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Recommended Books:
A. Kirillov - An introduction to Lie groups and Lie algebras
J-P. Serre - Complex semisimple Lie algebra
W. Fulton, J. Harris - Representation theory
Kirillov is the closest to what we will cover, Fulton-Harris is longer but with lots of example, which
provides a good way to understand representation theory.
This course fit in especially well with Differential Geometry and Algebraic Topology.

Definition 1
A Lie group is a group which is also a smooth manifold

Example:
(R,+) is a Lie group of dimension 1
S1 = {z ∈ C : |z| = 1} under multiplication

Definition 2
The n-sphere Sn = {(x0, . . . , xn)} ∈ Rn+1 |x20 + · · ·+ x2n = 1} is an n-manifold

Many interesting Lie groups act on S2

Example:

SO(3)=group of rotation in R3 (this is non-abelian)
PGL(2,C) acts on S2 = C∪{∞} as Mobius transformation

Here SO(3) ⊆ PGL(2,C) = GL(2,C)/

{(
a 0
0 a

) ∣∣∣a ∈ C×
}

z 7→ 2z, say, is in PGL(2,C) acting on S2 = C∪{∞}

Examples of Lie groups

• (Rn,+) any n ∈ N (or any finite dimensional real vector space)
• R× = {x ∈ R |x 6= 0} under multiplication
• C× = {x ∈ C |x 6= 0} under multiplication
• GL(n,R) = {A ∈Mn(R)|detA 6= 0} under mulitiplication
• GL(V ) - General Linear group, where V is a finite dimensional vector space
• SL(n,R) = {A ∈ Mn(R)| detA = 1} = {f : Rn → Rn linear and preserves volume} (Special

Linear group)
• O(n) (Orthogonal group)
• Sp(2n,R) (Sympletic group)
• U(n) (Unitary group)
• SU(n) (Special Unitary group)

Remark: S0, S1, S3 are the only spheres that are also Lie groups
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Orthogonal group

O(n) = {A ∈Mn(R)|AA> = 1}
= {f : Rn → Rn |f linear and preserves distances }
= {f : Rn → Rn |〈f(x), f(y)〉 = 〈x, y〉 ∀x, y ∈ Rn}

where the standard inner product on Rn is

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + x2y2 + · · ·+ xnyn ∈ R

Elements of O(n) includes rotations and reflections

Note that det is a homomorphism det : GL(n,R)→ R× and this restricts to det : O(n)→ {±1} since,
A ∈ O(n) ⇒ 1 = det(1) = det(AA>) = det(A) det(A>) = det(A)2

Definition 3
Special orthogonal group

SO(n) = {A ∈Mn(R)|AA> = 1,detA = 1}

Elements include rotations but not reflections (on Rn)
SO(n) is a subgroup of index 2 in O(n).
In fact, O(n) has 2 connected component, the one containing 1 is SO(n)

Also note that SO(2)∼=S1

Symplectic group

Sp(2n,R) = {f : R2n → R2n |w(x, y) = w(f(x), f(y))∀x, y ∈ R2n}

where w is a non-degenerate alternating bilinear form on R2n:

w
(
(q1, . . . , qn, p1, . . . , pn), (q′1, . . . , q

′
n, p
′
1, . . . , p

′
n)
)

=
n∑
i=1

qip
′
i − piq′i

for some choice of basis.

Remark: Any non-degenerate alternating bilinear form w on Rn must have n even, and after a change
of basis, such a form is given by above formula

Example:
Sp(2n,R) ⊂ SL(2n,R)
Sp(2,R) = SL(2,R) = the group of area preserving linear maps

Unitary group

U(n) = {f : Cn → Cn linear and preserves distance} (= GL(n,C) ∩O(2n))

Definition 4
The standard inner product on Cn is the nondegenerate positive definite Hermitian form

〈(z1, . . . , zn), (w1, . . . , wn)〉 =

n∑
i=1

z1w1

Note that the length of a vector z ∈ Cn(= R2n) is ‖z‖ =
√
〈z, z〉

(as z = xiy, zz = |z|2 = x2 + y2)
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So, we have

U(n) = {f : Cn → Cn linear |〈f(x), f(y)〉 = 〈x, y〉 ∀x, y ∈ Cn}
= {A ∈ GL(n,C)|AA∗ = 1} (A∗ = A>)

Special Unitary group
The det of a unitary matrix gives a homomorphism det : U(n)→ S1 ⊂ C×

SU(n) = ker det |U(n)

Example
U(1) = {z ∈M1(C)|zz = 1} = S1

SU(2) =

{(
a b

−b a

)∣∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1

}
Wee see that SU(2) is diffeomorphic to S3 = {(x0, x1, x2, x3)|x20 + x21 + x22 + x23 = 1}

Remark: S0, S1, S3 are the only sphere that are also Lie groups

Some Basics of Smooth Manifold

Definition 5
A subset M ⊆ Rn is called k-dimensional manifold (in Rn) if for every point x ∈ M , the following
condition is satisfied:
(M) There is an oen set U 3 x, and open set V ⊂ Rn, and a diffeomorphism h : U → V s.t.

h(U ∩M) = V ∩ (Rk×{0}) = {x ∈ V |xk+1 = · · ·xn = 0}

Definition 6
Let U ⊆ Rn, n > 0 be an open set, a smooth function f : U → R (or C∞) if all partial derivatives

∂r

∂xi1 · · · ∂xir
f (r ≥ 0)

are defined and continuous on U

For U ⊆ Rm open, a smooth mapping f : U → Rn is a function s.t. f = (f1, . . . , fm), with fi : U → R
smooth function

For U, V ⊆ Rn, a diffeomorphism f : U → V of degree n is a smooth map (on Rn) with a smooth
inverse

The derivative df |x of a smooth map f : U(⊆ Rm) → Rn at a point x ∈ U is a linear map Rm → Rn
given by matrix ( ∂fi∂xj

) 
∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

...
∂fn
∂x1

· · · ∂f1
∂x1


u1

...
um

 =

v1...
vn


composite of the smooth maps is smooth, and d(g ◦ f)|x = dg|f(x) ◦ df |x

Theorem 7 (Inverse Function Theorem)
Let U ⊂ Rn open, f : U → Rn be a smooth map. Suppose df |x is an isomorphism, for some x ∈ U
Then ∃V ⊂ U , V 3 x, s.t. f(V ) is open and f is a diffeomorphism from V to f(V )

Theorem 8 (Implicit Function Theorem)
Let U ⊆ Rm open, f : U → Rn smooth map. Suppose df |x is surjective at a point x ∈ U (n ≤ m)
Then ∃V ⊆ U, V 3 x and diffeomorphism φ : W → V (W ⊆ Rn open), s.t.

f(φ(x1, . . . , xn)) = (x1, . . . , xn)
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Definition 9
A submersion is a smooth map which has derivatives being surjective everywhere

A smooth submanifold X ⊆ RN of dimension n is a subset s.t. ∀x ∈ X,∃ nbhd U 3 x, U ⊆ RN and a
submersion F : U → RN−n s.t. X ∩ U = F−1(0) ⊆ U

Example:

Claim: The sphere Sn ⊆ Rn+1 is a smooth n-dimensional submanifold

Proof
Sn = F−1(0), where

F : Rn+1 → R
(x0, . . . , xn) 7→ x20 + · · ·+ x2n − 1

We have to check that F is a submersion at points x ∈ Sn:

dF = (2x0, 2x1, . . . , 2xn) (row matrix)

This is surjective whenever (x0, . . . , xn) 6= (0, . . . , 0) ⇒ surjective everywhere on Sn

Example:

X = {(x, y) ∈ R2 |xy = a} is a smooth 1-dimensional submanifold for nonzero a ∈ R, but not for
a = 0, here we have:

F : R2 → R
(x, y) 7→ xy − a

Example:
X = {x ∈ R |x2 = 0} is an 0-dimensional submanifold of R, but x2 : R→ R is not a submersion at 0.
To prove that X is a 0-dimensional submanifold, you have to notice that X = {x ∈ R |x = 0}
Definition 10
The tangent space to a smooth n-dimensional submanifold X ⊆ RN at a point x ∈ X (if we describe

X as X = F−1(V ) for some submersion F : V → RN−n) is defined as:

TxX = ker(dF |x : RN → RN−n)

This is an n-dimensional linear subspace of RN

Let X ⊂ RN be a smooth n-dimensional submanifold.
A function f : X → R is smooth ⇔ near each point x ∈ X, f is the restriction of a smooth function
on an open nbhd of X in RN (0-dimensional submanifold of RN = discrete subset)

For submanifold X ⊆ RM , Y ⊆ RN (dim=m,n resp.) a smooth map f : X → Y has derivative
df |x : TxX → Tf(x)Y which is a linear map
A diffeomorphism between 2 submanifolds is a smooth map with smooth inverse.

Fact: (Hausdorff countable basis) Every smooth manifold is diffeomorphic to a submanifold of RN

For submanifold X ⊆ RM , Y ⊆ RN (dim=m,n resp.), the product X × Y ⊆ RM ×RN = RM+N is a
smooth submanifold. It has the product topology

Lie Group

Definition 11
A Lie group G is a smooth manifold which is also a group s.t.

multiplication : G×G → G (g, h) 7→ gh

inverse : G → G g 7→ g−1

are smooth maps. We have a point 1 ∈ G (the identity)

4



Note that a Lie group need not be connected. (0-dimensional submanifold of RN=discrete subset)
In particular, we can view any group (say countable) as a 0-dimensional Lie group.

Lemma 12
Let G be a Lie group, G0 be the connected component of G containing 1. Then G0 EG and G/G0 is
discrete (with the quotient topology)

Proof
multiplication : G×G→ G is continuous, so it maps connected space G0×G0 onto connected subset
of G, which contains 1.
⇒ G0 ×G0 � G0

Likewise, inverse : G0 � g0. Therefore, G0 ≤ G

To show G0 EG, need to show ∀g ∈ G the map
Cg : G → G

x 7→ gxg−1
sends G0 to G0

Have Cg smooth⇒continuous, and 17→1
⇒ Cg : G0 � G0

⇒ G0 EG

We have, ∀g ∈ G a diffeomorphism
Lg : G → G

x 7→ gx
(Can check that Lg−1 is an inverse map, using that G is associative)
Therefore, Lg(G

0) = gG0 is the connected component of G containing g.
We know that G is the disjoint union of some of these left cosets gG and G/G0 is the set of cosets.
To show that G/G0 has discrete topology. I have to show that each component gG0 is open in G. In
fact, all connected component in any manifold are open subsets

Lemma 13
Let G be a connected Lie group, Then G is generated by a neighbourhood of 1 ∈ G

Proof
Let N be an neighbourhood of 1 ∈ G
Let H ≤ G, generated by N
⇒ H open in G because ∀h ∈ H hN ⊆ H and hN is an open subset of G containing h
In fact, H is also closed in G ifx ∈ G−H ⇒ xN ⊆ G−H
(If xn = h ∈ H for some n ∈ N , then x = hn−1 #)
So H is open and closed and contains 1 ⇒ H = G since G is connected

ref.: Armstrong, Basic Topology

Definition 14
A homomorphism f : G→ H of Lie groups is a group homomorphism which is also smooth

Lemma 15
Let f : G→ H be a homomorphism of connected Lie groups. Suppose that

df |1 : T1G� T1H (1)

Then f : G� H

Proof
By the Implicit Function Theorem, f maps some neighbourhood of 1 ∈ G onto some neighbourhood
of 1 ∈ H, so f(G) contains the subgroup of H generated by this neighbourhood which is all of H
because H is connected

Example:
f : R → S1 ⊆ C× i 7→ eit is a homomorphism of Lie groups (It’s smooth, and it’s a hom. because
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f(s+ t) = f(s)f(t))
Its derivative at 1 is

d(eit)

dt

∣∣∣∣∣
t=0

= ieit|t=0 = i (2)

which is an isomorphism R = T0R ∼= T1S
1 = iR ⊂ C

So lemma applies and indeed R� S1

In fact, S1 ∼= R /Z where 2π Z = Z = ker f

Definition 16
A closed Lie subgroup H of a Lie group G is a closed submanifold of G which is a subgroup of G

Note that such a subgroup H is a Lie group. Indeed, multi: H × H → H is just the restriction of
multi: G×G→ G so it is also smooth, likewise for inverses.

Use this to prove that the classical groups actually are Lie groups

Example:

GL(n,R). This is an open subset of MnR = Rn2
so it is a smooth n2-dimensional manifold. Multi-

plication of matrices is smooth (in fact, polynomial or mapping smooth)a11 · · · a1n
...

. . .
...

an1 · · · ann


b11 · · · b1n

...
. . .

...
bn1 · · · bnn

 =

(
a11b11 + a12b21 + ... · · ·

...
. . .

)

is a smooth function. Inverse is a polynomial in entries of given matrix A and in 1/ detA which is a
smooth function of GL(n,R) = {A | detA 6= 0}. For example,(

a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)

SL(n,R) = {A ∈ GL(nR) | detA = 1} This is a closed Lie subgroup of GL(n,R). Clearly it is a
closed subgroup
To show: SL(n,R) is a smooth submanifold of dimension n2 − 1. It suffices to check that SL(n,R) is
a smooth submanifold near 1 ∈ G(n,R) using left translation (see notes for pictures)

It suffices to show that det : GL(n,R)→ R× is a submersion near 1.
To do this, we see how det changes as you move from 1 ∈ GL(n,R). So look at A = 1+εB, B ∈MnR.
We solve the equation

detA = 1(mod ε2)

We compute:

det(1 + εB) = det

(
1 + ε

(
b11 · · ·
...

. . .

))
= (1 + εb11) · · · (1 + εbnn) (mod ε2)

= 1 + ε(b11 + · · ·+ bnn) (mod ε2)

⇒ ker(d(det)|1) = {B ∈MnR | tr(B) = 0}

This is a codimension 1 subspace of MnR so det is a submersion at 1 ∈ GL(n,R), so SL(n,R) is a
closed Lie subgroup , and sl(n) = T1SL(n,R) = {B ∈MnR | tr(B) = 0}
gl(n) = MnR = T1GL(n,R)

6



Example:
Orthogonal group O(n). Again this is a closed subgroup of GL(n,R). To show that it is a smooth
submanifold it suffice to check that near 1 ∈ GL(n,R). So we differentiate these equations for O(n) ⊂
GL(n,R)
So, for B ∈ gl(n) we compute where is :

(1 + εB)(1 + εB)t = 1 (mod ε2) (3)

(1 + εB)(1 + εB)t = 1 + ε(B +Bt) (mod ε2) (4)

F : GL(n,R)→ Rn2

We have O(n) = F−1(1) for some smooth mapping
and we have computing ker(dF ) = {B ∈ gl(n) | B +Bt = 0}
⇒ dimR(ker(dF )) = dim(zero diagonal matrix) = n(n−1)

2

So we would like to say that O(n) is the fibre of a smooth map GL(n,R)→ Rn2−(n(n−1)/2) = Rn(n+1)/2

Can we define O(n) using only n(n+ 1)/2 equations?
Yes, since ∀A ∈ GL(n,R), AAt is symmetric
So AAt = 1 reduces to n(n+ 1)/2 equations.
So O(n) is a smooth submanifold of dimension n(n−1)/2 in GL(n,R) and hence a closed Lie subgroup.
Also so(n) = T1O(n) = {B ∈ gl(n)|Bt = −B}

Example:
Unitary group U(n) ⊂ GL(n,C). We just show that it is a smooth (real) submanifold of GL(n,C)
near 1
Differentiate the equation for U(n) ⊂ GL(n,C) at 1:
Write A = 1 + εB, B ∈ gl(n,C) = MnC
Solve

(1 + εB)(1 + εB)∗ = 1 (mod ε2)

(1 + εB)(1 + εB)∗ = 1 + ε(B +B∗) (mod ε2)

So U(n) = F−1(1) ⊂ GL(n,C) where
ker(dF |1) = {B ∈ gl(n,C) | B∗ = −B} = {skew hermitian matrices} = i{hermitian matrices} and
gl(n,C) = {hermitian}+ {skew-hermitian}

Skew-hermitian matrix is

(
ia z
−z̄ ib

)
a, b ∈ R, z ∈ C

So dimR(ker(dF |1)) = (1/2) dimR gl(n,C) = n2

So I would like to define U(n) ⊂ GL(n,C) by exactly 2n2 − n2 = n2 real equations.

Indeed, for any A ∈ GL(n,C), AA∗ is always hermitian (since (AB)∗ = B∗A∗). So AA∗ = 1 reduces
to only n2 real equations (say that the element of AA∗ above diagonal are zeroes and the elements on
diagonal, which are real =1)

So U(n) =fibre of submersion GL(n,C)→ Rn2
so it is a closed Lie subgroup of GL(n,C)

Definition 17
For A ∈Mn(K), where K = R or C, define the exponential of A by:

exp(A) =

∞∑
n=0

An

n!
∈MnK (5)

To check that this series converges, define the norm:

‖A‖ := sup
‖x‖=1,x∈Rn

‖Ax‖ (6)
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Clearly ‖AB‖ ≤ ‖A‖.‖B‖
⇒ ∀A ∈ Mn(K), ‖Ann! ‖ ≤

‖A‖n
n! and this series converges in R ∀‖A‖. So the series of matrices

converges absolutely.

Easy that exp : MnR→MnR is smooth and exp : MnC→MnC is complex analytic.

Also, for ‖A‖ < 1 define the logarithm

log(1 +A) =

∞∑
n=1

(−1)n+1A
n

n
(7)

This converges for ‖A‖ < 1.
⇒ log is defined on the open ball of radius 1 around 1 ∈Mn(K)

Theorem 18 (1) For x in some neighbourhood of 0 ∈MnK, log(exp(x)) = x.
For X with ‖X − 1‖ < 1, exp(log(X)) = X

(2) exp(x) = 1 + x+ · · · . That is exp(0) = 1 and d exp |0 = idMnK

(3) If xy = yx in MnK, then exp(x+ y) = exp(x) exp(y) In particular, exp(x) exp(−x) = 1 for any
x ∈MnK. So exp(x) ∈ GL(n,K)

(4) For a fixed x ∈MnK, define a smooth map R→ GL(n,K) by t 7→ exp(tx). Then exp((s+t)x) =
exp(sx) exp(tx) ∀s, t ∈ K. In other wrods, t 7→ exp(tx) is a homomorphism of Lie groups.

(5) The exponential map commutes with conjugation and transpose. That is exp(A × A−1) =
A exp(x)A−1 and exp(x)t = exp(xt)

Proof

(1) follows from the fact that log(exp(x)) = x for x ∈ R, so that is true as an identity of formal
power series. So it works for a matrix X

(2) -

(3) Try to compute exp(x) exp(y) for any x, y ∈Mn(K)

exp(x) exp(y) = (1 + x+ x2/2 + · · · )(1 + y + y2/2 + · · · ) (8)

= 1 + (x+ y) + (x2/2 + xy + y2/2) + · · · (9)

and exp(x+ y) = 1 + (x+ y) + (x+ y)2/2 + · · · (10)

= 1 + (x+ y) + (x2 + xy + yx+ y2)/2 + · · · (11)

If yx = yx, then exp(x + y) = exp(x) exp(y) is an identity of power series in commmuting
variables, say because it’s true for x, y ∈ R

(4) follows from (3) because for any x ∈ MnK, and any s, t ∈ K sx and tx commute. So exp(sx+
tx) = exp(sx) exp(tx)

(5) These follow from the power series for exp, using that (AxA−1)n = AxnA−1, and likelwise
(xt)n = (xn)t

Definition 19
A one-parameter subgroup of a Lie group G is a homomorphism R→ G of Lie groups

The theorem gives, for any x ∈ gl(n,R), a one-parameter subbgroup of GL(n,R), R→ GL(n,R) with
tangent vector at 0 is x ∈ gl(n,R) = T1GL(n,R)
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Theorem 20
For every classical group G ⊆ GL(n,K) (to be listed), G is a closed Lie subgroup of GL(n,K). In
fact, if we let g = T1G, then exp gives diffeomorphism, for some neighbourhood U of 1 in GL(n,K)

and u of 0 in gl(n,K), U ∩G�log
exp� u ∩ g

The classical groups:

(1) Compact (real) groups: SO(n), U(n), SU(n), Sp(n)

(2) GL(n,K), SL(n,K), SO(n,K), O(n,K); for K = R or C
(3) Real Lie group: Sp(2n,R)

(4) Complex Lie gorup: Sp(2n,C)

Example:
O(n,C) = subgroup of GL(n,C) preserving the symmetric C-bilinear form:

< (z1, . . . , zn), (w1, . . . , wn) >=
∑

ziwi

Sp(2n,C) = subgroup of GL(2n,C) preserving the standard C-symplectic (i.e. alternating nondegen-
erate) form:

w((z1, . . . , z2n), (w1, . . . , w2n)) = (z1wn+1 − zn+1w1) + (z2wn+2 − zn+2w2) + · · ·

Compact symplectic group

Sp(n):=subgroup of GL(n,H) preserving distance on Hn = R4n.
Here the quaternions H = R 1⊕ R i⊕ R j ⊕ R k determined by i2 = k2 = j2 = −1 and ij = k (etc.).

Say we define an H-vector space V to be a right H-module, va ∈ V for a ∈ H.
For example Hn = {(z1, . . . , zn)> | zi ∈ H} is an H-vector space.
GL(n,H) := {invertible H-linear maps Hn → Hm} ⊆Mn(H)

Warning: det only defined for matrices uses a commutative ring.

Why are O(n), U(n), Sp(n) compact?

O(n) = { matrix with column i = A(ei) | A(e1), . . . , A(en) ∈ Rn orthonormal} ⊆MnR = Rn2

is a closed bounded subset and hence compact

U(n) = GL(n,C) ∩O(2n) which is closed subset of O(2n) hence compact.

Sp(n) = GL(n,H) ∩O(4n) ⊂ GL(4n,R) a closed subset of O(4n), so Sp(n) is compact

Proof of Theorem 20 in a few cases:
SL(n,R): Claim that: for x ∈ gl(n,R), near 0, exp(x) ∈ SL(n,R) ⇔ x ∈ sl(n,R) := {x ∈ gl(n) |
tr(x) = 0}.

Use Jordan canonical form: For any x ∈MnC, x is conjugate (over C) to an upper-triangular matrix.

So exp(x) is conjugate (over C) to

 ea1 ∗
. . .

0 ean

.

In particular,

det exp(x) = ea1 · · · ean (12)

= ea1+···an (13)

= exp(tr(x)) (14)
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So,

exp(x) ∈ SL(n,R) ⇔ det exp(x) = 1 (15)

⇔ exp(tr(x)) = 1⇔ tr(x) ∈ 2πiZ (16)

For x near 0, this happens ⇔ tr(x) = 0

Definition 21
vector field V on a smooth manifold M assigns to every point p ∈ M a tangent vector vp ∈ TpM s.t.
in any coordinate chart, it has the form

v =

n∑
i=1

fi(p)
∂

∂xi
(17)

where f1, . . . , fn are smooth functions M → R (see picture)

Here we write ∂
∂x1

, . . . , ∂
∂xn

for the standard basis to TpRn for every p ∈ Rn

Two ways to think of tangent vectors at p ∈M :

(1) A smooth curve c : R→M has a tangent vector c′(t) ∈ Tc(t)M
(2) Differentiate a smooth function F on M in the direction of tangent vector X ∈ TpM at point p

(one definition: pick a curve c with c′(0) = X and then define X(f) = d
dt |t=0f(c(t)))

We can identify TpM with the space of “derivation at p”, X : C∞(M) → R, R-linear, s.t. X(fg) =
f(p)X(g) +X(f)g(p) ∈ R
In particular, in some coordinates, ∂

∂x1

∣∣
p
, . . . ∂

∂xn

∣∣
p

are derivation at p

Theorem 22 (Existence and Uniqueness for ODEs)
Let M be a smooth manifold, X a vector field on M , p ∈M .
Then ∀a < 0, b > 0, ∃at most one curve c : (a, b)→M s.t. c(0) = p and c′(t) = Xc(t) ∈ Tc(t)M
Also, c(t) exists on some open interval around 0, the maximal interval might or might not be R. If M
is compact then c(t) is defined ∀t ∈ R

Theorem 23
Let G be a Lie group, x ∈ T1G. Then ∃! one parameter subgroup f : R→ G s.t. f ′(0) = x

Proof
(see picture)

Suppose we have such a f . We know that ∀t, t0 ∈ R, f(t+ t0) = f(f0)f(t) ∈ G
For t0 ∈ R, and think if t near 0. Then f(t+ t0) = Lf(t0)f(t) ∈ G
Differentiate this w.r.t. t at t = 0 gives:
f ′(t0) = dLf(t0)(x) ∈ Tf(x0)G, since f ′(0) = x ∈ T1G so define a left-invariant vector field X on G by:
∀g ∈ G, take the tangent vector Xg := (dLg)(x) ∈ TgG
So f(t) must be the unique solution to the ODE: f(0) = 1 ∈ G and f ′(t) = Xf(t) ∈ Tf(t)G ∀t ∈
(a, b) ⊆ R
One checks that a solution to the ODE is a one-parameter subgroup.
Suppose we have defined f : [0, T ] → G with f(s + t) = f(s)f(t) for s, t, s + t ∈ [0, T ]. Then we can
define f on [T, 2T ] by f(T + t) = f(T )f(t) for t ∈ [0, T ]. (see picture) Repeat process.

Definition 24
Let G be a Lie group. Then the exponential map exp : g→ G (where g = T1G) is defined by

exp(x) = f(1) (18)

where f : R→ G is the unique one-parameter subgroup with f ′(0) = x ∈ g
(This is smooth, by theorems on ODEs)
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Notice that for t ∈ R, exp(tx) = f(t). That is, t 7→ exp(tx) is the unqiue one-parameter subgroup
R→ G with tangent vector x at time 0.

For G = GL(n,R) it follows that this map is the same as the matrix exponential

exp : gl(n,R)→ GL(n,R) (19)

More generally, let H < G be a closed Lie subgroup of Lie group G. For x near 0 in g, exp(x) ∈ H ⇔
x ∈ h (see picture)
Remark: d exp |0 : g→ T1G = g is the identity map, so exp gives a diffeomorphism from a neighbour-
hood of 0 in g to a neighbourhood of 1 in G for any Lie group.

Lemma 25
For any conencted Lie group G, G is generated by the subset exp(g) ⊂ G

Proof
By Inverse Function Theorem, since d exp |0 =identity on g, exp(g) contain a neighbourhood of 1 in
G. Since G is connected, this generates G as a group.

Corollary 26
Let G,H be Lie groups, G connected. Let α, β : G→ H be homomorphisms s.t. dα|1 = dβ|1 : g→ h.
Then α = β

Proof
For any x ∈ g, then t 7→ f(exp(tx)) is a one-parameter subgroup f : R → H. The tangent vector to
this one-parameter subgroup in H is df |1(x) ∈ h, so f(exp(tx)) = exp(tdf |1(x)).
Since α and β have the same derivative at 1, we have α(exp(tx)) = β(exp(tx)) ∀t ∈ R, x ∈ g. So,
α = β on exp(g) ⊂ G. So α = β on all of G.

Example

• For G abelian Lie group, exp is “globally well-behave”. It is a group homomorphism exp : g→ G,
it is surjective, and it is a covering map (See Armstrong, Basic Topology)
• G = S1, then exp : g→ S1 is the map R→ S1 t 7→ eit

For G nonabelian, exp need not be a covering map even if it is surjective.

Example G = Sp(1) = {z ∈ H ∼= R4 | |z| = 1} ∼= S3 group under multiplication.
g→ G = S3 sends all vectors of length π to the point -1; all vectors of length 2π to 1 etc.

Let G be a Lie group. We have a smooth map f : U ×U → V where 0 ∈ U ⊆ V ⊆ g are open subsets
of g = T1G s.t. exp(f(x, y)) = exp(x) exp(y) ∈ G
This satisfies f(0, y) = y and f(x, 0) = x ∀x, y ∈ g. So the Taylor series for f at (0, 0) ∈ g× g begins:

f(x, y) = x+ y + f2(x, y) + f3(x, y) + · · · (20)

In general f2(x, y) =
∑
aijxixj +

∑
bijxiyj +

∑
cijyiyj =

∑
bijxiyj

In this case, f2(x, y) is a bilinear map g× g→ g

Definition 27
The Lie bracket [ , ] : g× g→ g is defined by f2(x, y) = 1

2 [x, y].
We have

f(x, x) = exp−1(exp(x) exp(x)) (21)

= exp−1(exp(2x)) = 2x (22)

(More generally, exp(sx) exp(tx) = exp((s+ t)x) ∀s, t ∈ R, x ∈ g)
Therefore, [x, x] = 0 ∀x ∈ g. This defines [ , ] is alternating. As a result, [x, y] = −[y, x] ∀x, y ∈ g
Proof : 0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y]
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The Lie bracket measures the non-commutativity of G, in a nbhd of 1 ∈ G. In particular, if G is
abelian, then [ , ] is 0

Example: Compute the Lie bracket for G = GL(n,R)
Here [ , ] : gl(n)× gl(n)→ gl(n), we have

f(x, y) = log(exp(x) exp(y)) (23)

= log((1 + x+
x2

2
+ · · · )(1 + y +

y2

2
+ · · · )) (24)

= log(1 +

[
(x+ y) + (

x2

2
+ xy +

y2

2
) + · · ·

]
) (25)

=

[
(x+ y) + (

x2

2
+ xy +

y2

2
) + · · ·

]
−
[

(x+ y)2

2
+ · · ·

]
+ · · · (26)

= x+ y +
1

2
(xy − yx) + · · · (27)

So the Lie bracket on gl(n) is
[x, y] = xy − yx (28)

We can use this formula to compute the Lie bracket for closed Lie subgroups G ⊆ GL(n). For
x, y ∈ g ⊆ gl(n), xy need not be in g, but xy − yx will be in g, and that is [x, y] ∈ g

Remark: If G is a complex Lie group, then g is a complex vector space, and [ , ] : g× g → g is
C−bilinear and alternating.

Other ways to think of the Lie bracket:

exp(sx) exp(ty) exp(sx)−1 exp(ty)−1 = exp{st[x, y] + · · · }

(for s, t ∈ R near 0, x, y ∈ g).
Can check from definition on [ , ]. Yet another way,

exp(sx) exp(ty) exp(sx)−1 = exp{ty + st[x, y] + · · · }

Lemma 28
For any homomorphism f : G → H of Lie groups, df |1 : g → h is compatible (commute) with Lie
brackets:

[df |1(x), df |1(y)] = df |1[x, y] ∀x, y ∈ g (29)

Proof
Easy, using that f(exp(tx)) = exp (t · df |1(x))

Definition 29
A representation V of a Lie group G is a vector space over K = R or C with a smoth map G×V → V
s.t.:

(1) (gh)(x) = g(h(x)) ∀g, h ∈ G, x ∈ V (definition of group action on a set)

(2) 1(x) = x ∀x ∈ V

(3) ∀g ∈ G, x 7→ gx is a linear map V → V

Note: these maps x 7→ gx are in GL(V ), so we can think of a representation as a homomorphism of
Lie groups G→ GL(V )

12



Example:
We could have every g ∈ G act as identity on V , a trivial representation of G. In particular, V = C
is the trivial complex representation of G

Example:
GL(n,R) has an obvious representation on Rn the standard representation. So any subgroup of
GL(n,R) say O(n), has a standard representation on Rn

Example:

For any Lie group G and any g ∈ G, conjugation:
Cg : G → G

h 7→ ghg−1
is an isomorphism of Lie

groups. The derivative of Cg is a linear map

Ad(g) := dCg|1 : g
∼−→ g (30)

Lemma 30
Ad : G→ GL(g) is a linear representation, called adjoint, of G

Proof
Cgh = CgCh ∀g, h ∈ G
Taking derivatives shows that Ad(gh) = Ad(g) Ad(h)

Since Cg is a group homomorphism G→ G, by Lemma 28, we have:

Ad(g)[x, y] = [Ad(g)(x),Ad(g)(y)] ∈ g ∀g ∈ G, x, y ∈ g (31)

Example:
For G = GL(n,R) the adjoint representation of GL(n) of n-dimensional is:

g ∈ GL(n,R), x ∈ gl(n) Ad(g)(x) = gxg−1 ∈ gl(n) (32)

The formula (31) can be checked by hand (exercise) in this case that
For g ∈ GL(n), x, y ∈ gl(n) g[x, y]g−1 = [gxg−1, gyg−1]

Note that the adjoint representation measures the non-commutativity of G. If G is abelian, then the
adjoint representation is trivial.

Lemma 31
Let G be any Lie group
Let ad : g→ gl(g) = End(g) be the derivative at 1 of the adjoint representation of G. Then ∀x, y ∈ g

ad(x)(y) = [x, y] ∈ g (33)

Proof
For g ∈ G, y ∈ g, we have

Ad(g)(y) =
d

dt

∣∣∣∣∣
t=0

g exp(ty)g−1 (34)

Therefore, ∀x, y ∈ g,

ad(x)(y) =
d

ds

∣∣∣∣∣
s=0

Ad(exp(sx))(y) (35)

=
d

ds

∣∣∣∣∣
s=0

d

dt

∣∣∣∣∣
t=0

exp(sx) exp(ty) exp(sx)−1 (36)

=
d

ds

∣∣∣∣∣
s=0

d

dt

∣∣∣∣∣
t=0

exp(ty + st[x, y] + · · · ) (37)

= [x, y] (38)
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I know that Ad : G→ GL(g) is a Lie group homomorphism.
Therefore, by Lemma 28, the linear map ad : g → gl(g) must preserve Lie brackets: ad[x, y] =
[adx, ad y] ∈ gl(g)
But I know how to compute the Lie bracket in gl(V ).

ad[x, y] = [adx, ad y] = (adx)(ad y)− (ad y)(adx) ∈ gl(g) (39)

⇒ ∀x, y, z ∈ g ad[x, y](z) = (adx)(ad y)(z)− (ad y)(adx)(z) (40)

That is,

[[x, y], z] = [x, [y, z]]− [y, [x, z]] (41)

= −[[y, z], x] + [y, [z, x]] (42)

= −[[y, z], x]− [[z, x], y] (43)

Theorem 32 (The Jacobi identity)
For any lie group G, any x, y, z ∈ g := T1G, we have a Lie bracket [ , ] : g× g→ g s.t.

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

Proof
This can be proved directly from the power series f(x, y) s.t.:

exp(f(x, y)) = exp(x) exp(y)

f(x, y) = x+ y +
1

2
[x, y] + f3(x, y) + · · ·

Associativity of this operation, i.e. f(f(x, y), z) = f(x, f(y, z)) implies the Jacobi identity
(xy)z = x(yz) in G ⇒ Jacobi identity in g
Failure of xy = yx in G ⇒ failure of [ , ] in g
xyx−1y−1 = (yxy−1x−1)−1 ⇒ [x, y] = −[y, x] in g

Definition 33
Let k be any field. A Lie algebra over k is a k-vector space g with an alternating k-bilinear form
[ , ] : g× g→ g which satisfies the Jacobi identity

For any Lie group G, g := T1G is a Lie algebra over R
For any complex Lie group G, g := T1G is a complex Lie algebra.

Note that, if we pick a basis e1, . . . , en for a Lie algebra g over k, g is determined by the n3 different
numbers aijk ∈ k, the structure constants:

[ei, ej ] =
n∑
k=1

aijkek 1 ≤ i, j, k ≤ n (44)

These numbers satisfy some simple conditions, alternating and Jacobi identity.

Definition 34
A homomorphism of Lie algebras f : g→ h over k is a k-linear map s.t.

f [x, y] = [f(x), f(y)] ∈ h ∀x, y ∈ g (45)

If f : G→ H is a homomorphism of Lie groups, then df |1 : g→ h is a homomorphism of Lie algebra
over R
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Definition 35
A Lie subalgebra h of a Lie algebra g is a k-linear subspace h ⊂ g s.t.

[h, h] ⊂ h (46)

(that is, [x, y] ∈ h ∀x, y ∈ h) If H ≤ G is a closed Lie subgroup, then T1H is a Lie subalgebra of T1G

Definition 36
An ideal h in a Lie algebra g is a k-linear subspace h ⊂ g s.t.

[g, h] ⊂ h (47)

If HEG is a normal closed Lie subgroup of a Lie group, then h is an ideal in g (Adjoint representation,
Ad(g) : g→ g preserves the linear subspace h ⊂ g,i.e. h is an ideal of g)

Lemma 37
Let f : g → h be any homomorphism of Lie algebra over a field k. Then ker f is an ideal in g, and
g / ker(f) ⊂ h is a Lie subalgebra of h
Conversely, if a ⊂ g is any ideal, then g /a is a Lie algebra in a natural way.

Proof
f is a k-linear map, so ker(f) = {x ∈ g |f(x) = 0 ∈ h} ⊂ g is a k-linear subspace. If x ∈ ker(f) and
y ∈ g, then

f [x, y] = [f(x), f(y)] = [0, f(y)] = 0
So [x, y] ∈ ker(f). That is, ker(f) is an ideal

If a ⊂ g is an ideal, let x, y ∈ g / a. Let x̃, ỹ ∈ g s.t. they maps to x, y under g→ g / a. Then,
[x, y] := [x̃, ỹ] ∈ g mod a

This is well-defined in g / a because a is an ideal
Alternating and Jacobi identity on g / a are immediate from g

Theorem 38
Let G be any Lie group, and let h ⊂ g be any Lie subalgebra. Then ∃!H connected Lie group with a
homomorphism H → G which is an injective immersion and with T1H = h ⊂ g

Definition 39
A smooth map of manifolds, f : M → N is an immersion if df |x : TxM → Tf(x)N is injective ∀x ∈M

Example:

There is an immersion R→ R2 with image: (see notes for pictures)

Even if an immersion is injective, it needs not be a homeomorphism onto its image f(M) ⊂ N
(with the subspace topology)

Example 2(see notes)
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Example 3

There is a homeomorphism of Lie groups f : R→ (S1)2 = R2 /Z2 which is an injective immersion but
with f(R) ⊂ (S1)2 not closed and f : R→ f(R) is not a homeomorphism

Some one-parameter subgroup R→ R2 /Z2 is given by f(t) = (t, at) where a ∈ R
If a ∈ Q, then f(R) ∼= S1 and it’s a closed Lie subgroup of (S1)2

If a /∈ Q, then f : R→ (S1)2 is an injective immersion, but f(R) not closed in (S1)2

f(R) looks like: (see notes for picture)
f(R) is dense in (S1)2 (not closed)

Sketch Proof of theorem
This is proved in:
M. Spuak, A comprehensive introduction to differential geometry
F. Warner, Foundations of differential manifolds and Lie groups
Part III Differential Geometry course later this term

Given a subalgebra h ⊂ g this determines what TxH should be for any x ∈ H. We must have
TxH = (dLx|1)(h) ⊆ Tx(G). So H is tangent to a “smooth distribution” Sx ⊂ TxG ∀x ∈ G. The
assumption that h is a Lie subalgebra is exactly the hypothesis for “Frobenius Theorem”, which ensures
the existence of an immersed connected “submanifold” with the given tangent space everywhere.
This manifold H (through 1) is unique if you take it to be maximal. One checks that it is a subgroup.

Theorem 40
Let G be a simply connected Lie group G,H any Lie group. Then there is a one-to-one correspondence
between Lie group homomorphism G → H and Lie algebra homomorphism g → h. i.e. (and more
explicitly)

{f : G→ H Lie group hom.} ↔ {df |1 : g→ h Lie algebra hom.}

Proof
Roughly:

We know that a homomorphism f : G → H determines a Lie algebra homomorphism df |1 : g → h.
We have shown that any homomorphism α : g→ h of Lie algebra comes from a homomorphism of Lie
groups using that G is simply connected

Idea: α gives a Lie subalgebra of g× h, namely the graph of α, Γα = {(x, α(x)) ∈ g× h |x ∈ g}. So
this correspond to some connected Lie group K with an injective immersion K ↪→ G×H

One checks that K ∼= G and G→ G×H is the graph of a homomorphism G→ H

In details: Given f : g→ h a Lie group homomorphism.
The graph of f , Γf := {(x, f(x)) : x ∈ g} is a Lie subalgebra of g× h, [(g1, h1), (g2, h2)] = ([g1, g2], [h1, h2])
(Note that [(g, 0), (0, h)] = 0).

So there is a connected Lie group K with an injective immersion and with Lie algebra=k ⊆ g× h,
k ∼= g
So the composition K ↪→ G×H → G induces an isomorphism on tangent space at 1.
Therefore, (by Example Sheet 1), K → G is a covering map. But G is simply connected, so K ∼= G.
So we get our homomorphism G→ H

Corollary 41
Two simply connected Lie groups are isomorphism iff their Lie algebras are isomorphic

Proof
⇐: If f : g

∼−→ h isomorphic as Lie algebra, then both f and f−1 come from homomorphism G→ H
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and H → G (Here, G,H are simply connected Lie groups with those Lie algebras). You can check
that both compositions G→ H → G and H → G→ H are the identity

Theorem 42 (Ado’s Theorem)
Every finite dimensional Lie algebra g over R can be embedded as a Lie subalgebra of gl(n,R) for
some n <∞
(c.f.: Fulton-Harris, Appendix C)

Theorem 43
Every finite dimensional real Lie algebra g is the Lie algebra of a unique simply connected Lie group
G. Also, every finite dimensional complex Lie algebra is the Lie algebra of a unique simply connected
complex Lie group.

Proof
Use Ado’s Theorem.
Given that, we have g ⊆ gl(n,R)
Therefore, there is a connected Lie group G with Lie algebra g and an injective immersion G ↪→
GL(n,R)
Therefore the universal cover G is the simply connected Lie group we want.

Can we describe all the connected Lie groups with a given Lie algebra g?
Let G̃ be the simply connected Lie group with Lie algebra g. Then any connected Lie group with Lie
algebra g has the form G = G̃/Z for some discrete central subgroup Z ⊆ G̃

Example:
Describe all n-dimensional connected abelian Lie groups. Here g ∼= Rn with [ , ] = 0
Here G̃ = (Rn,+). What are the discrete subgroups Z ⊆ G̃? (see picture)

We have Z ∼= Za for some 0 ≤ a ≤ n. Then G̃/Z ∼= (S1)a × Rn−a as a Lie group G = G̃/Z

Example:
What are all the connected Lie groups with Lie algebra su(2)?
One is SU(2) ∼= S3 ∼= Sp(1), hence is simply connected.

Z(SU(2)) = {
(
a 0
0 a

)
∈ SU(2)} = {±1} ⊆ SU(2)

So the possible connected groups with Lie algebra su(2) are SU(2) and SU(2)/{±1} = PSU(2) =
SO(3)
The isomorphism SU(2)/{±1} ∼−→ SO(3) is given by the adjoint representation SU(2)→ GL(su(2)) ∼=
GL(R3)
Image=SO(3), kernel=Z(SU(2)) = {±1}

More generally, for any connected Lie group G,

ker(Ad : G→ GL(g)) = Z(G) = centre(G) = {g ∈ G|gh = hg ∀h ∈ G}

Definition 44
A (finite dimensional) representation V of a Lie algebra g over a field k, also called a g-module, is a
k-vector space together with a Lie algebra homomorphism ρ : g→ gl(V ) = Endk(V )
Equivalently, ρ gives a bilinear map g×V → V which satisfies

[u, v](x) = u(v(x))− v(u(x)) ∀u, v ∈ g, x ∈ V
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Remark:
In this sense, a representation of Lie group is finite dimensional by definition. But the definition of a
representation of a Lie algebra makes sense even for V infinite dimensional

Example: ad:g→ gl(g) is a representation of g, the adjoint representation

Given a real representation V of a Lie group G. V is also a representation of the Lie algebra g.
Explicitly, this representation of g is given by:

u(x) =
d

dt

∣∣∣∣
t=0

exp(tu)︸ ︷︷ ︸
G

(x) ∈ V u ∈ g, x ∈ V

Conversely, let G be a simply connected Lie group. Then a finite dimensional representation V of g
comes from a unique representation of G

{f.d. real repn ρ : g→ gl(V )} ↔ {f.d. real repn ρ : G→ GL(V )}

By the commutativity of exponential map and the representation of g. Explicitly,

ρ(exp(u)︸ ︷︷ ︸
G

)(x) = x+ ρ(u)(x) +
ρ(u)2

2!
(x) + · · · u ∈ g, x ∈ V

= exp(ρ(u))︸ ︷︷ ︸∈ GL(V )(x)

Also, for a complex Lie group G, complex analytic representation of G give representations of the
Lie algebra g over C, and this is an equivalence for finite dimensional representations if G is simply
connected.

{f.d. C analytic repn ρ : G→ GL(V )} ↔ {f.d. C-repn ρ : g→ gl(V )} G simply connected

{C analytic repn ρ : G→ GL(V )}  {C-repn ρ : g→ gl(V )}

Example:
Complex analytic representations of SL(2,C) are equivalent to finite dimensional representations of
sl(2,C)
Indeed, SL(2,C) is simply connected, , because S3 = SU(2) ↪→SL(2,C) (SL(2,C) is dimension 3 over
C) is a homotopy equivalence.

Let V be a complex representation of a real Lie group G. Then we have a homomorphism of real Lie
groups G→ GL(V ) ⇒ gives a homomorphism of real Lie algebras g→ gl(n,C)
But this is equivalent to a representation of the complex Lie algebra g⊗RC
We can describe this as g⊕i g, with C acting in the obvious way. It is a complex Lie algebra (define
[ , ] to be C-bilinear). If dimR g = n, then dimC(g⊗RC) = n

C-repn of real G  g→ gl(n,C) ↔ C-repn of complex g⊗RC = g⊕i g

Example:
Complex representations of the compact Lie group SU(2)
↔ complex representation of the real Lie algebra su(2)
↔ representations of the complex Lie algebra su(2)⊗R C = sl(2,C)

Proof
su(2) = {A ∈M2C | tr(A) = 0, A+A∗ = 0}
isu(2) = {A ∈M2C | tr(A) = 0, A∗ = A}
sl(2,C) = su(2)⊕ isu(2)
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Representation of the Lie algebra sl(2,C)

sl(2,C) = {A ∈M2C | tr(A) = 0}

A basis for sl(2) as a C vector space is:

e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
We compute the Lie brackets:

[h, e] =

(
1 0
0 −1

)(
0 1
0 0

)
−
(

0 1
0 0

)(
1 0
0 −1

)
=

(
0 1
0 0

)
−
(

0 −1
0 0

)
=

(
0 2
0 0

)
⇒ [h, e] = 2e

We compute that [h, f ] = −2f and [e, f ] = h

Let V be any finite dimensional representation of sl(2C).
That is: we have e, f, h ∈ End(V ) which satisfy

[h, e] = he− eh = 2e

[h, f ] = −2f

[e, f ] = h

Idea: Divide up V according to eigenspaces with respect to h.
If V 6= 0, then (since we are over C) h has some eigenvector

that is, ∃x ∈ V, x 6= 0 and hx = λx for some λ ∈ C.
What can we say about ex and fx ∈ V ?
We know that, for example:
hex− ehx = 2ex hex− ehx = hex− e(λx) = h(ex)− λ(ex)
Thus

h(ex) = (λ+ 2)ex

That is, ex is the (λ+ 2)-eigenspace for h

Likewise, using that [h, f ] = −2f , we find that

h(fx) = (λ− 2)fx

i.e. f maps the λ-eigenspace for h into the (λ− 2)-eigenspace for h

Notice that for any x 6= 0 an h-eigenvector with weight λ (=eigenvalue for h), then
ex has weight λ+ 2
e2x has weight λ+ 4, etc.
But since V is finite dimensional, h has only finitely many eigenvalues on V . Therefore, erx must be
0 for some r ≥ 1

Likewise, f rx must be 0 for some r ≥ 1

Definition 45
A highest weight vector x in a representation of sl(2,C) is a vector x 6= 0 in V which is an h-eigenvector
(so hx = λx for some λ ∈ C) and ex = 0
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If V 6= 0 is a finite dimensional representation of sl(2), then V contains a highest weight vector, we
have shown.

Let x be a highest weight vector in a finite dimensional representation of sl(2), with weight λ ∈ C.
We know that hx = λx and ex = 0
What can we say about fx?
It is weight λ− 2 that is : h(fx) = (λ− 2)fx What is efx?
We know that [e, f ] = h ∈ sl(2),hence in End(V )
Therefore, efx− fex = hx. But fex = 0 as ex = 0 and hx = λx
So e(fx) = hx
Next, what can we say about f2x?
We know that h(f2x) = (λ− 4)(f2x)
What is e(f2x)? It is some vector of weight λ− 2.
We use that [e, f ] = h again:

ef2x = fe(fx) + h(fx)

= f(λx) + (λ− 2)fx

= (2λ− 2)fx

One more step: What is e(f3x)?
Again, use [e, f ] = h

ef3x = fef2x− hf2x
= f((2λ− 2)fx) + (λ− 4)f2x

= (3λ− 6)f2x

Summary:
f rx has weight λ− 2r for some r ≥ 0
e(fx) = λx
e(f2x) = (2λ− 2)fx
e(f3x) = (3λ− 6)f2x
etc. By induction, we show that for r ≥ 1,

e(f rx) = (rλ− 2(1 + 2 + · · ·+ (r − 1)))− f r−1x
= (rλ− r(r − 1))f r−1x

= r(λ− r + 1)f r−1x

Say f r+1x is the first element that becomes 0. Then, x, fx, f2x, . . . , f rx are all nonzero in V . They
are all h-eigenvectors with different eigenvalues, namely, λ, λ− 2, . . . , λ− 2r ∈ C
Therefore, x, fx, . . . , f rx are linearly independent in V . Let S ⊂ V be the C-linear subspace they
span.
Then S ⊆ V is a subrepresentation of V for sl(2)

Definition 46
Let V be a representation of a Lie algebra g over k. Then a subrepresentation S ⊆ V (or g-submodule)
is a k-linear subspace s.t. ux ∈ S ∀u ∈ g, x ∈ s.

Definition 47
An irreducible representation V of a Lie algebra g is a representation s.t. V 6= 0 and V contains no
g-submodules 0 ( S ( V

Suppose that V is a finite dimensional irreducible representation of sl(2). Let x be a highest weight
vector in V . Then the subspace S = C{x, fx, . . . , f rx} ⊂ V is equal to V

What can we say about the weight λ ∈ C of the highest weight vector x?
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Theorem 48
The weight of a highest weight vector for a finite dimensional irreducible representation of sl(2,C) is
a natural number

Proof
We use that e(f r+1x) = (r + 1)(λ− r)f rx, but f r+1x = 0
⇒ 0 = (r + 1)(λ− r)f rx ∈ V where f rx 6= 0 ∈ V
⇒ must have (r + 1)(λ− r) = 0 ∈ C
Here r ∈ {0, 1, 2, . . .} = N0

⇒ r + 1 6= 0 ∈ C ⇒ λ = r

Notice that the representation of sl(2) given by the above formulae, for any r ∈ N, are completely
determined by the number λ(= r in later formulae)
That is, this representation has basis:

x, fx, f2x, . . . , fλx

The formula we wrote describe how sl(2) acts in this basis

Theorem 49
The finite dimensional irreducible representation V of sl(2,C) are classified up to isomorphism by one
number λ ∈ N, the weight of a highest weight vector (unique up to scalars in V ) in V .
(Here dimC Vλ = λ+ 1)

How do these irreducible representations of sl(2) arises in nature?
There is the standard representation V ∼= C2 of the group SL(2,C).
Therefore, any λ ∈ N, SλV (the λth symmetric power) is also a representation of SL(2,C)

Here, if V has C-basis e1, e2, S
λV means the C-vector space of homogeneous polynomials of degree λ

in e1, e2. That is:
SλV = {a0eλ1 + a1e

λ−1
1 e2 + · · · aλeλ2}

If f ∈ SL(2,C)
f(ea1e

λ−a
2 ) = f(e1)

af(e2)
λ−a ∈ SλV

This representation, as a representation of sl(2,C) is the irreducible representation we described

Tensor Product

Theorem 50
For any vector spaces V,W over a field k, there is a vector space V ⊗kW (the tensor product) with a

k-bilinear map f : V ×W → A, ∃! linear map g : V ⊗k W → A with f = (V ×W → V ⊗k W
g−→ A)

Proof
See commutative algebra (Part III)/representation theory (Part II)

Example:
If V has a basis e1, . . . , em and W has a basis f1, . . . fn, then V ⊗k W has a baiss ei ⊗ fj , 1 ≤ i ≤
m, 1 ≤ j ≤ n. So dimk(V ⊗k W ) = (dimk V )(dimkW )
So every element of V ⊗W can be written as

∑
aijei ⊗ fj , aij ∈ k

Note: Some element can be written v ⊗ w for a simple v ∈ V , w ∈W
Not-so-related-notes: Compare the direct sum:

V ⊕W = {(v, w)|v ∈ V,w ∈W}

here, dimk(V ⊕W ) = dimk V + dimkW
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Example:
V ∗ ⊗k W = {k linear maps V →W}
if V is finite dimensional.
A linear map correspond to a “symbol” f ⊗ w where f ∈ V ∗ = Homk(V, k)⇔ it has rank ≤ 1
(Here f ⊗ w ∈ V ∗ ⊗W corresponds to the linear map V →W,x 7→ f(x)w ∈W (f(x) ∈ k))

Symmetric Products and Exterior Products

Definition 51
Let V be a k-vector space, a ∈ N, Then the a-th symmetric power SaV = SymaV is the quotient
space

V ⊗k · · · ⊗k V/
(
v1 ⊗ · · · ⊗ va = vσ(1) ⊗ · · · ⊗ vσ(a)

)
, σ ∈ Sa

which is a k-vector space
Write v1v2 · · · va for the image of v1 ⊗ · · · ⊗ va in SaV . If V has a k-basis e1, . . . en, then SaV is the
space of homogeneous polynomial of degree a in e1, . . . , en.

We compute that dimk S
aV =

(
n+ a− 1

a

)
Definition 52
For a k-vector space V , a ≥ 0, the a-th exterior power of V is

a∧
V := V ⊗k · · · ⊗k V/

(
v1 ⊗ · · · ⊗ va = sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(a)

)
, σ ∈ Sa

which is a k-vector space

Here, for example: v ∧ v = 0 ∀v ∈ V and v ∧ w = − ∧ v ∀v, u ∈ V
If V has a basis e1, . . . , en, then ∧aV has a k-basis ei1 ∧ · · · eia if 1 ≤ i1 < · · · < ia ≤ n

So dimk
∧a V =

(
n
a

)
If V,W are representations of any Lie group G, then SaV,∧aV and V ⊗k W are also representations
of G (G acts by g(v ⊗ w) = gv ⊗ gw,etc)

Let V,W be representations of a Lie group G.
Then V ⊗k W is a representation of G, hence a representation of the Lie algebra g. How does u ∈ g
act on V ⊗W? We have

u(v ⊗ w) =
d

dt

∣∣∣∣∣
t=0

exp(tu)(v ⊗ w)

=
d

dt

∣∣∣∣∣
t=0

(1 + tu+ · · · )(v ⊗ w)

= (1 + tu+ · · · )(v)⊗ (1 + tu = · · · )(w)

= v ⊗+t(uv ⊗ w + v ⊗ uw) +O(t2)

So u ∈ g acts on V ⊗W by the Leibniz rule:

u(v ⊗ w) = uv ⊗ w + v ⊗ uw

If V,W are any representation of a Lie algebra g over a field (representation could be infinite dimen-
sional) then the Leibniz rule defines a representation of g on V ⊗k W

Likewise, for a representation V of a Lie algebra g over a field, SaV is a representation of g given by

u(v1 · · · va) = (uv1)(v2 · · · va) + v1(uv2) · · · va + · · ·+ v1 · · · va−1(uva)
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for u ∈ g, v1, · · · , va ∈ V .

Likewise, action of g on
∧n V is given by,

u(v1 ∧ · · · ∧ va) = (uv1) ∧ v2 ∧ · · · ∧ va + · · ·+ v1 ∧ · · · ∧ va−1 ∧ (uva)

Example:

How does the Lie algebra sl(2,C) act on SaV , where V ∼= C2 is the standard representation?
We can write how e, f, h act on the basis ea1, e

a−1
1 e2, · · · , e1ea−12 , ea2

We have
e(e1) = 0, e(e2) = e1

f(e1) = e2, f(e2) = 0

h(e1) = e1, h(e2) = −e2

⇒ h(ei1e
a−i
2 ) = i(he1)e

i−1
1 ea−i2 + (a− i)ei1h(e2)e

a−i−1
2

= (i− (a− i))ei1ea−i2

= (2i− a)ei1e
a−i
2 (0 ≤ i ≤ a)

⇒


ea1 is in weight a

ea−11 e2 is in weight a− 2
...

ea2 is in weight − a

Example Sheet 2: compute action of e and f , you use that ea1 is the highest weight vector, up to
scalars, so SaV ∼= the irreducible representation of sl(2) of the highest weight a, a ∈ N

Definition 53
If S ⊆ V is a g-submodule then V/S is also a representation of g, the quotient representation.

Definition 54
Let g be a Lie algebra over a field, and let V,W be two g-modules. Then a g-linear map f : V →W (or
a homomorphism of representation of g) is a k-linear map such that f(ux) = uf(x) ∈W,u ∈ g, x ∈ V
We say V ∼= W if there is a g-linear map V →W which is bijective

Lemma 55 (Schur’s Lemma) (1) Let g be a Lie algera g over a field k, V,W irreducible represen-
tation of g. If V 6∼= W , then Homg(V,W ) = {g-linear maps V →W} = 0

(2) Let k = C, let V be a finite dimensional irreducible representation of g over C.
Then Homg(V, V ) ∼= C ·1V

Proof

(1) Let f : V → W be a g-linear map. Suppose f 6= 0. Then f(V ) ⊆ W is a g-submodule and
non-zero. So f(V ) = W since W is irreducible. Likewise, ker(f) ⊆ V is a g-submodule, and it
is not equal to V . So ker(f) = 0
So f : V →W is a g-linear isomorphism #

(2) What can we say about Homg(V, V ) for an irreducible representation V of g?
One shows that Homg(V, V ) is a division algebra over k (that is every f 6= 0 has an inverse)
Suppose that k = C, and V is irreducible and finite dimensional.
Let f : V → V be a nonzero g-linear map. Know that ∃x ∈ V, x 6= 0 s.t. f(x) = λx some λ ∈ C
Look at f − λ1V ∈ Homg(V, V )
We know that this g-linear map sends x 6= 0 in V to 0. So f − λ1V is not isomorphism, it must
be 0, so f = λ · 1V

23



Corollary 56
Let g be an abelian Lie algebra over C. Then every finite dimensional irreducible representation of g
is 1-dimensional. The 1-dimensional representation of g are corresponding to the linear maps g→ C

Proof
Let V be a finite dimensional irreducible representation. Then Homg(V, V ) = C 1V by Schur’s Lemma.
But for any u ∈ g, we have for any v ∈ g, x ∈ V uv(x)− vu(x) = [u, v](x) = 0(x) = 0
So u ∈ Homg(V, V ) so every element of g acts by scalars on V
So every k-linear subspace of V is g-invariant. Since V is irreducible, dimC V = 1 X

1-dimensional representation of g↔ homomorphism of Lie algebra
g→ gl(1,C) = C↔ a C-linear map g→ C, because g is abelian

Definition 57
A finite dimensional representation of a Lie algebra g is completely reducible if V ∼= V1⊕· · ·⊕Vr with
Vi irreducible representations of g, for some r ≥ 0

For any finite dimensional representation V of g, we can always find sub-g-moddules

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr = V

s.t. Vi/Vi−1 are irreducible.
This need NOT imply that V ∼=

⊕
Vi/Vi−1

Example: Let g be the 1-dimensional Lie algebra over C, g = C e. Then a representation of g is exactly
a vector space V with an endomorphism e : V → V . We know how to classify such representations
(Jordan Normal Form) in some basis for V

e =



a 1
a 1

a

b 1
b

c
. . .


Look at S = C{e1, e2}. That is an e-invariant subspace of V and two such matrices are conjugate ⇔
they are the same up to reordering the Jordan block

So a representation of the Lie algebra C e is completely reducible ⇔ e ∈ End(V ) is diagonalizable

More generally, if a representation V of a Lie algebra g has g-invariant subspace S, then (in a suitable
basis for V ) g→ End(V ) = MnC maps into (

A ∗
0 ∗

)
with A a dimS × dimS matrix

If V = V1 ⊕ V2 as a representation of g, then (in some basis for V ) the representation g → End(V )
maps into (

A ∗
0 B

)
with A a dimV1 × dimV1 matrix, B a dimV2 × dimV2 matrix
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Theorem 58
Every finite dimensional representation of sl(2,C) is completely reducible. Therefore representations
of the groups SL(2,C) and complex representations of SU(2) are completely reducible.

Proof
We will show that the complex representations of SU(2) are completely reducible, that implies the
statement on sl(2,C). More generally, we have the following theorem.

Theorem 59
For any compact Lie group G all its real or complex representations are completely reducible

Proof
(We will consider the C-case, proof for the real is similar)
Let V be a complex representation of a compact Lie group G. We will show that V is unitary, that
is: ∃ a positive definite hermitian form 〈 , 〉 on V s.t.

〈gx, gy〉 = 〈x, y〉 ∀x, y ∈ V, g ∈ G

(Recall properties of hermitian form:
(1) 〈x, y〉 : V × V → C which is C-linear in x and conjugate-linear in y
(2) 〈x, y〉 = 〈y, x〉 ∈ C (3) Positive definite) If V is a unitary representation of G, let S ⊆ V be a
G-invariant subspace. Then S⊥ ⊆ V , S⊥ = {x ∈ V |〈x, y〉 = 0 ∀y ∈ S} is also a G-subspace of V .
Because 〈 , 〉 is positive definite, V = S ⊕ S⊥. Repeating the process we see that V is a direct sum
of irreducible representation

To prove that every C-representation of a compact Lie group G is unitary, we average
For an oriented n-manifold M , let w ∈ Ωn(M) be a smooth n-form. (So, at every p ∈ M,w ∈∧n(T ∗pM))
In local coordinates,

w = f(x1, . . . , xn)dx1 ∧ · · · ∧ dxn
If g is compactly supported smooth for g : M → R, then we can define∫

M
gw ∈ R

In local coordinates, this is ∫
gfdx1 · · · dxn

On a compact Lie group G let w be any non-zero element of
∧n′(g∗) ∼= R

This extends uniquely to a right-invariant n-form w on G
Use this to integrate all smooth functions on G, because G is compact
Because w is right-invariant, we have∫

g∈G
f(g)w =

∫
g∈G

f(gh)w ∀h ∈ G

Let V be a complex representation of a compact Lie group G
Let 〈 , 〉0 be a positive definite hermitain form on V
Define a hermitian form on V by

〈x, y〉 =

∫
G
〈gx, gy〉0w(g) ∀x, y ∈ V

THis is a hermitian form on V . It is positive definite because the integral of a positive form is positive.
Finally,

〈hx, hy〉 =

∫
G
〈ghx, ghy〉0w(g) =

∫
G
〈gx, gy〉0w(g) = 〈x, y〉
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Therefore, for any finite dimensional representation of sl(2,C), h is always diagonalizable (=semisim-
ple) in End(V )
Also e, f are always nilpotent on V (That is, eN = 0 and fN = 0 for some N > 0)
This is somehow related to the fact that

h =

(
1 0
0 −1

)
is daigonalizable in M2C

e =

(
0 1
0 0

)
and f =

(
0 0
1 0

)
nilpotent (N = 2)

Definition 60
The character of a representation V of sl(2,C) is

χ(V ) =
∑
j∈Z

(dimVj)t
j ∈ Z[t, t−1]

where

Vj = weight-j subspace of V

= {x ∈ V |hx = jx}

(We know the eigenvalues of h on V are in Z)

Easy Fact: The character of a representation of sl(2,C) determine the representation up to isomor-
phism

Example: If V is a representation of sl(2) with χ(V ) = t−2 + 3 + t2. What is V ?
Let A be the 2-dimensional standard representation of sl(2), then

χ(SmA) = t−m + t−m+2 + · · ·+ tm−2 + tm

and χ(V ⊕W ) = χ(V ) + χ(W ) and χ(V ⊗C W ) = χ(V )χ(W )
Answer to question:
V = S2A⊕(some representation with character 2)
= S2A⊕ C⊕C (where C = S0A)

Theorem 61 (Clebsch-Gordon)
For any a, b ∈ N, a ≤ b, we have

SaV ⊗ SbV ∼= Sa+bV ⊕ Sa+b−2V ⊕ · · · ⊕ Sa−bV (48)

as representation of sl(2,C) (or the group SL(2,C) or SU(2))

Proof
Compute the character of the left side

χSaV (t) = t−a + t−a+2 + · · ·+ ta

Want to know what does

(t−a + t−a+2 + · · ·+ ta)(t−b + t−b+2 + · · ·+ tb)

equals to.
Note that all weights in SaV ⊗ SbV are ∼= a+ b mod 2
(see pictures in handwritten notes)

Nilpotent and Solvable Lie Algebras
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Definition 62
An abelian Lie algebra g over a field k is a Lie algebra with [ , ] = 0

Definition 63
For a Lie algebra g over k. The commutator subalgebra [g, g] (or derived algebra of g) is the k-linear
subspace spanned by [x, y], x ∈ g, y ∈ g
Then [g, g] is an ideal of the quotient Lie algebra gab := g /[g, g] is abelian the abelianization of g

Definition 64
Let g be a Lie algebra over a field k. The derived series of g is defined by Z0 g = g and

Zj+1 g = [Zj g, Zj g]

for j ≥ 0. Clearly,
g = Z0 g ⊃ Z1 g ⊃ Z2 g ⊃ · · ·

Definition 65
g is solvable if Zj g = 0 for some j ≥ 0

Lemma 66
A Lie algebra is solvable ⇔ there is a sequence of Lie subalgebras

0 ⊂ g1 ⊂ g2 ⊂ · · · ⊂ gr = g

s.t. gi is an ideal in gi+1 and gi+1 / gi is abelian

Also any Lie subalgebra and any quotient Lie algebra of a solvable Lie algebra is solvable

Example 67
The set of upper triangular matrices b ⊂ gl(n) form a solvable Lie algebra

Proof
Let x, y ∈ b. Then [x, y] = xy − yx ∈ u = {strictly upper triangular matrices} ⊂ gl(n)
Let eij = the matrix with 1 in row i and column j and 0 otherwise for 1 ≤ i, j ≤ n
We have eijekl = δjkeil where

δjk =

{
1 if j = k

0 if j 6= k

So [eij , ekl] = δjkeil − δliekj
eij ∈ b⇔ i ≤ j and eij ∈ u⇔ i < j
For r ≥ 0, let ur =span of the matrices eij with i+ r ≤ j
So u0 = b, u1 = u, etc. Then we compute that [ui, uj ] ⊂ ui+j
So [u1, u1] ⊂ u2 [u2, u2] ⊂ u4 etc. and so b (and u) are solvable

Here b(C) is the Lie algebra of the complex Lie group B = {upper triangular matrix} = { upper
traingular matrix with diagonal entries in C×} ⊂ GL(n,C)
Also u(C) is the Lie algebra of the complex Lie group U = {upper triangular matrix with diagonal
entries being 1}

Remark. B =a Borel subalgebra in GL(n,C)
U = a group of nilpotent matrices

Example:
g = sl(2,C) is NOT solvable since [g, g] = g (since [e, f ] = h, [h, e] = 2e, [h, f ] = −2f)
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Definition 68
The lower central series of a Lie algebra g over a field k is Z0 g = g and

Zj+1 g = [g, Zj g]

for j ≥ 0.
g is nilpotent if Zj g = 0 for some j ≥ 0

Lemma 69
A Lie algebra g is nilpotent ⇔ there is sequence of ideals in g

0 ⊂ g1 ⊂ g2 ⊂ · · · ⊂ gn = g

s.t. gj+1 is central in g / gj ∀j
Equivalently, g / gj is a central extension of g / gj+1

(We saw g is a central extension of h if there is a central ideal z ⊂ g such that h ∼= g /z)

Definition 70
The centre of a Lie algebra g is

Z(g) = {x ∈ g |[x, y] = 0 ∀y ∈ g} (49)

Remark. If G is a Lie group then Z(g) is the Lie algebra of Z(G)
An ideal z ⊂ g is central if z ⊂ Z(g) (also, z central ⇒ [g, z] = 0)

Example:
The Lie algebra u of strictly upper triangular matrices in gl(n) is nilpotent, because u = u1, [u1, u1] ⊂
u2, [u1, u2] ⊂ u3 and so on (see previous example) whereas b ⊂ gl(n) is NOT nilpotent for n ≥ 2

Lemma 71
Any Lie subalgebra and any quotient Lie algebra of a nilpotent Lie algebra is nilpotent

Example 72
Classify all Lie algebras g over C of dimension ≤ 2 up to isomorphism

dimC g = 1: Let e1 be a basis for g as a C-vector space. We have [e1, e1] = 0
So there is only one 1-dimensional Lie algebra over C up to isomorphism

g ∼= C = u ⊂ gl(2)

(u is the set of 2x2 strictly upper triangular matrices in C)

dimC g = 2: Let e1, e2 be a basis for g as a C vector space.
Then [e1, e1] = 0, [e1, e2] = a1e1 + a2e2 (a1, a2 ∈ C), [e2, e2] = 0 (and [e2, e1] = −a1e1 − a2e2)

Case 1:
If a1 = a2 = 0, then g is the 2-dimensional abelian Lie algebra,

g = C2 ∼= C×C

(it iss the Lie algebra of the complex Lie group (C2,+) or (C×)2 for example)

Case 2:
Suppose g not abelian. Then dimC[g, g] = 1
Let e1 be a basis for [g, g] and let e2 be any other basis element for g
Then [e1, e2] = ae1 where 0 6= a ∈ C
By changing e2 to a nonzero multiple, we can arrange to have [e1, e2] = e1
So there is at most one non-abelian Lie algebra over C up to isomorphism
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This IS a Lie algebra since it is the Lie algebra of matrices

{(
∗ ∗
0 0

)}
⊂ gl(2) which is the Lie algebra

of the group of

G =

{(
a b
0 0

)
: a ∈ C×, b ∈ C

}
We compute g = C{e11, e12} and [e11, e12] = δ11e12 − δ21e11 = e12
This Lie algebra g is solvable because D1 g = [g, g] = C e12
and Z2 g = [C e12,C e12] = 0
But g is NOT nilpotent because:
Z1 g = [g, g] = C e12
Z2 g = [g,C e12] = C e12
So Zj g 6= 0 ∀j i.e. g is not nilpotent

Example:
u =set of strictly upper triangular 3×3 matrices, called the Heinsenberg Lie algebra is the smallest
nilpotent but not abelian Lie algebra
Here u = C{e12, e23, e13} with [e12, e23] = e13
[e12, e13] = 0
[e23, e13] = 0

Lemma 73
Let g be a Lie algebra over a field k. Let a, b be solvable ideals in g. Then a+ b = {x+y|x ∈ a, y ∈ b}
is a solvable ideal in g

Proof
Clearly a+ b is an ideal, have an isomorphism of Lie algebras:

a / a∩ b ∼−→ (a+ b)/ b

LHS is solvable since a is solvable, and RHS is a Lie algebra
Since b is solvable, a+ b is solvable

Definition 74
The radical of a Lie algebra g (finite dimensional over k), denote rad(g) is the maximal solvable ideal
in g

Definition 75
A Lie algebra g is semisimple if rad(g) = 0

Definition 76
A Lie algebra g is simple if g is not abelian and the only ideal in g are 0 and g

Lemma 77
A simple Lie algebra g is semisimple

Proof
If rad(g) 6= 0, then g = rad(g). So g is solvable. We have [g, g] = 0 or g.
We have [g, g] 6= 0 because g is not abelian. And [g, g] 6= g because we assumed g was solvable (and
we knew g 6= 0)

Examples of simple Lie algebra: sl(n,C) for n ≥ 2
sp(2n,C) for n ≥ 1
so(n,C) for n = 3 or n ≥ 5

To check that a Lie algebra g is simple, it is equivalent to check that g not abelian and the adjoint
representation of g is irreducible
(Recall that ad(x)(y) = [x, y], for x, y ∈ g)
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For example, for sl(2), the adjoint representation sl(2) ∼= S2(V ), V = C2, which is irreducible
The exceptional cases:
sl(1,C) = 0, so(2,C) ∼= C, which is abelian (so not simple)
This is due to

SO(2,C) ∼= C×

∪| ∪|
SO(2) = S1

and so(4,C) ∼= so(3,C)× so(3,C) ∼= sl(2,C)× sl(2,C)
(since SO(4,C) ∼= SL(2,C)× SL(2,C)/{(1, 1), (−1,−1)})

Note that for any Lie algebra g, g / rad(g) is semisimple

g
π−→ g / rad(g)

∪| ∪|
π−1(I) I

⇒ I = 0

π−1(I) (Solvable ideal in g) → I solvable ideal
⇒ I = 0

Dual Representation
Let V be a representation of a group G. Is V ∗ a representation of G?

Given g ∈ G, we have a linear map g : V → V , hence a linear map g∗ : V ∗ → V ∗, g∗(f)(x) =
f(g(x)) ∀x ∈ V
We have (gh)∗ = h∗g∗

We define a representation of G on V ∗ by g 7→ (g∗)−1 ∈ GL(V ∗)

in terms of a basis for V , the dual representation to a representation G
ρ−→ GL(n, k) is G→ GL(n, k)→

GL(n, k), A 7→ (At)−1 because the matrix for f∗ is f t, ((AB)t)−1 = (At)−1(Bt)−1 so this is a repre-
sentation

By taking derivatives, you find if V is a representation of a Lie algebra g over k, V ∗ is a representation
of g, by :

(uf)(x) = −f(ux) ⊂ k u ∈ g, f ∈ V ∗, x ∈ V

Example:
If V and W are representations of a Lie algebra g then Hom(V,W ) is a representation of g, by
Hom(V,W ) = V ∗ ⊗W namely,

v ⊗ w 7→ (φ : v 7→ α(v)w)

for a linear map f ∈ Hom(V,W ) and u ∈ g

(uf)(v) = −f(uv) + uf(v) ∈W v ∈ V

We see that the subspace Hom(V,W )g is exactly the space Homg(V,W ) of g-linear maps V →W

Definition 78
For any representation V of a group G, the space V G of invariant is {x ∈ V |gx = x ∀g ∈ G}
For a representation V of a Lie algebra g the space of g-invariant is

V g := {x ∈ V |ux = 0 ∀u ∈ g}
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Likewise, given a representation V of a Lie algebra g we can write the action of g on the space
(V ⊗ V )∗ = V ∗ ⊗ V ∗ of bilinear forms on V . The result is a bilinear form B(·, ·) on V is g-invariant
⇔B(ux, y) +B(x, uy) = 0 ∀x, y ∈ V

Example: Let 〈 , 〉 be the standard representation bilinear form on Cn. Then a element A ∈ gl(nC)
preserves 〈 , 〉

⇔ 〈Ax, y〉︸ ︷︷ ︸
〈x,Aty〉

+〈x,Ay〉 = 0 x, y ∈ Cn

⇔ A+At = 0

⇔ A ∈ so(n,C)

Definition 79
Let V be a representation of a Lie algebra g over a field k. The trace form associated to V is the
symmetric bilinear form on g defined by

BV (x, y) = tr(ρ(x)ρ(y)) ∈ k x, y ∈ g

where ρ : g→ gl(V ) is the given bilinear maps V → V , GL(V ) = {linear isom V → V }
This is symmetric because tr(AB) = tr(BA) for all A,B : V → V linear

Definition 80
The Killing form of a Lie algebra g over k is the trace form Bg = K associated to the adjoint
representation, i.e.

K(x, y) = tr(ad(x) ad(y)︸ ︷︷ ︸
∈gl(g)

)

Lemma 81
Let V be a finite dimensional representation of a Lie algebra. Then the trace form BV on g is
(ad-)invariant, i.e.

BV (ad(u) · (x), y) +BV (x, ad(u) · (y)) = 0

Proof
We have to show that for any x, y ∈ g

BV (u(x), y) +BV (x, u(y)) = 0 ∀u ∈ g

(u(x) = (adu)(x)) i.e. we want to show BV ([u, x], y) +BV (x, [u, y]) = 0
i.e. want to show that:

tr(ρ([u, x])ρ(y)) + tr(ρ(x)ρ([u, y])) = 0

We know that ρ([u, x]) = ρ(u)ρ(x)− ρ(x)ρ(u) because ρ is a representation of g on V , so LHS is

tr(ρ(u)ρ(x)ρ(y)− ρ(x)ρ(u)ρ(y) + ρ(x)ρ(u)ρ(y)− ρ(x)ρ(y)ρ(u))

= tr(ρ(u)ρ(x)ρ(y)− ρ(x)ρ(y)ρ(u))

= 0

In particular, the Killing form on any Lie algebra g is ad-invariant

Lemma 82
Let a be any ideal in a Lie algebra g. Then the Killing form of g restricted to a is a Killing form of a
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Proof
We have to show that for any x, y ∈ a

trg((adx)(ad y)) = tra((adx)(ad y))

Choose a basis for g as a vector space starting with a basis for a
Then for x ∈ a, adx ∈ Homk(g, g) has the form (see notes)

(since a is an ideal)
Therefore, for x, y ∈ a, (adx)(ad y) acting on g should be(

∗ ∗
0 0

)
which is easily observed tra(adx)(ad y) = trg(adx)(ad y)

Remark. For any Lie algebra g over a field k, the ker(ad : g → gl(g)) = Z(g) (the map is x 7→ (y 7→
[x, y]))
So g /Z(g) ↪→ gl(n), where n = dim g
So Ado’s Theorem is obvious for g with Z(g) = 0 such as semisimple Lie algebras.
This also applies to some non-semisimple Lie algebra, such as the 2-dimensional nonabelian Lie algebra
g:

g =

(
∗ ∗
0 0

)
, [e11, e12] = e12

and we compute that Z(g) = 0

Recall: the Killing form on a Lie algebra is K(x, y) = trg((adx)(ad y)) ∈ k
This is an ad-invariant symmetric bilinear, form on g

Example: For g abelian, the Killing form is 0.
More generally, if g is nilpotent, then the Killing form is 0: we have the lower central series:

g = Z0 g ⊃ Z1 g ⊃ · · · ⊃ Zr g = 0

where Zj+1 g = [g, Zj g]
So for any x ∈ g, (adx)(Zj g) ⊂ Zj+1 g
So (adx)(ad y) is nilpotent: g→ g, so K(x, y) = 0 on g nilpotent.

For g solvable, K(x, y) can be non-zero
Example:

g =

(
∗ ∗
0 0

)
, [e11, e12] = e12

Here, (ad e11)(e11) = b (ad e11)(e12) = e12
(ad e12)(e11) = −e12 (ad e12)(e12) = 0
We compute that K(e11, e11) = 1,K(e11, e12) = 0,K(e12, e12) = 0

Theorem 83 (Cartan’s criterion for solvable Lie algebras)
A Lie algebra g over a field k with char k = 0 is solvable ⇔ K(g, [g, g]) = 0

(Proof ommitted)
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Lemma 84
Let g be a Lie algebra over a field k, aE g an ideal. Then a⊥ (with respect to the Killing form) is an
ideal

Proof
Use that the Killing form is ad-invariant

K([x, y]︸ ︷︷ ︸
∈a

, z) +K(y, [x, z]) = 0 ∀x, y, z ∈ g

Let x ∈ g, y ∈ a, z ∈ a⊥

Then first term is 0 so we have 0 = K(y, [x, z])
So [x, z] ∈ a⊥ (since y ∈ a is arbitrary)
So a⊥ is an ideal in g

Corollary 85 (Cartan’s criterion for semisimple Lie algebra)
Let char k=0. A Lie algebra g over k is semisimple ⇔ K nondegenerate on g

Proof
K nondegenerate means that K(x, y) = 0 ∀y ⇒ x = 0
⇒ (K nondegenerate ⇔ g⊥ = 0)

⇒:
First suppose g is semisimple. By lemma, g⊥ is an ideal in g
Also, the Killing form of g restricts to 0 on g⊥

So the Killing form of g⊥ is 0 (by a previous lemma).
By Cartan’s criterion for solvable Lie algebra, g⊥ is solvable. Since g is semisimple, g⊥ = 0
That is, the Killing form on g is nondegenerate

Conversely, suppose g is not semisimple, so rad(g) 6= 0

Lemma 86
If a is an ideal in a Lie algebra g, then [a, a] is also an ideal in g

Proof
For any x ∈ g, y, z ∈ a, we have

[x, [y, z]] = −[y, [z, x]︸ ︷︷ ︸
∈a

]− [z, [x, y]︸ ︷︷ ︸
∈a

] ∈ [a, a]

⇒ [rad(g),rad(g)] = Z1rad(g) is an ideal in g
as is Z2 g, Z3 g, . . . (these are terms in derived series)
⇒ g contains a nonzero abelian ideal a
We will show that a ⊂ g⊥ so Killing form is degenerate.

Pick a basis for g over k that starts with a basis for abelian ideal a. Then for any x ∈ a

adx =

 0 ∗
0︸︷︷︸

dim a

0︸︷︷︸
dim g− dim a

 ad y =

(
∗ ∗
0 ∗

)

⇒ (adx)(ad y) =

(
0 ∗
0 0

)
⇒ K(x, y) = tr(adx)(ad y) = 0
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Corollary 87
Every semisimple Lie algebra g over a field k of characteristic 0 is a product of simple Lie algebra
g ∼= g1× · · · × gr

Proof
Let aE g be an ideal. We know that a⊥ is also an ideal in g so a∩ a⊥ is an ideal in g
The Killing form of g is 0 on a∩ a⊥

By a previous lemma, the Killing form of the Lie algebra a∩ a⊥ is 0
By Cartan’s criterion, a∩ a⊥ is solvable.
Since g is semisimple, we have a∩ a⊥ = 0
(By conunting dimensions) g = a⊕ a⊥ as a vector space
Notice that [a, a⊥] = 0 because a and a⊥ are both ideals in g
So g ∼= a× a⊥ as a Lie algebra
By induction on dimension of g, g is product of simple Lie algebras

Example:
gl(n,C) is not semisimple.

In fact, gl(n,C) = sl(n,C)× C ·1
Clearly gl(n,C) is a direct sum as a vector space as above, and [sl(n,C),C ·1] = 0
So rad(gl(n,C))=C ·1 = Z(gl(n,C))

Semisimple and Nilpotent elements

Definition 88
Let g be a Lie algebra over a field k
An element x ∈ g is called semisimple if the linear map adx : g→ g is diagonalizable (=semisimple)
An element x ∈ g is called nilpotent if adx is nilpotent

Example:
For g = gl(n,C) (or sl(n,C)) x ∈ gl(n,C) is semisimple or nilpotent in this sense if and only if
x : Cn → Cn is diagonalizable or nilpotent.

Definition 89
A Lie subalgebra t ⊂ g is toral if it is abelian and consists of semisimple elements

Example:

g = gl(n,C) t =


a1 0

. . .

0 an

∣∣∣∣ai ∈ C

 is a toral subalgebra

Here t is the Lie algebra of the complex (multiplicative) Lie group

T =


a1 0

. . .

0 an

∣∣∣∣ai ∈ C×

 ∼= (C×)n

a1 0
. . .

0 an


b1 0

. . .

0 bn

 =

a1b1 0
. . .

0 anbn

 ∈ T
In dealing with complex subgroups of GL(n,C), a torus means a group ∼= (C×)a some a ≥ 0

Lemma 90
Let V be a finite dimensional vector space. Let S ⊂ End(V ) be a set of commuting semisimple linear
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maps V → V . Then we can simultaneously diagonalize all the maps in S. Equivalently,

V =
⊕
λ:S→C

V (λ)

where V (λ) = {x ∈ V |s(x) = λ(s)x ∀s ∈ S}
Proof
Say S = {s1, s2, . . .}
We know that s1 is diagonalizable, so V =

⊕
λ1∈C V (λ1), V (λ1) = {x ∈ V |s1(x) = λ1x}

Since s2 commutes with s1, s2 maps each s1-eigenspace V (λ1) into itself
So s2 : V (λ1)→ V (λ1) is diagonalizable for λ1 ∈ C
so V =

⊕
λ1,λ2∈C V (λ1, λ2)

where V (λ1, λ2) = {x ∈ V |s1(x) = λ1x s2(x) = λ2x}
etc.

Remark. The trace form on gl(n,C) associate to the standard representation 〈x, y〉 = tr(xy), is a
nondegenerate symmetric bilinear form on gl(n,C) It has

〈eij , ekl〉 =

{
1 (k, l) = (i, j)

0 otherwise

= tr(eijekl)

= tr(δjkeil) = δjkδil

The Killing form on sl(n,C) is equal to 2n tr(xy)

Theorem 91
Let g be a complex semisimple Lie algebra, t ⊂ g a toral subalgebra. Let 〈 , 〉 be a nondegnerate
ad-invariant symmetric bilinear form on g (e.g. the Killing form). Then

(1) g =
⊕

α∈t∗ gα
where gα = {x ∈ g |∀y ∈ t [y, x] = α(y)x} (the “α-eigenspace” for t acting on g).
In particular, t ⊂ g0 (will soon show they are in fact equal)

(2) [gα, gβ] ⊂ gα+β ∀α, β ∈ t∗

(3) If α+ β 6= 0, then gα and gβ are orthogonal with respect to 〈 , 〉.

(4) ∀α ∈ t∗, the bilinear form restricts to a nondegenerate gα× gα → C

Proof

(1) For each y ∈ t, ad y is a semisimple linear map g→ g and all these linear maps commute (because
0 = ad[x, y] = [adx, ad y] for x, y ∈ t abelian)
So we can simultaneously diagonalize g with respect to all of t
Easy to see that the eigenvalues α : t → C of any basis element of g must be linear, that is,
α ∈ t∗

(2) Let α, β ∈ t∗, y ∈ gα, z ∈ gβ, x ∈ t. Then

[x, [y, z]] = −[y, [z, x]]− [z, [x, y]]

= [y, [x, z]]− [z, [x, y]]

+ [y, β(x)z]− [z, α(x)y]

= (β(x) + α(x))[y, z]

= (α+ β)(x)[y, z]

so [y, z] ∈ gα+β
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(3) Use that 〈 , 〉 is ad-invariant

〈[x, y], z〉+ 〈y, [x, z]〉 = 0 ∀x, y, z ∈ g

Let x ∈ t, y ∈ gα, z ∈ gβ. Then

0 = 〈α(x)y, z〉+ 〈y, β(x)z〉
= (α(x) + β(x))〈y, z〉

so if 〈y, z〉 6= 0, then we must have (α+ β)(x) = 0 ∀x ∈ t. That is, α+ β = 0 ∈ t∗

(4) This follows from 〈 , 〉 being nondegenerate on g together with (3)

Definition 92
A Cartan subalgebra in a complex semisimple Lie algebra is a maximal toral subalgebra

Lemma 93
Let t ⊂ g be a Cartan subalgebra. Then t is equal to its own centralizer in g (hence g0)

g0 = Zg(t) = {x ∈ g |[x, y] = 0 ∀y ∈ t}

(Proof omitted)

Thus, for any Cartan subalgebra t in a C-semisimple Lie algebra g, we have

g = t⊕
⊕

06=α∈t∗
gα

because g0 = t. Remind again:

gα = {x ∈ g |[h, x] = α(h)x ∀h ∈ t}

This is called the root space of decomposition of g. The eigenspaces gα 6= 0 with α 6= 0 ∈ t∗ are called
the root spaces. The 0 6= α ∈ t∗ with gα 6= 0 are called the roots of g. Write R ⊂ t∗ be the set of roots
of g

Example:
Let g = sl(n,C) and let t =the space of diagonal matrices in g={(a1, . . . , an) ∈ Cn |a1 + · · ·+ an = 0}
This is a toral subalgebra. Claim that this is a Cartan subalgebra
To see that, conjugate the eigenspace decomposition of g with respect to t
We use that for i 6= j, [eii, eij ] = eij
Therefore, for any diagonal matrix y = (y1, . . . , yn)

[y, eij ] = (yi − yj)eij

Define a linear function ε1, . . . , εn ∈ t∗ by

εi(y1, . . . , yn) = yi

Then the above calculation shows that for i 6= j, eij ∈ gεi−εj . Thus

g = t⊕
⊕
i 6=j

gεi−εj︸ ︷︷ ︸
C ·eij

εi − εj 6= 0 ∈ t∗ ∀i 6= j ⇒ t = g0
⇒ Zg(t) = t, i.e. t is a Cartan subalgebra.
We have found the root-space decomposition of sl(n,C)
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See what this is for sl(2,C) Here t = C ·
(

1
−1

)

sl(2,C) = C
(

0 0
1 0

)
⊕ C

(
1
−1

)
⊕ C

(
0 1
0 0

)

where C
(

0 0
1 0

)
= gε2−ε1 = g−2ε1

C
(

1 0
0 −1

)
= t

C
(

0 1
0 0

)
= gε1−ε2 = g2ε1

(Note: On t ⊂ sl(n), ε1 + . . .+ εn = 0 ∈ t∗, so in sl(2,C), ε2 = −ε1 ∈ t∗ = (C ·h)∗)
These just the same as formulae:

[h, f ] = −2f [h, h] = 0 [h, e] = 2e

Lemma 94
sl(n,C) is simple for n ≥ 2

Proof
It is not abelian, because [e12, e21] = e12e21 − e21e12 = e11 − e22 6= 0 ∈ sl(n,C)
We have to show that any nonzero ideal aE sl(n,C) must equal sl(n,C)
We know,in particular, that [t, a] ⊂ a
That implies a = (an t)⊕(the subspace spanned by some set of eij ’s, i 6= j)
Claim that a∩ t 6= 0. If not, a ⊃ eij some i 6= j, So a contains

[eij , eji] = eii − ejj

So a∩ t 6= 0
Next for any k /∈ {i, j}, we have

[eii − ejj , eik] = eik

So a contains eik and hence a contains

[eik, eki] = eii − ekk

Therefore a contains t (t is spanned by e11 − e22, e11 − e33, . . . , e11 − enn)
Therefore, for any i 6= j, a contains

[eii − ejj︸ ︷︷ ︸
∈t⊂sl(n)

, eij ] = eij − [ejj , eij ] = 2eij

So a = sl(n,C). That is, sl(n,C) is simple

Let g be a complex semisimple Lie algebra, t ⊂ g a Cartan subalgebra. Let 〈 , 〉 be an invariant
nondegenerate symmetric bilinear form on g
We know that 〈 , 〉 : gα× g−α → C is nondegenerate for all α ∈ t∗

For α = 0, this gives the 〈 , 〉 is nondegenerate on t
We can use this form to identify

t ∼= t∗

x 7→ (y 7→ 〈x, y〉 ∈ C)

For α ∈ t∗, write the corresponding element of t as Hα ∈ t , i.e.

α(x) = 〈Hα, x〉 ∀x ∈ t
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Lemma 95
Let e ∈ gα, f ∈ g−α. Then [e, f ] = 〈e, f〉Hα

Proof
It will suffice to show that ∀x ∈ t, 〈x, [e, f ]〉 = 〈x, 〈e, f〉Hα〉. The right side here is 〈e, f〉α(x)
Use that 〈 , 〉 on g is ad-invariant

〈x, [e, f ]〉 = −〈[e, x], f〉 ∀x ∈ t

= 〈[x, e], f〉
= 〈α(x)e, f〉
= α(x)〈e, f〉

Lemma 96
Let α ∈ R ⊂ t∗. Then

(1) 〈α, α〉 6= 0
(Equivalently, 〈Hα, Hα〉 6= 0)

(2) Let α ∈ R. Let e ∈ gα, f ∈ g−α s.t. 〈e, f〉 = 2
〈α,α〉 . Also, let hα = 2Hα

〈α,α〉 ∈ t.

Then α(hα) = 2 and the elements e, f, hα ∈ g satisfy the relation defining sl(2,C). Denote this
Lie subalgebra sl(2,C)α ⊂ g.

Proof

(1) Assume that 〈α, α〉 = 0 ∈ C. THen α(Hα) = 0. We know that 〈 , 〉 : gα× g−α → C is
nondegenerate and gα 6= 0, so there are elements e ∈ gα, f ∈ g−α with 〈e, f〉 6= 0. Let h =
[e, f ](∈ g0 = t) = 〈e, f〉Hα( 6= 0).
Claim that h, e, f span a Lie subalgebra of g. Indeed, we have

[h, e] = α(h)e = 0

[h, f ] = α(h)f = 0

Look at the action of adh on g, it is diagonalizable, so

g =
⊕
c∈C

gc

where gc = {x ∈ g |[h, x] = cx}
How do ad e and ad f act on g?
Because e and f commute with h, e and f map each subspace gc into itself for all c ∈ C
We have h = [e, f ] as endomorphism on gc for each c ∈ C
Therefore tr(h|gc) = 0
But h acts by multiplication by c on gc
So, if gc 6= 0, then we must have c = 0
That means that h ∈ Z(g). But g is semisimple, so h = 0 #

(2) α(hα) = 2α(Hα)
〈α,α〉 = 2〈α,α〉

〈α,α〉 = 2

(〈α, α〉 = α(Hα) = 〈Hα, Hα〉)
We know that

[e, f ] = 〈e, f〉Hα

=
2Hα

〈α, α〉
= hα

and [hα, e] = α(hα)e = 2e

and [hα, f ] = α(hα)f = −2f
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Lemma 97
Let α be a root, and let sl(2,C)α ⊂ g be the Lie subalgebra spanned by e ∈ gα, f ∈ g−α and hα as
above.
Consider the linear subspace of g

V = C ·hα ⊕

 ⊕
0 6=k∈Z

gkα

 ⊂ g

Then V is an irreducible representation of sl(2C)α, and dimC gα = 1

Proof
Here sl(2,C)α ⊂ g acts on g by the adjoint representation. We have to show that ad e, ad f and adhα
map V to itself. We have

(ad e)(gkα) ∈ g(k+1)α

(ad e)(g−α) = 〈e, f〉Hα ∈ C ·hα

by Lemma 95.
Same argument show that (ad f)(V ) ⊂ V
Because hα = [e, f ], hα also maps V into itself
So V ⊂ g is a representation of sl(2,C)α
What are its weight? The weight of a vector x ∈ gkα (w.r.t. hα ∈ t) is kα(hα) = 2k
(So V ∼= (S0A)⊕a0 ⊕ (S2A)⊕a2 ⊕ · · · where A ∼= C2 is the standard representation of sl(2,C)) And the
0-th weight space of V is 1-dimensional

ch(S0V ) = •0

ch(S2V ) = •−2 •0 •2

ch(S4V ) = •−4 •−2 •0 •2 •4

So V is irreducible, as a representation of sl(2,C). So all (nonzero) weight spaces of V are 1-
dimensional. Since gα 6= 0, dimC gα = 1

Detour: Semidirect Products
Let N EG be a normal subgroup of a group
We say that G is a semidirect product G = H nN if there is a subgroup H ≤ G that maps isomor-
phically to G/N

1→ N → G→ G/N → 1

Conversely, given groups H and N , what do we need to define a group G = H nN?
Given a semidirect product group, we get a homomorphism

H → Aut(N)

h 7→ (n 7→ hnh−1)

Conversely, given H,N a homomorphism φ : H → Aut(N), define a semidirect product group G =
H nN

(h1n1) · (h2n2) = (h1h2)︸ ︷︷ ︸
∈H

(h−12 n1h2n2)︸ ︷︷ ︸
=φ(h2)(n1)n2∈N

Example:
The group of isometries of Rn is O(n) nRn (isometries that fixes 0 n translation)
The group of affine translations of Rn is GL(n,R) nRn
The homomorphism GL(n,R)→ Aut(Rn) is the obvious one
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Example:
The group {(

a b
0 1

)
: a ∈ C×, b ∈ C

}
is a semidirect product C×nC

Lemma 98
Let g be a complex semisimple Lie algebra, t ⊂ g a Cartan subalgebra, α ∈ R a root (i.e, α ∈ t∗, gα 6=
0, α 6= 0)
Then the Lie subalgebra sl(2,C)α ⊂ g and the element α∨ = hα ∈ t are independent of the choice of
nondegenerate invariant symmetric bilinear form on g

Proof
We know that gα and g−α are 1-dimensional so [gα, g−α] ⊂ t has dimension ≤ 1 and in fact it has
dimension being 1 as we showed. The sl(2,C)α is

sl(2,C)α = gα⊕[gα, g−α]⊕ g−α

which clearly does not depend on choice of 〈 , 〉.
The element α∨ is the unique element of [gα, g−α] s.t. α(α∨) = 2

Remark. The equation α(α∨) = 2 means that adα∨acts on gα by multiplication by 2, i.e.

[α∨, x] = 2x ∀x ∈ gα

The element α∨ ∈ t associate to a root α ∈ t∗ is called the coroot associated to α

Example:
Let g = sl(n,C), t = diagonal matrices in sl(n,C) Any element of t can be written by (y1, . . . , yn) ∈ Cn
with y1 + · · · + yn = 0. The roots are εi − εj ∈ t∗ for i 6= j where εn(y1, . . . , yn) = yi (we have
ε1 + . . .+ εn = 0 in t∗)

That means [(y1, . . . , yn), eij ] = (yi−yj)eij (i 6= j) The coroot α∨ij = eii−ejj because that is the unique
element of [C eij ,C eji] s.t. (εi − εj)(eii − ejj) = 2 That means that (f =)eji, (h =)eii − ejj , (e =)eij
satisfy the relations in sl(2,C)

Theorem 99 (Structure of complex semisimple Lie algebra)
Let g be a C semisimple Lie algebra, t ⊂ g a Cartan subalgebra. Let g = t⊕(

⊕
α∈R gα) be the root

space decomposition . Let 〈 , 〉 be a nondegenerate symmetric bilinear form on g. Then

(1) R spans t∗ as a C-vector space

(2) For each root α, gα is 1-dimensional

(3) For any two roots α, β, the number

nαβ =
2〈α, β〉
〈β, β〉

is an integer

(4) For any α ∈ R, the reflection sα on t∗ is defined by

sα(x) = x− 2〈α, x〉
〈α, α〉

x

(this makes sense since 〈α, α〉 6= 0) For any root β ∈ R, sα(β)is a root

(5) For any root α, if cα is also a root (c ∈ C), then c = ±1
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(6) For any roots α, β 6= ±α, then subspace

V =
⊕
n∈Z

gβ+nα

is an irreducible representation of sl(2,C)α ⊂ g

(7) If α, β are root s.t. α+ β is also a root, then [gα, gβ] = gα+β (Of course, if α+ β 6= 0 and not a
root then [gα, gβ] = 0)

Proof

(1) Suppose there was an element h ∈ t which α(h) = 0 for all roots α; we want to show that h = 0.
The assumption means that adh acts by 0 on gα ∀α ∈ R. It also acts by 0 on t, so adh = 0
that is h ∈ Z(g). But g semisimple, so Z(g) = 0, so h = 0

(2) Proved

(3) Consider g as a representation of sl(2,C)β ⊂ g. The weight for this sl(2), i.e. for for β∨ ∈ t, of
gα is α(β∨). But we know the weights of any finite dimensional representation of sl(2) are in Z,
so α(β∨) ∈ Z. We define

β∨ =
2Hβ

〈β, β〉
where α(Hβ) = 〈α, β〉. So nαβ ∈ Z.

(4) Consider the subspace of g defined by

V =
⊕
n∈Z

gβ+nα

This is a representation of sl(2,C)α (Clear, since e in this sl(2) lives in gα, f lives in g−α)
For any finite dimensional representation of sl(2,C), its weights are symmetric but 0.
(x weight ⇒ −x weight)
We know that gβ 6= 0 and the weight of α∨(= “hβ”) on gβ is β(α∨).
More generally, the weight of gβ+nα wrt α∨ is β(α∨) + 2n
⇒ −β(α∨) must also be weight in this representation V of sl(2,C)α
⇒ gβ−β(α∨)α 6= 0
⇒ β − β(α∨)α is a root

(5) Consider the subspace of g

V =
⊕

06=n∈Z
gnα⊕C ·α∨

We showed that this is an irreducible representation of sl(2,C)α But sl(2,C)α ⊂ V
So sl(2,C)α = V So if α a root and nα is a root with n ∈ Z, then n = ±1
Suppose α and cα are roots (c ∈ C∗) Then nα,cα ∈ Z
That is c ∈ (1/2)Z and 1/c ∈ (1/2)Z
So c ∈ {±1,±1

2 ,±2} We have excluded ±2 and that also excludes ±1
2

(6) Look at the weights of V as a representation of sl(2,C)α i.e. the eigenvalues wrt α∨ ∈ t. These
weights are β(α∨) + 2n.
So the weights of V as a representation of sl(2,C)α are all ≡ β(α∨) mod 2
Also, all the weight spaces have dimensional ≤ 1. These implies that V is irreducible

(7) Know that [gα, gβ] ⊆ gα+β. (LHS is subspace of 1-dimensional space, RHS is 1-dimensional
space)
Want to show that [gα, gβ] 6= 0 Look at the subspace of g:

V =
⊕

06=n∈Z
gβ+nα
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This is an irreducible representation of sl(2,C)α. We are given that gβ 6= 0 and gβ+α 6= 0. So V
has non-zero weight spaces with the weights β(α∨) and β(α∨) = 2
In particular, if the weight spaces Vk and Vk+2 are not 0 (k ∈ Z), then e : Vk → Vk+2 is not
the zero map. That means that e ∈ gα has ad e : gβ → gβ+α NOT the zero map. That is,
[gα, gβ] 6= 0

Lemma 100
Let g be a complex semisimple Lie algebra

(1) t ⊆ g a Cartan subalgebra. Let tR ⊆ t be the real vector space spanned by the coroots α∨, α ∈ R
Then t = tR⊕i tR = tR⊗RC, and the Killing form of g is real and positive definite on tR

(2) Let t∗R = R-vector space spanned by root in t∗. Then t∗ = t∗R⊕i t∗R and the form on t∗ corresponds
to the Killing form of g on t is positive definite on t∗R

Proof

(1) Let h ∈ tR so h =
∑

α∈R cαα
∨ cα ∈ R. Then using the killing form

〈h, h〉 = trg((adh)(adh))

Here
g = t⊕

⊕
α∈R

gα

So 〈h, h〉 =
∑

α∈R α(h)2

But α(h) ∈ R because α(β∨) ∈ Z for all roots α, β
(α(β∨) = nαβ = 2<α,β><β,β> ) so 〈h, h〉 is real and ≥ 0
and if it is 0 then α(h) = 0 ∀roots α. That implies h = 0 i.e. the Killing form is positive definite
on tR
So the Killing form of g is negative definite on i tR. So tR ∩i tR = 0. But the coroots span t as a
complex vector space, so t = tR +i tR. That is t = tR⊕i tR

(2) Follows from (1)

Example:
g = sl(n,C), t =diagonal matrices ⊆ g
Then tR =real diagonal matrices of trace 0 = Lie algebra of (R∗)n−1

Definition 101
A root system R is a finite set of nonzero element in a real vector space E with inner product s.t.

(1) R spans E as a real vector space

(2) ∀α, β ∈ R,

nαβ :=
2〈α, β〉
〈β, β〉

∈ Z

(3) For every root α ∈ R, the reflection

sα(x) = x− 2〈α, x〉
〈α, α〉

α

(α : E → E) maps the set R of roots into itself
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A root system is reduced if when α is a root , cα is a root for some c ∈ R, then c = ±1

Important Example:
For g a C-semisimple Lie algebra, t ⊂ g a Cartan subalgebra, let E = t∗R with the (dual of) the Killing
form of g. Then the set of roots R ⊂ E is a root system

Definition 102
Given a root system R ⊂ E, the coroot α∨ corresponds to a root α ∈ E is

α∨ :=
2α

〈α, α〉

Then nαβ = 〈α, β∨〉, and the reflection sα on E is

sα(x) = x− 〈α∨, x〉α

There is a geometric way to understand nαβ:
Let pα : E → E be the orthogonal projection onto R ·α ⊂ E, then pα(β) = (nαβ/2) · α. So nαβ ∈ Z
means that for all roots α, β, if project β orthogonally to R ·α, then have β ∈ Z α

2

Example:
The root system of sl(n,C) is the An−1 root system
Look at the A2 root system (corresponds to sl(3,C))

Definition 103
The Weyl group W of a root system is the subgroup of GL(E) generated by the reflections sα, α ∈ R

Lemma 104

(1) The Weyl group W is a finite subgroup of O(E), and R ⊂ E is invariant under the action of W

(2) For w ∈W,α ∈ R
wsαw

−1 = sw(α) ∈W

Proof

(1) Clearly W ⊂ O(E), because any reflection sα is in O(E). Clearly, W (R) = R. Any element
w ∈ W acts on R by some permutation, and there are only finitely many permutations of R.
But if w ∈W acts as the identity on R, then w = 1 ∈ GL(E), because R spans E

(2) Clearly wsαw
−1 is a reflection in O(E). And wsαw

−1(w(α)) = wsα(α) = −w(α). So wsαw
−1

must equal sw(α)
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Pairs of roots and rank-2 root systems

Lemma 105
Let R ⊂ E be a root system and let α, β ∈ R s.t. α /∈ R ·β. After switching α and β if necessary, can
assume |α| ≤ |β|, (|α| =

√
〈α, α〉)

By changing β to −β if necessary, can assume that 〈α, β〉 ≤ 0
Then one of the following holds

(1) 〈α, β〉 = 0. Thus α, β are a angle π/2

(2) nαβ = −1 and 〈α, α〉 = 〈β, β〉. Here α, β are at angle 2π/3

(3) nαβ = −2 and 〈α, α〉 = 1
2〈β, β〉. Here α, β are at angle 3π/4

(4) nαβ = −3 and 〈α, α〉 = 1
3〈β, β〉. Here α, β are at angle 5π/6

Proof
Since 〈α, β〉 = 0, nαβ are integers ≤ 0.
But

nαβnβα =
2〈α, β〉
〈β, β〉

2〈α, β〉
〈α, α〉

=
4〈α, β〉2

〈α, α〉〈β, β〉
≤ 4 (by Cauchy Schwarz)

One possibility is (1) 〈α, β〉 = 0
So we can assume nαβ, nβα are integers ≤ 0. Also, since β /∈ R ·α. We have strict map in Cauchy-
Schwarz, so nαβnβα ≤ 3
Also |nαβ| ≤ |nββ | because α is the shorter root
So nαβ = −1 and nβα ∈ {−1,−2,−3}

Definition 106
Rank of a root system R ⊂ E is dimRE

Theorem 107
Any reduced rank-2 root system is isomorphic to A1 ×A1, A2, C2 or G2

Proof
Let R be a rank-2 root system. Choose roots α, β /∈ R ·α s.t. angle(α, β) is as small as possible.
Easy to see that 〈α, β〉 ≥ 0.
Apply lemma to α, γ := −β
We find the possible lengths and angles between α, γ
By applying reflections in α, γ, we find that R ⊃ (A1 ×A1, A2, C2 or G2) root system in cases (1)-(4)
in previous lemma
@ other roots in R, otherwise we would have two roots at a smaller angle than between α and β

Remark. (1) For any roots α, β in a root system R,

nαβnβα =
4〈α, β〉2

〈α, α〉〈β, β〉
= 4 cos2 θ

where θ = angle between α and β
Suppose 〈α, β〉 ≤ 0, α /∈ R ·β, |α| ≤ |β|, we showed that nαβnβα = 0, 1, 2 or 3 (see picture)

so cos θ = 0, −12 ,
−
√
2

2 or −
√
3

2 .
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(2) For these rank-2 root systems, the Weyl group is the dihedral group of order 4(∼= Z /2× Z /2),
6(∼= S3), 8 or 12
In general, the dihedral group of order 2n is a semidirect product Z /2 nZ /n (Z /n the normal
subgroup)

Positive roots and simple roots

Definition 108
Let R be a root system in a Euclidean space E. Pick an element v ∈ E with 〈v, α〉 6= 0 for all roots
α. Then we call the set of positive roots R+ ⊂ R

R+ = {α ∈ R|〈α, v〉 > 0}

Otherwise, negative roots.
Clearly, R = R+ tR− and R− = −R+

Fix a set of positive roots R+

Definition 109
A root α ∈ R is simple if it is positive and it is not a sum of two positive roots.
Write Π ⊂ R+ for the set of simple roots.
Clearly, every positive root can be written

α =

l∑
i=1

niαi n ∈ N, α1, . . . , αl simple roots

〈v, α+ β〉 = 〈v, α〉︸ ︷︷ ︸
>0

+ 〈v, β〉︸ ︷︷ ︸
>0

Lemma 110
For any two simple roots α 6= β, 〈α, β〉 ≤ 0

Proof
Suppose 〈α, β〉 > 0
Ten α and −β must be positioned as in one of the rank-2 root system with possibilities (see pictures)

In all these cases, β − α is again a root
So either β − α is a positive root or a negative root.
If β − α ∈ R+, then β is not simple, if α− β ∈ R+, then α not simple

Theorem 111
Let R be a root system, R+ a set of positive roots. Then the corresponding simple roots form a basis
for E, as a R-vector space

Proof
Clearly, the simple roots span E, because every positive root in R can be written

∑
niαi, ni ∈ N

where α1, . . . , αl are the simple roots; so the negative roots can be written
∑
niαi, ni ∈ Z, ni ≤ 0, so

α1, . . . , αl span E.
We show that α1, . . . , αl are R-linear independent. If not, we can write∑

i∈S
ciαi =

∑
i∈T

diαi
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where S ∩ T = ∅, ci > 0, di > 0, and at least one of S, T is nonempty
First notice that w ∈ E is not 0, because 〈v, w〉 > 0
So we know that 〈w,w〉 > 0
But we have 〈w,w〉 = 〈

∑
i∈S ciαi,

∑
i∈T diαi〉 ≤ 0 because ci, di > 0

and 〈αi, αj〉 ≤ 0 for i 6= j. Contradiction
So the simple roots form a basis for E

Definition 112
The rank of a root system R ⊂ E is dimRE. So number of simple roots =rk(R)

The rank of a C-semisimple Lie algebra g is the C-dimension of a Cartan subalgebra

In fact, let G be a semisimple complex Lie group. Then any two Cartan subalgebras Cl ⊂ g are
conjugate by some element of G
So G (or g) has a well-defined root system (up to isomorphism).

Remark. Any two sets of positive roots in a a root system R are equivalent by some element of the
Weyl group W

Dynkin Diagram:
Let R be a root system ⊂ E. Let R+ be a set of positive roots. The Dynkin diagram of R is a graph
with one vertex for each simple roots and with edges:

Remark. Let g1, g2 are C-semisimple Lie algebras. Let t1, t2 be Cartans in g1, g2, then t1× t2 is a
Cartan in g1× g2.

(g1× g2 =

(
g1 0
0 g2

)
) The root system of g1× g2 is R = R1 tR2 ⊂ E1 ⊕ E2, where 〈E1, E2〉

In general, the Dynkin diagram of the product of two root systems is the disjoint union of the two
Dynkin diagrams

Exercise:
sl(2,C)↔ A1 ↔ Dynkin diagram with 1 vertex
sl(2,C)× sl(2,C)↔ Dynkin diagram with 2 vertices
And show the Dynkin diagram of other rank-2 root system

Exercise:
sl(nC)↔ root system An−1 = {εi − εj |i 6= j} ⊂ Rn−1 = {a1ε1 + · · ·+ anεn|a1 + · · ·+ an = 0}
because: use the restriction of Rn−1 of the standard inner product. Let v = a1ε1 + · · · + anεn where
a1 > a2 > · · · > an. Then the positive roots are εi − εj , 1 ≤ i ≤ j ≤ n
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The simple roots are ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn
With our inner product 〈αi, αj〉 = 2 for i = 1, . . . , n− 1, and

〈αi, αj〉 =


0 |i− j| ≥ 2

−1 |i− j| = 1

2 i = j

⇒ nαiαj =


0 |i− j| ≥ 2

−1 |i− j| = 1

2 i = j

sl(n,C) has root system of type An−1, and the Weyl group of An−1 is the symmetric group Sn.
Simple roots = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn} ⊂ Rn−1
The reflection sεi−εj for i 6= j, switches i and j coordinates in Rn−1 ⊂ Rn

Root system Cn of sp(2n,C), n ≥ 1

Sp(2n,C) = {A ∈ GL(2n,C)|AJAT = J} where J =

(
0 −In
In 0

)
The Lie algebra sp(2n,C) = {A ∈ gl(2n,C)|AJ + JAT = 0}

We compute that

(
A B
C D

)
∈ sp(2n,C)⇔B and C are symmetric and D = −AT

A Cartan subalgebra of sp(2n,C) consists of the diagonal matrices in sp(2n,C), that is :

y = diag(y1, . . . , yn,−y1, . . . ,−yn) yi ∈ C

One computes how such a diagonal matrix acts on sp(2n,C). You find that the roots are±yi±yj ∀i 6= j,
1 ≤ i, j ≤ n and ±2yi for 1 ≤ i ≤ n
(Excellent Exercise: Check this)
Can work out the coroots.
Killing form on g restricts to a nonzero multiple of the standard symmetric bilinear form on t∗R

∼= Rn
So the reflection syi−yj for i 6= j switches coordinates i and j on a point in Rn = t∗R
The reflection syi+yj switches coordinates i and j and changes their signs:

s(y1, . . . , sn) = (y1, . . . ,−yj , . . . ,−yi, . . . , yn)

The reflection s±2yi changes the sign of the i-th coordinate in Rn
So the Weyl group of the Cn root system is the semidirect product Sn n (Z /2)n ⊂ O(n)

The positive roots are yi ± yj for 1 ≤ i < j ≤ n and 2yi for 1 ≤ i ≤ n
The standard choice of simple roots are y1 − y2, y2 − y3, . . . , yn−1 − yn, 2yn
So the Cn Dynkin diagram is:

Example: C2=

47



W = S2 n (Z /2)2 ∼= dihedral group of order 8

Root system Bn of so(2n+ 1,C)
It is easiest to describe SO(2n + 1,C) as the subgroup of GL(2n + 1,C) preserving the symmetric

bilinear form defined by C with entry (i, 2n+ 1− i) as 1 and everywhere else 0.
The corresponding bilinear form C2n+1 is

〈(x1, . . . , x2n+1), (y1, . . . , y2n+1)〉 = x1y2n+1 + x2y2n + · · ·+ x2n+1y1

Here, the Cartan subalgebra of so(2n+ 1,C) is the diagonal matrices in so(2n+ 1,C)

Here so(2n+ 1,C) = {A ∈ gl(2n+ 1,C)|AC + CAT = 0}
Cartan t = {(y1, . . . , yn, 0,−yn, . . . ,−y1)}|y1, . . . , yn ∈ C}
The roots are {±yi ± yj |i 6= j, 1 ≤ i, j ≤ n} ∪ {yi|1 ≤ i ≤ n}
So the Weyl group W (Bn) = Sn n (Z /2)n ⊂ O(n)
A standard set of simple roots is

{y1 − y2, y2 − y3, . . . , yn−1 − yn, yn}

So the Dynkin diagram for Bn ↔ so(2n+ 1,C)

Root system Dn of so(2n,C)
Again, easier to denote this using the symmetric bilinear form C

A Cartan subalgebra t =diagonal matrices in g
= {diag(y1, . . . , yn,−yn, . . . ,−y1)}
The roots are: {±yi ± yj , i 6= j, 1 ≤ i, j ≤ n}
So Weyl group W = Sn n (Z /2)n−1 A standard choice of simple roots is

{y1 − y2, y2 − y3, . . . , yn−1 − yn, yn−1 + yn}

So the Dn Dynkin diagram:

Theorem 113
The following classification are equivalent

(1) Complex semisimple Lie algebras up to isomorphism

(2) Reduced root systems

(3) Dynkin diagrams of root system

In this correspondence
simple Lie algebra ↔ Irreducible reduced root systems ↔ connected Dynkin diagram.
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The possible Dynkin diagrams are:

An, n ≥ 1:

Bn, n ≥ 2:

Cn, n ≥ 2:

Dn, n ≥ 2:

(The followings are exceptional simple Lie algebras)
G2 :

1 2

F4 : 1
1

2
2

3
3

4
4

E6:

E7:

E8:

Sketch proof:
One part is pure Euclidean geometry:
Show that Dynkin diagram of a reduced irreducible root system is one of these graphs.
Indeed, consider the unit vertices v1, . . . , vn ∈ E ∼= Rn in the directions of the simple roots.
Then v1, . . . , vn are linearly independent, and the different ones are at angle π/2, 2π/3, 3π/4 or 5π/6
That alone implies that the corresponding Coxeter diagram (Dynkin diagram without arrows) is one
of these listed
Then the Dynkin diagram of R must be given by some choice of directions on or .
So the Dynkin diagram of R must be one listed.

We know that An, Bn, Cn, Dn correspond to complex semisimple Lie algebras.

One can write down root system correspond to the G2, F4, E6, E7, E8 Dynkin diagrams (see Example
Sheet 3). But why do they come from simple Lie algebras?

The complex simple group G2 =group of automorphisms of the octonions O⊗RC, where O = the real
8-dimensional non-associative division algebra, defined by Cayley.
That implies that G2(C) ⊂ GL(7,C) (because 1 ∈ O is fixed)

It is harder to describe the 5 exceptional Lie algebras, because they do not have low-dimensional
representations.
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G dim(G) dimC(smallest nontrivial repn of G)

G2 14 7
F4 53 26
E6 78 27
E7 133 56
E8 248 248

(Classical Lie algebra of dimension N has a nontrivial representation of dimension ∼
√
N)

Existence and Uniqueness of semisimple Lie algebra with given root system or Dynkin diagram
Serre’s relations
(defining the semisimple Lie algebra with a given Dynkin diagram)

Given a Dynkin diagram with l vertices define a complex Lie algebra g as the quotient of the free Lie
algebra on generators

H1, . . . ,Hl, E1, . . . , El, F1, . . . , Fl

modulo the relations to be shown later

Given a number n, the free Lie algebra Fn has the property:

HomLie alg.(Fn, g) = g× · · · × g︸ ︷︷ ︸
n times

That is, Fn is generated by n elements x1, . . . , xn. You can define it as the k-vector space spanned by
all possible irreducibles

[[x1, [x2, x3]] , x4]

The free Lie algebra is graded:

Fn = kn ⊕
∧

2(kn)⊕ ( )deg 3 ⊕ · · ·

(kn = k{x1, . . . , xn} and [xi, xj ] ∈
∧

2(kn) i < j)

We will have simple roots α1, . . . , αl in our semisimple Lie algebra g;

Hi = α∨i ∈ t ⊂ g

Ei ∈ gαi Fi ∈ g−αi
s.t. [Ei, Fi] = α∨i (= Hi)

So the modulo relation (Serre’s relation) required above is:

[Hi, Hj ] = 0 ∀i, j
[Ei, Fi] = Hi

[Ei, Fj ] = 0 for i 6= j

[Hi, Ej ] = njiEj

where nji = nαjαi = αj(α
∨
i ) ∈ Z

and further:

[Hi, Fj ] = −njiFj
(adEi)

1−nji(Ej) = 0 ∀i 6= j

(adFi)
1−nji(Fj) = 0 ∀i 6= j

Here nji ∈ {0,−1,−2,−3} as shown by the Dynkin diagram, so (1− nji) ∈ {1, 2, 3, 4}
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Why are these relations true in semisimple Lie algebra g?
It will suffice to show that αj + (1− nji)αi is not a root in t∗ (it is clearly not 0)
This is because this expression is the reflection sαi(αj − αi); we know αj − αi is not a root, and we
know that the set of roots is preserved by the Weyl group

Example:
G2

The picture shows that (adE1)
4(E2) = 0, because α2 + 4α1 /∈ R, i.e. gα2+4α1

= 0

Compact Lie groups and complex semisimple groups

Definition 114
Let G be a connected compact Lie group. We say that a connected complex Lie group GC is the
complexification of G if ∃ inclusion G ↪→GC s.t. gC = g⊗RC and π1(G) ∼= π1(GC)

Example:
C∗ is the complexification of S1 (here π1 ∼= Z, because S1 ∼= R /Z and C∗ ∼= C /Z)
More generallyGL(n,C) is the complexification of U(n) since gl(n,C) =(skew-hermitian matrices)⊕i{skew-
hermitian matrices} and π1GL(n,C) ∼= π1U(n) ∼= Z

Example:
SU(n)C ∼= SL(n,C) (π1 = 1)
SO(n)C ∼= SO(n,C) (π1 ∼= Z /2)
Sp(n)C ∼= Sp(2n,C) (π1 = 1)
(Sp(n) = O(4n) ∩GL(n,H) ⊂ GL(4n,R)
Sp(n) = U(2n) ∩ Sp(2n,C) ⊂ GL(2n,C))

Definition 115
A connected complex Lie group is reductive if it is the complexification of some compact Lie group

Example:
C is not reducitive because any compact subgroup of C is {0}

Corollary 116 (Weyl’s Unitary Trick)
The C analytic representations of any complex reductive group are completely reducible

Proof
We are given a compact Lie group G with complexification = GC
Complex representations of the real Lie algebra g are equivalent to representations of the complex Lie
algebra gC
So complex representation of the universal cover G̃ are equivalent to the complex analytic represen-
tations of G̃C. I know that G = G̃/Z and GC = G̃C/Z, because Z = π1G = π1GC. So complex
representations of G are equivalent to complex analytic representations of GC. The first ones are
completely reducible, so are the second ones

Theorem 117

(1) Every connected complex semisimple group is reductive
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(2) A compact connected Lie group is determined up to isomorphism by its complexification

(Proof omitted)

Corollary 118
The finite dimensional representations of a complex semisimple Lie algebra g are completely reducible

Proof
Let GC be the corresponding simply connected complex Lie group
By above theorem (1), GC is reductive, so its representations are completely reducible. They are
equivalent to finite dimensional representations of g

In particular, ∃! simply connected compact Lie group with given Dynkin diagram
Most we have seen:
An : SU(n+ 1)
Bn : Spin(2n+ 1) = simply connected double cover of SO(2n+ 1)
Cn : Sp(n)
Dn : Spin(2n)
But there are also simply connected compact Lie group of type G2, F4, E6, E7, E8

Example:
The compact Lie group G2 is Aut(O) (recall O is octonions over R)

Example:
(Complex analytic) representations of C∗ are direct sums of 1-dimensional representations, by com-
pletely reducibility + Schur’s Lemma.
C∗ = C /2πiZ
A 1-dimensional representation of C∗ is a homomorphism C∗ → GL(1,C) = C∗

C
×a //

����

C

����
C∗ = C /2πiZ //___ C /2πiZ = C∗

Here a ∈ C gives a homomophism C∗ → C∗⇔ a ∈ Z
So the 1-dimensional representations of C∗ are C∗ → C∗ z 7→ za for some a ∈ Z
Remark. For a compact connected Lie group G, the inclusion G ↪→GC is a homotopy equivalence.

Example:
S1 ↪→C×, U(n) ↪→GL(n,C)
Prove that GL(n,C) deformation retracts onto U(n), using Gram-Schmidt

Low-dimensional isomorphism of classical groups
Example:
SL(2,C) ∼= Sp(2,C), SO(3,C) ∼= SL(2,C)/{±} because all have Dynkin Diagram (one vertex no edge)

SL(n,C)= subgroup of GL(n,C) preserving a nonzero element of
∧n V ∗ where V ∼= Cn

Sp(n,C)= subgroup of GL(2n,C) preserving a nondegenerate element of
∧2n V ∗ where V ∼= C2n

The homomorphism SL(2,C)→ SO(3,C) given by the representation S2V , V ∼= C2.

If you have symplectic forms on V and W , you get a nondegenerate symmetric form on V ⊗W , hence
on S2V and

∧2 V
D2
∼= A1 ×A1: • • (2 vertices, no edge)

⇒ SO(4,C) = SL(2,C)× SL(2,C)/{(1, 1), (−1,−1)}
Proof : If V1 and V2 are the standard representations of two copies of SL(2,C), then SL(2,C) ×
SL(2,C) acts on V1 ⊗ V2 preserving a symmetric form
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C2 = B2
∼=

⇒ Sp(4,C)/{±1} ∼= SO(5,C)
Proof : Let V=the standard representation of Sp(4,C), V ∼= C4.
⇒ Sp(4,C) acts on

∧2 V ∼= C6, and
∧2 V ∼= C⊕M5

⇒ get homomorphism Sp(4,C)→ SO(5,C).
By counting dimensions, this is surjective.

Finally, D3
∼= A3 :

So SL(4,C)/{±1} ∼= SO(6,C)
(π1(SO(6,C)) = Z /2)
Exercise: A proof in terms of linear algebra

Representation Theory of complex semisimple Lie algebra
Let V be a finite dimensional representation of g. Let t ⊂ g be a Cartan subalgebra. For each root
α ∈ R, we have a copy of sl(2,C) ⊂ g (denoted sl(2,C)α before) and we can view V as a representation
of this sl(2,C). We know that the coroot α∨ ∈ sl(2,C)α acts diagonalizably on V
Moreover, all coroot α∨ are in t an abelian Lie algebra so they all commute in their action on V . So
we can simultaneously diagonalise V wrt all α∨ ∈ t
So all of t acts diagonalizably on V

V =
⊕
λ∈t∗

Vλ (λ-weight spaces)

where Vλ = {x ∈ V |h(x) = λ(h)x ∀h ∈ t}
Moreover, for each α ∈ R, the weights of V wrt α∨ ∈ sl(2,C)α must be integers (Theorem 48)
That means that if Vλ 6= 0, then λ(α∨) ∈ Z

Definition 119
The weight lattice P of g is {λ ∈ t∗ |λ(α∨) ∈ Z ∀α ∈ R}
The root lattice Q of g is the Z-submodule of t∗ spanned by the roots α

We know that Q ⊂ P because α(β∨) ∈ Z ∀α, β ∈ R
Let l =rank g = dimC t
Then Q ∼= Zl because the roots span t ∼= Cl as a complex vector space
and P ∼= Zl and it contains Q as a subgroup of finite index. We can describe P as

P = {λ ∈ t∗ |λ(α∨1 ) ∈ Z, . . . , λ(α∨l ) ∈ Z}

where α1, . . . , αl are the simple roots
So Q must have finite index in P , because the weights of a finite dimensional representation of sl(2)
are in Z, we have

V =
⊕
λ∈P

Vλ

Example:
For sl(2,C), P ∼= Z, Q ∼= 2Z ⊂ Z

•−3
⊙
−2

•−1
⊙
0

•1
⊙
2

•3

P = {•} ∪Q = {•} ∪ {
⊙
}

For sl(n,C), Q = {
∑n

i=1 aiεi|ai ∈ Z,
∑
ai = 0}
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The weight lattice is

P = Zn /Z(1, 1, . . . , 1) =

{
n∑
i=1

aiεi

∣∣∣ai ∈ Z

}
/(ε1 + · · ·+ εn = 0)

One sees that P/Q ∼= Z /n

In terms of the group G = SL(n,C)
Let T ⊂ SL(n,C) be the maximal torus ∼= (C×)n−1 with Lie algebra t. Then

P = Hom(T,C×) ∼= Zn−1

Q ∼= Hom(T/Z(G),C×)

where Z(SL(n,C)) ∼= µn(C) (group of n-th roots of unity)

Notice that any representation of SL(n,C) has weights in P . But the adjoint representation of
SL(n,C) has weights in Q ⊂ P

Definition 120
The adjoint group with a given semisimple Lie algebra g is G/Z(G) for any group G with Lie algebra
g

We have V =
⊕

λ∈P Vλ
Easy to check that for e ∈ gα, e(Vλ) ⊂ Vλ+α
Therefore, for any λ ∈ P and any root α, ⊕

n∈Z
Vλ+nα

is an sl(2,C)α-subrepresentation of V
Use that the character of a finite dimensional representation of sl(2) are invariant under sign change,
t 7→ t−1

That means that dimVλ = dimVsα(λ) for every root α, because sα(λ) = λ− λ(α∨)α

Definition 121
The character of any finite dimensional representation of g is

ch(V ) =
∑
λ∈P

nλe
λ ∈ the group ring Z[P ] ∼= Z[Zl]

Here, we say that eλeµ = eλ+µ for λ, µ ∈ P ∼= Zl, e0 = 1, nλ = dimC Vλ

Corollary 122
The character of any finite dimensional representation of g is invariant under the Weyl group.

Definition 123
The fundamental weights w1, . . . wl of g are the elements of t∗ s.t. wi(α

∨
j ) = δij

Easy to see that P = Zw1 ⊕ · · · ⊕ Zwl
Then Z[P ] ∼= Z[ew1 , (ew1)−1, . . . , ewl , (ewl)−1]

e.g. character of a representation of sl(3,C) correspond to A2

54



Definition 124
A highest weight vector x ∈ V is a nonzero element x ∈ Vλ for some λ ∈ P s.t. e(x) = 0 ∀e ∈ gα with
α a positive root

Clearly, every nonzero finite dimensional representation V of g contains a highest weight vector. Start
with x ∈ Vλ, x 6= 0. If e(x) 6= 0 for some e ∈ gα,α ∈ R+, then look at e(x) ∈ Vλ+α Repeat

Lemma 125
Let V be a finite dimensional representation of a complex semisimple Lie algebra (Fix t ⊂ g, R+ < R)
Let x ∈ V be a highest weight vector. Then

M :=
∑
fi∈gα

α∈R−, r≥0

ef1 · · · fr(x) ⊂ V

is an irreducible subrepresentation of V

Proof
First show that M is a sub-g-module of V . Clear that f(M) ⊂M if f ∈ gα, α ∈ R−
If x ∈ Vλ then f1 · · · fr(x) ∈ Vλ+α1+···αr (α1, . . . αr negative roots)
We show, for e ∈ gα with α+ that e(f1 · · · fr(x)) ∈M
by induction on r, true for r = 0 since e(x) = 0
If true for r − 1, then

ef1 · · · fr(x) = [e, f1]f2 · · · fr(x) + f1 ef2 · · · fr(x)︸ ︷︷ ︸
∈M by induction

Here [e, f1] ∈ gα for α ∈ R+ or R− or α = 0, and we are done in all cases by induction. So M is a
sub-g-module of V

If M is not irreducible then M = M1⊕M2 for some non-zero g-modules. We would have Cx = Mλ =
(M1)λ ⊕ (M2)λ
So x is in one of M1 or M2, say M1 WLOG. So M = M1⇒ M is irreducible

Define a partial order on the weight lattice P = Zω1 ⊕ · · ·Zωl ∼= Zl by λ ≤ µ if

µ = λ+
l∑

i=1

niαi

where α1, . . . , αl are the simple roots, ni ∈ N

In the module M in Lemma, all weight that occur are ≤ λ (the weight of x). For example, if V is an
irreducible g-module, then M = V , so all weights in V are ≤ λ, the weight of a highest weight vector.
So an irreducible g-module has a unique highest weight vector, up to nonzero scalar. Also the weight
λ of this highest weight vector is uniquely determined by V .
Moreover, let V be an irreducible g-module with highest weight λ ∈ P ∼= Zl ⊂ t∗ ⊂ Cl
For each positive root α, think of V as a representation of sl(2,C)α ⊂ g
Then a highest weight x ∈ V for g is also a highest weight vector for sl(2,C)α. Therefore, the weight
of X wrt α∨ is a nonnegative integer.
So λ(α∨i ) ≥ 0 for i = 1, . . . , l
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Definition 126
The dominant weights P+ ⊂ P are

{λ ∈ P |λ(α∨i ) > 0} = {λ ∈ t∗ |λ(α∨i ) ∈ N}
= Nω1 ⊕ · · · ⊕ Nωl

where ω1, . . . , ωl are the fundamental weights

Remark. In literature, these are the weights that lies in the closure of Weyl chamber

.

Lemma 127
A finite dimensional irreducible representation of g is uniquely determined by its highest weight

Proof
Let V,W be finite dimensional irreducible representation of g with highest weight vectors x ∈ V, y ∈W
with the same weight λ ∈ P ⊂ t∗. Then V ⊕W is a representation of g and x + y ∈ V ⊕W is a
highest weight vector, with the same weight λ. As in previous lemma, let M=sub-g-module of V ⊕W
spanned by x+ y; thus an irreducible subrepresentation of V ⊕W . We have g-linear projections

M ↪→V ⊕W �V

M ↪→V ⊕W �W

These are nonzero g-linear maps of irreducible representations of g, so they are isomorphic by Schur’s
Lemma. So V ∼= M ∼= W

Theorem 128
There is a finite dimensional irreducible representation of g with any given dominant weight as its
highest weight

Sketch Proof
It suffices to find irreducible representations of g with highest weight the fundamental weights ω1, . . . , ωl
Indeed, if V and W are irreducible representations of g with highest weights λ and µ; then V ⊗C W
contains a highest weight vector with weight λ+ µ
(Take x ⊗ y ∈ V ⊗W , for x ∈ V, y ∈ W highest weight vectors) e(x ⊗ y) = ex ⊗ y + x ⊗ ey = 0 for
e ∈ gα, α ∈ R+

So V ⊗W contains an irreducible g-module with highest weight λ+ µ
So the irreducible representation with the highest weight d1ω1 + · · · + dlωl, di ∈ N occurs inside
V ⊗d11 ⊗ · · ·V ⊗dll where Vi is irreducible with highest weight ωi
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A slight improvement: if V has highest weight λ, then SdV contains the irreducible representation
with highest weight dλ, so Vd1ω1+···dlωl ⊂ Sd1V1 ⊗ · · · ⊗ SdlVl

Corollary 129
A finite dimensional representation of g is uniquely determined by its character in Z[P ]W

Proof
Subtract off one irreducible character at a time

Example:

The representation of SdV of g = sl(n,C) is irreducible,for any d ≥ 0.
Here, V ∼= Cn is the standard representation of g

We compute the character of SdV
let e1, . . . , en be the usual basis for V
Then SdV has a basis ei11 · · · einn for i1, . . . , in ≥ 0, i1 + · · ·+ in = d
The element ei11 · · · einn has weight i1ε1 + · · ·+ inεn ∈ P = Z ε1 ⊕ · · ·Z εn
can see that all these weights are different, i.e. all “weight multiplicities” for SdV are isomorphic to
Zn or 0

Look for highest weight vectors in SdV . That is we try to solve

eab(e
i1
1 · · · e

in
n ) = 0 ∀1 ≤ a < b ≤ n

Here

eab(ej) =

{
ea if j = b

0 otherwise

The only highest weight vector, therefore, is ed1 up to scalars
So SdV is an irreducible representation of sl(n,C)

Weyl Character Formula
One proof: write down the Bernstein-Gelfand-Gelfand resolution of finite dimensional irreducible g-
modules (g = C−semisimple Lie algebra) by (infinite dimension) Verma modules

For any λ ∈ t∗, the Verma module Mλ with highest weight λ is the “universal” highest weight module
with a highest weight vector with weight λ. That means: choose a set of positive roots R+ ⊂ R. Then
g = n− ⊕ t⊕n+ and we write b = t⊕n+ a Borel subalgebra. λ determines a linear map b → C by
λ : t→ C and sending n+ to 0

λ : b → C
h 7→ λ(h) h ∈ t

x 7→ 0 x ∈ n

A Verma module has, let Cλ be the 1-dimensional representation b given by this linear map. Then

Homg(Mλ, V ) = Homb(Cλ, V )

(first V is any g-module, second V is considered as an representation of b)
(More concretely, Mλ = Indg

b(Cλ) = U g⊗U bCλ)
More concretely, let f1, . . . , fN be a basis for n−. Then a basis B for Mλ as a C-vector space:

Mλ =
⊕

i1,...,in∈N
C ·f i11 · · · f

iN
N (x)
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here x is the highest weight vector in Mλ with highest weight λ. (Convince yourself that Mλ IS a
representation of g)
We have an obvious surjection Mλ�Lλ for λ ∈ P+, where Lλ= the finite dimensional irreducible
representation of g with highest weight λ, and is unique up to isomorphism

Example:
For sl(2), λ ∈ t∗ ∼= C the Verma module Mλ has characters

we worked out how e ∈ sl(2) acts on f rx for any r ∈ N:

e(f rx) = r(λ+ 1− r)f r−1x

(prove by induction on r)

Exercise: Show that, for g = sl(2), λ ∈ C, λ /∈ N

By contrast, if λ ∈ N, then we have M−λ−2 ⊂Mλ

In fact:
0→M−λ−2 →Mλ → Lλ → 0

Notice that Mλ is NOT completely reducible

Definition 130
The Weyl group W of g is generated by simple reflections si = sαi 1 ≤ i ≤ l.
Define the length of w ∈W be

l(w) := min{d ≥ 0|w = si1 · · · sid ∈W}
= |{α ∈ R+|w(α) ∈ R−}|

Define

ρ =
1

2

∑
α∈R+

α ∈ P

Note that siρ = ρ − αi for all simple reflection si Define the dot action or shifted action of W on P
by w · λ = w(λ+ ρ)− ρ

Theorem 131 (Bernstein-Gelfand-Gelfand Resolution)
Let g be a C-semisimple Lie algebra, t ⊂ g Cartan, R+ ⊂ R a set of positive roots. For λ ∈ P+ let
Lλ =the finite dimensional irreducible representation of g with highest weight λ. Then there is an
exact sequence of representation of g

0→
⊕
w∈W
l(w)=l0

Mwλ → · · · →
⊕
w∈W
l(w)=1

Mwλ →Mλ → Lλ → 0

where l0 is the maximal length
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We can use the dot action to get a formula for the character of Lλ, λ ∈ P+, then Mλ has the same
“size” as a polynomial in N variables, N = | dimC n−| = |R+|, so

ch(Mλ) =
eλ∏

α∈R+
(1− e−α)

Corollary 132 (Weyl Character Formula)
For any λ ∈ P+

ch(Lλ) =

∑
w∈W (−1)l(w)ewλ∏
α∈R+

(1− e−α)
=

∑
w∈W (−1)l(w)ew(λ+ρ)−ρ∏

α∈R+
(1− e−α)

=

∑
w∈W (−1)l(w)ew(λ+ρ)∑
w∈W (−1)l(w)ew(ρ)

(the last equality comes from setting λ = 0 in the first/second equality)

Remark. (−1)l(w) = det(w acting on t∗R)= {±1}

Example:

For g = sl(n,C),W = Sn−1, (−1)l(w) =sgn(w)∈ {±1}
(the simple reflections here are si = (i, i+ 1))

Using l’Hopitals’s rule, get:

Corollary 133
For any λ ∈ P+

dimC Lλ =

∏
α∈R+

〈λ+ ρ, α〉∏
α∈R+

〈ρ, α〉
=

∏
α∈R+

(λ+ ρ)(α∨)∏
α∈R+

ρ(α∨)

Some examples:

Seen that for g = sl(n,C), SdV is an irreducible g-module for d ≥ 0 where V ∼= Cn is the standard
representation. This has highest weight dw1, where w1=highest weight of V=1st fundamental weight

Now consider, for 1 ≤ d ≤ n− 1,
∧V

(Note
∧0 V ∼=

∧n V ∼= C as representations of sl(n,C))

What are the fundamental weights for sl(n,C)? First way:

αi = ei − ei+1

We have, for example α1(α
∨
1 ) = 2, α1(α

∨
2 ) = −1, α1(α

∨
j ) = 0 for j ≥ 3 so α1 = 2w1 − w2 etc.

Second way:
We know that the simple coroots are α∨i = eii − ei+1,i+1 ∈ t
So the fundamental weighs are w1 = ε1, w2 = ε1 + ε2, . . . , wn−1 = ε1 + · · ·+ εn−1

The weights of
∧d V are: the basis element ei1 ∧ · · · ∧ eid ∈

∧d V has weight εi1 + · · · εid ∈ P =
(Z ε1 ⊕ · · · ⊕ Z εn)/Z(ε1 + · · ·+ εn) ∼= Zn−1
These are all different so all weight multiplicities for

∧d V are 1 (or 0), n+ is spanned by the elements
eab ∈ sl(n,C) with 1 ≤ a < b ≤ n
So there is only one highest weight vector in

∧d V , up to scalars, e1 ∧ e2 · · · ∧ ed
So
∧d V is an irreducible representation of sl(n,C) for 1 ≤ d ≤ n − 1 and its highest weight is

ε1 + · · ·+ εd = wd
So V,

∧2 V, . . . ,
∧n−1 V are the fundamental representations of sl(n), the irreducible representations

correspond to the fundamental weight.
Using the character formulas, you can work out how to decompose tensor product of Lλ1 ⊗ Lλ2 as a
sum of irreducible representations.

Example:

As a representation of sl(n,C), V ∗ ∼=
∧n−1 V (and more generally (

∧i V )∗ ∼=
∧n−i V )
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Proof
We can “multiply”

∧a V ⊗
∧b V →

∧a+b V , this is sl(n)-linear.
For n = dimV , this is a dual pairing,

∧i V ⊗
∧n−i V →

∧n V = C
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function of submanifold, 4
map
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u is nilpotent, 28
Unitary group U(n), 1, 2
unitary vector space, 25
upper triangular group B

algebra is not nilpotent, 28
upper triangular matrix group B, 27

normal subgroup U , 27
algebra u, 27

vector field, 10
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