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Lecture 1

Goals of algebraic topology: Try to understand all “shapes”, for example all manifolds. The approach
of algebraic topology is:

(topological spaces) → (Abelian groups) → (numbers)

This should make it easier to distinguish two topological spaces.

Examples (supposed to be understood).

1. Fundamental group. x ∈ X , π1(X , x) = loops modulo homotopy, in general not Abelian.

2. Homology groups. Hi (X ) are a sequence of Abelian groups associated to a space. Roughly,
Hi (X ) “measures” how many i -dimensional submanifolds are in X .

The homology groups Hi (X ) are easy to compute. I shall define a generalisation of the fun-
damental group, the homotopy groups. They are easy to define but hard to compute. If you can
compute these groups, you know a lot about the spaces.

Fibre bundles are a way to break up a space into simpler spaces. Fibre bundles are “twisted
products”: A map π : E → B between spaces is a fibre bundle with fibre F if, for every point b ∈ B
(the “base space”) there is an open set U 3 b such that π−1(U ) is homeomorphic to U ×F . More
precisely, we require that the homeomorphism π−1(U ) →U ×F give a commuting diagram:

π−1(U )
∼= //

π
%%JJJJJJJJJJ U ×F

proj1
��

U

In particular, if π : E → B is a fibre bundle, then every “fibre” π−1(b) is homeomorphic to F .

Example. A fibre bundle whose fibre F is a discrete space is exactly a covering space. In that case,

U ×F =∐
copies of U .

For example, R→S1, π(t ) = e2πi t is a covering map with fibre Z. “It is not trivial.”

∗Version 0.2TK. Comments and corrections to K.Hui@dpmms.cam.ac.uk
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2 Fibre Bundles

Definition. A trivial fibre bundle π : E → B is one such that E ∼= B ×F , with π : E → B being the
projection map.

Example. E =The Möbius strip is the total space of a fibre bundle, π : E →S1 with fibre [0,1]. Again,
this is not a trivial fibre bundle.

Homotopy groups

(For the relation to fibre bundles see lectures 8–9.)
Let I = [0,1] be the closed unit interval. For n ≥ 0, let I n be the product space I ×·· ·× I︸ ︷︷ ︸

n

, the

n-cube.

I n = {(x1, . . . , xn) : 0 ≤ xi ≤ 1 ∀i } ⊂Rn

∂I n = {(x1, . . . , xn) ∈ I n : at least one xi is 0 or 1}.

Definition. Given any topological space X and a point x0 ∈ X , the nth homotopy group of X is

πn(X , x0) = [(I n ,∂I n), (X , x0)]

:= set of homotopy classes of map (I n ,∂I n) → (X , x0)

Recall. A pair (X , A) means a space X and a subspace A ⊆ X .
A map of pairs f : (X , A) → (Y ,B) is a (continuous) map f : X → Y such that f (A) ⊆ B .
Two maps f0, f1 : (X , A) → (Y ,B) are homotopic if there is a continuous map F : X × I → Y such

that

F (x,0) = f0(x) ,

F (x,1) = f1(x) ,

F (x, t ) ∈ B ∀x ∈ A, t ∈ I .

Homotopy is an equivalence relation, so it makes sense to consider [(X , A), (Y ,B)], the set of homo-
topy classes of maps (X , A) → (Y ,B).

Example. Let n = 0; then I 0 = {pt}, ∂I 0 =∅ (I insist). Then

π0(X , x) = [(pt,∅), (X , x)]

is the set of “path components” of X . So |π0(X , x)| = 1 iff X is path-connected.

Example. π1(X , x) is the fundamental group. πn(X , x) for n ≥ 2 are called the “higher” homotopy
groups of X .

Lecture 2

For any space X , π0(X , x0) is just a set, or more precisely, a “pointed set”. It is the set of all path-
connected components in X , with the component of x0 picked out.
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Burt Totaro 3

But πn(X , x0) is a group for any n ≥ 1: For f , g : I n → X , define

f · g := f g

That is,

( f g )(x1, . . . , xn) =
{

f (2x1, x2, . . . , xn) x1 ≤ 1
2

g (2x1 −1, x2, . . . , xn) x1 ≥ 1
2

, x1, . . . , xn ∈ I

As in the case n = 1, this defines a group structure on πn(X , x0), for n ≥ 1.
First note: f g , as above, is a continuous map I n → X with f g (∂I n) = x0, because f and g have

those properties. (This uses the “gluing lemma”: Given topological spaces X and Y with X = A∪B
closed subsets, a function f : X → Y is continuous iff f |A and f |B are continuous.)

If you replace f or g by a map homotopic to it, then you change f g by a homotopy. Therefore
this “product” gives a well-defined function πn ×πn →πn .

To check that this operation makes πn(X , x0) into a group for n ≥ 1, you have to check associa-
tivity, identity and inverses. For example, associativity is proved by writing down a homotopy

( f g )h = f g h ∼ f g h = f (g h)

The identity element of πn(X , x0) is the map x0 : I n → X with x0(x1, . . . , xn) = x0 for all x1, . . . , xn . You
check

x0 f ∼ f

he inverse of f : I n → X is

(− f )(x1, . . . , xn) = f (1−x1, x2, . . . , xn)

f − f ∼ x0

Thus πn(X , x0) are groups for all n ≥ 1.

First difference from π1:

For any group G , there is a space X with π1
∼=G , but πn(X , x0) is Abelian for all n ≥ 2.
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4 Fibre Bundles

We want to show that f g = g f in πn for n ≥ 2. That is, given f , g : (I n ,∂I n) → (X , x0), you need
to show f g ∼ g f .

f g ∼
f x0

x0 g

∼
x0 f

g x0

∼ g f

Another Interpretation of homotopy groups

Lemma. For any topological space X and nonempty subspace A ⊂ X , let X /A be the “identification
space” (=“quotient space”) defined by identifying A to a point. Then there is a one-to-one corre-
spondence between continuous maps X /A → Y and continuous maps X → Y with A mapping to a
point.

Proof. Easy

So map of pairs (I n ,∂I n) → (X , x0) are in one-to-one correspondence with maps I n/∂I n → X
with the base point of I n/∂I n mapping to x0.

Recall.

Sn := {(x0, . . . , xn) ∈Rn+1 : x2
0 +·· ·+x2

n = 1}

Dn+1 := {(x0, . . . , xn) ∈Rn+1 : x2
0 +·· ·+x2

n ≤ 1}

So πn(X , x0) is the set of based homotopy classes of maps Sn → X .

Remark. A map f : (Sn , p0) → (X , x0) is zero in πn(X , x0) iff it extends to a map Dn+1 → X .

Suppose, for example, that f : Sn → X extends to a map F : Dn+1 → X . Then shrinking the
sphere fixing the base point gives the required homotopy.

Given any map f : (X , x0) → (Y , y0) of pointed spaces, we get a function

f∗ : πn(X , x0) →πn(Y , y0).

If n ≥ 1, this is a group homomorphism.
f∗ is defined in an obvious way: given a map α : (I n ,∂I n) → (X , x0), we define

f∗α= f ◦α : I n α−−→ X
f−−→ Y .

You check that, if α1 ∼α2 then f ◦α1 ∼ f ◦α2; so we get a function f∗ : πn(X , x0) →πn(Y , y0). The
fact that this is a group homomorphism for n ≥ 1 is easy:

f∗

 α β

= f∗α f∗β
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Easy to check that f∗ makes πn into a functor from pointed spaces to
pointed sets if n = 0

groups if n = 1

Abelian groups if n ≥ 2

This means that {
( f g )∗ = f∗g∗ if f : (Y , y0) → (Z , z0), g : (X , x0) → (Y , y0)

(id)∗ = id if id: (X , x0) → (X , x0) is the identity map.

Lecture 3

Definition. Two based maps f0, f1 : (X , x0) → (Y , y0) are homotopic if there is a homotopy F : X ×
I → Y from f0 to f1 such that F (x0, t ) = y0 for all t ∈ [0,1].

This is an equivalence relation, so you can talk about [(X , x0),(Y , y0)], the set of homotopy
classes.

Lemma. If f0 and f1 are homotopic maps of pointed spaces, then ( f0)∗ = ( f1)∗ as homomorphism
πn(X , x0) →πn(Y , y0) for all n.

Proof. Obvious

So homotopy groups form a functor(
Category of

pointed spaces

)
→

(
Homotopy category

of pointed spaces

)
πn−−−−−→

n≥2

(
Category of

Abelian groups

)
where the morphism in the homotopy category of pointed spaces between (X , x0) and (Y , y0) are
the set of homotopy classes of continuous maps.

Note that two pointed spaces are isomorphic in the homotopy categories iff they are homotopy
equivalent:

Recall. If X ,Y are objects in a category, we say that X and Y are isomorphic (write X ∼= Y ) if ∃ f , g
such that

X
f // Y
g

oo with f g = idY and g f = idX

So isomorphic in the homotopy category means there are continuous pointed maps f : X → Y
and g : Y → X such that f g ∼ idY and g f ∼ idX .

Therefore two homotopy equivalent pointed spaces have isomorphic homotopy groups.

Exercise. πn(poi nt ) = 0 for n > 0

Definition. A space is contractible if it it homotopy equivalent to a point. [Same notion for pointed
spaces or spaces.]

Example. Rn , Dn , intDn are contractible.
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6 Fibre Bundles

Given any based map α : (Sn , s0) → (X , x0) and any path p : [0,1] → X with p(0) = x0, we can
define a map p(α) : (Sn , s0) → (X , p(1)).

(Draw nice pictures)

The construction p(α) gives, for any path p : [0,1] → X , an isomorphism p# : (X , p(0)) →πn(X , p(1)).
So the homotopy groups of a path-connected spaces are isomorphic at all basepoints (clearly false
if X is not connected).

Lemma. Let p : (X̃ , x̃0) → (X , x0) be a covering space. Then p∗ : πn(X̃ ) →πn(X ) is an isomorphism if
n ≥ 2.

Example. Use the covering map R→S1 mapping t to e2πi t . By the lemma,

πn(S1) ∼=πn(R) = 0 for n ≥ 2

since R is contractible. But of course

π1(S1) ∼=Z and π1(R) ∼= 0

This looks much like H∗S1:

H0(S1;Z) ∼=Z; H1(S1;Z) ∼=Z; Hn(S1;Z) = 0 for n ≥ 2

Example. Look at the n-torus (S1)n =S1 ×·· ·×S1︸ ︷︷ ︸
n

.

Here, the universal covering space is Rn . We have

πi ((S1)n) =


{∗} i = 0

Zn i = 1

0 i ≥ 2

Compare this with the homology groups:

Hi ((S1)n ;Z) =Z(n
i )

so it is nonzero for i = 0,1, . . . ,n.

Lecture 4

Theorem. Let p : (X̃ , x̃0) → (X , x0) be a covering space. Then

p∗ : πn(X̃ , x̃0) →πn(X , x0)

is an isomorphism for n ≥ 2.

Proof. I’ll use the “homotopy lifting property” for covering spaces:

Given any based map f : Y → X̃ , a homotopy F : Y × [0,1] → X with F (−,0) = p f “lifts”
uniquely to X̃ . That is, there is a unique map G : Y ×[0,1] → X̃ such that G(−,0) = f and
pG(y, t ) = F (y, t ) for all y ∈ Y , t ∈ [0,1].
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We use that to prove the theorem. Given an element of πn(X , x0), let α : (I n ,∂I n) → (X , x0) be a
corresponding map. Use this homotopy lifting property first for Y = poi nt , then Y = I , . . . , I n . The
homotopy lifting property implies that the given map α : I n → X lifts to a unique map α̃ : I n → X̃
with the property that α̃(0, . . . ,0) = x̃0.

I claim that if n ≥ 2, then α̃ maps ∂I n into x̃0.

Basic Fact. Any path in X̃ whose projection to X is constant must be constant.

So any path in ∂I n maps using α̃ to a path in X̃ must be constant, because its projection to X is
constant.

Notice that if n ≥ 2 then ∂I n ∼=Sn−1 is path-connected. So α̃|∂I is constant.
So α̃ represents an element of πn(X̃ , x̃0) and it is clear that p∗(α̃) = α. Thus I’ve shown that

p∗ : πn(X̃ ) →πn(X ) is onto.
Likewise, p∗ is one-to-one, because if α̃ ∈πn X̃ maps to 0 in πn X , you have a homotopy pα̃∼ x0

(constant map) and by same argument you can lift that to a homotopy α̃∼ x̃0.

So, for example, π2((S1)2) = 0, because π2((S1)2) =π2(R2) = 0. This contrasts with H2((S1)2;Z) ∼=
Z.

Roughly, πn X classifies maps Sn → X , while Hn(X ;Z) classifies maps

(any closed oriented n-manifoldsM n) → X

Such a manifold comes with a fundamental class [M n] ∈ Hn(M ;Z), and f∗[M n] ∈ Hn(X ;Z).
We have shown that any map S2 → (S1)2 is homotopic to a constant map.
Compare: There are maps (S1)2 →S2 not homotopic to a constant map.

1. Use algebraic geometry: think of (S1)2 as an elliptic curve E = {Y 2Z = X (X−Z )(X−2Z )} ⊂CP 2.
Then projecting to (X : Z ) gives a map (S1)2 →CP 1 =S2 which has degree 2.

So the map H2((S1)2;Z) → H2(S2,Z) is multiplication by 2, so this map is not “null homo-
topic”.

2. Choose a small disk D2 ⊂ (S1)2. Map (S1)2−D2 to a point s0 ∈S2, and map D2/∂D2 ∼=S2 with
∂D2 mapping to s0.

This map has degree 1 (not 0), so this map is nontrivial.

Note that these maps f : ((S1)2) →S2 induces the zero homomorphism on π∗. Indeed, the only
nonzero πi ((S1)2) is π1((S1)2) ∼=Z2 and the map f∗ : π1((S1)2) →π1(S2) is zero because π1(S2) = 0.
But f is not homotopic to the constant map, as we see by looking at H∗.

Lemma. For any space X and Y ,

πi (X ×Y ) ∼=πi (X )×πi (Y )

(If i ≥ 2, another notation is πi (X )⊕πi (Y ))

Proof. For any space Z , continuous maps Z → X ×Y are in one-to-one correspondence1 with pairs
of maps (Z → X , Z → Y ).

So maps Si → X ×Y corresponds to pairs of maps (Si → X ,Si → Y ). Similarly, homotopies of
maps correspond to maps Si × [0,1] → X ×Y .

1by the universal property of products

7



8 Fibre Bundles

Again, H∗(X ×Y ) behaves differently. For example, suppose H∗(X ,Z) are torsion free. Then

Hi (X ×Y ;Z) =
i⊕

j=0
H j (X ;Z)⊗Z Hi− j (Y ;Z)

To define the relative homotopy group πn(X , A, x0), where X is a space, A ⊂ X , x0 ∈ A, for n ≥ 1:
Think of I n−1 ⊂ I n as {(x1, . . . , xn−1,0)} ⊂ I n , xi ∈ [0,1]. Let J n−1 be the closure of ∂I n − I n−1.

Definition.
πn(X , A, x0) = [(I n ,∂I n , J n−1), (X , A, x0)]

That is, homotopy classes of maps I n → X with ∂I n mapping into A ⊂ X and J n−1 mapping into
x0 ∈ A ⊂ X .

Equivalently, because I n/J n−1 ∼=Dn with ∂I n/J n−1 ∼=Sn−1, πn(X , A, x0) is the homotopy classes
of maps (Dn ,Sn−1, s0) → (X , A, x0).

(pretty pictures of elements of relative groups)

Lecture 5

πn(X , A, x0) is a group if n ≥ 2, and an Abelian group if n ≥ 3.
The product on πn(X , A, x0) for n ≥ 2 is defined by:

( f g )(x1, . . . , xn) =
{

f (2x1, x2, . . . , xn) if x1 ∈ [0, 1
2 ]

g (2x1 −1, x2, . . . , xn) if x1 ∈ [ 1
2 ,1]

(pretty pictures)

Remark. A map f : (Dn ,Sn−1, s0) → (X , A, x0) defines the zero element in πn(X , A, x0) iff f is homo-
topic rel. Sn−1 to a map into A.

Proof. Suppose, first, that f is homotopic rel.Sn−1 to a map g into A. Clearly [ f ] = [g ] ∈πn(X , A, x0).
To show that [g ] = 0 in πn(X , A, x0), homotop g to a constant map using a shrinking family of discs.

(pretty pictures)

Conversely, suppose that f : (Dn ,Sn−1, s0) → (X , A, x0) is zero in πn(X , A, x0). That means we
have a homotopy F : Dn×I → X such that F (x,0) = f (x), F (x,1) = x0, F (Sn−1, t ) ⊆ A and F (s0, t ) = x0

for all t .

(pretty picture)

Note that the top face of this cylinder Dn →Dn × I is homotopic rel. Sn−1 to a map Dn →Dn × I
whose image is

(Dn × {1})∪ (Sn−1 × I ) .

Compose that homotopy with the map F , you get a homotopy rel. Sn−1 from f : Dn → X to a map
into A.
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A map f : (X , A, x0) → (Y ,B , y0) determines homomorphisms f∗ : πn(X , A, x0) → πn(Y , A, y0).
Two maps that are homotopic (as a map of triples (X , A, x0) → (Y ,B , y0)) gives the same homomor-
phism.

Definition. Given maps of pointed sets

(A,0)
f−−−−→ (B ,0)

g−−−−→ (C ,0),

this is exact at B iff g f = 0 and any element of B that maps to 0 ∈C is in the image of A.

Theorem. Given a triple (X , A, x0), there is a long exact sequence

· · ·→πn(A) →πn(X ) →πn(X , A) →πn−1(A) →···→π1(X , A) →π0(A) →π0(X )

The homomorphism πn A →πn X comes from the map A → X .
The homomorphism πn X → πn(X , A) comes from a map (X , x0) → (X , A) (really, (X , x0, x0) →

(X , A, x0)).
The “boundary map” πn A →πn−1 A is defined by

∂ f := the map I n−1 → X given as f (x1, . . . , xn−1,0)

(This maps ∂I n−1 to x0, so it gives an element of πn−1 A.)

Proof. I’ll just prove that the sequence is exact at πn(X , A).
To show the composition πn(X ) →πn(X , A) →πn−1 A is zero:

(pretty picture)

f |I n−1 is clearly a constant map x0, so it is 0 ∈πn−1 A.
To prove exactness: given an element of πn(X , A), represented by a map

f : (I n ,∂I n , J n−1) → (X , A, x0).

Suppose that ∂ f = 0 in πn−1 A. This means that f |I n−1 ∼ x0 with ∂I n staying fixed at x0.

(pretty pictures)

Glue this two maps, and you get a map I n → X that looks like

(pretty picture)

This defines an element of πn X .
I claim that this element of πn X maps to the given element of πn(X , A). To do this, use the

homotopy from f to g defined by using more and more of the map F .
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10 Fibre Bundles

CW complexes

Also called cell complexes.
Attaching a cell to a topological space: Let X be any topological space and let f : Sn−1 → X be a

map. Then we define a new space X ∪ f en “X with an n-cell attached”, by:

(X qDn)
/

( f (x) ∼ x ∀x ∈Sn−1 = ∂Dn)

Note that f need not be injective.

Example. Let f : Sn−1 → point be the only possible map, namely the constant map. Then

(point)∪ f en = (point∪Dn)
/∼ as above ∼=Sn

Definition. A space X is a CW-complex if it is obtained by the following procedure: We have
subspaces X0 ⊆ X1 ⊆ ·· · ⊆ X , where Xn is called the n-skeleton of X , such that

• X0 is a space with the discrete topology.

• Xn is obtained from Xn−1 by attaching n-cells along some collection of maps fα : Sn−1 →
Xn−1.

• X =⋃
n≥0 Xn , and a subset of X is closed iff its intersection with each Xn is closed.

Lecture 6

Every simplicial complex is a CW-complex.

(pretty picture)

Conversely, every CW-complex is homotopy equivalent to a simplicial complex.
Simplicial complexes are “combinatorial”, but you can define a given space as a CW-complex

with fewer cells.

Example. S1 as a simplicial complex:

(pretty picture)

S1 as a CW-complex:

(pretty picture)

A finite CW-complex is one with finitely many cells.

Example. Every compact manifold is a finite CW-complex (“Morse theory”)
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The homotopy extension property for CW-complexes

Let X be a CW-complex. B ⊂ X closed is called a subcomplex if B ∩ Xn is a union of some of the
cells of X . We say (X ,B) is a CW-pair.

Lemma. Let (X , A) be a CW-pair. Suppose given a map f : X → Y , Y any topological space. Suppose
we are also given a homotopy F : A × I → Y from f |A to some other map. Then this extends to a
homotopy G : X × I → Y from f to some other map.

Proof. Suppose we have constructed a homotopy

Gn : (A∪Xn)× I → Y

from f |A∪Xn to some other map extending F : A×I → Y . We have to do this for the (n+1)-skeleton,
A∪Xn+1.

It suffices to define such a homotopy on each (n +1)-cell in X not contained in A.
We have a continuous map f : Dn+1 → Y (the composition of Dn+1 → X → Y ), a homotopy from

f |Sn to some other map into Y (given bySn × I → Xn × I → Y ). We want to extend f to a homotopy
G : Dn+1 × I → Y from f to another map.

You can choose such a homotopy G by

G(x, t ) =
 f

(
x

1− t
2

)
if |x| ≤ 1− t

2

F
(

x
|x| ,2(|x|− (1− t

2 ))
)

if 1− t
2 ≤ |x| ≤ 1

Lemma (Compression Lemma). Let (X , A) be a CW-pair, and let (Y ,B) be any pair of spaces. Suppose
that for any n ≥ 0 such that X has an n-cell not in A, πn(Y ,B ,b0) = 0 for all b0 ∈ B . Suppose given a
map f : (X , A) → (Y ,B). Then f is homotopic rel. A to a map of X into B.

Proof. Suppose that we have already constructed a homotopy from f rel. A to a map fn−1 : X → Y
with fn−1(Xn−1) ⊆ B . Then we will show that you can do this for Xn .

So try to define the homotopy we want on a given n-cell in X , say not contained in A.

We have a continuous map α : Dn → Y (Dn → X
fn−1−−−→ Y ). We know that α maps Sn−1 into B .

So α : (Dn ,Sn−1) → (Y ,B) gives an element of πn(Y ,B ,b0) = 0. This means that α is homotopic rel.
Sn−1 to a map Dn → B . This lets us extend our homotopy from Xn−1 to Xn .

Theorem (Whitehead’s Theorem). Let f : X → Y be a continuous map of connected CW-complexes.
Suppose that f induces isomorphisms f∗ : πn X →πnY for all n. Then f is a homotopy equivalence.

Corollary. A CW-complex X is contractible iff πn X = 0 for all n ≥ 0.

Proof of Corollary. Apply Whitehead’s Theorem to the map X → pt .

Proof of Whitehead’s Theorem. First, suppose f : X → Y is the inclusion of a subcomplex.
We have the LES

· · ·→πn X
∼=−−−−−→πnY →πn(Y , X )︸ ︷︷ ︸

=0

→πn−1X
∼=−−−−−→ . . .

So πn(Y , X ) = 0 for all n ≥ 1.
Apply the compression lemma to the identity map (Y , X ) → (Y , X ), we find that idY is homotopic

to a map into X without changing the map on X , i.e. X is a “deformation retraction” of Y . This
easily implies that X is homotopic to Y . QED so far. . .

11



12 Fibre Bundles

Lecture 7

Proof of Whitehead’s Theorem (cont’d). I checked this in the special case where X → Y is the inclu-
sion of a closed sub-CW-complex. In that case, I checked that Y “deformation retracts” onto X ,
which means that there is a homotopy rel. X from idY to a retraction Y → X .

Lemma. If X ⊆ Y and Y deformation retracts to X , then the inclusion map X ,→ Y is a homotopy
equivalence.

Proof. We have maps X ,→ Y and Y � X .
The composition X ,→ Y � X is idX , by definition of a retraction, and the composition Y �

X ,→ Y is homotopic to idY .
So X ,→ Y is a homotopy equivalence.

Definition. A map f : X → Y of CW-complexes is cellular if f (Xn) ⊆ Yn for all n ≥ 0.

Theorem (Cellular Approximation). Any map between CW-complexes is homotopic to a cellular
map.

Proof. Similar to the proofs of

• Any continuous map between smooth (C∞) manifolds is homotopic to a smooth map.

• Any continuous map between simplicial complexes is homotopic to a simplicial map, after
possibly subdividing the domain.

By the cellular approximation theorem, it suffices to prove Whitehead’s theorem for a cellular
map f : X → Y .

To prove that, we replace f by an inclusion map:
Let f : X → Y be a map of spaces. Then we define the mapping cylinder

M f =
X × [0,1]qY

(x,1) ∼ f (x) ∀x ∈ X

For example, if f : S1 →R2 is the constant map, then M f is

(pretty picture)

There is a deformation retract from M f to Y ⊆ M f by

F (y, t ) = y ∀y ∈ Y , t ∈ I

F ((x,u), t ) = (x, (1− t )u + t ) ∀x ∈ X ,u, t ∈ I

Note that we can think of X as a subspace of M f , and the composition X ,→ M f ' Y is the f we
started with. Thus, every map is “equivalent” to an inclusion map.

To finish Whitehead’s theorem, we have to show: if f : X → Y is a cellular map of connected
CW-complexes and if f∗ : πn X →πnY is an isomorphism for all n ≥ 0, then f should be a homotopy
equivalence.

12



Burt Totaro 13

Instead of f , look at the inclusion map X ,→ M f (' Y ). This map is an isomorphism on homotopy
groups, and it’s the inclusion of a closed subspace. Since f is a cellular map, you can check that M f

is a CW-complex with X a subcomplex. So we know that X ,→ M f is a homotopy equivalence, so

X
∼−→ Y also.

Example (Peano). ∃ continuous map I onto I 2. This is not cellular, no matter how you decompose
these spaces into cells.

Example. Whitehead’s theorem is not true for arbitrary topological spaces. (Any “reasonable”
topological space will be homotopy equivalent to a CW-complex, so the theorem applies). For
example, let X be the quasi-circle. Then πn X = 0 for all n ≥ 0, but it is not contractible.

Remark. There are connected CW-complexes X and Y with πn X ∼=πnY as a group for all n ≥ 1, but
which are not homotopy equivalent.

For example, take RP 2 and S2 ×RP∞.
We know that there is a double covering S2 →RP 2, so πi (RP 2) ∼=πi (S2) for all i ≥ 2, S∞ →RP∞

(and S∞ is contractible) gives πi (RP∞) = 0 for i ≥ 2.
Also, π1 of the two spaces is isomorphic to Z/2.
But RP 2 6'S2 ×RP∞, for example

Hi (RP 2;Z) = 0 for i ≥ 3

Hi (S2 ×RP∞;Z) 6= 0 for i ≥ 3 odd

Lecture 8

Recall

Definition. A fibre bundle π : E → B is a (continuous) map such that every point of B has an open
neighbourhood U such that there is a homeomorphism ϕ : π−1U →U ×F , where F is the “fibre” of
π, such that the following diagram commutes

π−1U ϕ

∼= //

π
""EEEEEEEE U ×F

proj1||yy
yy

yy
yy

y

U

In particular, π−1(any point in B) ∼= F .
One writes F → E → B or

F // E

��
B

to denote a fibre bundle.

Example. Covering spaces are fibre bundles with F discrete.

Example. [0,1] → Möbius strip →S1.

13



14 Fibre Bundles

Example. Complex projective spaces

CP n = {complex lines (1-dim. C-linear subspace) in Cn+1}

= (Cn+1 − {0})
/

((z0, . . . , zn) ∼λ(z0, . . . , zn) ∀λ ∈C− {0})

This is actually a fibre bundle
C− {0} // Cn+1 − {0}

��
CP n

Also, S2n+1 = {(z0, . . . , zn) ∈Cn+1 :
∑n

i=0 |zi |2 = 1} ⊂Cn+1 maps onto CP n . In fact,

CP n =S2n+1/((z0, . . . , zn) ∼λ(z0, . . . , zn) ∀|λ| = 1)

i.e. CP n =S2n+1/S1. This is a fibre bundle

S1 // S2n+1

π

��
CP n

Let Ui = {[z0, . . . , zn] ∈ CP n : zi 6= 0} for i = 0, . . . ,n. I claim that π−1(Ui ) ∼= Ui ×S1 and preserves
fibres:

Proof. Say i = 0, WLOG.
As a start, let’s find a section of π : π−1U0 → U0. (A section of any map π : E → B is a map

s : B → E such that πs = idB .)
To define such a section, map

[z0, . . . , zn]︸ ︷︷ ︸
∈U0⊂CP n

∼ [1,
z1

z0
, . . . ,

zn

z0
] 7→

(1, z1
z0

, . . . , zn
z0

)(
1+∑n

i=1

∣∣∣ zi
z0

∣∣∣2
) 1

2

∈S2n+1

Then we define a homeomorphism π−1(U0) ∼=U0 ×S1 by

U0 ×S1 3 (x,λ) 7→λs(x) ∈π−1U0,

where s is the section I defined.

Example. Take n = 1 above. We have a fibre bundle

S1 // S3

��
CP 1 S2

called the Hopf fibration.

14



Burt Totaro 15

The map S3 →S2 is given by

{(z0, z1) ∈C2 : |z0|2 +|z1|2 = 1} 7→ z0

z1
∈C∪ {∞} ∼=S2

This map takes

(r0e iθ0 ,r1e iθ1 ) 7→ r0

r1
e i (θ0−θ1) ∈C∪ {∞} ∼=S2

For a given value of r0/r1 ∈ (0,∞), the set of points inS3 with that value is ∼= (S1)2. For r0/r1 = 0 or ∞,
the set of corresponding point in S3 is ∼=S1, either {(0,λ) : λ ∈S1} or {(λ,0) : λ ∈S1}.

Identify S3 − {(0,1)} ∼=R3 by stereographic projection. Those two circles in S3 correspond to the
z-axis and the circle in the (x, y)-plane.

(pretty picture)

The fibres of the Hopf map S3 →S2 are (1,1)-circles inside those tori.

(pretty picture)

Any two fibres of the Hopf map S3 →S2 are linked to each other.

Definition. A (Serre) fibration is a map π : E → B which has the homotopy lifting property for all
discs Dn , n ≥ 0.

Recall

Definition. A map π : E → B has the homotopy lifting property (HLP) for a space X if, for every
map f : X → E and every homotopy from π f : X → B , the homotopy lifts (not necessarily uniquely)
to E (i.e. there is a map F : X × [0, l ] → E such that F (x,0) = f (x) and πF : X × [0,1] → B is the given
homotopy).

Example. X = poi nt .

(pretty pictures)

Lemma. Every fibre bundle is a fibration.

Proof. This HLP for X says something about the pairs (X × [0,1], X × {0}).
Let π : E → B be a fibre bundle, we want to prove that π has HLP for Dn , n ≥ 0. That is, suppose

we have maps f : I n → E (remember I n ∼=Dn) and a homotopy G : I n × I → B with G|I n × {0} =π f .
We want to find a map F : I n × I → E with F |I n × {0} = f and πF =G .

We have a map I n+1 → B , and a lift of a map to E on I n = I n × {0} ⊂ I n+1, we want a lift on all of
I n+1.

Sinceπ : E → B is a fibre bundle, there is an open covering by opens Uα such thatπ−1Uα
∼=Uα×F

(over Uα).
So I n+1 is covered by the open subsets G−1Uα. Since I n+1 is compact (and metric), there is an

ε> 0 such that every ε-ball in I n+1 maps into some Uα.
So if we divide I n+1 into small enough cubes, each little cube will map under G into some

Uα ⊂ B .

15



16 Fibre Bundles

(pretty pictures)

We lift G up one little cube at a time.
We are given a map (a little) I n+1 →Uα, which we want to lift to Uα×F . We are already given2

on I n × {0} ⊂ I n+1. So we can make such a lift by

I n+1 →Uα×F ; (x1, . . . , xn+1) 7→ (G(x), f (x1, . . . , xn)).

where f here is the composition I n × {0} →Uα×F → F .

Lecture 9

Theorem. Let π : E → B be a fibration. Let e0 be a point in E , b0 = π(e0) ∈ B , and let F = π−1(b0).
Then the natural homomorphism

πn(E ,F,e0) →πn(B ,b0)

is an isomorphism ∀n ≥ 0. So we have a long exact sequence

πnF →πnE →πnB →πn−1F →···→π0F →π0E → 0

assuming B is path connected.

Proof. First, observe that πn(E ,F ) → πnB is surjective: An element of πnB is given by a map
(I n ,∂I n) → (B ,b0).

(pretty picture)

E

��
I n //

>>~
~

~
~

B

I know that the map E → B has the the HLP for discs. That is, given a map I n → B and a lift of
this map on I n−1 × {0} ⊂ I n to E , then I can extend this to a lift of the whole map I n → E .

(pretty picture)

Notice that (I n , I n−1) ∼= (I n , J n−1).

(pretty picture)

Therefore this lifting property is true for I n and J n−1 (instead of I n−1).
We choose a lift of α|J n−1 to E by mapping J n−1 ⊂ I n to e0 ∈ E .

E

��
I n

α
//

α̃
>>~~~~~~~~
B

2Always given on a subset homomorphic to I n × {0}, if you do this sensibly.

16



Burt Totaro 17

So [α̃] ∈π(E ,F,e0). Clearly this element maps to [α] ∈πn(B ,b0), as we want.
Next, show that πn(E ,F ) →πnB is injective:
Given two elements α̃0, α̃1 ∈ πn(E ,F ) with the same image in πnB , I want to show α̃0 = α̃1 in

πn(E ,F ).
We have continuous maps α̃0, α̃1 : (I n ,∂I n , J n−1) → (E ,F,e0) such that πα̃0 ∼ πα̃1 as maps

(I n ,∂I n) → (B ,b0). That homotopy is given by a map F : I n × I → B such that

F |I n × {0} =πα̃0

F |I n × {1} =πα̃1

F |∂I n × I = b0

(pretty pictures)

We choose a lift of F |J n to F̃ on J n , where J n is the union of all faces of I n+1 except the top one.
Namely, take this lift to be, on J n :

(pretty picture)

By HLP, we can extend this partial lift to a lift F̃ : I n+1 → E of F : I n+1 → B . This lift must map the
“top” fact of I n+1 into F . This homotopy shows that [α̃0] = [α̃1] ∈πn(E ,F ).

Finally, if B is path-connected, I claim that π0(F ) →π0E is onto:
Pick any element of π0E , i.e. any path-component of E , say containing the point e1. Since B is

path-connected, ∃ a path from π(e1) to b0. You can lift this to a path in E , from e1 to some point.
Clearly that endpoint ∈ F .

Example. Let π : E → B be a covering space. That is, π is a fibre bundle with discrete fibre F .
Then πn(F ) = 0 for n ≥ 1, so this LES simplifies to (if E is connected):

0 =πnF →πnE →πnB →πn−1F = 0 if n ≥ 2

0 =π1F →π1E →π1B →π0F = F →π0E = 0

So πnE ∼=πnB for n ≥ 2, and F ∼=π1B/π1E . This agrees with the theorem on covering spaces.

Example. Let E = B ×F , for any space B and F . The LES just splits up into SESs

0 →πnF →πnE =πnF ×πnB →πnB →)

Example. Take the Hopf fibration S1 →S3 →S2. We know that π1S
1 ∼=Z and πiS

1 = 0 for i ≥ 2. So,
for i ≥ 3, this LES shows that πnS

3 ∼=πnS
2. In low dimensions, we have

0 =π2S
1 →π2S

3 = 0 →π2S
2 →π1S

1 ∼=Z→π1S
3 = 0

(π2S
3 = 0 is by the same argument as π1S

3 = 0) So π2S
2 ∼=Z. (This looks like H2(S2;Z) ∼=Z)

Remark. For any space X , any n ≥ 1, there is a natural homomorphism πn X → Hn(X ,Z), given by

( f : Sn → X ) 7→ f∗[Sn]

where f∗ : HnS
n =Z[Sn] → Hn X (HnS

n ∼=Z, generated by [Sn]).

Fact. For any n, the map πnS
n → Hn(Sn ,Z) ∼=Z is an isomorphism.

17



18 Fibre Bundles

The Hopf fibration shows, in particular (using the fact),

π3S
2 ∼=π3S

3 ∼=Z
(Hopf, 1930s).

If you look at where this isomorphism comes from, you conclude that π3S
2 ∼=Z, generated by

the Hopf map S3 →S2.
Thus the Hopf map is a continuous map between CW-complexes that induces the zero homo-

morphism HiS
3 → HiS

2 for all i ≥ 1, but is not homotopic to a constant map.

Lecture 10

For the fibration S1 →S2n+1 →CP n , we know that

πi (S1) =
{
Z i = 1

0 i ≥ 2

So the LES gives
0 =π2S

2n+1 →π2CP n →π1S
1 =Z→π1S

2n+1 = 0

I mentioned last time that πiS
n = 0 for 0 < i < n. This is very easy by cellular approximation:

write Sn = e0 ∪ en . Any map Si → Sn , i < n, is homotopic to a cellular map, so a map into the
i -skeleton of Sn . Such a map is constant, in this case.

Theorem (Hurewicz). Let X be any (n−1)-connected space (i.e. πi = 0 for i ≤ n−1). Then H0(X ;Z) =
Z, Hi (X ;Z) = 0 for 1 ≤ i ≤ n −1, and πn X ∼= Hn(X ;Z).

We also have a fibration S1 →S∞ →CP∞ :=⋃
n≥0CP n , and S∞ ' pt . We read off from the LES:

π2CP∞ ∼=Z
and

0 =πiS
∞ →πiCP∞ →πi−1S

1 = 0 for i ≥ 3

So πiCP∞ = 0 for all i 6= 2.

Definition. An Eilenberg-MacLane space K (G ,n) is a space X with πn X ∼=G and πi X = 0 for i 6= n.

So CP∞ is a K (Z,2) space.
A few other examples:

• RP∞ is a K (Z/2,1) space

• (S1)n is a K (Zn ,1) space

• Any closed surface X of genus g ≥ 1 is a K (G ,1) space, where G =π1X , because the universal
cover of X is homeomorphic to R2.

Remark. The fundamental group of a closed surface of genus g ≥ 1 is

π1Xg = 〈a1,b1, . . . , ag ,bg |[a1,b1][a2,b2] . . . [ag ,bg ]〉

18
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You can replace C by the quaternionsH

H= {a +bi + c j +dk : a,b,c,d ∈R}

with multiplication i 2 = j 2 = k2 =−1, i j = k, j k = i , ki = j , j i =−k, k j =−i , i k =− j . This makes
H into an associative R-algebra, but in fact a division ring.

Definition.

HP n = {left one-dimensional sub-H-vector spaces ofHn+1}

We have a map S3 →S4n+3 →HP n , which is a fibre bundle, where S3 = {x ∈H : |x| = 1}.

Example. For n = 1, this is a fibre bundle S3 → S7 → HP 1 = H∪ {∞} ∼= S4. This map S7 → S4 is
another “Hopf map”.

Fact. π7S
4 ∼=Z, generated by this Hopf map.

Example. We can take n =∞, S3 →S∞ →HP∞, and this gives

πiHP∞ ∼=
{
πi−1S

3 i ≥ 1

0 i = 0

Remark. The groups πiS
3 ∼=S2 for i ≥ 4, are know for i ≤ 30 or so, but not in general. At least we

know (Serre, 1950)

πiS
3 =

{
Z i = 3

finite Abelian group i ≥ 4

Some Lie groups

• S1 = {x ∈C : |x| = 1} is an Abelian group under multiplication.

• S3 = {x ∈H : |x| = 1} is a non-Abelian group under multiplication.

• The general linear group

GL(n,R) = {A ∈ MnR : det A 6= 0} = {linear isomorphism f : Rn →Rn}.

• The orthogonal group

O(n) = {linear maps f : Rn →Rn with
∣∣ f (x)

∣∣= |x| ∀x ∈Rn}

= {A ∈GL(n,R) : A AT = I }

is a compact Lie group.

Lemma. O(n)
∼
,→GL(n,R), i.e. O(n) and GL(n,R) are homotopy equivalent.

19



20 Fibre Bundles

Proof. (Gram-Schmidt)
A ∈GL(n,R) corresponds to n linearly independent vectors in Rn (the rows of A), and A ∈O(n)

corresponds to n orthonormal vectors in Rn .
There is a retraction GL(n,R) →O(n), by the Gram-Schmidt process

(v1, . . . , vn) =
(

v1

|v1|
,

v2 −av1

|v2 −av1|
, . . .

)
This is a deformation retraction (there is an obvious homotopy...)

We have a fibre bundle O(n −1) →O(n) →Sn−1. [Check!]
Roughly, you can say: O(n) is built by fibre bundles from S0,S1, . . . ,Sn−1.
So, for example, what is π0O(n) =π0GL(n,R)?
We know O(1) =±1 has two components. From the fibre bundle O(n −1) →O(n) →Sn−1, we

get, if n ≥ 3,

0 =π1S
n−1 →π0O(n −1) →π0O(n) →π0S

n−1 = 0

So π0O(n −1) ∼=π0O(n) if n ≥ 3.
To describe O(2): there is an exact sequence

1 → SO(n) →O(n) → {±1} → 1

and SO(2), the group of rotations of R2, is isomorphic to S1. This group is connected, so O(2)
has two connected components. By our fibre bundles, it follows that O(n) has two connected
components for all n. (Equivalently, SO(n)

∼
,→GL(n,R)>0 is connected for all n ≥ 1.)

Next, look at π1(O(n), id) =π1(SO(n), id). We have an exact sequence

π2S
n−1 →π1SO(n −1) →π1SO(n) →π1S

n−1

So, if n ≥ 4, we have π1SO(n −1) ∼=π1SO(n). So it is enough to compute π1SO(3).

Lecture 11

SO(3) ∼=RP 3, so π1SO(3) ∼=Z/2.
It follows that for n ≥ 3 the universal cover of SO(n) is a double cover. It is called Spin(n).
Finally, we compute π2SO(n):

π3S
n−1 →π2SO(n −1) →π2SO(n) →π2S

n−1

So for n ≥ 4, the map π2SO(n −1) →π2SO(n) is surjective. We know

π2SO(2) ∼=π2SO(3) = 0,

so π2SO(n) = 0 for all n.
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Loop spaces

For a pointed space (X , x0) its loop space is

ΩX = {continuous p : [0,1] → X such that p(0) = p(1) = x0}

This has a natural topology, namely the compact-open topology: A subset of ΩX is open iff it is a
union of finite intersections of sets of the form

M(K ,U ) = {p ∈ΩX : p(K ) ⊆U }

where K is compact and U ⊆ X is open. (Can put the compact-open topology on Map(X ,Y ) in
general).

ΩX is a pointed space: the selected element is the constant loop at x0.
One basic fact about ΩX is that

πnΩX ∼=πn+1(X , x0)

Maps I n →ΩX can be mapped to maps I n+1 → X in the obvious way, and this induces the isomor-
phism.

The path space of X is the space

P X = {p : [0,1] → X such that p(0) = x0}

with the compact open topology.
Define a map P X → X , p 7→ p(1). This is a fibration, with fibres identified with ΩX . Note that

P (X ) is contractible, so the long exact sequence gives

πi P X︸ ︷︷ ︸
=0

→πi X →πi−1ΩX →πi=1P X︸ ︷︷ ︸
=0

so πi X
∼=−−→πi−1ΩX , as we know.

Previously, we showed that any map is “equivalent” to an inclusion map using the mapping
cylinder. Now we show that any map is “equivalent” to a fibration.

Let f : X → Y be continuous. Let

E f =
{

(x, p) : x ∈ X , [0,1]
p−−→ Y such that p(0) = f (x)

}
Note that X ⊂ E f (by identifying X with constant paths), and that E f deformation retracts to X .

There is a map α : E f → Y , (x, p) 7→ p(1). This is a fibration.

Proof. We have to show that for any map g : I n+1 → Y and a lift to E f on I n ⊂ I n+1, we can extend it
to a lift on all of I n+1.

g gives a map I n → {paths in Y }. Let the given lift I n → E f be h(x1, . . . , xn) = (hX (xi ),hP (xi )).
Define

HX (x1, . . . , xn+1) = hX (x1, . . . , xn)

and let HP (x1, . . . , xn+1) be the path Hp (xs1, . . . , xn) followed by the path

g |{(x1, . . . , xn)}× [0,1].
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22 Fibre Bundles

Lecture 12

Definition. The homotopy fibre F f of f : X → Y is a fibre of the fibration E f → Y .

Remark. Homotopic maps have homotopy equivalent homotopy fibres. More generally, if

F f → X1
f−−→ Y1 and Fg → X2

g−−→ Y2

with X1 ' X2 and Y1 ' Y2, then F f ' Fg

Examples. (i) fibre(X → pt ) = X

(ii) fibre(pt → X ) = fibre(P X → X ) =ΩX

(iii) If F → E → B is a fibration then fibre(E → B) = F .

(iv) What is fibre(F → E)?

Let
E f =

{
(e, p) : e ∈ E , [0,1]

p−−→ B , p(0) = f (e)
}

E f → B , (e, p) 7→ p(1) is a fibration. Its fibre over b is

F f =
{

(e, p) : e ∈ E , [0,1]
p−−→ B , p(0) = f (e), p(1) = b

}
F f → E , (e, p) 7→ e is a fibration, F f ' F , so

fibre(F → E) = fibre(F f → E) =
{

[0,1]
p−−→ : p(0) = f (e0) = p(1)

}
=ΩB

So we obtain a fibration ΩB → F → E . Its LES is the same as for the original fibration.

We can repeat the process to get an infinite sequence of fibrations

· · ·→Ω2B →ΩF →ΩE →ΩB → F → E → B.

Lemma. For any space X and positive integer n we can construct a space X≤n and a map X → X≤n

such that

πi (X≤n) =
{
πi X i ≤ n

0 i > n
.

(Actually we assume X a CW-complex).

Proof. We first kill πn+1X . Pick a set of generators for this group, with representatives α : Sn+1 → X .
Define

Xn+1 = X ∪α (n +2 cells).

There is an obvious map X → Xn+1. By cellular approximation theorem, πi X
∼=−−→πi Xn+1 for i ≤ n.

Furthermore, πn+1X �πn+1Xn+1 by cellular approximation, and by construction the map is 0.
So πn+1Xn+1 = 0. Repeat.

Example. (Sn)≤n is K (Z,n).
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Lemma. For any positive n and group G (Abelian if n ≥ 2), any two K (G ,n) spaces are homotopy
equivalent.

Proof. We assume G = Z and that the spaces are CW-complexes. Then it suffices to consider
X1 = (Sn)≤n .

We show the result by constructing a map X1 → X2 and applying Whitehead’s theorem.
Define α : X (n)

1 = Sn → X2 by taking it to represent a generator for πn X2. Then α∗ : πi X (n)
1 →

πi X2 are isomorphisms for all i ≤ n.
Now extend α to a map X1 → X2. We do this one cell at a time. Since πi X2 = 0 for i > n, we can

extend any map Si → X2 to a map Di+1 → X2.
The resulting α : X1 → X2 induces isomorphisms α∗ : πi X1 →πi X2 for all i , so α is a homotopy

equivalence by Whitehead’s theorem.

Lecture 13

Lemma.
ΩK (G ,n) ' K (G ,n −1)

Proof.

πiΩK (G ,n) =πi+1K (G ,n) =
{

G i +1 = n

0 otherwise

Example. Ω(CP∞) 'S1

Definition. For a space X , let X>n = fibre(X → X≤n).

The fibration X>n → X → X≤n gives the long exact sequence

· · ·→πi X>n →πi X →πi X≤n →πi−1X>n → . . .

So

πi X>n =
{

0 i ≤ n

πi X i > n

For X connected, X>1 is the universal cover of X .

Postnikov towers

X

�� ""FF
FF

FF
FF

F

))RRRRRRRRRRRRRRRRR

++VVVVVVVVVVVVVVVVVVVVVVVVVVV

X≤1 X≤2
oo X≤3

oo · · ·oo

X≤n becomes “closer” to X as n increase. And the “difference” between X≤n and X≤n−1 is an
Eilenberg-MacLane space: there is a fibration

K (πn X ,n) → X≤n → X≤n−1
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24 Fibre Bundles

In this sense, X is built from Eilenberg-MacLane spaces by a sequence of fibrations.

This suggests why a CW-complex is not in general determined up to homotopy by its homotopy
groups. Any space X has the same homotopy groups as

∏
n≥1 K (πn X ,n). X is in general an iterated

fibration of these pieces, but not necessarily trivial.

Definition. A map i : A → X is a cofibration if it has the homotopy extension property:

Given any map f0 : X → Y and a homotopy from f0|A to some other map A → Y we can extend
to a homotopy from f0 to some map X → Y .

Example. The inclusion of a subcomplex A into a CW-complex X is a cofibration.

Fact (Easy). Any cofibration is injective.

Given a cofibration A ,→ X , the sequence A → X → X /A is called a cofibre sequence.

Any map is equivalent to a cofibration using the mapping cylinder: for X
f−−→ Y , let

M f = (X × [0,1])qY
/

((x,1) ∼ f (x))

M f ' Y , and the inclusion X ,→ MF , x 7→ (x,0) is a cofibration. We can therefore define the cofibre
of f : X → Y to be M f /X (up to homotopy equivalence).

Examples. (i) cofibre(pt → X ) = X , since pt → X is a cofibration.

(ii) For f : X → pt , M f =C X , the cone on X . So cofibre(X → pt ) =C X /X =ΣX , the suspension
of X .

(iii) For f : Sn → X , cofibre( f ) = X ∪ f D
n+1.

(iv) If A ,→ X is a cofibration then X /A ' X ∪A C A. X → X ∪A C A is a cofibration, so

cofibre(X → X /A) = cofibre(X → (X ∪A C A)) =ΣA

Thus we get a cofibration X → X /A → ΣA. We can repeat to get an infinite sequence of
cofibrations

A → X → X /A →ΣA →ΣX →Σ(X /A) →Σ2 A → . . .

This is “dual” to a result about fibrations and loop spaces (see Lecture 12). This is called
Eckmann-Hilton duality

Homotopy groups (Co)homology groups
Eilenberg-MacLane spaces Spheres
Fibrations Cofibrations
Loop spaces Suspensions
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Lecture 14

Vector Bundles

Definition. A vector bundle over B is a space E with a map π : E → B such that for each b ∈ B , the
fibreπ−1(b) is a real dimension n vector space. We require that every point in B has a neighbourhood
U such that there is a homeomorphism ϕ : π−1U →U ×Rn such that

π−1(U ) //

π
##GG

GG
GG

GG
G U ×Rn

proj1{{xxxxxxxxx

U

commutes, and ϕ is a linear isomorphism on each fibre.

In particular, a vector bundle is a fibre bundle. The dimension n of the fibre is the rank of E .

Definition. A map φ : E → F of vector bundles over B is a bundle morphism if it is continuous,
linear on each fibre, and

E //

��?
??

??
??

F

����
��

��
�

B

commutes.
A bundle morphism that is also a homeomorphism is an isomorphism.

A vector bundle of rank 1 is called a line bundle.

Examples. (i) B ×Rn is the trivial vector bundle over B , denoted Rn
B (or just Rn).

(ii) If M is a smooth manifold then T M is a vector bundle over M .

(iii) E = {(x, v) : x ∈RP n , v ∈ [x]} is a line bundle over RP n , called the universal or tautological line
bundle.

If E is trivial then E−{zero sections} ∼=RP n×(R−{0}) (disconnected). But E−{zero sections} ∼=
Rn−1 − {0}, so E is not trivial.

Remark. For any vector bundle π : E → B the projection π is a homotopy equivalence.

Lemma. A vector bundle E → B is trivial iff there are n sections s1, . . . , sn : B → E that are linearly
independent at each point.

In particular, any Lie group has trivial tangent bundle.

Lecture 15

Definition. A matrix on a vector bundle E → B is a symmetric positive definite bilinear form on
each fibre, continuous in the sense that it gives a continuous function E ×B E →R.

Lemma. Every vector bundle E on a paracompact space B has a metric.
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26 Fibre Bundles

Proof. B paracompact is equivalent to existence of a partition of unity on B :
For any open cover {Uα} of B there are continuous functions fα : B →R≥0 such that supp( fα) ⊆

Uα, at any point only finitely many fα are nonzero, and
∑

fα = 1.
So we can define a metric on E by pulling back metrics via local trivialisations and weighting by

a partition of unity.

Lemma. If E → B is a trivial vector bundle with a metric then E is also trivial as a metrized vector
bundle, i.e. there is a bundle isomorphism E ∼= B ×Rn that is an isometry on each fibre.

Proof. Apply Gram-Schmidt to a trivialisation to make it a metric trivialisation.

Let π : E → Y a vector bundle, f : X → Y continuous. Then the pullback bundle f ∗E over X is
the set

{(x,e) ∈ X ×E : f (x) =π(e)}

The bundle projection π2 : f ∗E → X is (x,e) 7→ x.
If U ⊆ Y , ϕ= (π,ϕ2) : π−1U →U ×Rn is a local trivialisation of E , then

ϕ′ : π−1
2 ( f −1(U )) → f −1U ×Rn , (x,e) 7→ (x,ϕ2(e))

is a local trivialisation of f ∗E .
The fibre of f ∗E over x ∈ X is π−1( f (x)).
The map F : f ∗E → E , (x,e) 7→ e is a bundle morphism covering f

f ∗E F //

π2

��

E

π

��
X

f // Y

If X ⊆ Y , i : X ,→ Y is the inclusion map, then i∗E is also denoted E |X .

Example. If M is a submanifold of a smooth manifold N then T M , T N |M are both vector bundles
on M , and there is an obvious inclusion T M ,→ T N |M

If E is a subbundle of F then we can define a quotient bundle F /E . Its fibre over x ∈ X is
(F /E)x = Fx/Ex .

Example. The quotient bundle T N |M /T M is the normal bundle of M in N .

For vector bundles E ,F over X we can define bundles E ⊕F , E ⊗RF , E∗ whose fibres are Ex ⊕Fx ,
Ex ⊗R Fx , (Ex)∗ respectively.

Classification of real vector bundles over X

For a line bundle L over X choose a metric on L. Then

Y = {e ∈ L : ‖e‖ = 1}

is a double cover of X . Conversely, for a double cover Y we can define a line bundle by L =
Y ×R/(Z/2), where Z/2 identifies (y, v) with (σ(y),−v) (σ(y) is the other point of y lying over π(y)).

The double cover of a path-connected space X are classified by Hom(π1X ,Z/2). Since Z/2 is
Abelian any homomorphism π1X →Z/2 factors through π1X

/
[π1X ,π1X ] ∼= H1(X ). So the double

covers are classified also by
Hom(H1(X ;Z),Z/2) ∼= H 1(X ;Z/2) .

26



Burt Totaro 27

Cohomology groups

For any commutative ring R we have (singular) cohomology groups H i (X ;R). If R is a field, then

H i (X ;R) = HomR (Hi (X ;R),R) .

There is a product
H i (X ;R)×H j (X ;R) → H i+ j (X ;R)

which makes H∗(X ;R) into an associative, graded commutative ring.
For X → Y continuous, we have pullbacks f ∗ : H i (Y ;R) → H i (X ;R) which give a ring homomor-

phism H∗(Y ;R) → H∗(X ;R).

Lecture 16

Characteristic classes

Stiefel-Whitney classes

For any real vector bundle E → X on any space X , we can define wi (E) ∈ H i (X ;Z/2) for all i ≥ 0.
These satisfy:

(1) Dimension: w0(E) = 1, wi (E) = 0 for i > rank(E).

(2) Naturality: If f : X → Y and E → Y is a vector bundle, then wi ( f ∗(E)) = f ∗(wi (E)) for all i .

(3) Whitney sum formula: For vector bundles E ,F over X ,

wi (E ⊕F ) =
i∑

j=0
w j (E)wi− j (F ) .

(4) Non-triviality: Let L be the universal line bundle on RP 1. Then

w1(L) 6= 0 ∈ H 1(RP 1;Z/2) ∼=Z/2

The Stiefel-Whitney classes are uniquely determined by these properties. We will prove this later.

Properties

(i) Let E be the trivial bundle X ×Rn . Then

E ∼= f ∗(pt ×Rn) for a map f : X → pt

H i (pt ,Z/2) = 0 for all i > 0, so

wi (E) = f ∗(wi (pt ×Rn)) = 0
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28 Fibre Bundles

(ii) For any E → X we have wi (E ⊕Rn) = wi (E). For

wi (E ⊕Rn) =
i∑

j=0
w j (E)wi− j (Rn) = wi (E)w0(Rn) = wi (E)

by (i).

(iii) TRn+1|Sn = TSn ⊕NRn+1/Sn . TRn+1|Sn and NRn+1/Sn are both trivial, so for i > 0, wi (TSn) = 0
by (i).

We say that E is stably trivial if E ⊕Ra ∼=Re+a for some a. So TSn is stably trivial, but not trivial
in general.

Lemma. Let E → X be a rank-n vector bundle. Suppose E has a non-zero section. Then wn(E) = 0.
More generally, if E has sections s1, . . . , sa , linearly independent at each point, then wnE = ·· · =

wn−a+1(E) = 0.

Proof. If E has linear independent sections s1, . . . , sa this gives a map f : Ra
X ,→ E . Choose a metric

on E . Then E splits orthogonally as
E ∼=Ra

X ⊕ (E/Ra
X )

So for i > rank(E/Ra
X ) = n −a, wi (E) = wi (E/Ra

X ) = 0.

Lecture 17

If E ⊕F =Rn
X and we know the classes wi E then we find wi F inductively:

0 = w1(E)+w1(F ) ⇒ w1(F ) =−w1(E)

0 = w2(E)+w1(E)w1(F )+w2(F ) ⇒ w2(F ) = (w1E)2 −w2(E)

. . .

For a vector bundle E we define the total Stiefel-Whitney class of E to be

w(E) = 1+w1(E)+w2(E)+·· · ∈ H∗(X ;Z/2)

With this notation the Whitney sum formula becomes

w(E ⊕F ) = w(E)w(F )

So in the particular case E ⊕F =RN
X we get w(F ) = (w(E))−1, which can be computed from a series

formula (same computation as before).

Example. Let LRP n be the universal line bundle over RP n . wi (L) = 0 for i > rankL = 1.
Let i : RP 1 →RP n be the standard inclusion. LRP n |RP 1 = LRP 1 , so

i∗(w1(LRP 1 )) = w1(LRP 1 ) 6= 0

Hence w1(LRP n ) 6= 0, so w1(LRP n ) is the generator u of H 1(RP n ;Z/2) ∼=Z/2.
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On RP n we can view L as a subbundle of the trivial bundle Rn+1.

0 → L →Rn+1 → L⊥ → 0

So Rn+1 ∼= L⊕L⊥. w(L) = 1+u, so

w(L⊥) = (1+u)−1 = 1+u +·· ·+un ∈ H∗(RP n ;Z/2) .

So L⊥ has all Stiefel-Whitney classes w0, . . . , wn nonzero.

Lemma. TRP n ∼= Hom(L,L⊥)

Proof.

RP n ∼=Sn/
{±1}

TxS
n = 〈x〉⊥

So
T±xRP n = {{(x, v), (−x,−v)} : 〈x, v〉 = 0}

∼=←−−
φ

Hom(〈x〉,〈x〉⊥)

where the identification φ : α 7→ {(x,αx), (−x,−αx)} is natural. Hence

TRP n ∼= Hom(L,L⊥).

For a smooth manifold M we write wi (M) for wi (T M).
We have

Hom(L,L⊥)⊕Hom(L,L) ∼= Hom(L,Rn+1) ∼= (L∗)⊕(n+1)

Hom(L,L) ∼=R, and for any real bundle E choosing a metric gives E ∼= E∗. So

w(RP n) = w(Hom(L,L⊥)) = w(L⊕(n+1)) = w(L)n+1 = (1+u)n+1

Lecture 18

In particular, w(RP n) = 1 iff n = 2k −1 for some k ∈N.

Corollary. If Rn has the structure of a division algebra then n is a power of 2.

Proof. If Rn is a division algebra then RP n−1 is parallelisable, so w(RP n−1) = 1.

Question: For a manifold M of dimension n what is the smallest N such that M can be embedded
in RN ?

Whitney’s theorem tells us that N ≤ 2n.
Actually it is easier to ask when M can be immersed in RN .
For a smooth map f : M →RN the differential d f can be considered as a map of bundles over M

d f : T M → f ∗(TRN )
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30 Fibre Bundles

If f is an immersion then (by definition) d f is injective.
f ∗(TRN ) is the trivial bundle RN

M . So if f : M →RN is an immersion then

T M ⊕ (RN /T M) ∼=RN

and
w(M)−1 = w(RN /T M) ,

which vanishes above dimension N −n in H∗(M ;Z/2).

Lemma. RP 2r
does not immerse in R2r+1−2.

Proof.

w(RP 2r
) = (1+u)2r +1 = (1+u2r

)(1+u) = 1+u +u2r

w(RP 2r
) = 1+u +·· ·+u2r −1

The result follows by the preceding argument.

Remark. This is sort of the best possible example: Whitney proved that any M n immerses in R2n−1.

Cobordism

For a smooth closed manifold M n we can ask whether M ∼= ∂N n+1 for some compact N (with
boundary). If there is such N we say that M bounds.

The Stiefel-Whitney numbers of a closed manifold M n are the elements Z/2 defined by∫
M

w1(M)i1 w2(M)i2 · · ·wn(M)in ∈Z/2 ,

where i1 +2i2 + ·· ·+nin = n. (So w1(M)i1 . . . wn(M)in ∈ H n(M ;Z/2), and
∫

M is the isomorphism
H n(M ;Z/2) →Z/2 given by Poincaré duality).

Lecture 19

Theorem. If M bounds then all Stiefel-Whitney numbers of M are 0.

Proof. Assume M n = ∂N n+1, N compact with boundary.

T N |M = T M ⊕NM/N

The normal line bundle is trivial (taking the unit vector pointing “into” N gives a global section). So

w j (T M) = w j (i∗T N ) = i∗w j (T N ) , ∀ j .

Any Stiefel-Whitney numbers have the form

〈w1(M)k1 · · ·wn(M)kn , [M ]〉 = 〈i∗(w1(N )k1 · · ·wn(N )kn ), [M ]〉
= 〈w1(N )k1 · · ·wn(N )kn , i∗[M ]〉 = 0

since i∗[M ] = ∂[N ] = 0 ∈ Hn(N ).
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Examples. (i) A compact 0-manifold is a finite set of points and bounds iff the number of points
is even.

(ii) A compact 1-manifold is a finite union of circles, so bounds.

(ii) For RP 2, w 2
1 = w2 = u2, so the Stiefel-Whitney numbers are both 1. So RP 2 does not bound.

Theorem. If all Stiefel-Whitney numbers of M are 0 then M bounds

Proof. Hard.

Example. If n = 2m −1 then w(RP n) = (1+u)2m = (1+u2)m . So all odd Stiefel-Whitney classes are
0. Hence so is any product of degree n. So all Stiefel-Whitney numbers of RP n vanish.

If n is even then w1(RP n) 6= 0, so w n
1 6= 0.

Grassmannians and universal bundles

Definition. Gr(a,Rn) = {a dimensional linear subspaces of Rn}

Let X (a,Rn) = {(v1, . . . , va) ∈ (Rn)∗ : v1, . . . , va are linearly independent}. X (a,Rn) is an open sub-
set of Rna , so has an obvious structure as a topological space and manifold. There is an obvious
surjection

X (a,Rn) � Gr(a,Rn), (v1, . . . , va) 7→ span{v1, . . . , va}

and we give Gr(n,Rn) the quotient topology.
Let Y (a,Rn) ⊆ X (a,Rn) be the orthonormal a-triples. We have

Y (a,Rn) � Gr(a,Rn)

and this gives the same quotient topology. Y is compact, so so is Gr(a,Rn).

Lemma. Gr(a,Rn) is a closed manifold of dimension a(n −a).

Proof. Let W be a dimension n −a subspace of Rn , and let

U = {V ⊆Rn : dimV = a,V ∩W = {0}} ⊆ Gr(a,Rn).

Then we can identify

Ra(n−a) ∼= Hom(Ra ,Rn−a) ←→U ; f 7→ {(x, f (x)) : x ∈Ra}

These charts U have smooth transitional functions.

The universal bundle E on Gr(a,Rn) is a rank-a vector bundle, whose fibre over V ∈ Gr(n,Rn) is
precisely V ⊆Rn , E ⊆ Gr×Rn .
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Lecture 20

Lemma. If f , g : X → Y are homotopic and E is a vector bundle on Y then f ∗E ∼= g∗E.

Proof. We assume that X is a CW-complex. (We have shown that fibre bundles have the homotopy
lifting property w.r.t. maps from CW-complexes. In fact this holds for all maps, but the proof is more
complicated).

We have a homotopy F : X × [0,1] → Y , which gives a pull-back bundle F∗E on X × [0,1]. We
need to show F∗E |X × {0} ∼= F∗E |X × {1}.

Let V =ϕ∗ f ∗E on X × [0,1], where ϕ : X × [0,1] → X is the obvious projection. V |X × {t } ∼= f ∗E
for all t , so STP V ∼= F∗E .

Let I = {(x,α) : x ∈ X × [0,1],α ∈ Iso(Vx ,F∗EX )}. I is a fibre bundle on X × [0,1] with typical fibre
GL(n,R).

Let it : X × [0,1], x 7→ (x, t ). There is an obvious homotopy i0 ∼ it .
Since V |X × {0} ∼= F∗E |X × {0}, there is an obvious lifting of i0 to I . By the homotopy lifting

property, there is also a lifting of i1 to I . A lift of i1 is precisely an isomorphism V |X×{1} ∼= F∗E |X×{1},
as desired.

Theorem. Let X be a compact Hausdorff space. Then there is a natural bijection

[X ,Gr(n,R∞)] ←→ {Isomorphism classes of rank-n vector bundle over X }

identifying [ f ] ∈ [X ,Gr(n,R∞)] with f ∗En . Here

R∞ = ⋃
a≥0

Ra = {(x1, x2, . . . ) : xi ∈R, only finitely many xi 6= 0}

Gr(n,R∞) = {n dimensional subspaces of R∞} = ⋃
a≥n

Gr(n,Ra)

and En is the universal rank-n bundle on Gr(n,R∞). [X ,Gr(n,R∞] is the set of homotopy classes of
maps X → Gr(n,R∞).

Proof. By the previous result, [ f ] 7→ f ∗En is a well-defined function. Let E → X be a rank-n bundle.
Suppose that we can find an injective map of vector bundles ϕ : E →RN . Define f : X → Gr(n,RN )
by f (x) = im(ϕ : Ex →RN ). Obviously f ∗En

∼= E .
Now we want to find ϕ. Let Uα be a finite cover of X by trivialising neighbourhoods, and let ρα

be a partition of unity subordinate to Uα. The local trivialisations φα : EUα →Rn can be extended to
maps ρα ·φα : E →Rn , and

⊕
αραφα : X →⊕

αR
n is injective. It follows that [ f ] 7→ f ∗E is surjective.

It remains to show that the map is injective, i.e. that if f , g : X → Gr(n,R∞) have f ∗En
∼= g∗En

then f and g are homotopic. Let E = f ∗E ∼= g∗E . f and g define embeddings s, t : E →RN (since X
is compact, f , g both map into Gr(n,RN ) for some N <∞).

Now think of s as an embedding E ,→RN ⊕0 ⊆R2N and t as E ,→ 0⊕RN ⊆R2N . We can define a
homotopy F : E × [0,1] →R2N from s to t by F (−,u) = us + (1−u)t . The corresponding homotopy
G : X × [0,1] → Gr(n,R2N ) is a homotopy from f to g .

Lecture 21

Remark. The proof works with slight modification for X paracompact.

32



Burt Totaro 33

As a particular case of the theorem, we have

{line bundles on X } = [X ,Gr(1,R∞)] = [X ,RP∞] = [X ,K (Z/2,1)] = H 1(X ;Z/2)

Theorem (Leray-Hirsch). Let F → E → B a fibre bundle, R a commutative ring. Suppose that there
are elements x1, . . . , xn ∈ H∗(E ;R) such that the restrictions of xi to H∗(F ;R) form a basis for H∗(F ;R)
as a free R-module (i.e. H∗(F ;R) =⊕

i R · xi |F ) for all fibres F . Then H∗(E ;R) is a free module over
H∗(B ;R) with basis x1, . . . , xn .

For B compact, we prove this by induction on the number of open sets in an open cover of B .
In particular, let E be a rank-n vector bundle on X . Let

P (E) = {(x,L) : x ∈ X ,L ⊆ Ex dim 1 linear subspace}.

P (E ) is an RP n−1-bundle on X . There is a natural line bundle L on P (E ), whose fibre over (x,L) is L.

Intermission. We define the first Stiefel-Whitney class of a line bundle L → X to be the image of L
under the identification

{line bundles} ←→ H 1(X ;Z/2)

Explicitly, if f is the (unique up to homotopy) map X →RP∞ such that L = f ∗E1, then w1(L) = f ∗(u)
where u is the generator of H 1(RP∞;Z/2) ∼=Z/2.

w1 thus constructed obviously satisfies the naturality condition

w1(g∗L) = g∗w1(L)

L|P (E)x is the universal line bundle on RP n−1, so

(w1(L))|P (E)x = w1(L|P (E)x) = u ∈ H 1(RP∞;Z/2)

Let w = w1(L). Consider 1, w, . . . , w n−1 ∈ H∗(P (E);Z/2). Their restrictions to a fibre RP n−1 are
1,u, . . . ,un−1 which form a basis for H∗(RP n−1;Z/2).

So by the theorem,

H∗(P (E);Z/2) is a free module over

H∗(X ;Z/2) with basis 1, w, . . . , w n−1.
(A)

Let π : P (E) → X be the projection map.

π∗E //

��

E

��
P (E) // X

The pull-back map H∗(X ;Z/2) → H∗(P (E);Z/2) is injective by (A).
Moreover, L is a subbundle of π∗E (obviously). So (choosing an arbitrary metric)

π∗E = L⊕E ′

where E ′ is a rank-(n −1) vector bundle on P (E). Repeating, we get
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Theorem (Splitting principle). For any vector bundle E → X , there is a map f : Y → X such that

(1) f ∗E = L1 ⊕Ln for line bundles Li on Y .

(2) f ∗ : H∗(X ;Z/2) → H∗(Y ;Z/2) is injective

Corollary. The Stiefel-Whitney classes are determined uniquely by the axioms (if they exist).

Proof. The axioms force the definition of w1(L) for a line bundle L, since any L is pulled back from
E1 →RP∞ and w1(E1) = u.

Next, the axioms imply
w(L1 ⊕·· ·⊕Ln) = w(L1) · · ·w(Ln)

for any line bundles L1, . . . ,Ln (where w(Li ) = 1+w1(Li )).
Finally, for an arbitrary bundle E → X , let f : Y → X be the map from the splitting principle.

w( f ∗E) = f ∗w(E) is uniquely determined, and since f ∗ is injective so is w(E).

Finally, we show that there really are classes satisfying the axioms.
Let E be a rank-n vector bundle on X . We know that

H∗(P (E),Z/2) =
n−1⊕
i=0

w i H∗(X ;Z/2)

So we must have

w n =
n−1∑
i=0

an−i w i

where a j ∈ H j (X ;Z/2). We define

w j (E) =


1 j = 0

a j j = 1, . . . ,n

0 j > n

We need to check that this satisfies the axioms.
If L is a line bundle then P (L) = X and by definition w ∈ H 1(P (E),Z/2) is w1L ∈ H 1(X ;Z/2) (for

our line bundle definition of w1). So the new definitions agrees with the definition of w1 for line
bundles. In particular, w1(E1) = u, as desired.

Naturality is easy.

Lecture 22

RTP that the Whitney sum formula is satisfied. We start by showing that if L1, . . . ,Ln are line bun-
dles on X and E = L1 ⊕·· ·⊕Ln then

w(E) = w(L1) · · ·w(Ln)

There are maps f1, . . . , fn : X →RP∞ such that Li
∼= f ∗

i E1. Consider ( f1, . . . , fn) : X → (RP∞)n . Then
L1, . . . ,Ln are pulled back from K1, . . . ,Kn , where Ki = π∗

i E1, the pull-back under the projection
πi : (RP∞)n →RP∞.
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By naturality it suffices to prove that

w(F ) = w(K1) · · ·w(Kn) ∈ H∗((RP∞)n ;Z/2)

where F = K1 ⊕·· ·⊕Kn .
We know that

H∗((RP∞)n ;Z/2) = (Z/2)[x1, . . . , xn]

where xi = w1(Ki ).
Consider the projective bundle P (F ) → (RP∞)n .
We have an element u ∈ H 1(P (F );Z/2) which is w1(Luni v )

H∗(P (F );Z/2) =
n−1⊕
i=0

ui H∗((RP∞)n ;Z/2)

By definition,

un =
n−i∑
i=0

wn−i (F )ui

So
n∑

i=0
wn−i (F )ui = 0

The bundle P (F ) → (RP∞)n has n obvious sections si corresponding to the n line bundles Ki ⊆ F .
Pulling back (restricting to the j -th section)

n∑
i=0

wn−i (F )(s∗j u)i = 0 ∈ H∗((RP∞)n ;Z/2)

Now
s∗j u = w1(s∗j Luni v ) = w1K j = x j ∈ H∗((RP∞)n ;Z/2)

So for j = 1, . . . ,n,

0 =
n∑

i=0
wn−i (F )xi

j ∈ H∗((RP∞)n ;Z/2)

Let

f (t ) =
n∑

i=0
wn−i (F )t i ∈ (Z/2)[x1, . . . , xn][t ]

This is a monic degree n polynomial. We know f (x j ) = 0 ∀ j , so since (Z/2)[x1, . . . , xn] is an integral
domain

f (t ) = (t −x1) · · · (t −xn)

In particular,
w(F ) = f (1) = (1+x1) · · · (1+xn) = w(K1) · · ·w(Kn).

Finally we show that w(E ⊕F ) = w(E)w(F ) for all E ,F → X .
The splitting principle gives f : Y → X such that f ∗E , f ∗F are direct sums of line bundles and

f ∗ : H∗(X ;Z/2) → H∗(Y ;Z/2) is injective. So

f ∗w(E ⊕F ) = w( f ∗E ⊕ f ∗F ) = w( f ∗E)w( f ∗F ) = f ∗(w(E)w(F ))

and by injectivity, w(E ⊕F ) = w(E)w(F ).
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Recall that isomorphism classes of rank-n vector bundles over X correspond to elements of
[X ,Gr(n,R∞)]. Note that

Gr(n,R∞) = Emb(Rn ,R∞)
/

GL(n,R)

Emb(Rn ,R∞) is contractible (proof similar to contractibility of S∞).

Definition. For a topological group G let EG be any contractible space with free G-action. Then
the classifying space of G is BG = EG/G .

So Gr(n,R∞) = BGL(n,R).
We have a fibre bundle

G → EG → BG

By the long exact sequence of homotopy groups it follows that

πi BG ∼=πi−1G

(in particular BG is connected)
This gives some information about classifying vector bundles on spheres,

[Sb ,Gr(n,R∞)] = [Sb ,BO(n)] =πbBO(n) =πb−1O(n)

Example. π0O(n) =Z/2 for all n ≥ 1, so there are exactly two isomorphism classes of rank-n vector
bundles on S1. The Möbius line bundle L has w1L 6= 0, so the trivial bundle Rn

S1 and L ⊕Rn−1
S1 are

not isomorphic, so they represent the two classes.

For a topological group G there always is a contractible EG , and the homotopy type of BG is
independent of choice of EG . So BG is well-defined up to homotopy equivalence.

Looping the natural fibration G → EG → BG gives

ΩBG →G → EG ' pt ,

so G 'ΩBG . Apart from details

{connected topological spaces}
Ω // {topological groups}
B

oo

Lecture 23

Definition. A principal G-bundle over a space B is a space E with a free G-action such that B = E/G .
(G is a topological group.)

Thus G → E → B is a fibre bundle. E is trivial if E ∼= B ×G with the obvious G-action. If E is
contractible it is called universal, then B = E/G = BG .

Definition. Given a principal G-bundle E → B and an action of G on a space F , the associated
F -bundle over B is (E ×F )/G , where g (e, f ) = (g (e), g ( f )). This is a fibre bundle

F → (E ×F )/G → E/G = B .
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Example. Given a principal GL(n,R)-bundle the associated Rn-bundle corresponding to the usual
representation of GL(n,R) on Rn is a vector bundle. This gives an equivalence between GL(n,R)-
bundles on B and rank-n vector bundles on B .

For a vector bundle V → B , the corresponding principal bundle is

E = ⋃
x∈B

Iso(Rn ,Vx)

with G-action g (ϕ) =ϕ◦ g .

Theorem. Let G be a topological group. Then there is a bijection

{isomorphism classes of principal G-bundles on X } ←→ [X ,BG]

Sketch proof. Given a map f : X → BG the pull-back of EG → BG by f is a principal bundle on X .
The isomorphism class of f ∗EG depends only on the homotopy type of f .
For a principal G-bundle E → X , construct a map X → BG by the following diagram

E // (E ×EG)/G //

'
��

BG

X E/G

OO 88rrrrrrrrrr

The construction shows that for any principal G-bundle G → E → X , there is a fibration E →
X → BG . Looping this gives G → E → X again.

Definition. A characteristic class (with values in H i (−;R)) for principal G-bundles is an assignment
to every principal G-bundle E → X of an element α(E) ∈ H i (X ;R) such that for every f : Y → X

α( f ∗E) = f ∗(α(E))

Lemma. There is a one-one correspondence between H i (BG ;R) and the set of characteristic classes
for principal G-bundles with values in H i (X ;R).

Sketch proof. Given any characteristic class α apply α to the universal G-bundle G → EG → BG to
get α(EG) ∈ H i (BG ;R). Conversely, given an element α ∈ H i (BG ;R) and any principal G-bundle
f ∗EG define α( f ∗EG) = f ∗α.

Example.
H∗(BO(n);Z/2) ∼= (Z/2)[w1E , . . . , wnE]

where E is the universal rank-n vector bundle on BO(n) (same proof as for U (n), see below).

What is H∗(BO(n);Z)? It is easier to first look at H∗(BU (n);Z).

Principal GL(n,C)-bundles ←→ complex vector bundles

Principal U (n)-bundles ←→ complex vector bundles with Hermitian product

Since U (n) 'GL(n,C) we have BU (n) ' BGL(n,C) and

H∗(BU (n);Z) = H∗(BGL(n,C);Z).
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38 Fibre Bundles

First, what is H∗(BU (1);Z)? U (1) ∼=S1, BU (1) = BS1 =CP∞. There is a universal (tautological)
line bundle L =O (−1) on CP∞.

H∗(BU (1);Z) = H∗(CP∞;Z) =Z[u], u ∈ H 2(CP∞;Z)

So for any complex line bundle f ∗(O (1)), we define the first Chern class

c1( f ∗(O (1))) = f ∗u ∈ H 2(CP∞;Z)

Lemma. For any CW-complex X , discrete Abelian group A and n ≥ 1,

[X ,K (A,n)] = H n(X ; A)

Sketch proof. Construct maps X → K (A,n) cell-by-cell.

Corollary. For any space X ,

c1 : {isomorphism classes of C-line bundle on X }
∼=−−−−−→ H 2(X ;Z)

Proof. CP∞ = K (Z,2), so both sets correspond to [X ,CP∞].

Theorem. For any complex vector bundle E → X , we can define ci (E) ∈ H 2(X ;Z) for all i ≥ 0, called
the Chern classes of E. They satisfy

(1) c0(E) = 1, ci (E) = 0 for i > rankCE.

(2) ci ( f ∗E) = f ∗(ci (E)).

(3) The total Chern class c(E) =∑
i ci (E) ∈ H∗(X ;Z) has

c(E ⊕F ) = c(E)c(F )

(4) The complex line bundle O (1) onCP 1 has c1(O (1)) = u, the standard generator for H 2(CP 1;Z).3

Remark. The Chern classes are determined by these axioms.

H∗(BU (n);Z) =Z[c1(E), . . . ,cn(E)]

where E is the universal rank-n vector bundle over BU (n).

Lecture 24

Let p : E → X be complex rank-n vector bundle and π : P (E) → X the corresponding complex
projective bundle. There is an obvious universal C-line bundle L on P (E).

Let u =−c1(L) ∈ H 2(P (E);Z). Clearly u restricted to fibre CP n−1 is the standard generator for
H 2(CP n−1;Z) ∼=Z. The elements 1,u, . . . ,un−1 ∈ H∗(P (E);Z) restrict to a basis for H∗(CP n−1;Z) ∼=
Z[u]

/
(un) as a free Z-module. So by Leray-Hirsch,

H∗(P (E);Z) =
n−1⊕
i=0

ui H∗(X ;Z) .

3i.e.
∫
CP 1 c1(O (1)) = 1. Note that O (1) is the dual of the tautological line bundle O (−1).
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Note that L is a subbundle of π∗E . Using an arbitrary Hermitian metric on π∗E we get a splitting

π∗E = L⊕E ′ ,

where E ′ has rank n −1. Iterating gives

Theorem (Complex Splitting Principle). For any complex vector bundle E on a paracompact space
X there is a map f : Y → X such that

(1) f ∗E is a direct sum of line bundles on Y , and

(2) f ∗ : H∗(X ;Z) → H∗(Y ;Z) is injective (in fact split injective, i.e. the image is a direct summand
of H∗(Y ;Z)).

To construct the Chern classes we first compute H∗(BU (n);Z): Let E → BU (n) be the universal
vector bundle on BU (n), and let Y be the corresponding space given by the splitting principle. We
can describe Y explicitly: The fibre of Y → BU (n) over X is

{(L1, . . . ,Ln) : Li a C-line in Ex ,E = L1 ⊕·· ·⊕Ln ,

Li pairwise orthogonal w.r.t. some fixed metric on E }

This fibre is U (n)/T , where T ⊆U (n) is the torus of diagonal unitary matrices.
We can identify the “splitting map” for BU (n) as

U (n)/T → BT → BU (n)

(for any H <G topological groups there is a fibration G/H → B H → BG), so

H∗(BU (n);Z) ⊆ H∗(B((S1)n);Z) = H∗((CP∞)n ;Z) =Z[t1, . . . , tn] ,

where each ti has degree 2.
Thus any characteristic class α for a rank-n C-vector bundle is determined by α(L1 ⊕·· ·⊕Ln),

which must be a polynomial with Z-coefficients in t1, . . . , tn (ti = c1(Li ))
For any σ ∈ Sn , we must have

α(L1 ⊕·· ·⊕Ln) =α(Lσ(1) ⊕·· ·⊕Lσ(n)) ,

so
H∗(BU (n);Z) ⊆Z[t1, . . . , tn]Sn =Z[e1, . . . ,en] ,

where e1, . . . ,en are the elementary symmetric functions of t1, . . . , tn .
In fact equality holds. This follows by counting dimensions: For any space X , define the

Poincaré series to be
p(X ) = ∑

i≥0
bi (X )t i .

The Leray-Hirsch theorem gives

p(B((S1)n)) = p(U (n)/T )p(BU (n))

= p(CP 1)p(CP 2) · · ·p(CP n−1)p(BU (n))

= (1+ t 2)(1+ t 2 + t 4) · · · (1+ t 2 +·· ·+ t 2n−2)p(BU (n))
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Also

p(B((S1)n)) = 1

(1− t 2)n

Thus

p(BU (n)) = 1

(1− t 2)(1− t 4) · · · (1− t 2n)
= p(Z[e1, . . . ,en])

where degei = 2i . So
H∗(BU (n);Z) =Z[e1, . . . ,en]

Definition. We define ci (Euni v ) = ei , ci ( f ∗Euni v ) = f ∗ei .
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Example Sheet 1

(1) Show that the 2-torus minus a point deformation retracts onto the wedgeS1∨S1. (In general,
for pointed spaces (X , x0) and (Y , y0), X ∨Y denote the pointed space obtained from the
disjoint union X qY by identifying x0 and y0.)

(2) (a) For a triple (X , A, x0) (X is a space, A is a subspace, x0 is a point in A), prove the exactness
of the relative homotopy sequence

· · ·→πn(A, x0) →πn(X , x0) →πn(X , A, x0) →πn−1(A, x0) → . . .

(For example, write out the proof of exactness at πn A in detail, and make sure you can
work out the remaining cases as well.)

(b) The end of the above sequence is slightly different, because it involves pointed sets, but
is also easier to understand geometrically. Thus, check by hand that the sequence

π1(X , x0) →π1(X , A, x0) →π0(A, x0) →π0(X , x0)

is exact.

(3) Show that any compact subspace of a CW-complex is contained in a finite subcomplex.

(4) In the context of homotopy theory, S∞ denotes the CW complex S∞ =⋃
n≥0S

n , where S0 ⊂
S1 ⊂S2 ⊂ . . . in the natural way. Show that S∞ is contractible (a) using Whitehead’s theorem
plus question (3), and (b) directly.

(5) By definition, an H-space is a pointed space (X ,e) together with a “multiplication” map
µ : X × X → X such that the two maps X → X given by x 7→ µ(x,e) and x 7→ µ(e, x) are both
homotopic to the identity through maps (X ,e) → (X ,e). For example, a topological group X
with identity element e is an H-space; in that case, the two maps x 7→µ(x,e) and x 7→µ(e, x)
are actually equal to the identity map.

(a) For an H-space X , show that the group operation in πn(X ,e) can also be defined by the
rule ( f g )(x) =µ( f (x), g (x)).

(b) Perhaps using (a), show that the fundamental group π1(X ,e) of an H-space is Abelian.

(6) By definition, a pointed space X is n-connected if πi (X , x0) = 0 for 0 ≤ i ≤ n. Show that an
n-connected, n-dimensional CW complex is contractible.
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Example Sheet 2

(1) Show that for any Abelian group G and any n ≥ 2, there is a K (G ,n) CW-complex. (The
construction was given in class for G =Z. In general, it seems helpful to use the Hurewicz
theorem.)

(2) You may use the following relative version of Hurewicz theorem: if a pair (X , A) of spaces is
(n −1)-connected, n ≥ 2, with A simply connected and nonempty, then Hi (X , A) = 0 for i < n
and the Hurewicz map πn(X , A) → Hn(X , A;Z) is an isomorphism.

Show that a map f : X → Y between simply-connected CW-complexes X and Y such that
f∗ : Hi (X ;Z) → Hi (Y ;Z) is an isomorphism for all i ≥ 0 is a homotopy equivalence.

(3) Show that if X is a simply connected CW-complex with the same homology groups as Sn ,
n ≥ 2, then X is homotopy equivalent to Sn . (Use problem (2))

(4) The unitary group U (n) is defined as the group of C-linear automorphism of Cn which

preserves the length of all vectors, with length defined as |(z1, . . . , zn)| :=
√
|z1|2 +·· ·+ |zn |2.

You may use that the map from U (n) to the sphere S2n−1 ⊂Cn defined by A 7→ A(1,0, . . . ,0) is
a fibre bundle, with fibre U (n −1).

(a) Show that the group GL(n,C) of C-linear automorphisms of Cn is homotopy equivalent
to U (n).

(b) Compute πiU (n) for i ≤ 3 and any n.

(5) Check that the map f : O(n) →Sn−1 defined by A 7→ A(1,0, . . . ,0) is a fibre bundle with fibre
O(n −1). (Hint: begin by finding sections of f over open subsets of Sn−1 which cover Sn−1.)

(6) We can obtainCP∞ fromS2 by adding cells of dimensions 4, 6, and so on. So there is a natural
inclusion map from S2 to CP∞. Show that the homotopy fibre of this inclusion is homotopy
equivalent to S3. (Hint: first try to construct a map from S3 to this homotopy fibre. You may
use the fact that the homotopy fibre of a map between CW-complexes is always homotopy
equivalent to a CW-complex.)

What do you get by looping the resulting fibration? (Looping means passing from a fibration
F → E → B to the fibration ΩB → F → E .)
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Example Sheet 3

As in the course, you may assume that whatever spaces come up are paracompact, and homotopy
equivalent to CW-complexes.

(1) Let L, M be complex line bundles on a space X . Then L ⊗M is also a complex line bundle
(with fibre at x ∈ X equal to Lx ⊗C Mx). Show that

c1(L⊗M) = c1(L)+ c1(M)

(Hint: reduce to a universal case, with X = (CP∞)2. Argue that there must be a formula
c1(L ⊗ M) = ac1(L)+bc1(M) for some integers a and b. Evaluate a and b by considering
special cases.)

(2) Let E be a complex line bundle over a space X , and E∗ be the dual bundle (with fibre at
x ∈ X equal to (Ex)∗ = HomC(Ex ,C)). Show that ci (E∗) = (−1)i ci (E). (Hint: use the splitting
principle for complex vector bundles.)

(3) Let E be a complex vector bundle over a space X . Let ER denote the same bundle, but
now considered only as a real vector bundle. Show that the odd Stiefel-Whitney classes
w2i+1(ER) are zero, while w2i (ER) is the image of the Chern class ci (E ) under the natural map
H 2i (X ;Z) → H 2i (X ;Z/2).

(4) I mentioned that for a CW-complex X , an Abelian group A and any n ≥ 1, there is a natural
isomorphism

[X ,K (A,n)] ∼= H n(X ; A).

(There is a natural “universal” element of H n(K (A,n); A), and pulling this back by a map
X → K (A,n) gives an element of H n(X ; A).)

Prove the following special case of the statement: given a CW-complex X , n ≥ 1, and an
element α ∈ H n(X ;Z), show that α is pulled back from the generator of H n(K (Z,n);Z) =Z by
some map X → K (Z,n). (Hint: construct a cellular map, by induction on the skeleta of X . It
helps to interpret H n(X ;Z) as the cohomology of the cellular cochain complex

· · ·→ ∏
(n−1)-cells

Z→ ∏
n-cells

Z→ ∏
(n+1)-cells

Z→ . . . .)

(5) Show that any involution of Rn (continuous map f : Rn → Rn with f 2 = id) must have a
fixed point. (Hint: If not, we have a free action of Z/2 on Rn . What can you say about the
cohomology of the quotient space?)

(6) Let p be a prime number. Apply the Leray-Hirsch theorem to the fibre bundle S1 →
S∞/

(Z/p) → CP∞ to compute H∗(BZ/p;Z/p). (The Leray-Hirsch theorem by itself does
not give the ring structure completely; for that you will need different methods depending on
whether p = 2 or not.)

(7) Let E be a real vector bundle of rank n. Show that w1(E) = w1(Λn(E)). Here Λa(E) denotes
the ath exterior power of E , which has rank

(n
a

)
. Thus Λn(E) is a line bundle, called the
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determinant line bundle of E . (Depending on how you do this problem, you may need
formulæ from linear algebra like

Λa(V ⊕W ) =
a⊕

i=0
Λi (V )⊗Λa−i (W ).)

Application: one can define an orientation on a real vector bundle of rank n to be a trivialisa-
tion of its determinant line bundle. So this problem implies (why?) that a real vector bundle
is orientable iff w1(E ) = 0. In particular, a manifold M is orientable if and only if w1(M) = 0 in
H 1(M ;Z/2), where as usual the Stiefel-Whitney classes of a manifold are defined to be the
Stiefel-Whitney classes of the tangent bundle.

(8) Show that RP n is not a boundary for n even. Show directly (that is, without using Thom’s
theorem on cobordism) that the manifold RP n is a boundary for n odd. (Hint: Start by
showing that RP n , for n odd, is an S1-bundle over another manifold.

(9) A manifold M is said to admit a field of tangent k-planes if its tangent bundle admits a sub-
bundle of dimension k. Show that RP n admits a field of tangent 1-plane if and only if n is odd.
Show that RP 4 and RP 6 do not admit fields of tangent 2-planes.
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