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Schubert in 1886 found a beautiful formula for the degrees of Grassmannians and
their Schubert subvarieties, viewed as projective algebraic varieties. See [16] or [5],
example 14.7.11. Combined with a formula of Giambelli’s ([7] or [5], example 14.5.1),
Schubert’s formula also gives the degree of the isotropic Grassmannian Sp(2n)/U(n):

2(n2)
(
n+1

2

)
! 1! 2! · · · (n− 1)!

1! 3! · · · (2n− 1)!
.

Geometrically, this is the number of Lagrangian subspaces of a 2n-dimensional sym-
plectic vector space which have nonzero intersection with

(
n+1

2

)
general Lagrangian

subspaces.
Recently, there have been various attempts to generalize known results on Lie groups,

when they can be expressed in terms of the Weyl group, to complex reflection groups.
See Broué-Malle-Rouquier [4], Broué-Malle-Michel [3], Bremke-Malle [1], [2], Rampetas-
Shoji [15], and Rampetas [14]. In this spirit, we will generalize the above formula by
replacing the symplectic group Sp(2n), or rather its Weyl group (the wreath product
Sn o Z/2 acting on Rn), by the complex reflection group G(e, 1, n) = Sn o Z/e acting on
Cn. The generalization no longer has any obvious geometric meaning, but experience
suggests that this kind of algebra will eventually find a geometric or representation-
theoretic interpretation. Besides generalizing the above degree formula, we encounter
a generalization of the classical relation between the cohomology rings of Sp(2n)/U(n)
and SO(2n+ 1)/U(n).

Our generalization of the above degree formula involves the ring

C(e, n) := Z[e1, . . . , en]/(ei(xe1, . . . , x
e
n), i ≥ 1),

where ei denotes the ith elementary symmetric function in variables x1, . . . , xn. For e =
2, C(2, n) is the integral cohomology ring of the isotropic Grassmannian Sp(2n)/U(n).
The degree of the isotropic Grassmannian can be defined in terms of this cohomol-
ogy ring: the top-dimensional group Z is generated by e1 · · · en, and the degree of the

isotropic Grassmannian is the coefficient of e(
n+1

2 )
1 as a multiple of e1 · · · en. The main

result of this paper is a calculation of the analogous number for the ring C(e, n) for
arbitrary positive integers e and n. This ring satisfies Poincaré duality over the integers,
with top-dimensional group Z generated by (e1 · · · en)e−1.

Theorem 0.1 In the ring C(e, n), the coefficient of e(
n+1

2 )(e−1)

1 as a multiple of the
element (e1 · · · en)e−1 is

e(
n
2) (
(
n+1

2

)
(e− 1))! 1! 2! · · · (n− 1)!

(e− 1)! (2e− 1)! · · · (ne− 1)!
.

The above number appears in the proof as the number of standard tableaux of shape
equal to the partition λ = (n(e− 1), (n− 1)(e− 1), . . . , e− 1) of N =

(
n+1

2

)
(e− 1). The

number of such tableaux is called the Kostka number Kλ,(1N ); it is the dimension of the
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irreducible representation of the symmetric group SN corresponding to the partition λ
[10].

In the case e = 2, the degree of the isotropic Grassmannian can be computed using
the Schubert basis for the ring C(2, n) together with the Pieri formula which computes
the product of any basis element with e1. This approach in fact gives a better com-
binatorial interpretation of the above number for e = 2: it is 2(n2) times the number
of ‘shifted standard tableaux’ of shape (n, n − 1, . . . , 1) [10]. The number of shifted
standard tableaux of this shape (without the factor 2(n2)) also arises as the degree of the
spinor variety SO(2n+ 1)/U(n) in its basic projective embedding. For general e and n,
we can use Hall-Littlewood symmetric functions, specialized to an eth root of unity ζ, to
give a basis for the ring C(e, n) (tensored with Z[ζ]). We can also use Hall-Littlewood
functions to define a related algebra B(e, n) which gives the integral cohomology ring
of SO(2n + 1)/U(n) in the case e = 2. By comparing the two rings, we find another
interpretation for the number in our main formula, generalizing the shifted standard
tableaux which come up for e = 2, but now involving a sum of roots of unity.

I would like to thank William Fulton and Ian Grojnowski for many useful discussions.

1 Proof of Theorem 0.1

We want to compute the degree of e(
n+1

2 )(e−1)

1 , meaning the integer d such that

e
(n+1

2 )(e−1)

1 = d(e1 · · · en)e−1

in the ring
C(e, n) := Z[e1, . . . , en]/(ei(xe1, . . . , x

e
n), i ≥ 1).

We view C(e, n) as a subring of the ring

F (e, n) := Z[x1, . . . , xn]/(ei(xe1, . . . , x
e
n), i ≥ 1).

For e = 2, the inclusion C(e, n) ⊂ F (e, n) is the inclusion of the cohomology of the
isotropic Grassmannian Sp(2n)/U(n) in that of the isotropic flag manifold Sp(2n)/T ,
where T = (S1)n is a maximal torus in the symplectic group. For e ≥ 3, there is no Lie
group whose Weyl group is the complex reflection group Sn o Z/e, but it is helpful to
think of the ring F (e, n) as what the cohomology of the flag manifold associated to such
a Lie group would be if one existed.

Define an element of dimension
(
n
2

)
in F (e, n) by the Vandermonde determinant,

∆ =
∏
i<j

(xi − xj)

=
∑
σ∈Sn

sgn(σ)xσ(n)−1
1 · · ·xσ(1)−1

n .

The symmetric group Sn acts on F (e, n) by permuting the xi’s, and ∆ is antisymmetric
under this action. This element comes up naturally in the study of flag manifolds as
the lowest-dimensional element of F (e, n) on which the symmetric group Sn acts by
the sign representation. Furthermore, multiplication by ∆ gives an injection (in fact,
multiplication by n!) from the group Z in the top dimension,

(
n+1

2

)
(e − 1), of C(e, n)

to the group Z in the top dimension,
(
n+1

2

)
e− n, of F (e, n). That is not hard to check

directly, but we will show it by explicitly computing (e1 · · · en)e−1∆ and e
(n+1

2 )(e−1)

1 ∆
and seeing that they are nonzero in the top-dimensional group Z of F (e, n). Then we

can compute the degree of e(
n+1

2 )(e−1)

1 in C(e, n) as the coefficient of the second element
divided by that of the first.

We begin with some lemmas which we will use to compute in the top dimension of
the ring F (e, n).
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Lemma 1.1 In the ring F (e, n), we have the relations

xnen = 0

x
(n−1)e
n−1 x(n−1)e

n = 0
...

xe1 · · ·xen = 0.

Proof. Let us define an Sn-equivariant homomorphism α from the ring

H∗(U(n)/T,Z) = Z[x1, . . . , xn]/(ei(x1, . . . , xn) = 0, i ≥ 1)

to F (e, n), multiplying dimensions by e, by sending xi to xei for i = 1, . . . , n. The
homomorphism α implies the desired relations in F (e, n) if we can prove the relations

xnn = 0

xn−1
n−1x

n−1
n = 0

...
x1 · · ·xn = 0

in H∗(U(n)/T,Z). We can prove these relations by a simple geometric argument, al-
though it could be reformulated algebraically. Namely, the cohomology class xn+1−i · · ·xn
in H2i of the flag manifold U(n)/T is pulled back from the Grassmannian U(n)/(U(i)×
U(n − i)), which has complex dimension i(n − i). So raising that class to the power
n− i+ 1 gives 0. That proves the desired relations. QED

Lemma 1.2 Any monomial in the generators x1, . . . , xn of dimension
(
n+1

2

)
e− n (the

top dimension of the ring F (e, n)) is equal to 0 in the ring F (e, n) unless it has the
form x

σ(n)e−1
1 · · ·xσ(1)e−1

n for some σ in the symmetric group Sn. In that case, such a
monomial is equal to sgn(σ)xne−1

1 · · ·x2e−1
n−1 x

e−1
n in F (e, n).

Proof. We first observe that all permutations of the relations given in Lemma
1.1 are also valid in F (e, n), since the symmetric group Sn acts on the ring F (e, n).
It follows that any monomial in x1, . . . , xn which is nonzero in F (e, n) must have no
exponent ≥ ne, at most 1 exponent ≥ (n− 1)e, . . . , and at most n− 1 exponents ≥ e.
So every monomial in x1, . . . , xn of dimension

(
n+1

2

)
e − n which is nonzero must have

the form x
σ(n)e−1
1 · · ·xσ(1)e−1

n for some σ in Sn.
To show that such a monomial is equal to sgn(σ) times xne−1

1 · · ·x2e−1
n−1 x

e−1
n , it suf-

fices to show that the symmetric group Sn acts by the sign representation on the top-
dimensional group, isomorphic to Z, of the ring F (e, n). This follows from the analogous
fact, which is well known, for the cohomology of the classical flag manifold U(n)/T . To
use that, we will apply the Sn-equivariant homomorphism

α : H∗(U(n)/T,Z)→ F (e, n)

from the proof of Lemma 1.1. We know that Sn acts by the sign representation on
the top-dimensional basis element xn−1

1 xn−2
2 · · ·xn−1 of H∗(U(n)/T,Z), so Sn acts by

the sign representation on its image x(n−1)e
1 x

(n−2)e
2 · · ·xen−1 in F (e, n). Since Sn acts

trivially on the element (x1 · · ·xn)e−1, it acts by the sign representation on the product

(x(n−1)e
1 x

(n−2)e
2 · · ·xen−1)(x1 · · ·xn)e−1

in F (e, n), which is the element xne−1
1 · · ·x2e−1

n−1 x
e−1
n that we want. QED
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For any symmetric polynomial f ∈ Z[x1, . . . , xn], we can view f as an element of the
ring Z[e1, . . . , en] of symmetric functions and hence of its quotient ring C(e, n). Suppose
that f is homogeneous of dimension

(
n+1

2

)
(e− 1), the top dimension of the ring C(e, n).

Let us define the degree of f to be the unique integer deg(f) such that

f = deg(f)(e1 . . . en)e−1

in C(e, n). Recall the definition

∆ :=
∑
σ∈Sn

sgn(σ)xσ(n)−1
1 · · ·xσ(1)−1

n ,

which we now view as defining a polynomial in x1, . . . , xn.

Lemma 1.3 Let f ∈ Z[x1, . . . xn] be a symmetric polynomial which is homogeneous of
degree

(
n+1

2

)
(e− 1). Then the integer deg(f) defined above is given by the formula

deg(f) = (f∆)ne−1,...,2e−1,e−1,

where the subscript denotes the coefficient of a given monomial in a polynomial in
x1, . . . , xn.

Proof. Since the polynomial f is symmetric and the polynomial ∆ is antisymmetric,
the polynomial f∆ is antisymmetric. In particular, for each σ in Sn, the coefficient of
the monomial xσ(n)e−1

1 · · ·xσ(1)e−1
n in f∆ is equal to sgn(σ) times the coefficient of

xne−1
1 · · ·xe−1

n , which is the coefficient considered in the lemma. Call that coefficient
c(f).

We now view f∆ as an element of the quotient ring F (e, n) of Z[x1, . . . , xn]. By
Lemma 1.2, the only coefficients of f∆ which make a difference here are those discussed
in the previous paragraph. Precisely, it follows from that lemma and the previous
paragraph that

f∆ = n! c(f)xne−1
1 · · ·xe−1

n

in the ring F (e, n). In particular, this formula shows that c(f) only depends on the
image of f in the ring C(e, n) inside F (e, n). We defined deg(f) to be the integer such
that f = deg(f)(e1 · · · en)e−1 in C(e, n).

Thus, to show that deg(f) = c(f), it suffices to show that c(f) = 1 for f =
(e1 · · · en)e−1. Here we view f as a symmetric polynomial in x1, . . . , xn, where the
ei’s are the elementary symmetric polynomials. By definition, c(f) is the coefficient of
xne−1

1 · · ·xe−1
n in the polynomial f∆. The only monomial in f∆ that contributes to this

coefficient is
(x1)e−1(x1x2)e−1 · · · (x1 · · ·xn)e−1(xn−1

1 · · ·xn−1),

where the last factor comes from ∆. It follows that c(f) = 1. QED

Now we can prove Theorem 0.1. By Lemma 1.3, the degree of the ring C(e, n), or

equivalently the degree of the element e(
n+1

2 )(e−1)

1 in C(e, n), is equal to

(e(
n+1

2 )(e−1)

1 ∆)ne−1,... ,2e−1,e−1.

This is exactly what Frobenius’s character formula gives as the dimension of a certain
irreducible representation of a symmetric group, namely the representation of S(n+1

2 )(e−1)

which corresponds to the partition

(n(e− 1), . . . , 2(e− 1), e− 1).

4



In general, Frobenius’s formula says that for partitions λ = (λ1, . . . , λn) and ρ of a
number N , the character χλ is given on an element of SN of cycle type ρ is equal to the
coefficient of xλ+δ in pρ∆, where

pρ = pρ1pρ2 · · ·

pk =
n∑
i=1

xki

δ = (n− 1, n− 2, . . . , 0)

∆ =
∑
σ∈Sn

sgn(σ)σ(xδ).

See Fulton and Harris [6], p. 49 or Macdonald [10], eq. I.7.8.
We can then, following Frobenius (see [6], pp. 49-50 or [10], example I.7.6), evaluate

the above coefficient to get a more explicit formula for the dimension of the irreducible
representation of SN corresponding to a partition λ = (λ1, . . . , λn) of N : let µ = λ+ δ
(so µi = λi + n− i, 1 ≤ i ≤ n), and then the dimension of the representation χλ of SN
is

N !∏
µi!

∏
i<j

(µi − µj).

For λ = (n(e− 1), (n− 1)(e− 1), . . . , e− 1), this equals

e(
n
2) (
(
n+1

2

)
(e− 1))! 1! 2! · · · (n− 1)!

(e− 1)! (2e− 1)! · · · (ne− 1)!
,

as we want. QED (Theorem 0.1)

2 The Hall-Littlewood basis for the ring C(e, n) and
the related ring B(e, n)

In this section we describe a basis for the ring C(e, n) given by Hall-Littlewood functions.
As an application, we get a different and more combinatorial formula for the degree of
C(e, n) in the sense of Theorem 0.1, which in particular shows that this degree is a
multiple of e(

n
2) for e prime. The interest of this fact is that, for e = 2, it is explained

by the formula
degSp(2n)/U(n) = 2(n2) degSO(2n+ 1)/U(n),

where each variety is considered in its basic projective embedding. We can offer a similar
explanation here for any prime number e, using a ring B(e, n) which in the case e = 2
is the integral cohomology of SO(2n+ 1)/U(n).

Let e be any integer at least 2. At first we will take n = ∞, which means that we
will study the ring

C(e) := Z[e1, e2, . . . ]/(ei(xe1, x
e
2, . . . ), i ≥ 1).

Macdonald’s book [10], chapter III, defines two types of Hall-Littlewood functions,
Pλ(x, t) and Qλ(x, t), which are symmetric functions in x = (x1, x2, . . . ) depending on
a parameter t. Specializing t to a prime power q, these functions are closely related
to the characters of the finite general linear group GLnFq, while for t = −1 we get
Schur’s Q-functions which describe the characters of the projective representations of
the symmetric group, as well as the Schubert basis for the cohomology of the isotropic
Grassmannian. To study the ring C(e), we will specialize t to be a primitive eth root of
unity.
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For completeness, we recall the definition of the Hall-Littlewood functions. Given a
partition λ = (λ1, . . . , λn) of length ≤ n (so some of the λi may be zero), let mi(λ) be
the number of λj equal to i, for i ≥ 0. Define

vm(t) =
m∏
i=1

1− ti

1− t

and
vλ(t) =

∏
i≥0

vmi(λ)(t).

Then the Hall-Littlewood symmetric function Pλ(x, t) is defined by

Pλ(x1, . . . , xn, t) =
1

vλ(t)

∑
w∈Sn

w(xλ1
1 · · ·xλnn

∏
i<j

xi − txj
xi − xj

).

Here Pλ(x, t) is a polynomial with integer coefficients in x1, . . . , xn, t, symmetric in
x1, . . . , xn. We can let the number of variables n go to infinity, to define elements
Pλ(x, t) ∈ Λ[t], where Λ = Z[e1, e2, . . . ] is the ring of symmetric functions. Finally, the
functions Qλ, also called Hall-Littlewood symmetric functions, are defined by

Qλ(x, t) = bλ(t)Pλ(x, t),

where
bλ(t) =

∏
i≥1

ϕmi(λ)(t)

and

ϕm(t) =
m∏
i=1

(1− ti).

We will need the Pieri formula for multiplying the Hall-Littlewood function Qµ(x, t)
by qr(x, t) := Q(r)(x, t) ([10], eq. III.5.7’, [11]):

Lemma 2.1
Qµqr =

∑
λ

ψλ/µ(t)Qλ,

summed over all partitions λ such that λ− µ is a horizontal r-strip, meaning a set of r
boxes with no two in the same column. Here

ψλ/µ(t) =
∏
j∈J

(1− tmj(µ)),

where J is the set of integers j ≥ 1 such that λ − µ has a box in column j + 1 but not
in column j.

Let us now specialize t to be a primitive eth root of unity ζ, for any e ≥ 2, as was first
suggested by Morris [12]. The functions Pλ(x) form a basis for the ring Λ of symmetric
functions for any value of t, but this is not so for the functions Qλ (which are multiples
of Pλ). In particular, for t = ζ, Qλ = 0 unless λ is e-regular, meaning that no part of
λ occurs e or more times. The functions Qλ with λ e-regular form a free Z[ζ]-basis for
a Z[ζ]-submodule C ′(e) of Λ⊗Z Z[ζ]. In fact, C ′(e) is the Z[ζ]-subalgebra of Λ⊗Z Z[ζ]
generated by the elements qi, as one can deduce from Lemma 2.1. We can describe
C ′(e)⊗Z[ζ] Q(ζ) as the polynomial subring of Λ⊗Z Q(ζ) generated by the power sums
pi such that i 6≡ 0 (mod e), by Macdonald’s example III.7.7. Integrally, the ring C ′(e)
is more complex. In fact, it is essentially the ring

C(e) = Z[e1, e2, . . . ]/(ei(xe1, x
e
2, . . . ), i ≥ 1)

we want to study. To be precise:
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Lemma 2.2 There is an isomorphism

C(e)⊗Z Z[ζ]→ C ′(e)

which sends ei in C(e) to qi in C ′(e).

Proof. We know that the algebra C ′(e) is generated by the elements qi. So mapping
ei to qi gives a surjection

ϕ : Z[ζ][e1, e2, . . . ]→ C ′(e).

We need to show that the elements ei(xe1, x
e
2, . . . ) for i ≥ 1 map to 0. Clearly ϕ maps

the power series E(u) =
∑
eiu

i to Q(u) =
∑
qiu

i. We also write H(u) =
∑
hiu

i where
hi is the ith complete symmetric function, as in Macdonald [10]. We have Q(u) =
H(u)/H(ζu) by [10], eq. III.2.10. It follows that

e−1∏
j=0

Q(ζju) = 1.

Therefore
∏e−1
j=0 E(ζju) maps to 1 under the homomorphism ϕ. We can evaluate this

product. We have E(u) =
∏
i≥1(1 + xiu), and so

e−1∏
j=0

E(ζju) =
∏
i≥1

(1 + xiu)(1 + ζxiu) · · · (1 + ζe−1xiu)

=
∏
i≥1

(1 + (−1)e−1xeiu
e)

=
∑
k≥0

(−1)k(e−1)ek(xe1, x
e
2, . . . )u

ke.

Thus ϕ sends ek(xe1, x
e
2, . . . ) to 0 for k ≥ 1, so ϕ is a homomorphism C(e) ⊗Z Z[ζ] →

C ′(e). We have already checked that ϕ is surjective, and since the two rings are both
torsion-free and have the same Hilbert series, ϕ is an isomorphism. QED

It follows that if we think of C(e, n) as the quotient ring of C(e) defined by setting
ei = 0 for i > n, then C(e, n)⊗Z Z[ζ] is isomorphic to the quotient ring of C ′(e) defined
by setting qi = 0 for i > n. The latter ring is free over Z[ζ] with basis given by the Qλ’s
with λ e-regular and λ1 ≤ n, as follows easily from Lemma 2.1. So those Qλ’s provide
a basis for the ring C(e, n)⊗Z Z[ζ] of interest in this paper.

For e = 2, the functions Qλ(x) = Qλ(x,−1) are Schur’s Q-functions, which provide
a basis for C(2, n) = H∗(Sp(2n)/U(n),Z). This is exactly the basis given by Schubert
cells, by Józefiak [9] or Pragacz [13]. As such, it has several good properties. For
example, the product of any two basis elements is a nonnegative linear combination of
basis elements; there are explicit combinatorial formulas for these coefficients, analogous
to the Pieri and Littlewood-Richardson formulas ([8], [10]); and the basis is self-dual.

For e > 2, the Hall-Littlewood basis for C(e, n)⊗ Z[ζ] has some but not all of these
properties. There are again explicit formulas for the product of two elements, general-
izing the Pieri and Littlewood-Richardson formulas for e = 2, but now the coefficients
lie in Z[ζ], so it no longer makes sense to ask if they are nonnegative. Also, the basis is
not self-dual: that is, a basis element can have a nonzero product with more than one
basis element in the complementary dimension.

Nonetheless, it is interesting to see the formula for the degree of the ring C(e, n),
as computed in Theorem 0.1, which we find using the Hall-Littlewood basis. The most
informative version of this formula is obtained by relating C(e, n) to a slightly different
ring. Let B(e) be the Z[ζ]-submodule of Λ ⊗Z Z[ζ] spanned by the Hall-Littlewood
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functions Pλ for e-regular partitions λ; it is an algebra by [10], example III.7.7. Let
B(e, n) be the quotient of the ring B(e) by the elements Pλ with λ1 > n. It is clear that

C(e, n)⊗Z Q(ζ) = B(e, n)⊗Z[ζ] Q(ζ).

For e = 2, B(e, n) is the integral cohomology ring of the spinor variety SO(2n+1)/U(n),
and in fact the basis Pλ corresponds to the Schubert basis for this ring [9], [13]. We define

the degree of the ring C(e, n), as in Theorem 0.1, to be the coefficient of e(
n+1

2 )(e−1)

1 as
a multiple of (e1 · · · en)e−1. Likewise, define the degree of B(e, n) to be the coefficient

in Z[ζ] of P (n+1
2 )(e−1)

1 as a multiple of Pλ, where λ = (1e−12e−1 · · ·ne−1).
Recall that a standard tableau of shape λ, for a partition λ, is a numbering of the

boxes in the diagram of λ by the numbers from 1 to |λ| which is increasing in both rows
and columns.

Lemma 2.3
degC(e, n) = (1− ζ)(

n+1
2 )(e−1)e−n degB(e, n),

and
degB(e, n) =

∑
T

αT (ζ).

The sum runs over the standard tableaux of shape λ = (1e−12e−1 · · ·ne−1), and

αT (ζ) :=
∏

1≤i≤N

1− ζmji (λ(i))

1− ζ
.

Here N =
(
n+1

2

)
(e − 1), λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(N) = λ is the sequence of partitions

corresponding to the tableau T , and ji ≥ 0 is the integer such that the box λ(i) − λ(i−1)

is in column ji. Notice that αT (ζ) = 0 if any of the partitions λ(i) is not e-regular, so it
suffices to sum over the e-regular standard tableaux T .

For e = 2, so that ζ = −1, Lemma 2.3 gives the interpretation of the degree of
the isotropic Grassmannian mentioned in the introduction. Indeed, αT (−1) = 1 for all
2-regular tableaux T of shape (n, n− 1, . . . , 1), and so the lemma says that the degree
of C(2, n) is 2(n2) times the number of 2-regular tableaux of shape (n, n − 1, . . . , 1), or
equivalently times the number of shifted standard tableaux of that shape. Here the
usual diagram of the partition (n, n− 1, . . . , 1) is

and the shifted diagram is:

A shifted standard tableau is a numbering of the shifted diagram by the numbers from

1 to
(
n+1

2

)
which is increasing in rows and columns. The resulting formula(

n+1
2

)
! 1! 2! · · · (n− 1)!

1! 3! · · · (2n− 1)!

for the number of shifted standard tableaux of shape (n, n−1, . . . , 1) goes back to Schur
[17]; see also Macdonald [10], example III.8.12.

For e ≥ 3, Lemma 2.3 is a less satisfactory description of the degree of C(e, n). At
least it implies the following statement.
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Corollary 2.4 For any prime number e, the degree of C(e, n) is a multiple of e(
n
2).

Proof. Since e is a prime number, (1− ζ)e−1 is equal to e times a unit in Z[ζ]. So
(1− ζ)(

n+1
2 )(e−1)e−n is equal to e(

n
2) times a unit in Z[ζ]. So Lemma 2.3 shows that the

integer degC(e, n) is a multiple of e(
n
2). QED

Proof of Lemma 2.3. We think of C(e, n) ⊗Z Z[ζ] as a quotient of the algebra
C(e) ⊗ Z[ζ] spanned by Hall-Littlewood functions Qµ. In these terms, the element e1

of C(e, n) is equal to q1, and the Pieri formula, Lemma 2.1, implies that (e1 · · · en)e−1

is equal to Qλ, where λ = (1e−12e−1 · · ·ne−1). So the degree of C(e, n) is equal to
the coefficient of Qλ in the expansion of qN1 as a linear combination of Hall-Littlewood
functions Qµ. Since q1 = (1− ζ)P1 and

Qλ = [(1− ζ) · · · (1− ζe−1)]nPλ
= enPλ,

we have
degC(e, n) = (1− ζ)(

n+1
2 )(e−1)e−n degB(e, n).

To compute degB(e, n), it is convenient to use the version of the Pieri formula for
the Hall-Littlewood functions Pµ, from [10], eq. III.5.7:

Pµ(x, t)P1(x, t) =
∑
λ

αλ/µ(t)Pλ,

summed over all partitions λ such that λ−µ is a box in some column j, with αλ/µ(t) :=
(1− tmj(λ)/(1− t). Taking t = ζ, this implies the formula for degB(e, n) as a sum over
standard tableaux. QED
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