL(n,R) — R~ (n(n=1)/2) — gr(n+1)/2
Can we define O(n) using only n(n + 1)/2 equations?

Yes, since VA € GL(n,R), AA? is symmetric

So AA! =1 reduces to n(n + 1)/2 equations.

So O(n) is a smooth submanifold of dimension n(n—1)/2 in GL(n,R) and hence a closed Lie subgroup.
Also so(n) = T1O(n) = {B € gl(n)|B' = —B}

Example:

Unitary group U(n) C GL(n,C). We just show that it is a smooth (real) submanifold of GL(n,C)
near 1

Differentiate the equation for U(n) C GL(n,C) at 1:

Write A=1+¢B, B € gl(n,C) = M, C

Solve

(1+eB)(1+€eB)* =1 (mod €?)
(1+eB)(1+€eB)* =1+¢(B+B*) (mod €?)

So U(n) = F~1(1) C GL(n,C) where
ker(dF|;) = {B € gl(n,C) | B* = —B} = {skew hermitian matrices} = i{hermitian matrices} and
gl(n, C) = {hermitian} + {skew-hermitian}

Skew-hermitian matrix is (iaz ;) a,beR,zeC
So dimg (ker(dF|;)) = (1/2) dimg gl(n, C) = n?
So I would like to define U(n) C GL(n,C) by exactly 2n? — n? = n? real equations.

Indeed, for any A € GL(n,C), AA* is always hermitian (since (AB)* = B*A*). So AA* = 1 reduces
to only n? real equations (say that the element of AA* above diagonal are zeroes and the elements on
diagonal, which are real =1)

So U(n) =fibre of submersion GL(n,C) — R™ so it is a closed Lie subgroup of GL(n,C)

Definition 17
For A € M,,(K), where K = R or C, define the exponential of A by:

o0 n

exp(d) = % e M, K (5)
n=0

To check that this series converges, define the norm:

[All ;== sup [ Ax]| (6)

lz|=1,eRn

7



Clearly ||AB|| < [|All.[| B

= VA € M,(K), |47] < 14" and this series converges in R V||Al|. So the series of matrices

n! n!

converges absolutely.
Easy that exp : M, R — M, R is smooth and exp : M,, C — M, C is complex analytic.

Also, for ||Al| < 1 define the logarithm

o0

log(1+ A) =) (1)

n=1

n
nt1 A"
n

This converges for ||Al| < 1.
= log is defined on the open ball of radius 1 around 1 € M,,(K)

Theorem 18 (1) For z in some neighbourhood of 0 € M, K, log(exp(z)) = x.
For X with || X —1]] <1, exp(log(X)) =X

(2) exp(z) =14+ x4+ ---. That is exp(0) = 1 and dexp |p = idpy, k

(3) If zy = yx in M, K, then exp(z + y) = exp(z) exp(y) In particular, exp(x) exp(—x

x € M,K. So exp(x) € GL(n, K)

) =1 for any

(4) For afixed x € M, K, define a smooth map R — GL(n, K) by t — exp(tz). Then exp((s+t)z) =
exp(sx) exp(tz) Vs,t € K. In other wrods, ¢ — exp(tx) is a homomorphism of Lie groups.

(5) The exponential map commutes with conjugation and transpose. That is exp(4 x A™1) =

Aexp(z)A~! and exp(z)’ = exp(z?)
Proof

(1) follows from the fact that log(exp(x)) = = for z € R, so that is true as an identity of formal

power series. So it works for a matrix X

2) -
(3) Try to compute exp(x)exp(y) for any z,y € M, (K)

exp(z)exp(y) = (1+a+2?/24+ - )1+y+y*/2+-)
= 1+ (@+y)+ @ 2+ay+y7/2) + -
and exp(x +y) = 1+(m+y)+(m+y)2/2—|—---

= 1+ (@+y) + @ +ay+yr+y?)/2+--

If yxr = yzx, then exp(z + y) = exp(x)exp(y) is an identity of power series in
variables, say because it’s true for z,y € R

(4) follows from (3) because for any x € M, K, and any s,t € K sz and tx commute.

tx) = exp(sx) exp(tx)

(5) These follow from the power series for exp, using that (AzA~H" = Az"A~!,
(xt)n — (:L,n)t

Definition 19
A one-parameter subgroup of a Lie group G is a homomorphism R — G of Lie groups

8
9
(10
(11

~—~~
~— — ~— —

commmuting

So exp(sz +

and likelwise

The theorem gives, for any = € gl(n,R), a one-parameter subbgroup of GL(n,R), R — GL(n,R) with

tangent vector at 0 is x € gl(n,R) = T1GL(n,R)



Theorem 20
For every classical group G C GL(n, K) (to be listed), G is a closed Lie subgroup of GL(n,K). In
fact, if we let g = T1G, then exp gives diffeomorphism, for some neighbourhood U of 1 in GL(n, K)
and uof 0in gl(n, K), UNG == ung
The classical groups:

(1) Compact (real) groups: SO(n),U(n),SU(n),Sp(n)

(2) GL(n,K), SL(n,K), SO(n,K), O(n,K); for K =R or C

(3) Real Lie group: Sp(2n,R)

(4) Complex Lie gorup: Sp(2n,C)

Example:

O(n,C) = subgroup of GL(n,C) preserving the symmetric C-bilinear form:

< (215045 20), (Wi, .. wy) >= Zziwi

Sp(2n,C) = subgroup of GL(2n,C) preserving the standard C-symplectic (i.e. alternating nondegen-
erate) form:

w((21, -5 220), (W1, .., Wap)) = (21Wnt1 — Znp1w1) + (22Wny2 — Zpg2wa) + -+

Compact symplectic group

Sp(n):=subgroup of GL(n, H) preserving distance on H" = R*".
Here the quaternions H = R1 @ Ri® R j ® Rk determined by i? = k? = j2 = —1 and ij = k (etc.).

Say we define an H-vector space V' to be a right H-module, va € V for a € H.
For example H" = {(z1,...,2,)" | z; € H} is an H-vector space.
GL(n,H) := {invertible H-linear maps H" — H™} C M, (H)

Warning: det only defined for matrices uses a commutative ring.

Why are O(n),U(n), Sp(n) compact?

O(n) = { matrix with column i = A(e;) | A(e1),.. ., A(en) € R” orthonormal} C M, R = R"
is a closed bounded subset and hence compact

U(n) = GL(n,C) N O(2n) which is closed subset of O(2n) hence compact.
Sp(n) = GL(n, H) N O(4n) C GL(4n,R) a closed subset of O(4n), so Sp(n) is compact

Proof of Theorem 20 in a few cases:
SL(n,R): Claim that: for z € gl(n,R), near 0, exp(z) € SL(n,R) & z € sl(n,R) := {z € gl(n) |

tr(z) = 0}.

Use Jordan canonical form: For any = € M,, C, = is conjugate (over C) to an upper-triangular matrix.

et *
So exp(x) is conjugate (over C) to
0 en
In particular,
detexp(z) = e ---e™ (12)
= entron (13)
— exp(tr()) (14)



So,

exp(z) € SL(n,R) < detexp(z) =1
< exp(tr(z)) =1 < tr(x) €2miZ (16)
For z near 0, this happens < tr(z) =0

Definition 21
vector field V' on a smooth manifold M assigns to every point p € M a tangent vector v, € T,M s.t.
in any coordinate chart, it has the form

n
0
v = ; 17
> o) a7)
=1
where f1,..., f, are smooth functions M — R (see picture)
Here we write 8%1, ceey % for the standard basis to T, R" for every p € R"

Two ways to think of tangent vectors at p € M:
(1) A smooth curve c: R — M has a tangent vector ¢/(t) € Tepy M

(2) Differentiate a smooth function F' on M in the direction of tangent vector X € T,,M at point p
(one definition: pick a curve ¢ with ¢/(0) = X and then define X (f) = %h:of(c(t)))

We can identify T, M with the space of “derivation at p”, X : C*°(M) — R, R-linear, s.t. X(fg) =
f(p)X(9) + X (f)g(p) eR

In particular, in some coordinates, i‘ <
o

P E‘p are derivation at p

Theorem 22 (Existence and Uniqueness for ODEs)

Let M be a smooth manifold, X a vector field on M, p € M.

Then Va < 0,b > 0, 3at most one curve c: (a,b) = M s.t. ¢(0) = p and ¢/(t) = Xop) € Ty M

Also, ¢(t) exists on some open interval around 0, the maximal interval might or might not be R. If M
is compact then c(t) is defined V¢t € R

Theorem 23
Let G be a Lie group, x € T1G. Then 3! one parameter subgroup f: R — G s.t. f/(0) ==«

Proof
(see picture)

Suppose we have such a f. We know that V¢, tg € R, f(t +to) = f(fo)f(t) € G

For tp € R, and think if ¢ near 0. Then f(t +t9) = Ly, f(t) € G

Differentiate this w.r.t. ¢t at t = 0 gives:

f(to) = dLj(y) (%) € Tj(z,)G, since f'(0) = 2 € TG so define a left-invariant vector field X on G by:
Vg € G, take the tangent vector X, := (dLy)(x) € T,G

So f(t) must be the unique solution to the ODE: f(0) = 1 € G and f'(t) = Xy € TG Vt €
(a,b) CR

One checks that a solution to the ODE is a one-parameter subgroup.

Suppose we have defined f : [0,7] — G with f(s+t) = f(s)f(t) for s,t,s+t € [0,T]. Then we can
define f on [T,2T) by f(T' +t) = f(T)f(t) for t € [0,T]. (see picture) Repeat process. O

Definition 24
Let G be a Lie group. Then the exponential map exp : g — G (where g = T1G) is defined by
exp(z) = f(1) (18)

where f : R — G is the unique one-parameter subgroup with f/(0) =z € g
(This is smooth, by theorems on ODEs)

10



Notice that for ¢t € R, exp(tz) = f(t). That is, t — exp(tx) is the ungiue one-parameter subgroup
R — G with tangent vector x at time O.

For G = GL(n,R) it follows that this map is the same as the matrix exponential
exp : gl(n,R) - GL(n,R) (19)

More generally, let H < G be a closed Lie subgroup of Lie group G. For x near 0 in g, exp(z) € H <
x € b (see picture)

Remark: dexplo: g — T1G = g is the identity map, so exp gives a diffeomorphism from a neighbour-
hood of 0 in g to a neighbourhood of 1 in G for any Lie group.

Lemma 25
For any conencted Lie group G, G is generated by the subset exp(g) C G

Proof
By Inverse Function Theorem, since dexp | =identity on g, exp(g) contain a neighbourhood of 1 in
G. Since G is connected, this generates G as a group. O

Corollary 26
Let G, H be Lie groups, G connected. Let o, f : G — H be homomorphisms s.t. da|; =dp|;:g — b.
Then a =

Proof

For any = € g, then t — f(exp(tz)) is a one-parameter subgroup f : R — H. The tangent vector to
this one-parameter subgroup in H is df|1(z) € b, so f(exp(tz)) = exp(tdf|i(x)).

Since « and 8 have the same derivative at 1, we have a(exp(tx)) = f(exp(tx)) Vt € R,z € g. So,
a = onexp(g) CG. Soa = on all of G. O

Example

e For GG abelian Lie group, exp is “globally well-behave”. It is a group homomorphism exp : g — G,
it is surjective, and it is a covering map (See Armstrong, Basic Topology)
o G =5" thenexp:g— S'isthe map R — S t s e?

For G nonabelian, exp need not be a covering map even if it is surjective.

Example G = Sp(1) = {z € H = R*| |2| = 1} = 53 group under multiplication.
g — G = 53 sends all vectors of length 7 to the point -1; all vectors of length 27 to 1 etc.

Let G be a Lie group. We have a smooth map f: U x U — V where 0 € U C V C g are open subsets
of g=T1G s.t. exp(f(x,y)) = exp(z)exp(y) € G
This satisfies f(0,y) =y and f(x,0) =2 Vz,y € g. So the Taylor series for f at (0,0) € g X g begins:

f(w,y)=w+y+f2($,y)+f3($,y)+"' (20)

In general fg(x, y) = E Qi5T;T5 + z bijxiyj + Z CijYiYj = Z bijxiyj
In this case, fa(x,y) is a bilinear map g x g — g

Definition 27

The Lie bracket [, | : g x g — g is defined by fo(z,y) = %[:):,y].
We have
flz,x) = exp_l(exp(x) exp(z)) (21)
= exp exp(2z)) = 2z (22)
(More generally, exp(sx) exp(tx) = exp((s +t)z) Vs, t € R,z € g)
Therefore, [x,2] =0 Vz € g. This defines [, | is alternating. As a result, [z,y] = —[y,z] Vz,y € g
Proof: 0 = [z +y,z +y| = [z, 2] + [z, y| + [y, 2] + [y, ¥] O
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The Lie bracket measures the non-commutativity of GG, in a nbhd of 1 € G. In particular, if G is
abelian, then [, ]is 0

Example: Compute the Lie bracket for G = GL(n,R)

Here [, ]: gl(n) x gl(n) — gl(n), we have
f(z,y) = log(exp(x)exp(y)) (23)
2 2
= log(l4+a+5 +-)1+y+ T +)) (24)
LU2 y2
— tog1+ (@ )+ (g e+ B ben) (25)
I‘Z 2 T 2
- [(x+y)+(2+xy+y2)+..l_[(zy)+..l+... (26)
= x+y+%(wy—y:ﬂ)+"' (27)
So the Lie bracket on gl(n) is
[z,y] = 2y —yx (28)

We can use this formula to compute the Lie bracket for closed Lie subgroups G C GL(n). For
z,y € g C gl(n), zy need not be in g, but zy — yx will be in g, and that is [z,y] € g

Remark: If G is a complex Lie group, then g is a complex vector space, and [, | : gxg — g is
C —bilinear and alternating.

Other ways to think of the Lie bracket:

exp(sz) exp(ty) exp(sz) Lexp(ty) ™t = exp{st[z,y] +---}

(for s,t € R near 0, x,y € g).
Can check from definition on [, ]. Yet another way,

exp(sz) exp(ty) exp(sz) ™! = exp{ty + st[z,y] + -}

Lemma 28
For any homomorphism f : G — H of Lie groups, df|; : ¢ — b is compatible (commute) with Lie
brackets:

[df |1 (), df[1(y)] = df 1]z, y] Yo,y €g (29)

Proof
Easy, using that f(exp(tx)) = exp (¢ - df]i(x)) O

Definition 29
A representation V' of a Lie group G is a vector space over K = R or C with a smoth map G xV — V
s.t.:

(1) (gh)(x) = g(h(x)) Vg,h € G,z € V (definition of group action on a set)

(2) l(x)=2 VeV

(3) Vg € G,z + gz is a linear map V — V

Note: these maps x — gx are in GL(V'), so we can think of a representation as a homomorphism of
Lie groups G — GL(V)

12



Example:
We could have every g € G act as identity on V, a trivial representation of G. In particular, V = C
is the trivial complex representation of G

Example:

GL(n,R) has an obvious representation on R" the standard representation. So any subgroup of
GL(n,R) say O(n), has a standard representation on R"

Example:
For any Lie group G and any g € G, conjugation: Co : i : Shg_l is an isomorphism of Lie
groups. The derivative of Cy is a linear map
Ad(g) :=dCy|1: 9 = g (30)
Lemma 30
Ad : G — GL(g) is a linear representation, called adjoint, of G
Proof
Cgh = CgCh Vg, heG
Taking derivatives shows that Ad(gh) = Ad(g) Ad(h) O

Since Cy is a group homomorphism G — G, by Lemma 28, we have:

Ad(g)[z,y] = [Ad(g)(z),Ad(g)(y)l €9 VgcG.zycg (31)
Example:
For G = GL(n,R) the adjoint representation of GL(n) of n-dimensional is:
9 € GL(n,R),z € gl(n)  Ad(g)(z) = gzg~" € gl(n) (32)

The formula (31) can be checked by hand (exercise) in this case that
For g € GL(n),z,y € gl(n) glz,ylg™" = [gzg™", gyg™"]

Note that the adjoint representation measures the non-commutativity of G. If G is abelian, then the
adjoint representation is trivial.

Lemma 31
Let G be any Lie group
Let ad : g — gl(g) = End(g) be the derivative at 1 of the adjoint representation of G. Then Vz,y € g

ad(z)(y) = [z,y] € g (33)
Proof
For g € G,y € g, we have
d _
Ad(g)(y) = —|  gexp(ty)g (34)
t=0
Therefore, Vz,y € g,
d
ad(z)(y) = —-|  Ad(exp(sz))(y) (35)
s=0
_ 4] 4 (sz) exp(ty) exp(sz) ! (36)
= o 7 exp(sx) exp(ty) exp(sx
s=0 t=0
d
= | g ewetytstlzyl+-) (37)
5 s=0 t=0
= [z, (38)
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I know that Ad : G — GL(g) is a Lie group homomorphism.

Therefore, by Lemma 28, the linear map ad : g — gl(g) must preserve Lie brackets: ad[z,y] =
[ad z,ad y] € gl(g)

But I know how to compute the Lie bracket in gl(V').

adlz,y] = [adz,ady] = (ada)(ady) — (ady)(ada) € gllg)  (39)
= Va,y,ze€g  adlzyl(z) = (adz)(ady)(z) — (ady)(ad z)(2) (40)
That is,
[z, y],2] = [z [y 2] = [y, [z, 2]] (41)
= —lly, 2l 2] + [y, [z, 2] (42)
= —[ly.2)a] - [l2,2]. 9] (43)

Theorem 32 (The Jacobi identity)
For any lie group G, any z,y, z € g := T1G, we have a Lie bracket [, | : gx g — g s.t.

[z, 9], 2] + [y, 2], ] + [[2, 2], 9] =0

Proof
This can be proved directly from the power series f(z,y) s.t.:
exp(f(z,y)) = exp(z)exp(y)
1

Associativity of this operation, i.e. f(f(x,y),2) = f(z, f(y, z)) implies the Jacobi identity

(xy)z =xz(yz) in G = Jacobi identity in g

Failure of xzy = yx in G = failureof [, |in g

wyety~h = (yay e = [yl = —[y,2] ing O

Definition 33
Let k& be any field. A Lie algebra over k is a k-vector space g with an alternating k-bilinear form
[, ]|:9xg— g which satisfies the Jacobi identity

For any Lie group G, g := T1G is a Lie algebra over R
For any complex Lie group G, g :=T1G is a complex Lie algebra.

Note that, if we pick a basis ey, ..., e, for a Lie algebra g over k, g is determined by the n3 different
numbers a;j; € k, the structure constants:

n
[e’ia 6]] = Zaijkek 1< iaja k <n (44)
k=1

These numbers satisfy some simple conditions, alternating and Jacobi identity.

Definition 34
A homomorphism of Lie algebras f : g — h over k is a k-linear map s.t.

flz,yl =[f(x), f(y)]eb  Vz,yeg (45)

If f: G — H is a homomorphism of Lie groups, then df|; : g — b is a homomorphism of Lie algebra
over R
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Definition 35
A Lie subalgebra h of a Lie algebra g is a k-linear subspace h C g s.t.

[h,b] Ch (46)
(that is, [z,y] € b Vx,y € h) If H < G is a closed Lie subgroup, then T} H is a Lie subalgebra of T1G

Definition 36
An ideal b in a Lie algebra g is a k-linear subspace h C g s.t.

(8,01 CH (47)

If H <G is a normal closed Lie subgroup of a Lie group, then b is an ideal in g (Adjoint representation,
Ad(g) : g — g preserves the linear subspace h C g,i.e. b is an ideal of g)

Lemma 37

Let f : g — b be any homomorphism of Lie algebra over a field k. Then ker f is an ideal in g, and
g/ ker(f) C b is a Lie subalgebra of b

Conversely, if a C g is any ideal, then g /a is a Lie algebra in a natural way.

Proof
[ is a k-linear map, so ker(f) = {x € g|f(x) =0 € h} C g is a k-linear subspace. If = € ker(f) and
y € g, then

fle,y] = [f(2), f(W)] =0, f(y)] =0
So [z,y] € ker(f). That is, ker(f) is an ideal

If a C g is an ideal, let z,y € g/ a. Let Z,y € g s.t. they maps to x,y under g — g/ a. Then,
2,y) = (7.9 €3 mod a
This is well-defined in g/ a because a is an ideal
Alternating and Jacobi identity on g/ a are immediate from g O

Theorem 38
Let G be any Lie group, and let h C g be any Lie subalgebra. Then 3!'H connected Lie group with a
homomorphism H — G which is an injective immersion and with TYH =§ C g

Definition 39
A smooth map of manifolds, f: M — N is an immersion if df|, : T,M — Ty(z)N is injective Vo € M

Example:
There is an immersion R — R? with image: (see notes for pictures)

Even if an immersion is injective, it needs not be a homeomorphism onto its image f(M) C N
(with the subspace topology)

Example 2(see notes)
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Example 3

There is a homeomorphism of Lie groups f : R — (S1)2 = R? / Z? which is an injective immersion but
with f(R) C (S1)? not closed and f : R — f(R) is not a homeomorphism

Some one-parameter subgroup R — R? / Z? is given by f(t) = (¢, at) where a € R
If a € Q, then f(R) = S! and it’s a closed Lie subgroup of (S1)?
If a ¢ Q, then f: R — (S1)? is an injective immersion, but f(R) not closed in (S!)?

f(R) looks like: (see notes for picture)
f(R) is dense in (S1)? (not closed)

Sketch Proof of theorem

This is proved in:

M. Spuak, A comprehensive introduction to differential geometry
F. Warner, Foundations of differential manifolds and Lie groups
Part III Differential Geometry course later this term

Given a subalgebra h C g this determines what T, H should be for any x € H. We must have
T.H = (dLz|1)(h) C Tx(G). So H is tangent to a “smooth distribution” S, C T,G Vx € G. The
assumption that b is a Lie subalgebra is exactly the hypothesis for “Frobenius Theorem”, which ensures
the existence of an immersed connected “submanifold” with the given tangent space everywhere.
This manifold H (through 1) is unique if you take it to be maximal. One checks that it is a subgroup.
O

Theorem 40

Let G be a simply connected Lie group G, H any Lie group. Then there is a one-to-one correspondence
between Lie group homomorphism G — H and Lie algebra homomorphism g — . i.e. (and more
explicitly)

{f : G — H Lie group hom.} <> {df|1 : g — b Lie algebra hom.}

Proof
Roughly:

We know that a homomorphism f : G — H determines a Lie algebra homomorphism df|; : g — b.
We have shown that any homomorphism « : g — § of Lie algebra comes from a homomorphism of Lie
groups using that G is simply connected

Idea: « gives a Lie subalgebra of g x h, namely the graph of o, I'y, = {(z,a(x)) € gxh|z € g}. So
this correspond to some connected Lie group K with an injective immersion K — G x H

One checks that K 2 G and G — G x H is the graph of a homomorphism G — H

In details: Given f: g — § a Lie group homomorphism.

The graph of f, 'y := {(z, f(x)) : € g} is a Lie subalgebra of g x b, [(g1, h1), (92, h2)] = ([91, g2, [P1, h2))
(Note that [(g,0),(0,h)] = 0).

So there is a connected Lie group K with an injective immersion and with Lie algebra=t C g x b,
tx=g

So the composition K — G x H — G induces an isomorphism on tangent space at 1.

Therefore, (by Example Sheet 1), K — G is a covering map. But G is simply connected, so K = G.
So we get our homomorphism G — H O

Corollary 41
Two simply connected Lie groups are isomorphism iff their Lie algebras are isomorphic

Proof
«: If f: g = b isomorphic as Lie algebra, then both f and f~! come from homomorphism G — H

16



and H — G (Here, G, H are simply connected Lie groups with those Lie algebras). You can check
that both compositions G — H — G and H — G — H are the identity O

Theorem 42 (Ado’s Theorem)

Every finite dimensional Lie algebra g over R can be embedded as a Lie subalgebra of gl(n,R) for
some N < 00

(c.f.: Fulton-Harris, Appendix C)

Theorem 43

Every finite dimensional real Lie algebra g is the Lie algebra of a unique simply connected Lie group
G. Also, every finite dimensional complex Lie algebra is the Lie algebra of a unique simply connected
complex Lie group.

Proof

Use Ado’s Theorem.

Given that, we have g C gl(n,R)

Therefore, there is a connected Lie group G with Lie algebra g and an injective immersion G —
GL(n,R)

Therefore the universal cover G is the simply connected Lie group we want. O

Can we describe all the connected Lie groups with a given Lie algebra g7
Let G be the simply connected Lie group with Lie algebra g. Then any connected Lie group with Lie
algebra g has the form G = G/Z for some discrete central subgroup Z C G

Example:
Describe all n-dimensional connected abelian Lie groups. Here g = R" with [, ]=0
Here G = (R",+). What are the discrete subgroups Z C G?7 (see picture)

We have Z = Z° for some 0 < a < n. Then G/Z = (§!)* x R"™ as a Lie group G = G/Z

Example:
What are all the connected Lie groups with Lie algebra su(2)?
One is SU(2) = S = Sp(1), hence is simply connected.

2s0) ={(§ o) €50} = (1) € SUE)

So the possible connected groups with Lie algebra su(2) are SU(2) and SU(2)/{xl1} = PSU(2) =
SO(3)

The isomorphism SU(2)/{£1} = SO(3) is given by the adjoint representation SU(2) — GL(su(2)) =
GL(R?)

Image=S0(3), kernel=Z(SU(2)) = {£1}

More generally, for any connected Lie group G,
ker(Ad : G — GL(g)) = Z(G) = centre(G) = {g € G|gh = hg Yh € G}

Definition 44

A (finite dimensional) representation V' of a Lie algebra g over a field k, also called a g-module, is a
k-vector space together with a Lie algebra homomorphism p : g — gl(V) = Endg (V)

Equivalently, p gives a bilinear map g xV — V which satisfies

[u,v](z) = u(v(z)) —v(u(x)) Yu,vegreV

17



Remark:
In this sense, a representation of Lie group is finite dimensional by definition. But the definition of a
representation of a Lie algebra makes sense even for V' infinite dimensional

Example: ad:g — gl(g) is a representation of g, the adjoint representation

Given a real representation V of a Lie group G. V is also a representation of the Lie algebra g.
Explicitly, this representation of g is given by:

d
u(z) = —| exp(tu)(z) eV uegreV

Conversely, let G be a simply connected Lie group. Then a finite dimensional representation V' of g
comes from a unique representation of G

{f.d. real repn p: g — gl(V)} « {f.d. real repn p: G — GL(V)}

By the commutativity of exponential map and the representation of g. Explicitly,

u2
pep(u)x) = ot plu)(e) + 2
—— !
G

(x)+-- wegreV

— exp(p(u) € GL(V)(z)
N——

Also, for a complex Lie group G, complex analytic representation of G give representations of the
Lie algebra g over C, and this is an equivalence for finite dimensional representations if G is simply
connected.

{f.d. C analytic repn p: G — GL(V)} < {f.d. C-repn p:g— gl(V)} G simply connected
{C analytic repn p: G — GL(V)} ~» {C-repn p:g— gl(V)}

Example:

Complex analytic representations of SL(2,C) are equivalent to finite dimensional representations of
5((2,C)

Indeed, SL(2,C) is simply connected, , because S% = SU(2) < SL(2,C) (SL(2,C) is dimension 3 over
C) is a homotopy equivalence.

Let V be a complex representation of a real Lie group G. Then we have a homomorphism of real Lie
groups G — GL(V) = gives a homomorphism of real Lie algebras g — gl(n,C)

But this is equivalent to a representation of the complex Lie algebra g ®@r C

We can describe this as g @i g, with C acting in the obvious way. It is a complex Lie algebra (define
[, ] to be C-bilinear). If dimg g = n, then dimc(g®rC) =n

‘(C—repn of real G‘ ~ ‘g — gl(n,C) ‘ <+ |C-repn of complex gr C = gdig

Example:

Complex representations of the compact Lie group SU(2)

<> complex representation of the real Lie algebra su(2)

+> representations of the complex Lie algebra su(2) ®@g C = sl(2,C)

Proof

su(2) ={A e MyC|tr(A) =0,A+ A* =0}

isu(2) ={A e M C|tr(A) =0,A" = A}

s((2,C) = su(2) @ isu(2) O
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Representation of the Lie algebra s((2,C)

sl(2,C) = {A € My C [tr(A) = 0}

A basis for sl(2) as a C vector space is:

) ) ()

We compute the Lie brackets:

e = o 26 o) (o) 5
SRR
= [h, €] z 2<68 §>

We compute that [h, f] = —2f and [e, f] = h

Let V' be any finite dimensional representation of sl(2C).
That is: we have e, f, h € End(V') which satisfy

[h,e] = he—eh=2e
[h7 f] = —2f
e, f] = h

Idea: Divide up V according to eigenspaces with respect to h.
If V # 0, then (since we are over C) h has some eigenvector

that is, 3z € V,z # 0 and hz = Az for some \ € C.
What can we say about ex and fx € V7
We know that, for example:
hex — ehx = 2ex hex — ehx = hex — e(Ax) = h(ex) — A(ex)
Thus
hiex) = (AN +2)ex

That is, ex is the (A + 2)-eigenspace for h

Likewise, using that [h, f] = —2f, we find that

h(fz) = (A=2)fx
i.e. f maps the A\-eigenspace for h into the (A — 2)-eigenspace for h

Notice that for any = # 0 an h-eigenvector with weight A (=eigenvalue for h), then

ex has weight A\ + 2

e?x has weight \ + 4, etc.

But since V is finite dimensional, h has only finitely many eigenvalues on V. Therefore, e"xz must be
0 for some r > 1

Likewise, f"x must be 0 for some r > 1

Definition 45
A highest weight vector x in a representation of s[(2, C) is a vector x # 0 in V' which is an h-eigenvector
(so hx = Az for some A\ € C) and ex =0
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If V # 0 is a finite dimensional representation of s[(2), then V contains a highest weight vector, we
have shown.

Let x be a highest weight vector in a finite dimensional representation of s[(2), with weight A € C.
We know that hz = Az and ex =0

What can we say about fx?

It is weight A — 2 that is : h(fz) = (A — 2) fx What is efz?

We know that [e, f] = h € sl(2),hence in End(V)

Therefore, efx — fex = hx. But fex =0 as ex =0 and hx = Az
So e(fx) = hx

Next, what can we say about f2z?

We know that h(f%z) = (A — 4)(f?z)

What is e(f2z)? It is some vector of weight A\ — 2.

We use that [e, f] = h again:

ef’z = fe(fz)+h(fz)
fQz) + (A =2)fz
= (2\—2)fx

One more step: What is e(f3x)?
Again, use [e, f] =h

ef’r = fef?r—hf?z
F(2X=2)fz) + (A= 4) [z
= (3A—6)f%z

Summary:
fTx has weight A — 2r for some r > 0
e(fxr) =Mz
e(f2a) = (2A - 2)fa
e(f22) = (31— 6)f%a
etc. By induction, we show that for r > 1,
e(ffe) = (PA=21+2+---+(r—1))—f 'z
(rA—r(r—1))f"tz
= rA—r+1)f 1z

Say f"tlz is the first element that becomes 0. Then, x, fz, f?z,..., f'z are all nonzero in V. They
are all h-eigenvectors with different eigenvalues, namely, A, A —2,..., A —2r € C

Therefore, z, fx, ..., ffx are linearly independent in V. Let S C V be the C-linear subspace they
span.

Then S C V' is a subrepresentation of V for s((2)

Definition 46
Let V be a representation of a Lie algebra g over k. Then a subrepresentation S C V' (or g-submodule)
is a k-linear subspace s.t. ur € S VYu € g,z € s.

Definition 47
An irreducible representation V' of a Lie algebra g is a representation s.t. V' # 0 and V' contains no
g-submodules 0 C S C V

Suppose that V is a finite dimensional irreducible representation of s[(2). Let x be a highest weight
vector in V. Then the subspace S = C{z, fz,..., ffz} C V is equal to V

What can we say about the weight A € C of the highest weight vector x?
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Theorem 48
The weight of a highest weight vector for a finite dimensional irreducible representation of sl(2,C) is
a natural number

Proof

We use that e(f"z) = (r + 1)(A —7r)fz, but frz =0

= 0=(r+1)(A—r)f'z eV where ffz #0€V

= musthave(—l—l)( r)=0eC

Here r € {0,1,2,...} =

= 7“+17EOEC :> A=r O

Notice that the representation of sl(2) given by the above formulae, for any r € N, are completely
determined by the number A\(= r in later formulae)
That is, this representation has basis:

z, fx, f2x,..., fx
The formula we wrote describe how s[(2) acts in this basis

Theorem 49

The finite dimensional irreducible representation V' of s[(2,C) are classified up to isomorphism by one
number A\ € N, the weight of a highest weight vector (unique up to scalars in V') in V.

(Here dimc V) = A+ 1)

How do these irreducible representations of s[(2) arises in nature?
There is the standard representation V 22 C? of the group SL(2,C).
Therefore, any A € N, S*V (the Ath symmetric power) is also a representation of SL(2,C)

Here, if V has C-basis eq, ea, S*V means the C-vector space of homogeneous polynomials of degree A
in ey, es. That is:
SAV = {age} + are) Leg + - --arey}

If f € SL(2,C)
F(e8e3™) = fler)fex) ™ € MV

This representation, as a representation of sl(2, C) is the irreducible representation we described

Tensor Product

Theorem 50
For any vector spaces V, W over a field k, there is a vector space V ®; W (the tensor product) with a

k-bilinear map f:V x W — A, 3! linearmapg:V@kW—)Awithf:(VXW—>V®/€W£>A)

Proof
See commutative algebra (Part III)/representation theory (Part II) O

Example:

If V has a basis e1,...,e, and W has a basis fi,... f,, then V ®; W has a baiss ¢; ® fj, 1 <1 <
m,1 < j <n. So dim(V @ W) = (dimy V')(dimy W)

So every element of V' ® W can be written as ) a;je; ® fj, ai; € k

Note: Some element can be written v ® w for a simple v € V, w e W

Not-so-related-notes: Compare the direct sum:

VeW={vw)veV,we W}

here, dimy(V & W) = dimy, V + dimy, W
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Example:

V* @k W = {k linear maps V — W}

if V is finite dimensional.

A linear map correspond to a “symbol” f ® w where f € V* = Homg(V, k) < it has rank < 1
(Here f @ w € V* ® W corresponds to the linear map V — W,z — f(x)w € W (f(x) € k))

Symmetric Products and Exterior Products

Definition 51
Let V be a k-vector space, a € N, Then the a-th symmetric power SV = Sym®V is the quotient
space

V®k---®kV/(1)1®"'®Ua:Ua(l)®"'®va(a))7aeSa

which is a k-vector space
Write vivg - - - v, for the image of v1 ® -+ @ v, in S*V. If V has a k-basis eq,...e,, then S*V is the

space of homogeneous polynomial of degree a in eq,...,e,.
. -1
We compute that dimg S*V = (n +Z >

Definition 52
For a k-vector space V', a > 0, the a-th exterior power of V is

a
/\V =V V/ (vl ® - ® v = sgn(0)vy1) ®---®va(a)) ,0 €Sy
which is a k-vector space

Here, for example: vAv =0 Yv eV andvAw=—Av Yo,u eV
If V has a basis ey, ..., e,, then A®V has a k-basis e;;, A---e;, if 1 <i) <--- <y, <n
So dimy A"V = <Z>

If V, W are representations of any Lie group G, then S*V, A’V and V ®;, W are also representations
of G (G acts by g(v ® w) = gv ® gw,ete)

Let V, W be representations of a Lie group G.
Then V ®, W is a representation of GG, hence a representation of the Lie algebra g. How does u € g
act on V@ W? We have

u(v@w) = exp(tu)(v ® w)

t=0

dt

- 1
o H)( +tu+-)(v@w)

= (I+tu+--)v)@Q+tu=---)(w)
= v®+t(w @ w +v@uw) + O(t?)

So u € g acts on V ® W by the Leibniz rule:
u(v@w) =uw @ W+ v ® uw

If V, W are any representation of a Lie algebra g over a field (representation could be infinite dimen-
sional) then the Leibniz rule defines a representation of g on V @5 W

Likewise, for a representation V of a Lie algebra g over a field, SV is a representation of g given by

w(v1 -+ vg) = (uv1)(ve -+ vg) + v1(uve) Vg F o F v V-1 (UDg)
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foru € g,v1,--- ,v4 € V.
Likewise, action of g on A" V is given by,

w(vp Ao Avg) = (uv1) Ava A= Avg+ -+ 01 A Avg—1 A (uvy)

Example:

How does the Lie algebra s[(2,C) act on SV, where V = C? is the standard representation?
We can write how e, f, h act on the basis ef, e‘f_leg, e ,eleg_l, s

We have

e(e1) =0,e(ez) = €1

= h(eted™) = i(her)et teS™ + (a —i)elh(eg)ey !
= (i—(a—1))erey™
= (20 —a)ejes" (0<i<a)

is in weight a
617162 is in weight a — 2

a

€5 is in weight —a

Example Sheet 2: compute action of e and f, you use that e{ is the highest weight vector, up to

scalars, so S*V = the irreducible representation of s[(2) of the highest weight a, a € N

Definition 53
If S C V is a g-submodule then V/S is also a representation of g, the quotient representation.

Definition 54

Let g be a Lie algebra over a field, and let V, W be two g-modules. Then a g-linear map f : V. — W (or
a homomorphism of representation of g) is a k-linear map such that f(uz) = uf(x) € Wiu € g,z € V
We say V & W if there is a g-linear map V' — W which is bijective

Lemma 55 (Schur’s Lemma) (1) Let g be a Lie algera g over a field k, V, W irreducible represen-
tation of g. If V' 22 W, then Homgy(V, W) = {g-linear maps V' — W} =0

(2) Let k = C, let V be a finite dimensional irreducible representation of g over C.
Then Homy(V,V) = C- 1y

Proof

(1) Let f:V — W be a g-linear map. Suppose f # 0. Then f(V) C W is a g-submodule and
non-zero. So f(V) = W since W is irreducible. Likewise, ker(f) C V is a g-submodule, and it
is not equal to V. So ker(f) =0
So f:V — W is a g-linear isomorphism #

(2) What can we say about Homg(V, V') for an irreducible representation V' of g7
One shows that Homg(V, V) is a division algebra over k (that is every f # 0 has an inverse)
Suppose that £ = C, and V is irreducible and finite dimensional.

Let f:V — V be a nonzero g-linear map. Know that 3z € V,x # 0 s.t. f(z) = Az some A € C
Look at f — Aly € Homgy(V, V)

We know that this g-linear map sends « # 0 in V to 0. So f — Aly is not isomorphism, it must
be0,s0 f=X-1y
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O

Corollary 56
Let g be an abelian Lie algebra over C. Then every finite dimensional irreducible representation of g
is 1-dimensional. The 1-dimensional representation of g are corresponding to the linear maps g — C

Proof

Let V be a finite dimensional irreducible representation. Then Homgy(V, V') = C1y by Schur’s Lemma.
But for any u € g, we have for any v € g,z € V uv(x) — vu(z) = [u,v](z) =0(z) =0

So u € Homg(V, V) so every element of g acts by scalars on V

So every k-linear subspace of V' is g-invariant. Since V is irreducible, dim¢ V =1 v

1-dimensional representation of g +> homomorphism of Lie algebra
g — gl(1,C) = C <> a C-linear map g — C, because g is abelian O

Definition 57
A finite dimensional representation of a Lie algebra g is completely reducible if V2 V; @& --- @V, with
V; irreducible representations of g, for some r > 0

For any finite dimensional representation V' of g, we can always find sub-g-moddules
o=VwcWcWwc..-cV, =V

s.t. V;/Vi_1 are irreducible.
This need NOT imply that V=P V;/Vi_y

Example: Let g be the 1-dimensional Lie algebra over C, g = Ce. Then a representation of g is exactly
a vector space V with an endomorphism e : V' — V. We know how to classify such representations
(Jordan Normal Form) in some basis for V'

a 1

Look at S = C{ej, e2}. That is an e-invariant subspace of V' and two such matrices are conjugate <
they are the same up to reordering the Jordan block

So a representation of the Lie algebra Ce is completely reducible < e € End(V) is diagonalizable

More generally, if a representation V' of a Lie algebra g has g-invariant subspace S, then (in a suitable
basis for V) g — End(V) = M,, C maps into

Al *

0| *

If V. =V; &V, as a representation of g, then (in some basis for V') the representation g — End(V)

maps into
Al *
0|B

with A a dim V; x dim V] matrix, B a dim V5 x dim V5 matrix

with A a dim S x dim S matrix
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Theorem 58
Every finite dimensional representation of s[(2,C) is completely reducible. Therefore representations
of the groups SL(2,C) and complex representations of SU(2) are completely reducible.

Proof

We will show that the complex representations of SU(2) are completely reducible, that implies the
statement on sl(2,C). More generally, we have the following theorem. O
Theorem 59

For any compact Lie group G all its real or complex representations are completely reducible

Proof

(We will consider the C-case, proof for the real is similar)
Let V be a complex representation of a compact Lie group G. We will show that V is unitary, that
is: 3 a positive definite hermitian form (, ) on V s.t.

(gz,9y) = (r,y) Ve,yeV,ged

(Recall properties of hermitian form:

(1) (z,y) : V x V — C which is C-linear in x and conjugate-linear in y

(2) (z,y) = (y,z) € C (3) Positive definite) If V is a unitary representation of G, let S C V be a
G-invariant subspace. Then S+ C V, S+ = {z € V|(z,y) = 0 Vy € S} is also a G-subspace of V.
Because ( , ) is positive definite, V' = S @ S*. Repeating the process we see that V is a direct sum
of irreducible representation

To prove that every C-representation of a compact Lie group G is unitary, we average

For an oriented n-manifold M, let w € Q"(M) be a smooth n-form. (So, at every p € M,w €
A" (T M)

In local coordinates,

w= f(x1,...,zp)dz1 A+ Ndxy,

If g is compactly supported smooth for g : M — R, then we can define

/gwe]R
M

/gfdxldxn

In local coordinates, this is

On a compact Lie group G let w be any non-zero element of /\"I (g") =R
This extends uniquely to a right-invariant n-form w on G

Use this to integrate all smooth functions on G, because G is compact
Because w is right-invariant, we have

floyw = / S e

geG

Let V be a complex representation of a compact Lie group G
Let (, )o be a positive definite hermitain form on V'
Define a hermitian form on V' by

(z,5) = /G gz, gy)owls) Vr,yeV

THis is a hermitian form on V. It is positive definite because the integral of a positive form is positive.
Finally,

(hz, hy) Z/G<ghw7ghy>ow(g)Z/G<gfv,gy>ow(9) = (z,9)
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Therefore, for any finite dimensional representation of sl(2,C), h is always diagonalizable (=semisim-
ple) in End(V)
Also e, f are always nilpotent on V (That is, eV = 0 and fV = 0 for some N > 0)

This is somehow related to the fact that

h = (1) _01) is daigonalizable in My C

01 0 0\ . B
e= (O 0> and f = <1 O) nilpotent (N = 2)

Definition 60
The character of a representation V' of s((2,C) is

X(V) =) (dimVj)t € Z[t,t ']
JEZ

where

V; = weight-j subspace of V'
= {z e V|hz = jz}

(We know the eigenvalues of h on V are in Z)

Easy Fact: The character of a representation of sl(2,C) determine the representation up to isomor-
phism

Example: If V is a representation of s[(2) with x(V) =¢"2 4+ 3 + 2. What is V?
Let A be the 2-dimensional standard representation of s[(2), then

X(S™A) = 47" 4 TR TR g

and x(V & W) = x(V) + x(W) and x(V @c W) = x(V)x(W)
Answer to question:

V = S? A@(some representation with character 2)

= S5243 CaC (where C = SYA)

Theorem 61 (Clebsch-Gordon)
For any a,b € N, a < b, we have

SV @ SV = 5oty @ STy gy ... g SO0V (48)

as representation of s[(2,C) (or the group SL(2,C) or SU(2))

Proof
Compute the character of the left side

Xsay(t) =70+ t70F2 4 g0
Want to know what does
(0702 ) (T P2 )

equals to.
Note that all weights in S*V ® SV are 2 a+b mod 2
(see pictures in handwritten notes) O

Nilpotent and Solvable Lie Algebras
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Definition 62
An abelian Lie algebra g over a field k is a Lie algebra with [, | =0

Definition 63

For a Lie algebra g over k. The commutator subalgebra [g, g] (or derived algebra of g) is the k-linear
subspace spanned by [z,y], © € g,y € ¢

Then [g, g] is an ideal of the quotient Lie algebra g* := g /[g, g] is abelian the abelianization of g

Definition 64
Let g be a Lie algebra over a field k. The derived series of g is defined by Z°g = g and

Zt g = (279,27 g
for 7 > 0. Clearly,
g=2>2'¢g>7%g> -

Definition 65
g is solvable if Z/ g = 0 for some j > 0

Lemma 66
A Lie algebra is solvable < there is a sequence of Lie subalgebras

0CgCgC--Co =9
s.t. g; is an ideal in g, ; and g, / g; is abelian

Also any Lie subalgebra and any quotient Lie algebra of a solvable Lie algebra is solvable

Example 67
The set of upper triangular matrices b C gl(n) form a solvable Lie algebra

Proof
Let xz,y € b. Then [z,y] = vy — yx € u = {strictly upper triangular matrices} C gl(n)
Let e;; = the matrix with 1 in row 7 and column j and 0 otherwise for 1 <i,5 <n

lifj=k
Ok =14 .."
0ifj#k
So leij, ent] = djreq — Orier;
ej€Ebei<j and egjeusi<]
For r > 0, let u, =span of the matrices e;; with ¢ +r < j

So ug = b,u; = u, etc. Then we compute that [u;, u;] C u;4;
So [ur,u;] Cug  [ug,ug] C uy ete. and so b (and u) are solvable

We have e;jer; = 0j,e; where

Here b(C) is the Lie algebra of the complex Lie group B = {upper triangular matrix} = { upper
traingular matrix with diagonal entries in C*} C GL(n,C)

Also u(C) is the Lie algebra of the complex Lie group U = {upper triangular matrix with diagonal
entries being 1}

O]

Remark. B =a Borel subalgebra in GL(n,C)
U = a group of nilpotent matrices

Example:
g = sl(2,C) is NOT solvable since [g, g] = g (since [e, f] = h, [h, €] = 2e¢, [h, f] = —2f)
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Definition 68
The lower central series of a Lie algebra g over a field k is Zpg = g and

Zjv10=10,7Z; 9|
for j > 0.
g is nilpotent if Z/ g = 0 for some j > 0
Lemma 69
A Lie algebra g is nilpotent < there is sequence of ideals in g

0CgCgC---Cg,=9

s.t. g;41 is central in g/ g; Vj
Equivalently, g/ g; is a central extension of g / 9it1
(We saw g is a central extension of h if there is a central ideal 3 C g such that h = g /3)

Definition 70
The centre of a Lie algebra g is

Z(g) ={z egllz,yl =0Vy € g} (49)
Remark. If G is a Lie group then Z(g) is the Lie algebra of Z(G)
An ideal 3 C g is central if 3 C Z(g) (also, 3 central = [g,3] =0)

Example:
The Lie algebra u of strictly upper triangular matrices in gl(n) is nilpotent, because u = uy, [uz,u;] C
ug, [u1,us] C ug and so on (see previous example) whereas b C gl(n) is NOT nilpotent for n > 2

Lemma 71
Any Lie subalgebra and any quotient Lie algebra of a nilpotent Lie algebra is nilpotent

Example 72
Classify all Lie algebras g over C of dimension < 2 up to isomorphism

dimc g = 1: Let e be a basis for g as a C-vector space. We have [e1,e1] =0
So there is only one 1-dimensional Lie algebra over C up to isomorphism

g=C=ucgl(2)
(u is the set of 2x2 strictly upper triangular matrices in C)

dimc g = 2: Let eq, e5 be a basis for g as a C vector space.
Then [e1,e1] =0, [e1,e2] = are1 + ages (a1, a2 € C), [e2,e2] = 0 (and [eg, e1] = —are1 — azes)

Case 1:
If a1 = ag = 0, then g is the 2-dimensional abelian Lie algebra,

g=C>=CxC
(it iss the Lie algebra of the complex Lie group (C2, +) or (C*)? for example)

Case 2:

Suppose g not abelian. Then dimclg, g] =1

Let e; be a basis for [g, g] and let ez be any other basis element for g
Then [e1, ea] = ae; where 0 # a € C

By changing es to a nonzero multiple, we can arrange to have [e1, es] = e;
So there is at most one non-abelian Lie algebra over C up to isomorphism
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This IS a Lie algebra since it is the Lie algebra of matrices { ( ) } C gl(2) which is the Lie algebra

x %
00

_ a b\ «
G_{<O 0>.ae(C,be<C}

We compute g = C{eq1, e12} and [e11, e12] = d11e12 — da1e11 = €12
This Lie algebra g is solvable because D! g = [g,g] = Ce1a

and Z?g = [Cez,Cera] =0

But g is NOT nilpotent because:

Z1g=1g,9] =Cen2

Zy9=19,Cerz] =Cepa

So Zjg#0 Vjie. gis not nilpotent

of the group of

Example:

u =set of strictly upper triangular 3x3 matrices, called the Heinsenberg Lie algebra is the smallest
nilpotent but not abelian Lie algebra

Here u = C{elg, €93, 613} with [612, 623] = €13

le12,e13] =0

lea3, e13] =0

Lemma 73
Let g be a Lie algebra over a field k. Let a, b be solvable ideals in g. Then a+b = {z+y|z € a,y € b}
is a solvable ideal in g

Proof
Clearly a+ b is an ideal, have an isomorphism of Lie algebras:

a/anb = (a+b)/b

LHS is solvable since a is solvable, and RHS is a Lie algebra
Since b is solvable, a+ b is solvable ]

Definition 74

The radical of a Lie algebra g (finite dimensional over k), denote rad(g) is the maximal solvable ideal
in g

Definition 75

A Lie algebra g is semisimple if rad(g) = 0

Definition 76
A Lie algebra g is simple if g is not abelian and the only ideal in g are 0 and g

Lemma 77
A simple Lie algebra g is semisimple

Proof

If rad(g) # 0, then g = rad(g). So g is solvable. We have [g,g] =0 or g.

We have [g,g] # 0 because g is not abelian. And [g, g] # g because we assumed g was solvable (and
we knew g # 0) O

Examples of simple Lie algebra: sl(n,C) for n > 2
sp(2n,C) forn > 1
s0(n,C) forn=3orn>5

To check that a Lie algebra g is simple, it is equivalent to check that g not abelian and the adjoint
representation of g is irreducible
(Recall that ad(z)(y) = [z,y], for z,y € g)
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For example, for s[(2), the adjoint representation s(2) = S?(V), V = C?, which is irreducible
The exceptional cases:

sl(1,C) =0, s0(2,C) = C, which is abelian (so not simple)

This is due to

S0(2,C) = C*
ul Ul
SO(2) = St

and s0(4,C) = s0(3,C) x s0(3,C) = sl(2,C) x s((2,C)
(since SO(4,C) = SL(2,C) x SL(2,C)/{(1,1),(-1,-1)})

Note that for any Lie algebra g, g /rad(g) is semisimple

g g/rad(g)
Ul Ul =1=0
7 (1) I

7~ 1(I) (Solvable ideal in g) — I solvable ideal
=1=0

Dual Representation
Let V be a representation of a group G. Is V* a representation of G?

Given g € G, we have a linear map g : V. — V, hence a linear map ¢* : V* — V* ¢*(f)(z) =
flg(z) VeV

We have (gh)* = h*g*

We define a representation of G on V* by g — (¢*)~! € GL(V*)

in terms of a basis for V', the dual representation to a representatmn a4 GL( k) is G — GL(n, k) —
GL(n,k), A — (A")~! because the matrix for f* is f!, ((AB)!)~! = (AY)~}(B!)~! so this is a repre-
sentation

By taking derivatives, you find if V' is a representation of a Lie algebra g over k, V* is a representation
of g, by :
(uf)(z) = —f(ux) C k ueg feVizeV

Example:
If V and W are representations of a Lie algebra g then Hom(V,W) is a representation of g, by
Hom(V, W) = V* ® W namely,

vRw i (¢ v alv)w)

for a linear map f € Hom(V,W) and u € g
(uf)(v) = —f(uv) +uf(v) e W veV
We see that the subspace Hom(V, W)$ is exactly the space Homg(V, W) of g-linear maps V- — W

Definition 78
For any representation V of a group G, the space V& of invariant is {z € V]gz = x Vg € G}
For a representation V of a Lie algebra g the space of g-invariant is

V8 :={z € V]ux =0Vu € g}
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Likewise, given a representation V of a Lie algebra g we can write the action of g on the space
(VeV)"=V*®V* of bilinear forms on V. The result is a bilinear form B(-,-) on V is g-invariant
< B(uz,y) + B(z,uy) =0Vz,y € V

Example: Let (, ) be the standard representation bilinear form on C". Then a element A € gl(nC)
preserves ( , )

& (Az,y) +(x, Ay) =0 z,ycC"
~———
(z,Aly)
s A+ A =0
< A€so(n,C)
Definition 79

Let V be a representation of a Lie algebra g over a field k. The trace form associated to V' is the
symmetric bilinear form on g defined by

By (z,y) = tr(p(z)p(y)) €k w,y€eg

where p : g — gl(V) is the given bilinear maps V' — V, GL(V) = {linear isom V — V}
This is symmetric because tr(AB) = tr(BA) for all A,B:V — V linear

Definition 80
The Killing form of a Lie algebra g over k is the trace form By = K associated to the adjoint

representation, i.e.
K(z,y) = tr(ad(z) ad(y))
~—_—

€gl(g)

Lemma 81
Let V' be a finite dimensional representation of a Lie algebra. Then the trace form By on g is
(ad-)invariant, i.e.

By (ad(u) - (z),y) + By (z,ad(u) - (y)) = 0

Proof
We have to show that for any =,y € g

By (u(z),y) + By (z,u(y)) =0Vu € g

(u(z) = (ad u)(x)) i.e. we want to show By ([u,z],y) + By (z,[u,y]) =0
i.e. want to show that:

tr(p([u, z])p(y)) + tr(p()p(lu, y])) = 0
We know that p([u, z]) = p(u)p(x) — p(z)p(u) because p is a representation of g on V', so LHS is

tr(p(u)p(x)p(y) — p(x)p(u)p(y) + p(z)p(w)p(y) — p(x)p(y)p(w))

In particular, the Killing form on any Lie algebra g is ad-invariant

Lemma 82
Let a be any ideal in a Lie algebra g. Then the Killing form of g restricted to a is a Killing form of a
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Proof
We have to show that for any =,y € a

trg((ad z)(ady)) = tra((ad z)(ad y))

Choose a basis for g as a vector space starting with a basis for a
Then for z € a, adz € Homy(g, g) has the form (see notes)

(since a is an ideal)
Therefore, for z,y € a, (adz)(ad y) acting on g should be

* | *
010
which is easily observed trq(ad z)(ady) = trg(ad )(ad y) O

Remark. For any Lie algebra g over a field k, the ker(ad : g — gl(g)) = Z(g) (the map is z — (y —

[z, y]))

So g/Z(g) — gl(n), where n = dim g

So Ado’s Theorem is obvious for g with Z(g) = 0 such as semisimple Lie algebras.

This also applies to some non-semisimple Lie algebra, such as the 2-dimensional nonabelian Lie algebra

o
ko ok
g= <0 0> ) [6117612] = €12

and we compute that Z(g) =0

Recall: the Killing form on a Lie algebra is K(z,y) = trg((adz)(ady)) € k
This is an ad-invariant symmetric bilinear, form on g

Example: For g abelian, the Killing form is 0.
More generally, if g is nilpotent, then the Killing form is 0: we have the lower central series:

9=20922192---D2,g=0

where Zj+1 g= [g, Zj g]
So for any x € g, (adz)(Z;9) C Zj1 9
So (ad x)(ad y) is nilpotent: g — g, so K(z,y) = 0 on g nilpotent.

For g solvable, K(z,y) can be non-zero

Example:
* %
g= <0 0> , lern, er] = ez

Here, (adeqq)(e11) = b (aderr)(e12) = e12

(ad 612)(611) = —€12 (ad 612)(612) =0
We compute that K(ell, 611) =1, K(ell, 612) =0, K(elg, 612) =0

Theorem 83 (Cartan’s criterion for solvable Lie algebras)
A Lie algebra g over a field k with char k£ = 0 is solvable < K(g,[g,g]) =0

(Proof ommitted)
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Lemma 84
Let g be a Lie algebra over a field k, a <g an ideal. Then a' (with respect to the Killing form) is an
ideal

Proof
Use that the Killing form is ad-invariant

K(M,z)—i—[((y,[x,z])z(] Va,y,z € g

€a

Letz€g,ycazcat

Then first term is 0 so we have 0 = K(y, [z, 2])

So [z, z] € at (since y € a is arbitrary)

So a' is an ideal in g O

Corollary 85 (Cartan’s criterion for semisimple Lie algebra)
Let char k=0. A Lie algebra g over k is semisimple < K nondegenerate on g

Proof

K nondegenerate means that K(z,y) =0 Yy = z=0

= (K nondegenerate < g = 0)

=

First suppose g is semisimple. By lemma, g is an ideal in g

Also, the Killing form of g restricts to 0 on g+

So the Killing form of g+ is 0 (by a previous lemma).

By Cartan’s criterion for solvable Lie algebra, gt is solvable. Since g is semisimple, g~ = 0
That is, the Killing form on g is nondegenerate

Conversely, suppose g is not semisimple, so rad(g)# 0 ]
Lemma 86

If a is an ideal in a Lie algebra g, then [a, a] is also an ideal in g

Proof
For any = € g,y, z € a, we have

2 [y, 2)) = =[v. [2: 2] = [= [2, 9] € [a, 0]

= [rad(g),rad(g)] = Z'rad(g) is an ideal in g

asis Z2g,Z%g,... (these are terms in derived series)
= g contains a nonzero abelian ideal a

We will show that a C g so Killing form is degenerate.

Pick a basis for g over k that starts with a basis for abelian ideal a. Then for any x € a
0 ‘ * | %
adzx = 0 0 ady = ( )

~~ ~~ 0] =

dima | dimg—dima

= (adz)(ady) = (8 S)
= K(z,y) = tr(adx)(ady) = 0
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Corollary 87
Every semisimple Lie algebra g over a field k of characteristic 0 is a product of simple Lie algebra

g=9g1 X - Xg,

Proof
Let a<g be an ideal. We know that a' is also an ideal in g so ana’ is an ideal in g
The Killing form of g is 0 on ana*

By a previous lemma, the Killing form of the Lie algebra ana' is 0

By Cartan’s criterion, aNa' is solvable.

Since g is semisimple, we have anat =0

(By conunting dimensions) g = a @ a' as a vector space

Notice that [a,a'] = 0 because a and a* are both ideals in g

So g = a x a’ as a Lie algebra

By induction on dimension of g, g is product of simple Lie algebras O

Example:
gl(n, C) is not semisimple.
In fact, gl(n,C) =sl(n,C) x C-1
Clearly gl(n,C) is a direct sum as a vector space as above, and [sl(n,C),C-1] =0
So rad(gl(n,C))=C-1 = Z(gl(n,C))

Semisimple and Nilpotent elements

Definition 88

Let g be a Lie algebra over a field k

An element x € g is called semisimple if the linear map adz : g — g is diagonalizable (=semisimple)
An element x € g is called nilpotent if ad x is nilpotent

Example:
For g = gl(n,C) (orsl(n,C)) =z € gl(n,C) is semisimple or nilpotent in this sense if and only if
x: C" — C" is diagonalizable or nilpotent.

Definition 89
A Lie subalgebra t C g is toral if it is abelian and consists of semisimple elements

Example:
aj 0

g=gl(n,C) t= a; € C } is a toral subalgebra

0 an
Here t is the Lie algebra of the complex (multiplicative) Lie group

ail 0
T = a; € C* » = (C*)"
0 an
al 0 b1 0 ai1by 0
. . = . eT
0 an, 0 by, 0 anby,

In dealing with complex subgroups of GL(n,C), a torus means a group = (C*)* some a > 0

Lemma 90
Let V be a finite dimensional vector space. Let S C End(V') be a set of commuting semisimple linear
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maps V' — V. Then we can simultaneously diagonalize all the maps in S. Equivalently,

v= & vy

A:S—C
where V() = {z € V|s(z) = A(s)x Vs € S}
Proof
Say S = {s1,s2,...}
We know that s is diagonalizable, so V =D, cc V (A1), V(A1) = {x € V[s1(x) = Mz}
Since so commutes with s1, so maps each sj-eigenspace V(A1) into itself
So s2: V(A1) = V(A1) is diagonalizable for A; € C

SO V - ®A1,)\2€C V()\l, )\2)
where V (A1, A2) = {z € V|s1(z) = Mz s2(z) = Aoz}
etc. O

Remark. The trace form on gl(n,C) associate to the standard representation (x,y) = tr(zy), is a
nondegenerate symmetric bilinear form on gl(n,C) It has

1 (k1) =(1,9)
€ij, € =
< / k) {O otherwise
tr(eijen)

= tr(d;xeir) = 050
The Killing form on sl(n, C) is equal to 2n tr(zy)

Theorem 91
Let g be a complex semisimple Lie algebra, t C g a toral subalgebra. Let ( , ) be a nondegnerate
ad-invariant symmetric bilinear form on g (e.g. the Killing form). Then

(1) g= @aet* ga
where g, = {z € g|Vy € t [y, 2] = a(y)x} (the “a-eigenspace” for t acting on g).
In particular, t C g, (will soon show they are in fact equal)

(2) [gaagﬂ] - ga—i—ﬂ vaa 6 et

(3) If a+ B # 0, then g, and gz are orthogonal with respect to (, ).

(4) Ya € t*, the bilinear form restricts to a nondegenerate g, x g, — C

Proof

(1) Foreachy € t, ad y is a semisimple linear map g — g and all these linear maps commute (because
0 = ad[z,y] = [adz,ad y] for z,y € t abelian)
So we can simultaneously diagonalize g with respect to all of t
Easy to see that the eigenvalues o : t — C of any basis element of g must be linear, that is,
a et

(2) Leta,B et y€g,,2€gs et Then

[z,0y,2]] = =y, [z 2]] = [z [2,4]]
= [y, [z, 2]] = [z, [z, 9]
+ [y, B(x)z] — [z, a(x)y]
(B(z) + a(x))[y, 2]
(a+B)(@)[y, 2|

50 [y, 2] € Gasg
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(3) Use that (, ) is ad-invariant
([2,9],2) + (v, [2,2]) =0 Va,y,z€9
Let x € t,y € g,,2 € gg. Then

0 = (a(x)y,2) + (y,8(x)z)
(a(z) + B(x))(y, 2)

so if (y,z) # 0, then we must have (o + §)(z) =0Vz € t. Thatis, a +=0¢€ t*

(4) This follows from ( , ) being nondegenerate on g together with (3)

Definition 92
A Cartan subalgebra in a complex semisimple Lie algebra is a maximal toral subalgebra

Lemma 93
Let t C g be a Cartan subalgebra. Then t is equal to its own centralizer in g (hence g;)

gy = Zy(t) = {z € gl[z,y] =0 Vy € t}

(Proof omitted)

Thus, for any Cartan subalgebra t in a C-semisimple Lie algebra g, we have
g=1to @ a
0#aet*
because gy = t. Remind again:

0o = {z € g|[h, 2] = a(h)x Yh € t}

This is called the root space of decomposition of g. The eigenspaces g, # 0 with o # 0 € t* are called
the root spaces. The 0 # a € t* with g, # 0 are called the roots of g. Write R C t* be the set of roots
of g

Example:

Let g = sl(n,C) and let t =the space of diagonal matrices in g={(a1,...,a,) € C"|a; + -+ a, = 0}
This is a toral subalgebra. Claim that this is a Cartan subalgebra

To see that, conjugate the eigenspace decomposition of g with respect to t

We use that for i # j, [ei, 5] = €;;

Therefore, for any diagonal matrix y = (y1,...,Yn)

[y, €i5] = (vi — yj)ei
Define a linear function €, ...,€, € t* by

€i(y17 o 7y’n) =Y

Then the above calculation shows that for i # j, e;; € ¢, —c;- Thus

s=toPa.,

i#j
C-e;

Ei—ej#OEf*\V/i?éj = t=9g

= Z4(t) =t, i.e. tis a Cartan subalgebra.

We have found the root-space decomposition of sl(n, C)
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See what this is for s[(2,C) Here t =C- <1 _1>

0 0 1 01
sl(2,C) =C (1 o) @C( _1) oC (0 0)
0 0
where C <1 O> = 962*61 = 97261
=t

10
(b 4)

0 1
C <0 0) = 961762 = 9261
(Note: On t C sl(n),e1 +...+ €, =0 € t*, s0 in s(2,C), 2 = —€; € t* = (C-h)*)
These just the same as formulae:

[h, fl=—=2f [h,h] =0 [h,e]=2e
Lemma 94
sl(n,C) is simple for n > 2
Proof
It is not abelian, because [e12, e21] = e12€21 — €21€12 = e11 — €22 # 0 € s5l(n, C)
We have to show that any nonzero ideal a <sl(n, C) must equal sl(n, C)
We know,in particular, that [t,a] C a
That implies a = (a, t)®(the subspace spanned by some set of e;;’s, i # j)
Claim that ant # 0. If not, a D e;j some i # j, So a contains
leij eji] = eii — ejj

Soant#0
Next for any k ¢ {i,7}, we have
leii — ejj, i) = €k
So a contains e;; and hence a contains
€iky €ri] = €ii — ek
Therefore a contains t (t is spanned by ej; — e22,€11 — €33,...,€11 — €nn)
Therefore, for any ¢ # j, a contains
[eii — ej;, €ij] = eij — [ejj; eij] = 2eq;
————
€tCsl(n)

So a = sl(n,C). That is, sl(n,C) is simple O
Let g be a complex semisimple Lie algebra, t C g a Cartan subalgebra. Let ( , ) be an invariant
nondegenerate symmetric bilinear form on g

We know that (, ): g, X g_, — C is nondegenerate for all a € t*

For ae = 0, this gives the ( , ) is nondegenerate on t
We can use this form to identify

t =
= (y=(z,y) € C)

For a € t*, write the corresponding element of t as H, €t i.e.

a(x) = (Hq, ) Vo et
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Lemma 95
Let e € g4, f € g_o- Then [e, f] = (e, f) Ha

Proof
It will suffice to show that Vx € t, (z,[e, f]) = (z, (e, f) Ha). The right side here is (e, f)a(z)
Use that (, ) on g is ad-invariant

(x,le, f]) = —(le,x],f) Vaxet

I

T~

8

= 2,
~

~

Lemma 96
Let « € R C t*. Then

(1) {a,a) #0
(Equivalently, (H,, Hy) # 0)

(2) Let a € R. Let e € g, f € g_, s.t. (e, f) = ﬁ Also, let hy = % et

Then a(h,) = 2 and the elements e, f, hy € g satisfy the relation defining s((2, C). Denote this
Lie subalgebra sl(2,C), C g.

Proof

(1) Assume that (o,a) = 0 € C. THen a(H,) = 0. We know that ( , ) : g, xg_, — Cis
nondegenerate and g, # 0, so there are elements e € g,,f € g_, with (e, f) # 0. Let h =
o2 F1(€ 80 = 8) = (€, f) Hal 0).
Claim that h, e, f span a Lie subalgebra of g. Indeed, we have

[h,e] = a(h)e=0
[h, f1 = alh)f =0

Look at the action of ad h on g, it is diagonalizable, so

s=Pa.

ceC

where g, = {z € g|[h, 2] = cx}

How do ade and ad f act on g7

Because e and f commute with h, e and f map each subspace g, into itself for all c € C
We have h = [e, f] as endomorphism on g, for each ¢ € C

Therefore tr(h|g ) =0

But h acts by multiplication by c on g,

So, if g, # 0, then we must have ¢ =0

That means that h € Z(g). But g is semisimple, so h =0 #

@) a(h,) = S — 208

(o, @) = a(Hqa) = (Ha, Ha))
We know that

[eaf] = <€a f)Ha
_ 2H,
o)
= hy,
and  [ha,e] = a(hy)e = 2e
and  [ha, f] = a(ha)f =-2f
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Lemma 97

Let « be a root, and let sl(2,C), C g be the Lie subalgebra spanned by e € g,, f € g_, and h, as
above.

Consider the linear subspace of g

V=Choo| P oa | Co
04£keZ

Then V is an irreducible representation of s((2C),, and dimc g, = 1

Proof
Here s1(2,C), C g acts on g by the adjoint representation. We have to show that ade,ad f and ad h,
map V to itself. We have

(ade)(Ora) € Bk+1)a
(ad e)(g—a) = (6, f)HOc € C-hq

by Lemma 95.

Same argument show that (ad f)(V) C V

Because hy = [e, f], ho also maps V into itself

So V' C g is a representation of s[(2,C),

What are its weight? The weight of a vector x € g, (W.r.t. hy € 1) is ka(hs) = 2k

(So V =2 (894)%% g (§24)%% @ ... where A = C? is the standard representation of s5[(2,C)) And the
0-th weight space of V is 1-dimensional

ch(SV) = o’
ch(SQV) = o2 o0 o2
Ch(S4V) = o4 o2 o0 o2 ot

So V is irreducible, as a representation of s[(2,C). So all (nonzero) weight spaces of V are 1-
dimensional. Since g, # 0, dimc g, = 1 O

Detour: Semidirect Products

Let N < G be a normal subgroup of a group

We say that G is a semidirect product G = H x N if there is a subgroup H < G that maps isomor-
phically to G/N

l1-N—-G—G/N—1

Conversely, given groups H and N, what do we need to define a group G = H x N?
Given a semidirect product group, we get a homomorphism

H — Aut(N)
h — (n— hnh™!)

Conversely, given H, N a homomorphism ¢ : H — Aut(N), define a semidirect product group G =
Hx N
(hlnl) . (hgng) = (hlhg) <h51n1h2n2>

eH :¢(h2)(n1)n2€N
Example:
The group of isometries of R" is O(n) x R™ (isometries that fixes 0 x translation)

The group of affine translations of R" is GL(n,R) x R"
The homomorphism GL(n,R) — Aut(R") is the obvious one
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Example:
The group

a b\ %
{<0 1).@6@,()6@}

is a semidirect product C* x C

Lemma 98

Let g be a complex semisimple Lie algebra, t C g a Cartan subalgebra, o € R a root (i.e, a € t*, g, #
0, #0)

Then the Lie subalgebra s[(2,C), C g and the element a¥ = h,, € t are independent of the choice of
nondegenerate invariant symmetric bilinear form on g

Proof
We know that g, and g_, are 1-dimensional so [g,,9_,] C t has dimension < 1 and in fact it has
dimension being 1 as we showed. The sl(2,C),, is

5[(27 (C)a = ga @[gav gfa] D gfa

which clearly does not depend on choice of (, ).

The element oV is the unique element of [g,,g_,] s.t. a(a¥) =2 O

67

Remark. The equation a(a") = 2 means that ad a¥acts on g, by multiplication by 2, i.e.

Y

[a¥ 2] =2z Vx € g,

The element oV € t associate to a root « € t* is called the coroot associated to «

Example:

Let g = sl(n, C), t = diagonal matrices in sl(n, C) Any element of t can be written by (y1,...,y,) € C"
with y1 + -~ +yn, = 0. The roots are ¢; — ¢; € t* for i # j where €,(y1,...,yn) = y; (we have
e1+...+€,=0int")

That means [(y1, . - ., yn), €ij] = (Yi—yj)eij (i # j) The coroot o; = e;;—ej; because that is the unique
element of [Ce;;,Cej) s.t. (e; — €j)(esi — ej) = 2 That means that (f =)eji, (b =)es — €j4, (e =)ey;
satisfy the relations in s((2, C)

Theorem 99 (Structure of complex semisimple Lie algebra)
Let g be a C semisimple Lie algebra, t C g a Cartan subalgebra. Let g = t®(@,cr 9.) be the root
space decomposition . Let ( , ) be a nondegenerate symmetric bilinear form on g. Then

(1) R spans t* as a C-vector space
(2) For each root a, g, is 1-dimensional

(3) For any two roots a, #, the number
_ 2(a, )
Nap = ot
(8,8)

is an integer

(4) For any a € R, the reflection s, on t* is defined by

(this makes sense since (a, ) # 0) For any root 8 € R, s,(0)is a root

(5) For any root a, if ca is also a root (¢ € C), then ¢ = +1
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(6) For any roots «, 8 # +a, then subspace

V= @ 98+na

neL

is an irreducible representation of sl(2,C), C g

(7) If o, B are root s.t. o+ 3 is also a root, then [g,, 93] = 9o+ (Of course, if a + 3 # 0 and not a

root then [g,, g3 = 0)

Proof

Suppose there was an element h € t which a(h) = 0 for all roots «; we want to show that h = 0.
The assumption means that adh acts by 0 on g, Va € R. It also acts by O on t, so adh = 0
that is h € Z(g). But g semisimple, so Z(g) =0, so h =0

Proved

Consider g as a representation of s(2,C)s C g. The weight for this s(2), i.e. for for 8V € t, of
g, is @(BY). But we know the weights of any finite dimensional representation of s[(2) are in Z,
so a(BY) € Z. We define

2Hj

(8,8)

BY =

where a(Hpg) = (a, ). So nag € Z.
Consider the subspace of g defined by

V= @ 98+na

nez

This is a representation of sl(2,C),, (Clear, since e in this sl(2) lives in g, f lives in g_,)
For any finite dimensional representation of sl(2, C), its weights are symmetric but 0.

(x weight = —x weight)

We know that gg # 0 and the weight of a"(= “hg”) on g is S(a).

More generally, the weight of gz, wrt a" is f(a") + 2n

= —f(a") must also be weight in this representation V' of sl(2,C),

= 85-p(aV)a 7 0

= B —pB(aV)ais aroot

Consider the subspace of g

V=P g..®Ca’
0#n€Z

We showed that this is an irreducible representation of s((2, C), But sl(2,C), C V
So 5l(2,C), =V So if @ a root and na is a root with n € Z, then n = £1
Suppose a and ca are roots (¢ € C*) Then ng o € Z
That is c € (1/2)Z and 1/c € (1/2)Z
So ¢ € {#1, :l:%, +2} We have excluded £2 and that also excludes :l:%
Look at the weights of V' as a representation of sl(2,C), i.e. the eigenvalues wrt oV € t. These
weights are 8(a") + 2n.
So the weights of V' as a representation of s[(2,C), are all = 3(a") mod 2
Also, all the weight spaces have dimensional < 1. These implies that V is irreducible

Know that [g,,95] € 84+5- (LHS is subspace of 1-dimensional space, RHS is 1-dimensional
space)
Want to show that [g,,gs] # 0 Look at the subspace of g:

V= @ 98+na

0#n€Z
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This is an irreducible representation of 5[(2,C),. We are given that gg # 0 and gg, # 0. So V
has non-zero weight spaces with the weights S(a") and 8(a") = 2

In particular, if the weight spaces Vi and Vj49 are not 0 (k € Z), then e : Vi — V4o is not
the zero map. That means that ¢ € g, has ade : g3 — g, NOT the zero map. That is,

[gou gﬁ] 7é 0

Lemma 100
Let g be a complex semisimple Lie algebra

(1) t C g a Cartan subalgebra. Let tg C t be the real vector space spanned by the coroots a¥,a € R

Then t = tg ®itg = tg ®r C, and the Killing form of g is real and positive definite on tg

(2) Let t = R-vector space spanned by root in t*. Then t* = t; @i t}; and the form on t* corresponds

to the Killing form of g on t is positive definite on t

Proof

(1)

(2)

Let h € tg so h = ZaeR ca” co € R. Then using the killing form
(h.h) = trg((ad 1) (ad 1))

s=toPa.

a€cR

Here

So (h,h) =3 er a(h)?

But a(h) € R because a(") € Z for all roots «, 8

(a(BY) =nap = 22%?;) so (h,h) is real and > 0

and if it is 0 then a(h) = 0 Vroots . That implies h = 0 i.e. the Killing form is positive definite
on tp

So the Killing form of g is negative definite on itg. So tg Nitg = 0. But the coroots span t as a

complex vector space, so t = tg +itg. That is t = tg Pitr
Follows from (1)

Example:
g = sl(n, C), t =diagonal matrices C g
Then tg =real diagonal matrices of trace 0 = Lie algebra of (R*)"~!

Definition 101
A root system R is a finite set of nonzero element in a real vector space E with inner product s.t.

(1) R spans E as a real vector space

(2) Vo, B € R,
2(av, B)
Nag = eZ
ERCA
(3) For every root a € R, the reflection
2
Sa(T) =2 — <<a’$>>a
a,a

(a: E — E) maps the set R of roots into itself
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A root system is reduced if when « is a root , ca is a root for some ¢ € R, then ¢ = £1

Important Example:
For g a C-semisimple Lie algebra, t C g a Cartan subalgebra, let E = t}; with the (dual of) the Killing
form of g. Then the set of roots R C E is a root system

Definition 102
Given a root system R C E, the coroot o corresponds to a root a € E is

v, 2a

(a, q)
Then nqp = (o, 8Y), and the reflection s, on E is
sa(r) =2 — (", 2)
There is a geometric way to understand n,g:

Let po : E — E be the orthogonal projection onto R-a C E, then p,(8) = (nas/2) - a. So nag € Z
means that for all roots a, 3, if project 8 orthogonally to R -a, then have 8 € Z §

Example:
The root system of sl(n,C) is the A,_1 root system
Look at the As root system (corresponds to sl(3,C))

Definition 103
The Weyl group W of a root system is the subgroup of GL(FE) generated by the reflections s,, @ € R

Lemma 104

(1) The Weyl group W is a finite subgroup of O(F), and R C F is invariant under the action of W

(2) Forwe W,ae R
wsqw L = Swa) €W

Proof

(1) Clearly W C O(E), because any reflection s, is in O(E). Clearly, W(R) = R. Any element
w € W acts on R by some permutation, and there are only finitely many permutations of R.

But if w € W acts as the identity on R, then w = 1 € GL(FE), because R spans F
(2) Clearly ws,w™! is a reflection in O(E). And ws,w ! (w(a)) = wse(a) = —w(a). So wsaw™!
must equal s,(q)
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Pairs of roots and rank-2 root systems

Lemma 105

Let R C E be a root system and let o, f € R s.t. a ¢ R-3. After switching o and 3 if necessary, can
assume |a| < [B], (|af = /(o @)

By changing 8 to —f if necessary, can assume that (a, §) <0

Then one of the following holds

(1) (e, B) = 0. Thus «, 5 are a angle 7/2
(2) nap = —1 and (a,«) = (3, ). Here o, B are at angle 27/3
(3) nap =—2 and (o, a) = (B, 8). Here , 3 are at angle 37 /4
(4) nap = —3 and (a,a) = 1(B, B). Here , 3 are at angle 57/6
Proof
Since (a, B) = 0, nqp are integers < 0.
But

MedMBe = T3 8) o, a)

= ————F— <4 (by Cauchy Schwarz)

One possibility is (1) («,5) =0

So we can assume n,g, ngo are integers < 0. Also, since § ¢ R-o. We have strict map in Cauchy-
Schwarz, so negnge < 3

Also |nqg| < |ngg| because « is the shorter root

So neg = —1 and ng, € {—1, -2, -3} O

Definition 106
Rank of a root system R C F is dimg F

Theorem 107
Any reduced rank-2 root system is isomorphic to A1 x Ay, As, Cs or Go

Proof

Let R be a rank-2 root system. Choose roots a, f ¢ R -« s.t. angle(a, 8) is as small as possible.
Easy to see that (a, 8) > 0.

Apply lemma to «, v := —f

We find the possible lengths and angles between «;,

By applying reflections in «, v, we find that R D (A1 x A1, Az, Cy or G3) root system in cases (1)-(4)
in previous lemma

3 other roots in R, otherwise we would have two roots at a smaller angle than between o and 3 [

Remark. (1) For any roots «, 3 in a root system R,

R ()
BT {a, a) (B, B)

where 6 = angle between a and 3
Suppose (o, 3) < 0,a ¢ R-3, |a| < |B], we showed that nygnge = 0,1,2 or 3 (see picture)

SO (:050:0,771,_7‘/5 or _T\/g

= 4cos?0
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(2) For these rank-2 root systems, the Weyl group is the dihedral group of order 4(= Z /2 x Z /2),
6(= S3), 8 or 12
In general, the dihedral group of order 2n is a semidirect product Z /2 X Z /n (Z /n the normal
subgroup)

Positive roots and simple roots

Definition 108
Let R be a root system in a Euclidean space E. Pick an element v € E with (v, ) # 0 for all roots
«. Then we call the set of positive roots Ry C R

Ry ={a € R|{a,v) > 0}

Otherwise, negative roots.
Clearly, R= Ry UR_and R_ = —R,
Fix a set of positive roots R

Definition 109

A root o € R is simple if it is positive and it is not a sum of two positive roots.
Write Il C Ry for the set of simple roots.

Clearly, every positive root can be written

l
a= Zniai n €N, ai,...,q simple roots
i=1

(v, 0+ ) = (v,0) + (v, )

S~ =

>0 >0
Lemma 110
For any two simple roots a # 3, («a, 5) <0
Proof

Suppose {(a, 3) >0
Ten « and —f must be positioned as in one of the rank-2 root system with possibilities (see pictures)

In all these cases, § — « is again a root
So either 8 — « is a positive root or a negative root.
If 8 — a € Ry, then 8 is not simple, if « — 8 € R4, then a not simple O

Theorem 111
Let R be a root system, R4 a set of positive roots. Then the corresponding simple roots form a basis
for F, as a R-vector space

Proof

Clearly, the simple roots span E, because every positive root in R can be written ) n;a;, n; € N
where aq, ..., q are the simple roots; so the negative roots can be written »  n;a;, n; € Z,n; <0, so
ai,...,qp span E.

We show that ay,...,q; are R-linear independent. If not, we can write

Z Ci0y; = Z diai

€S i€l
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where SNT =0, ¢; > 0,d; > 0, and at least one of S, T is nonempty

First notice that w € E is not 0, because (v, w) > 0

So we know that (w,w) >0

But we have (w,w) = (Y ;cg i, Y ;e dic) < 0 because ¢, d; > 0

and (a;, ;) <0 for i # j. Contradiction

So the simple roots form a basis for £ O

Definition 112
The rank of a root system R C E is dimg E. So number of simple roots =rk(R)

The rank of a C-semisimple Lie algebra g is the C-dimension of a Cartan subalgebra

In fact, let G be a semisimple complex Lie group. Then any two Cartan subalgebras C! C g are
conjugate by some element of G
So G (or g) has a well-defined root system (up to isomorphism).

Remark. Any two sets of positive roots in a a root system R are equivalent by some element of the
Weyl group W

Dynkin Diagram:
Let R be a root system C E. Let RT be a set of positive roots. The Dynkin diagram of R is a graph
with one vertex for each simple roots and with edges:

Remark. Let gq,g9, are C-semisimple Lie algebras. Let t;,ts be Cartans in g;, g5, then ¢} Xtz is a
Cartan in g; X go.

(g1 X gy = <901 go>) The root system of g, X gy is R = R1 U Ry C Ey @ Es, where (E1, E2)
2

In general, the Dynkin diagram of the product of two root systems is the disjoint union of the two
Dynkin diagrams

Exercise:

5[(2,C) <> A; «» Dynkin diagram with 1 vertex

5((2,C) x sl(2,C) «<» Dynkin diagram with 2 vertices

And show the Dynkin diagram of other rank-2 root system

Exercise:

sl(nC) < root system A, 1 = {¢; —¢;]i # j} C R = {aye; + - + anenlar + - + an = 0}
because: use the restriction of R™ ™! of the standard inner product. Let v = aje1 + - - - + an€, Where
ai > ag > -+ > ap. Then the positive roots are ¢, —¢;, 1 <i < j<n
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The simple roots are €; — €3,€2 — €3,...,6,_1 — €

With our inner product (a;, ) =2 fori=1,...,n—1, and
0 li — 7] >2
(i aj) =q¢-1  Ji—jl=1
2 1=
0 li—j] >2
= Naja; = 4 —1 li—jl=1
2 1=

sl(n, C) has root system of type A,_1, and the Weyl group of A,,_; is the symmetric group S,,.
Simple roots = {€] — €2,€2 —€3,...,€5-1 — €} C R 1
The reflection s, ; for i # j, switches i and j coordinates in R* ! c R"

Root system C,, of sp(2n,C),n > 1
Sp(2n,C) = {A € GL(2n,C)|AJAT = J} where J = < 19 _OI”)
The Lie algebra sp(2n,C) = {A € gl(2n,C)|AJ + JAT =0}

We compute that ) € 5p(2n,C) < B and C are symmetric and D = — AT

A B
C D
A Cartan subalgebra of sp(2n,C) consists of the diagonal matrices in sp(2n, C), that is :

y =diag(y1, .- Yn» —¥Y1,---,—Yn) ¥ €C

One computes how such a diagonal matrix acts on sp(2n, C). You find that the roots are +y;+y; Vi # j,
1<i,j<nand £2y; for 1 <i<n

(Excellent Exercise: Check this)

Can work out the coroots.

Killing form on g restricts to a nonzero multiple of the standard symmetric bilinear form on t; = R"
So the reflection sy, for i # j switches coordinates i and j on a point in R™ = t5

The reflection sy, 1, switches coordinates i and j and changes their signs:

S(ylv"'vsn):(yl)'"77yj7"'a7yia"'ayn)

The reflection si9,, changes the sign of the i-th coordinate in R"
So the Weyl group of the C), root system is the semidirect product S,, x (Z /2)" C O(n)

The positive roots are y; £y for 1 <i<j<n and 2y forl1<i<n
The standard choice of simple roots are y1 — y2,42 — Y3, - - -, Yn—1 — Yn; 2Yn
So the C,, Dynkin diagram is:

Example: Co=
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W = Sy x (Z /2)? = dihedral group of order 8

Root system B,, of so(2n + 1,C)

It is easiest to describe SO(2n + 1,C) as the subgroup of GL(2n + 1,C) preserving the symmetric
bilinear form defined by C' with entry (i,2n 4+ 1 — i) as 1 and everywhere else 0.

The corresponding bilinear form C?"*! is

(1, 2n41)s (Y15 - - Y2n+1)) = T1Y2n41 + ToYon + - - + Tont1Y1

Here, the Cartan subalgebra of so(2n + 1, C) is the diagonal matrices in so(2n 4 1, C)

Here s0(2n +1,C) = {A € gl(2n + 1,C)|AC + CAT =0}
Cartan t = {(y1,---,Yn, 0, =Yn, - -, —y1) Hy1, ..., yn € C}
The roots are {£y; £ y;li # 7,1 <4,j <n}U{y|l <i<n}
So the Weyl group W(B,,) =S, x (Z /2)" C O(n)

A standard set of simple roots is

{vi —v2,92 — Y3, Yn—1 — Yn> YUn}

So the Dynkin diagram for B,, < so(2n + 1,C)

Root system D,, of s0(2n,C)

Again, easier to denote this using the symmetric bilinear form C

A Cartan subalgebra t =diagonal matrices in g

= {diag(y1, - -, Yn> —Yn,- - —Y1)}

The roots are: {+y; +y;,i# j,1 <1i,j <n}

So Weyl group W = S,, x (Z /2)"~! A standard choice of simple roots is

{vi —y2,92 —¥3, -, Yn—1 — Ynr Yn—1 + Yn}

So the D,, Dynkin diagram:

Theorem 113
The following classification are equivalent

(1) Complex semisimple Lie algebras up to isomorphism
(2) Reduced root systems

(3) Dynkin diagrams of root system

In this correspondence
simple Lie algebra <+ Irreducible reduced root systems <+ connected Dynkin diagram.
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The possible Dynkin diagrams are:

Ay, n>1:

D,, n>2:

(The followings are exceptional simple Lie algebras)

S e

G S S

Eg:

Sketch proof:

One part is pure Euclidean geometry:

Show that Dynkin diagram of a reduced irreducible root system is one of these graphs.

Indeed, consider the unit vertices v1,...,v, € E = R" in the directions of the simple roots.

Then vy, ..., v, are linearly independent, and the different ones are at angle 7/2,2x/3,3m /4 or 57/6
That alone implies that the corresponding Coxeter diagram (Dynkin diagram without arrows) is one
of these listed

Then the Dynkin diagram of R must be given by some choice of directions on or

So the Dynkin diagram of R must be one listed.

We know that A, B, Cy, D, correspond to complex semisimple Lie algebras.

One can write down root system correspond to the G, Fy, Eg, E7, Egs Dynkin diagrams (see Example
Sheet 3). But why do they come from simple Lie algebras?

The complex simple group Gy =group of automorphisms of the octonions O ®g C, where O = the real
8-dimensional non-associative division algebra, defined by Cayley.
That implies that G2(C) C GL(7,C) (because 1 € O is fixed)

It is harder to describe the 5 exceptional Lie algebras, because they do not have low-dimensional
representations.
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G dim(G) dimc(smallest nontrivial repn of G)

Go 14 7
Fy 53 26
Es 78 27
E, 133 56
Eg 248 248
(Classical Lie algebra of dimension N has a nontrivial representation of dimension ~ v/N) O

Existence and Uniqueness of semisimple Lie algebra with given root system or Dynkin diagram
Serre’s relations
(defining the semisimple Lie algebra with a given Dynkin diagram)

Given a Dynkin diagram with [ vertices define a complex Lie algebra g as the quotient of the free Lie
algebra on generators
Hy,...,H,Ey,....Ep, F1, ... B

modulo the relations to be shown later

Given a number n, the free Lie algebra F), has the property:

Homyp ¢ alg.(Fna g) = u

n times

That is, F;, is generated by n elements z1,...,z,. You can define it as the k-vector space spanned by
all possible irreducibles

[[x1, [z2, 23]] , 4]

The free Lie algebra is graded:

F=k" @ N*(k") @ (Vdegz @ -+~
(k" = k{x1,...,2,} and [x;, 7] € A2(k") i < j)
We will have simple roots aj, ..., q; in our semisimple Lie algebra g;

H; :az\/ € t C g
FE; € Go, F; € 9o,
s.t. [EZ,E] = a;/(: Hz)

So the modulo relation (Serre’s relation) required above is:

[HZ-,HJ-] = 0 Vij
B, F5] = H;
(B, F;] = 0 forij
[Hi, Ej] = njiEj
where nj; = na;a, = aj(ey’) € Z
and further:
[Hy, Fj] = —njiFj

(adEi)l_nji(Ej) = 0 \V/’L?é]
(ad )" (F;) = 0 Vi#j

Here nj; € {0,—1,—2, -3} as shown by the Dynkin diagram, so (1 —nj;) € {1,2,3,4}
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Why are these relations true in semisimple Lie algebra g7

It will suffice to show that o + (1 — nj;)cy is not a root in t* (it is clearly not 0)

This is because this expression is the reflection s, (a; — a;); we know a; — «; is not a root, and we
know that the set of roots is preserved by the Weyl group

Example:
Go

The picture shows that (ad E1)*(E2) = 0, because ag + 4aq ¢ R, i.e. gqyis0, =0

Compact Lie groups and complex semisimple groups

Definition 114
Let G be a connected compact Lie group. We say that a connected complex Lie group Gc¢ is the
complexification of G if 3 inclusion G < G¢ s.t. gc = g®r C and 71 (G) = m(Ge)

Example:

C* is the complexification of St (here 71 2 Z, because S! 2R /Z and C* = C /Z)

More generally GL(n, C) is the complexification of U (n) since gl(n, C) =(skew-hermitian matrices)®i{skew-
hermitian matrices} and m;GL(n,C) = mU(n) = Z

Example

SU(n)c = SL(n,C) (m1 =1)
50(n)c = 50(n,C) (m =Z/2)
Sp(n)c = Sp( n,C) (m =1)

=1
(Sp(n) = O(4n) N GL(n,H) C GL(4n,R)
Sp(n) = U(2n) N Sp(2n,C) C GL(2n,C))
Definition 115
A connected complex Lie group is reductive if it is the complexification of some compact Lie group

Example:
C is not reducitive because any compact subgroup of C is {0}

Corollary 116 (Weyl’s Unitary Trick)
The C analytic representations of any complex reductive group are completely reducible

Proof

We are given a compact Lie group G with complexification = G¢

Complex representations of the real Lie algebra g are equivalent to representations of the complex Lie
algebra g¢

So complex representation of the universal cover G are equivalent to the complex analytic represen-
tations of G(c I know that G = G/Z and G¢ = G@/Z because Z = m G = w1 Gc. So complex
representations of G are equivalent to complex analytic representations of G¢. The first ones are
completely reducible, so are the second ones O

Theorem 117
(1) Every connected complex semisimple group is reductive
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(2) A compact connected Lie group is determined up to isomorphism by its complexification

(Proof omitted)

Corollary 118
The finite dimensional representations of a complex semisimple Lie algebra g are completely reducible

Proof

Let G¢ be the corresponding simply connected complex Lie group

By above theorem (1), G¢ is reductive, so its representations are completely reducible. They are
equivalent to finite dimensional representations of g O

In particular, 3! simply connected compact Lie group with given Dynkin diagram
Most we have seen:

Ap:SU(n+1)

By, : Spin(2n + 1) = simply connected double cover of SO(2n + 1)

Cy : Sp(n)

D, : Spin(2n)

But there are also simply connected compact Lie group of type Ga, Fu, Eg, E'7, Eg

Example:
The compact Lie group Gz is Aut(Q) (recall O is octonions over R)

Example:

(Complex analytic) representations of C* are direct sums of 1-dimensional representations, by com-
pletely reducibility + Schur’s Lemma.

C*=C/2miZ

A 1-dimensional representation of C* is a homomorphism C* — GL(1,C) = C*

Xa

C C

! i

C*=C/2miZ-->C/2niZ = C*

Here a € C gives a homomophism C* — C* < a € Z
So the 1-dimensional representations of C* are C* — C* z — 2z for some a € Z

Remark. For a compact connected Lie group G, the inclusion G — G is a homotopy equivalence.

Example:
St C*, U(n)— GL(n,C)
Prove that GL(n,C) deformation retracts onto U(n), using Gram-Schmidt

Low-dimensional isomorphism of classical groups
Example:

SL(2,C) = Sp(2,C),SO(3,C) = SL(2,C)/{+£} because all have Dynkin Diagram (one vertex no edge)

SL(n,C)= subgroup of GL(n,C) preserving a nonzero element of A" V* where V = C"
Sp(n, C)= subgroup of GL(2n,C) preserving a nondegenerate element of /\2n V* where V = C?"
The homomorphism SL(2,C) — SO(3,C) given by the representation S?V, V = C2.

If you have symplectic forms on V and W, you get a nondegenerate symmetric form on V ® W, hence
on S2V and \?V
Dy = Ay X Az e e (2 vertices, no edge)

Proof: If V; and V4 are the standard representations of two copies of SL(2,C), then SL(2,C) x
SL(2,C) acts on V; ® Vs preserving a symmetric form O
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Cy= DBy =

= Sp(4,C)/{£1} = S0O(5,C)

Proof: Let V=the standard representation of Sp(4,C), V = C*.

=  Sp(4,C) acts on A\*V = CS, and \’*V = C®Ms;

= get homomorphism Sp(4,C) — SO(5,C).

By counting dimensions, this is surjective. O

Finally, D3 = A3 :

So SL(4,C)/{£1} = SO(6,C)
(m(50(6,C)) =Z/2)

Exercise: A proof in terms of linear algebra

Representation Theory of complex semisimple Lie algebra

Let V be a finite dimensional representation of g. Let t C g be a Cartan subalgebra. For each root
a € R, we have a copy of s[(2,C) C g (denoted sl(2,C),, before) and we can view V as a representation
of this sl(2,C). We know that the coroot a¥ € sl(2,C), acts diagonalizably on V/

Moreover, all coroot oV are in t an abelian Lie algebra so they all commute in their action on V. So
we can simultaneously diagonalise V' wrt all " € t

So all of t acts diagonalizably on V'

V= @ Vi (A-weight spaces)
Aet*
where V) = {z € V|h(z) = A\(h)z Vh € t}
Moreover, for each o € R, the weights of V wrt o € sl(2,C), must be integers (Theorem 48)
That means that if V) # 0, then A(a") € Z

Definition 119
The weight lattice P of g is {\ € t* [A\(a") € Z Ya € R}
The root lattice @ of g is the Z-submodule of t* spanned by the roots «

We know that @Q C P because a(8Y) € Z Vo, € R

Let [ =rank g = dim¢ t

Then Q = Z' because the roots span t 2 C! as a complex vector space

and P = Z! and it contains @ as a subgroup of finite index. We can describe P as

P={Aet'|\NaY)€Z,....\a)) € Z}

where ay, ..., q; are the simple roots
So @ must have finite index in P, because the weights of a finite dimensional representation of sl(2)

are in Z, we have
V=W
AEP

Example:
For sl(2,C), P=Z,Q =27 CZ

®_3 @ ®_1 @ o] C? 3

-2

P={ejUQ={e} U{O}
For sl(n,C),Q = {31, aicila; € Z,)" a; = 0}
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The weight lattice is

P—Zn/Z(l,l,...,l)—{Zaiei CLZ‘EZ}/(Q—F'”-FGn_O)
i=1

One sees that P/Q = Z /n

In terms of the group G = SL(n,C)
Let T C SL(n,C) be the maximal torus = (C*)"~! with Lie algebra t. Then

P = Hom(T,C*) = 7"
Q = Hom(T/Z(G),C*)

where Z(SL(n,C)) = u,(C) (group of n-th roots of unity)

Notice that any representation of SL(n,C) has weights in P. But the adjoint representation of
SL(n,C) has weights in @ C P

Definition 120
The adjoint group with a given semisimple Lie algebra g is G/Z(G) for any group G with Lie algebra
g

We have V = @,.p Vi
Easy to check that for e € g, e(V}) C Vatqa
Therefore, for any A € P and any root «,

@ V)\—f—na

neZ

is an sl(2, C),-subrepresentation of V'

Use that the character of a finite dimensional representation of s[(2) are invariant under sign change,
tes t!

That means that dim Vy = dim V;_(, for every root a, because sq(A) = X — A(a")a

Definition 121
The character of any finite dimensional representation of g is

ch(V) = Z nye® € the group ring Z[P] = Z[Z!]
AeP

Here, we say that etet = e’ for A\, p € P =7, e =1, ny = dimc Vi

Corollary 122
The character of any finite dimensional representation of g is invariant under the Weyl group.

Definition 123

The fundamental weights wy, ... w; of g are the elements of t* s.t. wi(a}/) = 0;j
Easy to see that P =Z w1 ® --- ® Z wy

Then Z[P] & Z[e¥, (e®t) ™1, ... e®t, (eW)7!]

e.g. character of a representation of sl(3,C) correspond to As

54



Definition 124
A highest weight vector = € V' is a nonzero element z € V), for some A € P s.t. e(z) =0 Ve € g, with
« a positive root

Clearly, every nonzero finite dimensional representation V' of g contains a highest weight vector. Start
with z € Vy,z # 0. If e(x) # 0 for some e € g,,a € RT, then look at e(z) € V)4, Repeat

Lemma 125
Let V be a finite dimensional representation of a complex semisimple Lie algebra (Fix t C g, R < R)
Let € V be a highest weight vector. Then

M:= Y efi-frlz)CV
Ji€8a
aER_,r>0

is an irreducible subrepresentation of V'

Proof

First show that M is a sub-g-module of V. Clear that f(M)C M if f € g,,a € R_
If x € Vy then f1--- fr(2) € Vajay+ar (@1, .. negative roots)

We show, for e € g, with o™ that e(f;--- fr(z)) € M

by induction on r, true for r = 0 since e(x) =0

If true for » — 1, then

efi-- fr(x) =le, filfo- - fr(@) + f1 efa--- fr(2)
—_——

€M by induction

Here [e, f1] € g, for @« € Ry or R_ or a = 0, and we are done in all cases by induction. So M is a
sub-g-module of V'

If M is not irreducible then M = My & M, for some non-zero g-modules. We would have Cxz = M), =
(M1)x ® (Mz)y
So z is in one of My or Mo, say My WLOG. So M = My = M is irreducible ]

Define a partial order on the weight lattice P = Zw; @ - - - Zw; = Z! by A < p if

!
= A+ Zniai
i—1

where ag,...,q; are the simple roots, n; € N

In the module M in Lemma, all weight that occur are < A (the weight of z). For example, if V' is an
irreducible g-module, then M =V, so all weights in V' are < A, the weight of a highest weight vector.
So an irreducible g-module has a unique highest weight vector, up to nonzero scalar. Also the weight
A of this highest weight vector is uniquely determined by V.

Moreover, let V be an irreducible g-module with highest weight A € P = Z! ¢ t* ¢ C

For each positive root «, think of V' as a representation of s[(2,C), C g

Then a highest weight € V for g is also a highest weight vector for s((2,C),. Therefore, the weight
of X wrt o is a nonnegative integer.

SoMay)>0fori=1,...,1
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Definition 126
The dominant weights PT C P are

{\ € PIA\ () > 0}

{A et |\(«e)) € N}
= Nw & &Ny

where w1, ...,w; are the fundamental weights

Remark. In literature, these are the weights that lies in the closure of Weyl chamber

Lemma 127
A finite dimensional irreducible representation of g is uniquely determined by its highest weight

Proof

Let V, W be finite dimensional irreducible representation of g with highest weight vectors x € V,y €¢ W
with the same weight A € P C t*. Then V @& W is a representation of g and x +y € Ve W is a
highest weight vector, with the same weight A. As in previous lemma, let M =sub-g-module of V@ W
spanned by x + y; thus an irreducible subrepresentation of V@ W. We have g-linear projections

M—VoeW-»V
M—VeW-»>W

These are nonzero g-linear maps of irreducible representations of g, so they are isomorphic by Schur’s
Lemma. SoV=M=2W O

Theorem 128
There is a finite dimensional irreducible representation of g with any given dominant weight as its
highest weight

Sketch Proof

It suffices to find irreducible representations of g with highest weight the fundamental weights wy, ..., w;
Indeed, if V and W are irreducible representations of g with highest weights A and p; then V ®c W
contains a highest weight vector with weight A +

(Take z®@y € V@ W, for € V,y € W highest weight vectors) e(z ® y) = ex @y + 2 ® ey = 0 for
ecg,a€ Ry

So V ® W contains an irreducible g-module with highest weight A\ +

So the irreducible representation with the highest weight diwy + -+ + djw;, d; € N occurs inside
VR ... Vl®dl where V; is irreducible with highest weight w; O
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A slight improvement: if V has highest weight A, then SV contains the irreducible representation
with highest weight dA, so Vy,u,+-djw, C Shy @ - @ 84V,

Corollary 129
A finite dimensional representation of g is uniquely determined by its character in Z[P]

Proof
Subtract off one irreducible character at a time O

W

Example:
The representation of S?V of g = sl(n, C) is irreducible,for any d > 0.
Here, V = C" is the standard representation of g

We compute the character of SV

let eq, ..., e, be the usual basis for V'

Then S%V has a basis eﬁl '--ef{l for i1,...,ip, > 0,1 +---+i, =d

The element eil e efy has weight i161 + - +ipe, E P=Ze1 D ---Zey,

can see that all these weights are different, i.e. all “weight multiplicities” for S¢V are isomorphic to
Z" or 0

Look for highest weight vectors in S%V. That is we try to solve

eab(e?---ei”):() Vi<a<b<n

n

e, fj=0b
can(es) = { J

0 otherwise

Here

The only highest weight vector, therefore, is e‘ll up to scalars
So S9V is an irreducible representation of sl(n, C)

Weyl Character Formula
One proof: write down the Bernstein-Gelfand-Gelfand resolution of finite dimensional irreducible g-
modules (g = C —semisimple Lie algebra) by (infinite dimension) Verma modules

For any A € t*, the Verma module M) with highest weight A is the “universal” highest weight module
with a highest weight vector with weight X\. That means: choose a set of positive roots Rt C R. Then
g=n_®tdny and we write b = t@n, a Borel subalgebra. A\ determines a linear map b — C by
At — C and sending ny to 0

A:b — C
h — Xh) het
r — 0 reEnN

A Verma module has, let Cy be the 1-dimensional representation b given by this linear map. Then
HOIHQ(JW)\7 V) = Homb (C)\, V)

(first V' is any g-module, second V is considered as an representation of b)
(More concretely, M) = Indﬁ(CA) =Ug®ysC))

More concretely, let fi,..., fy be a basis for n_. Then a basis B for M) as a C-vector space:
My = @ C-fir... fiv(z)
i17---7in€N
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here x is the highest weight vector in M) with highest weight A. (Convince yourself that M), IS a
representation of g)

We have an obvious surjection My — Ly for A € P;, where Ly= the finite dimensional irreducible
representation of g with highest weight A\, and is unique up to isomorphism

Example:
For sl(2), A € t* = C the Verma module M) has characters

we worked out how e € s[(2) acts on f"z for any r € N:

e(ffe) =r(A+1—r)ftz
(prove by induction on r)
Exercise: Show that, for g =sl(2), A\ € C,A ¢ N

By contrast, if A € N, then we have M_y_o C M)

In fact:
0> M_y_9—>My—L,—0

Notice that M)y is NOT completely reducible

Definition 130
The Weyl group W of g is generated by simple reflections s; = s,, 1 <17 <L
Define the length of w € W be

l(w) = min{d > 0lw =s;, ---s;, € W}
— o Riju(a) e R}

Define

p:% ZaeP

aER

Note that s;p = p — «; for all simple reflection s; Define the dot action or shifted action of W on P
by w- A= w(A+p) - p

Theorem 131 (Bernstein-Gelfand-Gelfand Resolution)

Let g be a C-semisimple Lie algebra, t C g Cartan, R, C R a set of positive roots. For A € P, let
L) =the finite dimensional irreducible representation of g with highest weight A\. Then there is an
exact sequence of representation of g

0— @ My — -+ — @ My — My — Ly—0
weW weW
l(w)=lp l(w)=1

where [y is the maximal length
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We can use the dot action to get a formula for the character of Ly, A € Py, then M) has the same
“size” as a polynomial in N variables, N = |dim¢n_| = |R4|, so

e
HO{GR+ (1 - 6—06)

Ch(M)\) =

Corollary 132 (Weyl Character Formula)
For any A € Py

> EW(_l)l(w)ewA S EW(_l)l(w)ew(Hp)w > EW(_l)l(w)ew(Hp)

oer, (1=e™) [aer, (1-¢) > wew (— ) enl)
(the last equality comes from setting A = 0 in the first/second equality)
Remark. (_1)l(w) = det(w acting on tﬁ‘{): {£1}

Example:
For g = sl(n,C),W = S,,_1, (—1)"*) =sgn(w)e {£1}
(the simple reflections here are s; = (i,7 + 1))

Using ’'Hopitals’s rule, get:

Corollary 133

For any A € P,
dioe I [locr, A+ p.a)  Tlaer, (X +p)(@”)
C A = =
HaeR+ (p, ) Ha€R+ p(aY)

Some examples:
Seen that for g = sl(n,C), SV is an irreducible g-module for d > 0 where V' = C" is the standard
representation. This has highest weight dw;, where w;=highest weight of V=1st fundamental weight

Now consider, for 1 <d <n —1, /\V
(Note A"V = A"V = C as representations of sl(n, C))

What are the fundamental weights for sl(n,C)? First way:

Qf = € — €41

We have, for example o () = 2,01 () = —1, al(a}/) =0 for j > 3 so a1 = 2w; — wy etc.

Second way:
We know that the simple coroots are af = e;; — €;11,i4+1 € t
So the fundamental weighs are w; = €1, wo = €1+ €9,...,Wp_1 =€1+ -+ €41

The weights of /\dV are: the basis element e;; A--- Ae;, € /\dV has weight €;, +---¢, € P =
(Zer® - ®Zey) ) Ller + - +e) ZZ1

These are all different so all weight multiplicities for /\d V are 1 (or 0), n is spanned by the elements
eap €8l(n,C) with 1 <a<b<n

So there is only one highest weight vector in /\d V', up to scalars, e; Aea--- Aeg

So A*V is an irreducible representation of sl(n,C) for 1 < d < n — 1 and its highest weight is
€1+ -+ €= wy

So V, /\2 V..., /\"_1 V are the fundamental representations of sl(n), the irreducible representations
correspond to the fundamental weight.

Using the character formulas, you can work out how to decompose tensor product of Ly, ® Ly, as a
sum of irreducible representations.

Example:
As a representation of sl(n,C), V* = A" 'V (and more generally (A V)* = A" 'V)
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Proof
We can “multiply” A°V @ A°V — /\a+'b V, this is sl(n)-linear.
For n = dim V/, this is a dual pairing, A'Vo ANV > A\"V =C
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Bernstein-Gelfand-Gelfan Resolution, 58
Borel subalgebra b, 27, 57

C>®(M), 10
Cartan subalgebra, 36
of sp(2n,C), 47
of sl(n,C), 36
of s0(2n 4+ 1,C), 48
of s0(2n,C), 48
Cartan’s criterion
for semisimple Lie algebra, 33
for solvable Lie algebras, 32
central extension, 28
central ideal of Lie algebra, 28
centralizer Zy(—), 36
centre of Lie algebra, Z(g), 28
character, 26, 54
determine representation up to isom, 26
invariant under Weyl group, 54
of 51(2,C), 26
classical group, 9
low-dimensional isomorphism examples, 52
Clebsch-Gordon Formula, 26
closed Lie subgroup, 6
commutator subalgebra [g, g], 27
Compact Symplectic group Sp(n), 9
completely reducible, 24
complexification Gc, g¢, 51
of U(n) = GL(n,C), 51
conjugation map Cy, 13
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coroot,

acts diagonalizably, 53
coroot ", 40, 43
Coxeter diagram, 49

derived algebra of g, 27
derived series Z% g, 27
diffeomorphism, 3

degree, 3

for submanifold, 4
division algebra, 23
dominant weights, 56
dot action, 58
dual pairing, 60
Dynkin diagram, 46

B, 48

Ch, 47

of Al, 46

of rank-2 root system, 46

Existence and Uniqueness for ODE, 10
exponential map
for Lie algebra, 10
for matrix, 7
exterior power A"V, 22
dimension, 22
exterior power A"V
representation action, 23

fundamental weight w;, 54

g-invariant, 30
g-linear map, 23
g-module, 17
g-submodule, 20

G, 5

General linear GL, 1
gl(n), 6

gl(n,C) is not semisimple, 34
GL(n,H), 9

graph, 16

G, 17

H,, 37
ha, 38
Hausdorff countable basis, 4
hermitian form, 25
highest weight vector, 19, 55
homomorphism

of Lie algebras, 14

of Lie groups, 5

ideal of Lie algebra, 15



immersion, 15
Implicit Function Theorem, 3
invariant, 31

to Lie algbera, 30

to Lie group, V¢, 30
Inverse Function Theorem, 3

Jacobi identity, 14

Killing form, 31
on sl(n,C) = 2ntr(z,y), 35

length of reflection, 58
length of vector, 2
Lie algebra
classification for C with dim < 2, 28
complex semisimple A,,, B, Cy, Dy, 49
exceptional simple, 49
free F},, 50
Heinsenberg u, 29
over field, 14
semisimple
generator, 50
Lie bracket, 11
commute with derivation of hom, 12
for GL, gl, 12
Lie group, 1, 4
connected abelian classification, 17
connected compact group is determined by
complexification, 51
connected complex semisimple is reductive, 51
connected with Lie algebra su(2), 17
Lie subalgebra, 15
logarithm map, 8
lower central series Z; g, 28

manifold, 3
dimension, 3
product, 4
smooth sub, 4

n-manifold, 1
n-sphere, 1
Nag, 42
nilpotent, 26
element, 34
implies Killing form is trivial, 32
nilpotent Lie algebra, 28
non-degenerate alternating bilinear form, 2
norm, 7

octonions O, 49
one-parameter subgroup, 8
Orthogonal group O(n), 1, 2

PGL(2,C), 1

PSU(2), 17
Quaternion H, 9

radical rad(g), 29
rank
of C-semisimple Lie algebra, 46
of root system, 44
reductive, 51
reflection s, 40
representation
adjoint Ad, 13
kernel=Z(G), 17
measures non-commutativity, 13
adjoint ad, 18
kernel=2(g), 32
dual, 30
for compact Lie group over real/complex are
completely reducible, 25
irreducible, 20
of s1(2,C)
basis, 21
is completely reducible, 25
on symmetric power, 23
of SL(2,C) and sl(2,C), 18
of SU(2), su(2), sl(2,C) over C, 18
of abelian Lie algebra, 24
of Lie algebra, 17
homomorphism of, 23
uniquely determined by character, 57
of Lie group, 12
equivalent to one for Lie algebra, 18
quotient, 23
standard, 13
sub-, 20
trivial, 13
root
negative R_, 45
positive R, 45
simple, 45
root lattice @, 53
of SL(n,C), 54
root of Lie algebra, 36
root space, 36
root system, 42
Ap—1, 43
By, 48
Ch, 47
D,, 48
of gy X gq, 46
of sp(2n,C), 47
of sl(n,C) is A,—1, 43
of so(2n +1,C), 48
of s0(2n,C), 48
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rank, 44 is (ad-)invariant, 31

reduced, 43
u = strictly upper triangular matrix, 27

St 3 u is nilpotent, 28

S3 = SU(2), 3 Unitary group U(n), 1, 2

S™ is smooth, 4 unitary vector space, 25

Schur’s Lemma, 23 upper triangular group B

semidirect product, 39 algebra is not nilpotent, 28

semisimple, 29 upper triangular matrix group B, 27
element, 34 normal subgroup U, 27

Serre’s relation, 50 algebra u, 27

simple, 29

simple reflection, 58 vector field, 10

s[(2,C) is not solvable, 27 left-invariant, 10

51(2,C)q, 39 Verma module M), 57

sl(n), 6 .

sl(n,C) is simple, 37 weight, 19

weight lattice P, 53

smooth
fSL 4
derivative for submanifold, 4 © SL(n, C), 5
function, 3 weight space
functi ’ £ sub fold. 4 of s1(2,C), 26
HOCLION Of subhanto’d, of semisimple Lie algebra, V), 53
map Weyl group
derivative df, 3 B 48
mapping, 3 C’nj 48
submanifold, 4 "
of An—ly 47
s0(2n+1,C), 48 of O 47
s0(2n,C), 48 "
SO(3), 1 Weyl group W, 43
’ Weyl’s Unitary Trick, 51
so(n), 7

s0(n,C) is gl(n, C)-invariant of standard rep., 31
solvable Lie algebra, 27
sp(2n,C), 47
Sp(n), 51
Special linear SL, 1
Special orthogonal SO(n), 2
Special Unitary group SU(n), 1, 3
standard basis for s((2): e, f, h, 19
standard inner product
on C", 2
on R™, 2
structure constants a;jx, 14
Structure of complex semisimple Lie algebra, 40
submersion, 4
symmetric power SFV, 21, 22
dimension, 22
is representation of s((2,C), 21
representation action, 22
Symplectic group Sp(2n), 1, 2

tangent space T, 4
tensor product, 21
toral subalgebra t, 34
torus of Lie group, 34
trace form, 31
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