
Euler characteristics for p-adic Lie groups

Burt Totaro

Lazard [23] found definitive results about the cohomology of p-adic Lie groups
such as GLnZp with coefficients in vector spaces over Qp. These results, applied
to the image of a Galois representation, have been used many times in number
theory. It remains a challenge to understand the cohomology of p-adic Lie groups
with integral coefficients, and especially to relate the integral cohomology of these
groups to the cohomology of suitable Lie algebras over the p-adic integers Zp. In
this paper, we do enough in this direction to compute a subtle version of the Euler
characteristic, arising in the number-theoretic work of Coates and Howson ([14],
[13]), for most of the interesting p-adic Lie groups.

The Euler characteristics considered in this paper have the following form. Let
G be a compact p-adic Lie group with no p-torsion. Let M be a finitely generated
Zp-module on which G acts, and suppose that the homology groups Hi(G,M) are
finite for all i. They are automatically 0 for i sufficiently large [27]. Then we want
to compute the alternating sum of the p-adic orders of the groups Hi(G,M):

χ(G,M) :=
∑

i

(−1)iordp|Hi(G,M)|,

where ordp(p
a) := a. These Euler characteristics determine the analogous Euler

characteristics for the cohomology of G with coefficients in a discrete “cofinitely
generated” Zp-module such as (Qp/Zp)

n; see section 1 for details. If the module M
is finite, Serre gave a complete calculation of these Euler characteristics in [29].

The first result on these Euler characteristics with M infinite is Serre’s theorem
that χ(G,M) = 0 for any open subgroup G of GL2Zp with p ≥ 5, where M = (Zp)

2

with the standard action of G [29]. This is the fact that Coates and Howson need
for their formula on the Iwasawa theory of elliptic curves ([14], [13]). In fact, Serre’s
paper [29] and the later paper by Coates and Sujatha [15] prove the vanishing of
similar Euler characteristics for many p-adic Lie groups other than open subgroups
of GL2Zp, but only for groups which are like GL2Zp in having an abelian quotient
group of positive dimension. For example, it was not clear what to expect for open
subgroups of SL2Zp.

We find that the above Euler characteristic, for sufficiently small open subgroups
of SL2Zp, is equal to 0 for all p 6= 3 and to −2 for p = 3. We also compute the Euler
characteristic of these groups with coefficients in a representation of SL2 other than
the standard one: it is again 0 except for finitely many primes p. The phenomenon
simplifies curiously for larger groups (say, reductive groups of rank at least 2), as
the following main theorem asserts: the Euler characteristic is 0 for all primes p and
all representations of the group for which it makes sense. The proof of this theorem
is completed at the end of section 9.
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Theorem 0.1 Let p be any prime number. Let G be a compact p-adic Lie group
of dimension at least 2, and let M be a finitely generated Zp-module with G-action.
Suppose that the homology of the Lie algebra gQp of G acting on M ⊗Qp is 0; this
is equivalent to assuming that the homology of any sufficiently small open subgroup
G0 acting on M is finite, so that the Euler characteristic χ(G0,M) is defined. (For
gQp

reductive, this assumption is equivalent to the vanishing of the coinvariants of
gQp

on M ⊗ Qp.) Then the Euler characteristics χ(G0,M) are the same for all
sufficiently small open subgroups G0 of G (that is, all open subgroups contained in
a certain neighborhood of 1).

The common value of these Euler characteristics is 0 if every element of the Lie
algebra gQp

has centralizer of dimension at least 2 (example: gQp
reductive of rank

at least 2). Otherwise, there is an element of gQp whose centralizer has dimension
1 (example: gQp = sl2Qp), and then we give an explicit formula for the common
value of the above Euler characteristics; in particular, this common value is not 0
for some choice of the module M .

Remarks. (1) The dimensions of centralizers play a similar role in the case of
finite coefficient modules: if G is a compact p-adic Lie group with no p-torsion, then
χ(G,M) = 0 for all finite p-torsion G-modules M if and only if every element of G
has centralizer of dimension at least 1, by Serre [29], Corollary to Theorem C.

(2) There are simple sufficient conditions for G to be “sufficiently small” that
χ(G,M) is equal to the value which we compute. For example, if M is a faithful
representation of G, it suffices that G should act trivially on M/p if p is odd and
on M/4 if p = 2. In fact, for the most natural p-adic Lie groups, we can avoid
this assumption completely: Corollary 11.6 shows that χ(G,M) = 0 for all compact
open subgroups G of a reductive algebraic group of rank at least 2 when p is big
enough. In particular, such groups G (including SLnZp, for example) need not be
pro-p groups.

(3) It is somewhat surprising that Euler characteristics of this type are the
same for all sufficiently small open subgroups, given that G has dimension at least
2. Other types of Euler characteristics tend instead to be multiplied by r when
passing from G to a subgroup H of finite index r. Of course, these two properties
are the same when the Euler characteristics of G and H are both 0.

(4) The theorem is false for G of dimension 1. In this case, for a given module
M as above, G has an open subgroup isomorphic to Zp such that

χ(pnZp,M) = χ(Zp,M) + n dim(M ⊗Qp)

for all n ≥ 0. That is, the Euler characteristics for open subgroups need not attain
a common value when G has dimension 1.

The key to the proof of Theorem 0.1 is to relate the homology of p-adic Lie groups
to the homology of Lie algebras. Lazard did so for homology with Qp coefficients.
There is more to be discovered about the relation between group homology and Lie
algebra homology without tensoring with Qp, but at least we succeed in showing
that the Euler characteristic of a p-adic Lie group (of dimension at least 2) is equal to
the analogous Euler characteristic of some Lie algebra over Zp. The proof in sections
8 and 9 sharpens Lazard’s proof that the group and the Lie algebra have the same
rational cohomology, giving an explicit upper bound for the difference between the
integral cohomology of the two objects. We compute these Euler characteristics
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for Lie algebras in sections 3 to 7, using in particular Kostant’s theorem on the
homology of the “upper-triangular” Lie subalgebra of a semisimple Lie algebra over
a field of characteristic zero [22]. Sections 1 and 2 give some preliminary definitions
and results.

The rest of the paper goes beyond Theorem 0.1 in several directions. First,
using the general results we have developed on the integral homology of p-adic Lie
groups, Theorem 10.1 computes the whole homology with nontrivial coefficients of
congruence subgroups, not just the Euler characteristic. Section 11 extends the
earlier arguments to prove the vanishing of Euler characteristics for many p-adic
Lie groups which are not pro-p groups, namely open subgroups of a reductive group
of rank at least 2. The proof uses that for sufficiently large prime numbers p, all
pro-p subgroups of a reductive algebraic group are valued in the sense defined by
Lazard. A sharper estimate of the primes p with this property is given in section 12,
using the Bruhat-Tits structure theory of p-adic groups. Finally, section 13 shows
that the results of section 11 on vanishing of Euler characteristics do not extend to
open subgroups of SL2Zp.

I am grateful for John Coates’s questions about these Euler characteristics.
Jean-Pierre Serre, Ottmar Venjakob, and the referee made useful suggestions on
the exposition.
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1 Homology vs. cohomology

The main results of this paper are about the homology of groups or Lie algebras
with coefficients in finitely generated Zp-modules. We will explain here how to
deduce analogous results for cohomology, or for coefficients in a module of the form
(Qp/Zp)

n.
Throughout the paper, a Lie algebra g over a commutative ring R is always

assumed to be a finitely generated free R-module. We use Cartan-Eilenberg [11],
Chapter XIII, as a reference for the homology and cohomology of Lie algebras. The
homology of a Lie algebra g depends on the base ring R as well as on g, but (as
is usual) we will not indicate that in the notation. One relation between homology
and cohomology for Lie algebras is the naive duality:

Lemma 1.1 For any g-module M and any injective R-module I, there is a canon-
ical isomorphism

HomR(Hi(g,M), I) = H i(g,HomR(M, I)).

Typical cases are I = R, when R is a field, and I = Qp/Zp, when R = Zp.
Also, there is a canonical Poincaré duality isomorphism for any g-module M ([11],
p. 288):

Lemma 1.2

Hi(g,M) ∼= Hn−i(g,∧ng⊗R M).

Either of these lemmas can be used to translate the results of this paper about
Lie algebras from homology to cohomology.

A reference for the homology of profinite groups G is Brumer [9]. For a prime
number p, let ZpG denote the completed group ring of G over the p-adic integers,

ZpG := lim←−Zp[G/U ],

where U runs over the open normal subgroups of G. Define a pseudocompact
ZpG-module to be a topological G-module which is an inverse limit of discrete
finite p-torsion G-modules. The category of pseudocompact ZpG-modules is an
abelian category with exact inverse limits and enough projectives. So we can
define the homology groups H∗(G,M) of a profinite group G with coefficients
in a pseudocompact ZpG-module M as the left derived functors of the functor
H0(G,M) = MG := M/I(G)M , where I(G) = ker(ZpG→ Zp). We have

Hi(G,M) = lim←−Hi(G/U,M/I(U)M),

where U runs over the open normal subgroups of G ([9], Remark 1, p. 455). Further-
more, the category of pseudocompact ZpG-modules is dual, via Pontrjagin duality

M∗ := Homcont(M,Qp/Zp),

to the category of discrete p-torsion G-modules ([9], Proposition 2.3, p. 448). The
category of discrete p-torsion G-modules has enough injectives, and the cohomol-
ogy of a profinite group G with coefficients in such a module can be defined as a
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right derived functor [28]. As a result, the homology theory of profinite groups G
with coefficients in pseudocompact ZpG-modules is equivalent to the better-known
cohomology theory with coefficients in discrete p-torsion G-modules, via Pontrjagin
duality:

Lemma 1.3

Hi(G,M)∗ = H i(G,M∗).

So the main results of this paper, about Euler characteristics associated to the
homology of a p-adic Lie group with coefficients in a finitely generated Zp-module,
are equivalent to statements about the cohomology of such a group with coefficients
in a discrete “cofinitely generated” Zp-module such as (Qp/Zp)

n.

2 Euler characteristics for Lie algebras

This section discusses some simpler situations where Euler characteristics can be
shown to vanish. Most of the results and definitions here will be needed for the
later results on Euler characteristics for p-adic Lie groups.

A simple fact in this direction is that a compact connected real Lie group G,
viewed as a real manifold, has Euler characteristic 0 unless the group is trivial, in
which case the Euler characteristic is 1. This fact can be reformulated as a statement
about Euler characteristics in Lie algebra homology, by E. Cartan’s theorem that

H∗(G,R) = H∗(g,R)

for a compact connected Lie group G with Lie algebra g over the real numbers [10].
There is a much more general vanishing statement about Euler characteristics of
Lie algebras, as follows.

Proposition 2.1 Let g be a finite-dimensional Lie algebra over a field k, and let
M be a finite-dimensional representation of g. Then the Euler characteristic

χ(g,M) :=
∑

i

dimkHi(g,M)

is equal to 0 if g 6= 0, and to the dimension of M if g = 0.

Proof. For g = 0, H0(g,M) = M and the higher homology is 0. For g 6= 0, we
consider the standard complex which computes the Lie algebra homology H∗(g,M)
([11], p. 282):

→ ∧2g⊗k M → g⊗k M →M → 0,

where

d((x1 ∧ · · · ∧ xr)⊗m) =
∑

i

(−1)i(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xr)⊗ xim

+
∑

i<j

(−1)i+j([xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xr)⊗m

for x1, . . . , xr ∈ g and m ∈ M . Since g and M are finite-dimensional, this is a
bounded complex of finite-dimensional vector spaces. The basic fact about Euler
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characteristics is that, in this situation, the Euler characteristic of the homology of
this complex (that is, of H∗(g,M)) is equal to the alternating sum of the dimensions
of the vector spaces in the complex. Thus, if we let n be the dimension of g, the
Euler characteristic is

n∑

i=0

(−1)i
(
n

i

)
dim M,

which is 0 for n > 0. QED
The same argument applies to the homology of Lie algebras over a discrete

valuation ring Γ with coefficients in a Γ-module of finite length, as the following
proposition says. We have in mind the case of a Lie algebra over the p-adic integers
Zp acting on a finite Zp-module. A Zp-module A is finite if and only if it has finite
length, and in that case

ordp|A| = lengthZp
A.

Proposition 2.2 Let g be a Lie algebra over a discrete valuation ring Γ, and let
M be a Γ-module of finite length on which g acts. Then the Euler characteristic

χ(g,M) :=
∑

i

(−1)ilengthΓHi(g,M)

is equal to 0 if g 6= 0, and to lengthΓM if g = 0.

Proof. For any g-module M , the homology groups H∗(g,M) are the homology
of the standard complex

→ ∧2g⊗Γ M → g⊗Γ M →M → 0.

For M of finite length, as we assume, this is a bounded complex of Γ-modules
of finite length. So the basic fact about Euler characteristics says that the Euler
characteristic χ(g,M) is equal to the alternating sum of the lengths of the Γ-modules
in the complex, which is 0 for g 6= 0 by the same calculation as in the proof of
Proposition 2.1. QED

We now consider a more subtle situation, which is essentially the main topic
of this paper. Let g be a Lie algebra over a discrete valuation ring Γ, the case of
interest being Γ = Zp. Let M be a finitely generated Γ-module on which g acts,
and suppose that H∗(g,M) ⊗ F = 0, where F is the quotient field of Γ. Then
the homology groups Hi(g,M) are Γ-modules of finite length, and we can try to
compute the Euler characteristic

χ(g,M) :=
∑

i

(−1)ilengthΓHi(g,M).

In this situation, the standard complex which computes H∗(g,M),

→ ∧2g⊗Γ M → g⊗Γ M →M → 0,

does not consist of Γ-modules of finite length, and so the basic fact about Euler
characteristics is not enough to determine χ(g,M).

We do, however, have the following results on “independence of M” and “inde-
pendence of g.” For part (2), we need to define relative Lie algebra homology for
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Lie algebras h ⊂ g and a g-module M . Namely, let H∗(g, h;M) be the homology
of the mapping cone of the map of chain complexes C∗(h,M) → C∗(g,M) which
compute the homology of h and g. Then there is a long exact sequence

Hj(h,M)→ Hj(g,M)→ Hj(g, h;M)→ Hj−1(h,M).

Proposition 2.3 Let g be a Lie algebra over a discrete valuation ring Γ.
(1) Suppose g 6= 0. Let M1 and M2 be g-modules, finitely generated over Γ,

which become isomorphic after tensoring with F . Then H∗(g,M1) ⊗ F = 0 if and
only if H∗(g,M2)⊗ F = 0, and if either condition holds then

χ(g,M1) = χ(g,M2).

(2) Suppose that g has rank at least 2 as a free Γ-module. Let M be a g-module
which is finitely generated over Γ. Let h ⊂ g be an open Lie subalgebra, meaning
a Lie subalgebra such that the Γ-module g/h has finite length. Then the relative
Lie algebra homology groups H∗(g, h;M) have finite length as Γ-modules, and the
corresponding Euler characteristic χ(g, h;M) is 0. It follows that H∗(g,M)⊗F = 0
if and only if H∗(h,M)⊗ F = 0, and if either condition holds then

χ(g,M) = χ(h,M).

The assumption that g has rank at least 2 as a free Γ-module is essential in
statement (2). Indeed, for the Lie algebra g = Zp acting on a finitely generated
Zp-module M such that the space of coinvariants of g on M ⊗Qp is 0 (so that these
Euler characteristics are defined), χ(png,M) is equal to χ(g,M) +n dim(M ⊗Qp),
not to χ(g,M). A general calculation of χ(g,M) for g isomorphic to Zp can be
found in Proposition 6.1.

Proof. Since H∗(g,M)⊗F = H∗(g,M⊗F ), we have the first part of statement
(1). Furthermore, we can multiply a given g-module isomorphismM1⊗F →M2⊗F
by a suitable power of a uniformizer π of Γ to get a g-module homomorphism
M1 → M2 which becomes an isomorphism after tensoring with F . That is, the
kernel and cokernel have finite length. Then (1) follows from Proposition 2.2.

Since H∗(g,M)⊗F = H∗(g⊗F,M⊗F ), the vanishing of H∗(g, h;M)⊗F follows
from the isomorphism h ⊗ F ∼= g ⊗ F . So the Γ-modules H∗(g, h;M) have finite
length, and the Euler characteristic χ(g, h;M) is defined. Furthermore, Proposition
2.2 shows that χ(g,Mtors) = χ(h,Mtors) = 0, and so χ(g, h;Mtors) = 0. Therefore,
to show that χ(g, h;M) = 0, it suffices to show that χ(g, h;M/Mtors) = 0. That is,
we can assume that the finitely generated Γ-module M is free.

The map of chain complexes C∗(h,M) → C∗(g,M) associated to the inclusion
h ⊂ g has the form (∧∗h)⊗Γ M → (∧∗g)⊗Γ M . Since M is a finitely generated free
Γ-module, this map is injective. So the relative Lie algebra homology H∗(g, h;M)
is the homology of the cokernel complex C∗(g, h;M) of this map. Here Cj(g, h;M)
is a Γ-module of finite length with

lengthΓCj(g, h;M) = lengthΓ(∧
j(g)/ ∧j (h)) rankΓM

=

(
n− 1

j − 1

)
lengthΓ(g/h) rankΓM,
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where n denotes the rank of the Lie algebras g and h as free Γ-modules. The formula
for lengthΓ(∧

j(g)/ ∧j (h)) which I have used here applies to any inclusion of a free
Γ-module h of rank n into another, g, of the same rank. It follows from the special
case where g/h ∼= Γ/π. That special case can be proved by writing out a basis for
∧j(g)/ ∧j (h).

Since C∗(g, h;M) is a bounded complex of Γ-modules of finite length, we have

χ(g, h;M) = χ(C∗(g, h;M))

=
∑

j

(−1)j
(
n− 1

j − 1

)
lengthΓ(g/h) rankΓM

= 0,

using the assumption that the dimension n of g is at least 2.
The statements in Proposition 2.3(2) about the homology of g and h follow from

those about H∗(g, h;M) by the long exact sequence before the proposition. QED
The following definition makes sense thanks to Proposition 2.3.

Definition 2.4 Let gQp
be a Lie algebra of dimension at least 2 over Qp. Let

MQp
be a finite-dimensional gQp

-module such that H∗(gQp
,MQp

) = 0. Define
χfin(gQp

,MQp
) to be the Euler characteristic χ(g,M) for any integral models g and

M of gQp
and MQp

. That is, g is a Lie algebra over Zp and M is a g-module, finitely
generated as a Zp-module, such that tensoring up to Qp gives the Lie algebra gQp

and its module MQp.

A slight extension of this definition is sometimes useful. Let K be a finite exten-
sion of the p-adic numbers, with ring of integers oK . Let goK be a Lie algebra over
oK , and let MoK be a finitely generated oK-module on which goK acts. Suppose that
H∗(goK ,MoK ) ⊗oK K = 0. Then we can define an Euler characteristic, extending
our earlier definition for Lie algebras over the p-adic integers, by

χ(goK ,MoK ) = [K : Qp]
−1

∑

j

(−1)jordp|Hj(goK ,MoK )|.

This rational number does not change if we tensor the Lie algebra goK and the
module MoK with oL for some larger p-adic field L, as a result of the flatness of oL
over oK . Also, for a Lie algebra of rank at least 2 as an oK-module, Proposition
2.3 shows that this number only depends on the Lie algebra and its module after
tensoring with K, so we have an invariant χfin(gK ,MK). Combining this with the
previous observation shows that the following invariant is well defined.

Definition 2.5 Let gQp
be a Lie algebra of dimension at least 2 over the alge-

braic closure of Qp, and let MQp
be a finite-dimensional gQp

-module such that

H∗(gQp
,MQp

) = 0. Define χfin(gQp
,MQp

) to be the rational number χ(goK ,MoK )

for any models of gQp
and MQp

over the ring of integers oK of some finite extension

K of Qp.
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3 Reductive Lie algebras in characteristic zero

The following lemma is a reformulation of the basic results on the cohomology of
reductive Lie algebras in characteristic zero, due to Chevalley-Eilenberg [12] and
Hochschild-Serre [20]. By definition, a finite-dimensional Lie algebra g over a field
K of characteristic zero is called reductive if g, viewed as a module over itself, is a
direct sum of simple modules. Equivalently, g is the direct sum of a semisimple Lie
algebra and an abelian Lie algebra. Beware that if g is reductive but not semisimple,
finite-dimensional g-modules are not all direct sums of simple modules, contrary to
what the name “reductive” suggests.

Lemma 3.1 Let g be a reductive Lie algebra over a field K of characteristic zero.
Then any finite-dimensional g-module M splits canonically as a direct sum of mod-
ules all of whose simple subquotients are isomorphic. Also, if the space Mg of
coinvariants or the space Mg of invariants is 0, then H∗(g,M) and H∗(g,M) are
0.

Proof. Let g be a reductive Lie algebra over a field K of characteristic zero.
Hochschild and Serre ([20], Theorem 10, p. 598), extending Chevalley and Eilen-
berg, showed that if M is a nontrivial simple g-module of finite dimension, then
H∗(g,M) = 0. I will only describe the proof for g semisimple. In that case, the
Casimir operator in the center of the enveloping algebra Ug acts by 0 on the trivial
module K, and by a nonzero scalar on every nontrivial simple module M ; so

H∗(g,M) = Ext∗Ug(K,M) = 0.

In particular, for g reductive and a nontrivial simple g-moduleM , H1(g,M) = 0,
which says that there are no nontrivial extensions between the trivial g-module K
and a nontrivial simple g-module. So every finite-dimensional g-module M splits
canonically as the direct sum of a module with all simple subquotients trivial and
a module with all simple subquotients nontrivial.

Therefore, if M is a finite-dimensional g-module with Mg = 0 or Mg = 0, then
all simple subquotients of M are nontrivial, and so H∗(g,M) = 0 by Hochschild and
Serre’s theorem. The analogous statement for homology follows from naive duality,
Lemma 1.1, which says that

Hi(g,M)∗ = H i(g,M∗),

whereM∗ denotes the dual of the vector spaceM . Finally, the splitting of any finite-
dimensional g-module as a direct sum of modules all of which have the same simple
subquotient follows from the vanishing of Ext1g(S1, S2) = H1(g,HomK(S1, S2)) for
any two non-isomorphic simple modules S1 and S2. That vanishing follows from
what we have proved about the vanishing of cohomology, since

H0(g,HomK(S1, S2)) = Homg(S1, S2)

= 0.

QED
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4 The case of abelian Lie algebras

Let K be a finite extension of the field of p-adic numbers, with ring of integers oK .
We will show that the Euler characteristics we consider are 0 for any abelian Lie
algebra over oK of rank at least 2 as an oK-module. (They are not 0 for a Lie algebra
of rank 1 as an oK -module, as I mentioned after the statement of Proposition 2.3.)
This is the first step in a sequence of generalizations, the next step being Theorem
5.1 which proves the same vanishing for all reductive Lie algebras of rank at least
2.

Proposition 4.1 Let h be an abelian Lie algebra of the form (oK)r for some r ≥ 2.
Let M be a finitely generated oK-module with h-action such that Mh ⊗ K = 0.
Then the homology groups H∗(h,M) are finite and the resulting Euler characteristic
χ(h,M) (defined in section 2) is 0.

Proof. At first let h = (oK)r for any r. Let hK = h ⊗oK K. For any hoK -
module M , finitely generated over oK , such that the coinvariants of hK on MK are
0, Lemma 3.1 shows that H∗(hK ,MK) = 0. It follows that Hj(h,M) is a finite
oK-module for all j.

Now suppose that h has rank r ≥ 2 as an oK -module; we want to show that
χ(h,M) = 0. By Definition 2.5, which only makes sense for a Lie algebra of
dimension at least 2, it is equivalent to show that χfin(hQp

,MQp
) = 0, given

that (MQp
)h

Qp
= 0. By Lemma 3.1, the assumption (MQp

)h
Qp

= 0 implies that

MQp
is an extension of nontrivial simple hQp

-modules; so it suffices to show that

χfin(hQp
,MQp

) = 0 for a nontrivial simple hQp
-module MQp

. Since hQp
is abelian,

such a module has dimension 1 by Schur’s lemma. Changing the definition of the
original Lie algebra h, we know that there is some p-adic field K and some models
h and M over oK for hQp

and the 1-dimensional module MQp
, and we are done if

we can show that χ(h,M) = 0.
Since h has rank r ≥ 2 as an oK -module, there is a Lie subalgebra l ⊂ h of rank

r − 1 which is a direct summand as an oK -module and which acts nontrivially on
M . Since M has rank 1 over oK , it follows that the coinvariants of l on M ⊗ K
are 0. So the homology groups H∗(l,M) are finite as shown above. Consider the
Hochschild-Serre spectral sequence

E2
ij = Hi(h/l,Hj(l,M))⇒ Hi+j(h,M),

where h/l ∼= oK . We have χ(h/l, N) = 0 for any finite h/l-module N , by Proposi-
tion 2.2, and so this spectral sequence shows that χ(h,M) = 0. (This concluding
argument is a version for Lie algebras of the argument in Coates-Sujatha about the
Euler characteristic of a p-adic Lie group which maps onto Zp [15].) QED

5 The case of reductive Lie algebras

The rank of a reductive Lie algebra over a field K of characteristic zero is defined
to be the dimension of the centralizer of a general element; the standard definition
is equivalent ([6], Ch. VII, sections 2 and 4). The rank does not change under field
extensions. For example, for the Lie algebra gK of a reductive algebraic group G
over K, the rank of gK is the rank of G over the algebraic closure of K.
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Theorem 5.1 Let g be a Lie algebra over Zp such that gQp is reductive of rank
at least 2. Let M be a finitely generated Zp-module with g-action such that the
coinvariants of gQp on MQp are 0. Then the homology groups H∗(g,M) are finite
and the resulting Euler characteristic χ(g,M) is equal to 0.

The optimal generalization of this statement is Theorem 7.1, which proves the
same vanishing for all Lie algebras over Zp in which every element has centralizer
of dimension at least 2. See section 6 for the calculation of Euler characteristics,
which are sometimes nonzero, for reductive Lie algebras of rank 1.

Proof. We will prove the analogous statement for Lie algebras g over the ring of
integers oK of any finite extension K of Qp, not just over Zp. The homology groups
H∗(g,M) are finitely generated oK -modules. Since we assume that (MK)gK = 0,
Lemma 3.1 gives that H∗(gK ,MK) = 0, and so the homology groups H∗(g,M) are
in fact finite oK-modules. Thus, since g has rank at least 2 as an oK-module, the
Euler characteristic χfin(gK ,MK) is defined by Definition 2.4, and we want to show
that it is 0. Since this Euler characteristic is unchanged under finite extensions of
K, according to Definition 2.5, we can extend the field K so as to arrange that the
reductive Lie algebra gK has a Borel subalgebra bK defined over K ([6], Ch. VIII,
section 3). By Lemma 3.1 again, the assumption that (MK)gK = 0 implies that
MK is an extension of nontrivial simple gK-modules, so it suffices to show that
χfin(gK ,MK) = 0 when MK is a nontrivial simple gK-module.

Let uK be the commutator subalgebra of the Borel subalgebra bK , so that
bK/uK ∼= Kr where r is the rank of g. We are assuming that r is at least 2. Let
g and M be models over oK , which we take to be finitely generated free as oK-
modules, for gK and MK . Our goal is to show that χ(g,M) = 0. Let b = g ∩ bK
and u = g ∩ uK ; these are Lie subalgebras of g over oK . The quotient Lie algebra
b/u is isomorphic to (oK)r, where r is at least 2.

To analyze H∗(g,M), we use two spectral sequences, both of homological type
in the sense that the differential dr has bidegree (−r, r − 1). First, there is the
spectral sequence defined by Koszul and Hochschild-Serre for any subalgebra of a
Lie algebra, which we apply to the integral Borel subalgebra b ⊂ g ([20], Corollary
to Theorem 2, p. 594):

E1
kl = Hl(b,M ⊗oK ∧

k(g/b))⇒ Hk+l(g,M).

In fact, Hochschild and Serre construct the analogous spectral sequence for coho-
mology rather than homology, and only over a field, but the same construction
works for the homology of Lie algebras over a commutative ring R when (as here)
the inclusion b ⊂ g is R-linearly split. Next we have the Hochschild-Serre spectral
sequence associated to the ideal u ⊂ b:

E2
ij = Hi(b/u,Hj(u,M ⊗oK ∧

k(g/b)))⇒ Hi+j(b,M ⊗oK ∧
k(g/b)).

Combining these two spectral sequences gives a formula for the Euler characteristic
χ(g,M) which is correct if the right-hand side is defined (that is, if the homology
groups of b/u acting on the modules shown are finite):

χ(g,M) =
∑

j,k

(−1)j+kχ(b/u,Hj(u,M ⊗ ∧
k(g/b))).
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Since b/u ∼= orK with r ≥ 2, Proposition 4.1 says that the Euler characteristic
χ(b/u, N) is defined and equal to 0 for any finitely generated oK-module N with
b/u-action such that (NK)b/u = 0. So to show that χ(g,M) = 0, as we want, it
suffices to prove the following statement, which fortunately follows from Kostant’s
theorem [22].

Proposition 5.2 Let g be a reductive Lie algebra over a field K of characteristic
zero which has a Borel subalgebra b defined over K, and let u be the commutator
subalgebra of b. Let M be a nontrivial simple g-module. Then

H∗(u,M ⊗K ∧
∗(g/b))b/u = 0.

Proof. When we extend scalars from K to its algebraic closure, the g-module
M becomes a direct sum of nontrivial simple modules. So it suffices to prove the
proposition for K algebraically closed. In this case, the center of g acts on M by
scalars, and acts trivially by conjugation on g/b and on u. If the center of g acts
nontrivially on M , then it acts nontrivially by scalars on H∗(u,M ⊗ ∧

∗(g/b)), and
so the coinvariants of b/u (which includes the center of g) on these groups are 0.
Thus we can assume that the center of g acts trivially on M . Then, replacing g by
its quotient by the center, we can assume that the Lie algebra g is semisimple. In
this case, there is a canonical simply connected algebraic group G over K with Lie
algebra g. Let B be the Borel subgroup of G with Lie algebra b, and let U ⊂ B
be its unipotent radical. Choosing a maximal torus T ⊂ B, we define the negative
roots to be the weights of T acting on u.

Kostant’s theorem, which can be viewed as a consequence of the Borel-Weil-Bott
theorem, determines the weights of the torus B/U ∼= T acting on H∗(u,M) for any
simple g-moduleM in characteristic zero [22]. The result is that the total dimension
of H∗(u,M) is always equal to the order of the Weyl group W . More precisely, let
λ ∈ X(T ) = Hom(T,Gm) be the highest weight of M , in the sense that all other
weights of M are obtained from λ by repeatedly adding negative roots. Then, for
any weight µ, the µ-weight subspace of Hj(u,M) has dimension 1 if there is an
element w ∈W such that j is the length of w and µ = w ·λ; otherwise the µ-weight
subspace of Hj(u,M) is 0. Here the notation w · λ refers to the dot action of W on
the weight lattice X(T ):

w · λ := w(λ+ ρ)− ρ,

where ρ denotes half the sum of the positive roots ([21], p. 179).
Since the weights of T occurring in u are exactly the negative roots, the weights

occurring in ∧∗(u) are exactly the sums of some set of negative roots. It follows
easily that the set S of weights occurring in ∧∗(u) is invariant under the dot action
of W on the weight lattice X(T ).

Clearly the intersection of S with the cone X(T )+ of dominant weights is the
single weight 0. So if λ is any nonzero dominant weight, then λ is not in S. Since
S is invariant under the dot action of W on X(T ), it follows that (W · λ) ∩ S is
empty. By Kostant’s theorem, as stated above, it follows that for any nontrivial
simple g-module M , the T -module H∗(u,M) has no weights in common with ∧∗(u).
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The weights of T that occur in the B-module g/b are the negatives of those that
occur in the B-module u. So the previous paragraph implies that

H∗(u,M ⊗ µ)B/U = (H∗(u,M)⊗ µ)B/U

= 0

for any weight µ occurring in ∧∗(g/b). Since the simple B-modules are the 1-
dimensional B/U -modules, theB-module ∧∗(g/b) has a filtration with graded pieces
the weights µ as above. It follows that

H∗(u,M ⊗ ∧
∗(g/b))B/U = 0.

Since we are in characteristic zero, it is equivalent to say that the coinvariants of the
Lie algebra b/u are 0. This proves Proposition 5.2 and hence Theorem 5.1. QED

6 Euler characteristics for Zp and sl2Zp

Since Theorem 5.1 proves the vanishing of the Euler characteristic we are considering
for reductive Lie algebras of rank at least 2, it is natural to ask what happens in
rank 1. If g is a Lie algebra over Zp such that gQp is reductive of rank 1, then gQp

is isomorphic to Qp or sl2Qp. In this section, we determine the Euler characteristic
for all representations of such a Lie algebra g. In particular, for the irreducible
representation of sl2Zp of a given highest weight, the Euler characteristic is 0 for all
but finitely many prime numbers p. For example, for the standard representation
M = (Zp)

2 of g = sl2Zp, the Euler characteristic χ(g,M) is 0 for p 6= 3 and −2 for
p = 3.

Let us first compute Euler characteristics for a Lie algebra g over Zp such that
gQp

∼= Qp. Clearly g is isomorphic to Zp.

Proposition 6.1 Let g be the Lie algebra of rank 1 as a Zp-module with generator
x. Let M be a finitely generated Zp-module with g-action. Then the homology groups
H∗(g,M) are finite if and only if x ∈ End(M) is invertible on M ⊗Qp. If this is
so, then

χ(g,M) = ordp(det x)

where we view x as an endomorphism of M ⊗Qp.

Proof. The only homology groups for g ∼= Zp acting on M are H0(g,M) =
Mg and H1(g,M), which is isomorphic to Mg ⊗Zp

g by Poincaré duality (Lemma
1.2). For any g-module M , these two groups tensored with Qp are 0 if and only if
(M ⊗Qp)g = 0 and (M ⊗Qp)

g = 0, which means precisely that x is invertible on
M ⊗Qp.

Suppose that the g-module M is a finitely generated Zp-module and that x is
invertible on M ⊗Qp. To prove that χ(g,M) = ordp(det x), it suffices to prove it
when M is a finitely generated free Zp-module. Indeed, we have χ(g, N) = 0 for
every finite g-module N by Proposition 2.2, so that

χ(g,M) = χ(g,Mtors) + χ(g,M/Mtors)

= χ(g,M/Mtors).
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Given that M is a finitely generated free Zp-module, with x invertible on M ⊗Qp,
we have Mg ⊂ (M ⊗Qp)

g = 0, and so H1(g,M) = 0. Thus

χ(g,M) = ordp|H0(g,M)|

= ordp|M/xM |

= ordp det x.

QED
Now let g be a Lie algebra over Zp such that gQp

∼= sl2Qp. For example, g

could be the Lie algebra sl2Zp of 2 × 2 matrices over Zp of trace 0, or an open
Lie subalgebra of the Lie algebra sl1D = [D,D] ⊂ D over Qp associated to the
nontrivial quaternion algebra D over Qp. In any case, Definition 2.5 shows that,
since dim g ≥ 2, the integer χ(g,M) (assuming H∗(g,M)⊗Qp = 0) only depends on
the module MQp

for sl2Qp. Since sl2Qp is semisimple over a field of characteristic

zero, every finite-dimensional sl2Qp-module is a direct sum of simple modules. The

simple modules are the symmetric powers SaVQp
of the standard module VQp

= Q
2
p,

a ≥ 0, and Lemma 3.1 shows that H∗(sl2Qp, S
aVQp

) = 0 if and only if a > 0. So we

only need to compute the Euler characteristic χfin(sl2Qp, S
aV

Qp
) for the integers

a > 0. The answer is:

Proposition 6.2 For any prime number p and any positive integer a,

χfin(sl2Qp, S
aV

Qp
) = 2(ordpa− ordp(a+ 2)).

Thus, for a given a > 0, this Euler characteristic is 0 for almost all prime
numbers p, in particular for all p > a+ 2.

Proof. By Definition 2.5, it suffices to compute the Euler characteristic for a sin-
gle model over Zp of the Lie algebra and the module. We will compute χ(sl2Zp, S

aV )
where V = (Zp)

2 is the standard representation of sl2Zp. It is possible to compute
the homology groups of sl2Zp acting on SaV explicitly, but the actual homology
groups are considerably more complicated than the Euler characteristic. We will
therefore use another approach which gives the simple formula for the Euler char-
acteristic more directly.

We will imitate, as far as possible, the proof of Theorem 5.1 that these Euler
characteristics are 0 for reductive Lie algebras of rank at least 2. The difference
is that for an abelian Lie algebra over Zp of rank at least 2 as a Zp-module, the
Euler characteristic is 0 when it is defined (Proposition 4.1), whereas this is not
true for the Lie algebra Zp. We can instead use Proposition 6.1 to compute Euler
characteristics for the Lie algebra Zp explicitly.

Let g = sl2Zp and M = SaV , where a > 0. Let b be the subalgebra of upper-
triangular matrices in g, and u the subalgebra of strictly upper-triangular matrices
in g. Using the spectral sequences

E1
kl = Hl(b,M ⊗Zp

∧k(g/b))⇒ Hk+l(g,M)

and
E2

ij = Hi(b/u,Hj(u,M ⊗Zp
∧k(g/b)))⇒ Hi+j(b,M ⊗Zp

∧k(g/b)),
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we derive a formula for the Euler characteristic χ(g,M) which is correct if the right-
hand side is defined (that is, if the homology groups of b/u acting on the modules
shown are finite):

χ(g,M) =
∑

j,k

(−1)j+kχ(b/u,Hj(u,M ⊗Zp
∧k(g/b))).

Here b/u, u, and g/b all have rank 1 as Zp-modules, so the sum runs over 0 ≤ j, k ≤
1. A moment’s calculation shows that u ⊂ sl2Zp acts trivially on g/b, so that the
formula can be rewritten as:

χ(g,M) =
∑

j,k

(−1)j+kχ(b/u,Hj(u,M)⊗Zp ∧
k(g/b)).

By Kostant’s theorem (as in the proof of Proposition 5.2), the homology groups
Hj(u,M) ⊗Zp Qp are 1-dimensional, and the standard generator

H =

(
1 0
0 −1

)

of the Lie algebra b/u ∼= Zp acts on H0(u,M)⊗Qp by multiplication by −a and on
H1(u,M) ⊗Qp by multiplication by a + 2, where M = SaV . Also, the generator
H of b/u acts on g/b ∼= Zp by multiplication by −2. As a result, using that a > 0,
Proposition 6.1 shows that the Euler characteristics in the previous paragraph’s
formula are defined, and gives the following result:

χ(g,M) = ordp(−a)− ordp(−a− 2)− ordp(a+ 2) + ordp(a)

= 2(ordpa− ordp(a+ 2)).

QED

7 Euler characteristics for arbitrary Lie algebras

In this section we show that for any Lie algebra g over Zp in which the centralizer
of every element has dimension at least 2, the Euler characteristic χ(g,M) is 0
whenever it is defined (Theorem 7.1). Conversely, for any Lie algebra g over Zp

in which the centralizer of some element has dimension 1, we compute χ(g,M)
here whenever it is defined, in particular observing that this Euler characteristic is
nonzero for some M (Theorem 7.4).

Theorem 7.1 Let g be a Lie algebra over Zp such that the centralizer of every ele-
ment has dimension at least 2. Then the Euler characteristic χ(g,M) is 0 whenever
it is defined, that is, for all finitely generated Zp-modules M with g-action such that
H∗(g,M)⊗Qp = 0.

Proof. The Lie algebra gQp obtained by tensoring g with Qp clearly also has
the property that the centralizer of every element has dimension at least 2. Its
structure is described well enough for our purpose by the following lemma.
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Lemma 7.2 Let g be a Lie algebra over a field K of characteristic zero such that
the centralizer of every element has dimension at least 2. Then g satisfies at least
one of the following three properties.

(1) g maps onto a semisimple Lie algebra r of rank at least 2.
(2) g maps onto a semisimple Lie algebra r of rank 1 with some kernel u, and

there is an element x ∈ g whose image spans a (1-dimensional) Cartan subalgebra
h in r and whose centralizer in u is not 0.

(3) g maps onto a 1-dimensional Lie algebra r = h with some kernel u, and there
is an element x ∈ g whose image spans h and whose centralizer in u is not 0.

Proof. The quotient of g by its maximal solvable ideal, called the radical rad(g),
is semisimple ([4], Ch. 5, section 2 and Ch. 6, section 1). If r := g/rad(g) has rank at
least 2 then we have conclusion (1). Suppose it has rank 1. Then there is an element
x in g whose image spans a Cartan subalgebra h in r, these being 1-dimensional.
Since a Cartan subalgebra in a semisimple Lie algebra is its own centralizer, the
centralizer of x in g is contained in the inverse image of h in g, an extension of h by
u := rad(g). Since the centralizer of x in g has dimension at least 2, the centralizer
of x in u is not 0, thus proving (2).

Otherwise, g/rad(g) is 0, which means that g is solvable. Since the centralizer of
0 in g has dimension at least 2, g is not 0, and so it maps onto a 1-dimensional Lie
algebra h in some way. Let u be the kernel. Let x be any element of g whose image
spans h. Since the centralizer of x in g has dimension at least 2, the centralizer of
x in u is not 0, and we have conclusion (3). QED

To prove Theorem 7.1, it suffices to show that χ(g,M) = 0 if gQp satisfies any
of the three conditions of Lemma 7.2. We first need the following lemma.

Lemma 7.3 Let g be a Lie algebra over a field K of characteristic zero which maps
onto a reductive Lie algebra r. Let u be the kernel. If M is a finite-dimensional
g-module such that H∗(g,M) = 0, then H∗(r,H∗(u,M)) = 0. In particular, the
coinvariants of r on H∗(u,M) are 0.

Proof. Consider the Hochschild-Serre spectral sequence

E2
ij = Hi(r,Hj(u,M))⇒ Hi+j(g,M).

We are assuming that the E∞ term of the spectral sequence is 0, and we want to
show that the E2 term is also 0. Let l be the smallest integer, if any, such that
H0(r,Hl(u,M)) is not 0. The differential dr in the spectral sequence has bidegree
(−r, r−1), so all differentials are 0 on this group since they would map to homology
in negative degrees. Moreover, Lemma 3.1 shows that all the homology groups of
the characteristic-zero reductive Lie algebra r acting on Hj(u,M) are 0 for j < l.
So no differentials in the spectral sequence can go into or out of H0(r,Hl(u,M)),
contradicting the assumption that the E∞ term of the spectral sequence is 0. So
in fact H0(r,Hj(u,M)) is 0 for all j, and by Lemma 3.1 again it follows that the
whole E2 term of the spectral sequence is 0. QED

We now prove Theorem 7.1 for gQp
satisfying condition (1) in Lemma 7.2. Let

uQp
be the kernel of gQp

→ rQp
. Let r be the image of the integral Lie algebra g

in rQp
, and let u be the intersection of g with uQp

. It follows from Lemma 7.3 that
the integral Hochschild-Serre spectral sequence,

H∗(r,H∗(u,M))⇒ H∗(g,M),
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has finite E2 term, and in particular that the coinvariants of rQp on Hj(u,M)⊗Qp

are 0 for all j. Since rQp is reductive of rank at least 2, Theorem 5.1 says that the
Euler characteristic χ(r,Hj(u,M)) is 0 for all j. Then the spectral sequence implies
that χ(g,M) = 0.

Cases (2) and (3) can be treated at the same time. In both cases, gQp
maps onto

a reductive Lie algebra rQp
of rank 1 with some kernel uQp

, and there is an element
x of g whose image in rQp

spans a Cartan subalgebra hQp
and whose centralizer in

uQp
is not 0. Let r be the image of the integral Lie algebra g in rQp

and let u be
the kernel of g mapping to rQp

.
By the Hochschild-Serre spectral sequence for the extension of r by u, we have

χ(g,M) =
∑

j

(−1)jχ(r,Hj(u,M))

provided that the right-hand side makes sense. We are assuming thatH∗(gQp ,MQp) =
0. By Lemma 7.3, it follows that H∗(rQp ,H∗(uQp ,MQp)) = 0, which means that the
right-hand side in the above formula does make sense. Moreover, by Proposition
2.3(1), for a finitely generated Zp-moduleN with r-action such that H∗(rQp

, NQp
) =

0, the Euler characteristic χ(r, N) only depends on NQp
as an rQp

-module (since r

has rank at least 1 as an oK -module). In fact, it only depends on the class of NQp

in the Grothendieck group Rep 6=1(rQp
) of rQp

-modules with all simple subquotients
nontrivial. (This works even for r of rank 1 as an oK-module, so that Proposi-
tion 2.3(2) does not apply, because we are fixing r ⊂ rQp

and only considering the
dependence of these Euler characteristics on N .)

Thus we have a well-defined homomorphism

χ : Rep6=1(rQp
)→ Z,

and the above formula for χ(g,M) says that χ(g,M) is the image of the alternating
sum χ(uQp

,MQp
), as an element of Rep 6=1(rQp

), under this homomorphism. So
Theorem 7.1 is proved if we can show that the element χ(uQp

,MQp
) is 0 in the

Grothendieck group Rep 6=1(rQp
). Since this Grothendieck group injects into the

usual Grothendieck group Rep(rQp), it suffices to show that χ(uQp ,MQp) is 0 in
the latter group. The Grothendieck group of rQp injects into that of the Cartan
subalgebra hQp ⊂ rQp spanned by the given element x ∈ gQp , so it suffices to show
that χ(uQp ,MQp) is 0 in Rep(Qpx).

But here we can use the standard complex that defines Lie algebra homology to
see that

χ(uQp
,MQp

) = (
∑

j

(−1)j ∧j uQp
)MQp

in the representation ring Rep(Qpx). We are given that x has nonzero centralizer in
uQp , so uQp is equal in the representation ring ofQpx to 1+V for some representation
V . The operation

∧−1V :=
∑

j

(−1)j ∧j (V )

takes a representation V to an element of the corresponding Grothendieck group,
transforming sums into products. Since ∧−11 = 0, it follows that ∧−1uQp

= 0 in
Rep(Qpx). Therefore χ(uQp

,MQp
) = 0 in Rep(Qpx), as we needed. QED
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Theorem 7.4 Let g be a Lie algebra over Zp which contains an element with cen-
tralizer of dimension 1. We will now compute the Euler characteristic χ(g,M)
whenever it is defined, that is, for all finitely generated Zp-modules M with g-action
such that H∗(g,M)⊗Qp = 0. It is nonzero for some M .

Proof. The structure of gQp is described by the following lemma.

Lemma 7.5 Let g be a Lie algebra over a field K of characteristic zero which
contains an element with centralizer of dimension 1. Then g satisfies at least one
of the following two properties.

(1) g maps onto a 1-dimensional Lie algebra h with some kernel u, and there is
an element x ∈ g whose image spans h and whose centralizer in u is 0.

(2) g maps onto a semisimple Lie algebra r of rank 1 with some kernel u, and
there is an element x ∈ g whose image spans a (1-dimensional) Cartan subalgebra
h in r and whose centralizer in u is 0.

Proof. Since the dimension of the centralizer is upper-semicontinuous in the
Zariski topology on g, the general element of g has centralizer of dimension 1.

If g is solvable, then it maps onto a 1-dimensional Lie algebra h with some kernel
u. Let x be a general element of g in the sense that the image of x spans h and the
centralizer of x in g has dimension 1. Then the centralizer of x in u is 0, proving
statement (1).

Otherwise, g maps onto some nonzero semisimple Lie algebra r. If r has rank at
least 2, then every element of r has centralizer of dimension at least 2 in r. It follows
that the linear endomorphism ad x of g has rank at most dim(g)− 2 for all x ∈ g.
So every x has centralizer of dimension at least 2 in g, contrary to our assumption.
So r has rank 1. Let x be a general element of g in the sense that the image of x
spans a (1-dimensional) Cartan subalgebra h of r and the centralizer of x in g has
dimension 1. Then we have statement (2). QED

In fact, we need to strengthen Lemma 7.5 to say that, in both cases (1) and
(2), any element of g whose image spans h has centralizer in u equal to 0. This is
a consequence of Lemma 7.6, as follows. (In case (2), we apply Lemma 7.6 with g

replaced by the inverse image of h in g.)

Lemma 7.6 Let g be a Lie algebra over a field K of characteristic zero which maps
onto a 1-dimensional Lie algebra h with some kernel u. If there is an element x of
g whose image spans h and whose centralizer in u is 0, then every element y of g
whose image spans h has centralizer in u equal to 0. Moreover, for any such element
y, the element ∧−1u =

∑
i(−1)

i ∧i u in the Grothendieck group Rep(Ky) is not 0.

Proof. We first need the following elementary lemma.

Lemma 7.7 Let a1, . . . , an be elements of a field K of characteristic zero. Let Seven

be the set of sums
∑

i∈I ai ∈ K for subsets I ⊂ {1, . . . , n} of even order, and let
Sodd be the analogous set of odd sums, both sets being considered with multiplicities.
Then Seven = Sodd if and only if ai = 0 for some i.

Proof. If ai = 0 for some i, then the bijection from the set of even subsets of
{1, . . . , n} to the set of odd subsets by adding or removing the element i does not
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change the corresponding sum of aj’s. To prove the converse, we use the following
identity of formal power series:

(ex1 − 1) · · · (exn − 1) = (x1 + · · · ) · · · (xn + · · · )

= x1 · · · xn + terms of higher degree.

We can also write

(ex1 − 1) · · · (exn − 1) =

n∑

j=0

(−1)n−j
∑

1≤i1<···<ij≤n

exi1
+···+xij .

Equating terms in degree n, we find that

n∑

j=0

(−1)n−j
∑

1≤i1<···<ij≤n

(xi1 + · · ·+ xij )
n = n!x1 · · · xn.

This is now an identity of polynomials with integer coefficients. Plugging in the
values a1, . . . , an ∈ K, we find that the left-hand side is 0, since the set (with
multiplicities) of sums of an even number of the ai’s is equal to the corresponding
set of sums for an odd number of the ai’s. So the right-hand side is 0. Since K has
characteristic zero, n! is not 0 in K, and so one of the ai’s is 0. QED (Lemma 7.7)

We can now prove Lemma 7.6. Since we have an element x of g whose image
spans h and whose centralizer in u is 0, the eigenvalues of x on u (in a suitable
extension field of K) are all nonzero. By Lemma 7.7, the set with multiplicities
of even sums of the eigenvalues of x on u is not equal to the set of odd sums.
Equivalently, ∧−1u is not zero in the Grothendieck group Rep(Kx).

But the complex computing Lie algebra homology shows that the element χ(u) :=∑
i(−1)

iHi(u,K) in Rep(h) can be identified with ∧−1u in Rep(Kx). The point is
that the exact sequence of Lie algebras 0 → u → g → h → 0 determines an action
of h on the homology of u, and hence an element χ(u) of Rep(h), whereas we need
to choose an element x giving a splitting of the exact sequence in order to get an
action of Kx ∼= h on u itself and hence to define ∧−1u in Rep(Kx). Since ∧−1u is
nonzero in Rep(Kx), the element χ(u) is nonzero in Rep(h). So ∧−1u is nonzero
in Rep(Ky) for any element y of g whose image spans h. By the easy direction of
Lemma 7.7, it follows that the eigenvalues of y on u are all nonzero. Equivalently,
the centralizer of y in u is 0. QED (Lemma 7.6)

We return to the proof of Theorem 7.4. If g has rank 1 as a Zp-module, then
the theorem follows from Proposition 6.1, so we can assume that g has rank at least
2 as a Zp-module. Let rQp

= hQp
in case (1). Then, in both cases (1) and (2) of

Lemma 7.5, let r be the image of the integral Lie algebra g in the reductive quotient
rQp and let u be the kernel of g mapping to rQp .

Given a finitely generated Zp-module M with g-action such that H∗(g,M) ⊗
Qp = 0, Lemma 7.3 shows that H∗(r,H∗(u,M)) ⊗ Qp = 0 and in particular that
the coinvariants of rQp on H∗(u,M)⊗Qp are 0. Therefore the Euler characteristic
χ(g,M) is given by the formula

χ(g,M) =
∑

j

(−1)jχ(r,Hj(u,M)).
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As in the proof of Theorem 7.1, let Rep 6=1(rQp) denote the Grothendieck group
of rQp-modules with all simple subquotients nontrivial. Then the above formula
says that χ(g,M) is the image of the alternating sum χ(uQp ,MQp), as an element
of Rep6=1(rQp), under a homomorphism

χ : Rep6=1(rQp)→ Z.

Now the Lie algebra rQp
is either 1-dimensional or else semisimple of rank 1, so we

have computed the homomorphism χ : Rep 6=1(rQp
) → Z in Propositions 6.1 and

6.2.
Thus, to complete the calculation of χ(g,M), it suffices to compute the element

χ(uQp ,MQp) in Rep 6=1(rQp). As in the proof of Theorem 7.1, this Grothendieck
group injects into the usual Grothendieck group Rep(rQp), so it suffices to compute
χ(uQp ,MQp) as an element of the latter group. We can choose a splitting of the Lie
algebra extension

0→ uQp
→ gQp

→ rQp
→ 0,

since rQp
is either 1-dimensional or semisimple. Given such a splitting, rQp

acts on
uQp

. We can then compute the element χ(uQp
,MQp

) in the Grothendieck group
Rep(rQp

) using the definition of Lie algebra homology via the standard complex:

χ(uQp
,MQp

) = (
∑

j

(−1)j ∧j uQp
)MQp

= (∧−1uQp)MQp

in the representation ring Rep(rQp). In particular, we see that χ(uQp ,MQp) and
hence χ(g,M) only depend on uQp and MQp as rQp-modules.

We regard this as a calculation of χ(g,M). To complete the proof of Theorem
7.4, we need to show that there is some g-module M , finitely generated over Zp,
such that χ(g,M) is defined but not equal to 0. We know that these properties
only depend on MQp

as a gQp
-module. We will take M to be a representation of

the quotient Lie algebra r, in the notation we have been using, so that rQp
is either

1-dimensional or else semisimple of rank 1. It is enough to find a representation
MoK of roK for some finite extension K of Qp such that χ(goK ,MoK ) is not zero.
Indeed, we can then view MoK as a representation of g over Zp. We have

H∗(g,MoK ) = H∗(goK ,MoK )

by inspection of the standard complex defining Lie algebra homology, and so χ(g,MoK )
is not zero, giving a representation of g over Zp with nonzero Euler characteristic
as we want.

We first consider case (1) of Lemma 7.5, where rQp
has dimension 1. In this

case, I claim that there is an roK -module MoK which is free of rank 1 over oK , for
some finite extension K of Qp, such that χ(goK ,MoK ) is defined and not 0; that will
prove the theorem in this case. Let x be an element of g which maps to a generator
of r = im(g→ rQp), which is isomorphic to Zp. For a finite extension K of Qp, an
roK -module of rank 1 is defined by an element b ∈ oK , which gives the action of the
generator x.
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By the general description of how to compute χ(goK ,MoK ) which we have given,
we have

χ(goK ,MoK ) =
∑

j

(−1)jχ(roK ,∧juoK ⊗MoK )

=
∑

j

(−1)jordp det(x| ∧
j uK ⊗MK),

provided that x is invertible on ∧juK ⊗MK for all j. Here we are using Proposition
6.1. We choose the p-adic field K to be any one which contains the eigenvalues
a1, . . . , an of x on u; these are all in the ring of integers oK , because u is a finitely
generated Zp-module. Then the eigenvalues of x on ∧juK ⊗MK are the numbers

b+ ai1 + · · ·+ aij ,

for 1 ≤ i1 < · · · < ij ≤ n. In particular, these eigenvalues are all nonzero, for all
0 ≤ j ≤ n, if we choose b outside finitely many values, as we now decide to do.
Then x acts invertibly on ∧juK ⊗MK , and so the above formula for χ(goK ,MoK )
is justified.

The above formula then gives, more explicitly:

χ(goK ,MoK ) = ordp

n∏

j=0

∏

1≤i1<···<ij≤n

(b+ ai1 + · · · + aij)
(−1)j .

Let f(b) be the rational function of b in this formula, whose p-adic order is χ(goK ,MoK ).
By Lemmas 7.5 and 7.6, we know that ∧−1u is not zero in the Grothendieck group
Rep(Qpx). Equivalently, the set with multiplicities of even sums of a1, . . . , an is
not equal to the set of odd sums, and so the rational function f(b) is not constant.
The zeros and poles of this rational function are in the ring of integers oK . Taking
a b ∈ oK which is close but not equal to one of these zeros or poles, we can arrange
that f(b) is not a p-adic unit. That is, for the rank-1 goK -module M associated to
b, χ(goK ,MoK ) is not 0. As mentioned earlier, it follows that χ(g,MoK ) is not 0,
where MoK is viewed as a Zp-module. Theorem 7.4 is proved in case (1) of Lemma
7.5.

We now prove Theorem 7.4 in case (2) of Lemma 7.5. Here gQp
is an extension

of a semisimple Lie algebra rQp
of rank 1 by another Lie algebra uQp

. As mentioned
earlier, we can fix a splitting of this extension, and then rQp

acts on uQp
. Let hQp

be
the Cartan subalgebra given by case (2) of Lemma 7.5. No matter which splitting
of the extension we have chosen, Lemma 7.6 shows that ∧−1uQp is nonzero in the
Grothendieck group of hQp-modules. A fortiori, it is nonzero in the Grothendieck
group of rQp-modules.

We want to find a g-module M , finitely generated over Zp, such that χ(g,M)
is defined and not 0. Let K be a finite extension of Qp such that rK is isomorphic
to sl2K. It suffices to find a goK -module MoK , finitely generated over oK , such
that χ(goK ,MoK ) is defined and not 0, in view of the isomorphism H∗(g,MoK ) =
H∗(goK ,MoK ). We will take MoK to be a module over the quotient Lie algebra roK
(the image of goK in rK). It suffices to find an roK -module M , finitely generated
over oK , such that (∧iuK)MK has no trivial summands as an rK -module for all
0 ≤ i ≤ n and (∧−1uK)MK has nonzero image under the homomorphism

χ : Rep 6=1(rK)→ Z.
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It is somewhat difficult to construct roK -modules, even though we know that
rK is isomorphic to sl2K. (For example, let H,X, Y be the usual basis vectors for
sl2Q2. Then the integral form of the Lie algebra sl2Q2 which is spanned by H/2,
X, and Y has no action on (Z2)

2 which gives the standard representation of sl2Q2

after tensoring with Q2.) The obvious example of an roK -module is the adjoint
representation roK ; by taking symmetric powers of roK and decomposing over K,
we find that for every m ≥ 0, there is an roK -module M , finitely generated over oK ,
such that MK is a simple module over rK ∼= sl2K of highest weight 2m. We can
get more if the rK-module uK has a summand with odd highest weight, since we
know that uK comes from an roK -module uoK which is finitely generated over oK .
In that case, by tensoring uoK repeatedly with roK and decomposing over K (using
the Clebsch-Gordan formula, as stated below), we find that every simple rK -module
comes from an roK -module which is finitely generated over oK . To sum up, let c be
1 if the rK -module uK has a summand with odd highest weight, and 2 otherwise;
then we have shown that for every m ≥ 0 there is an roK -module MoK , finitely
generated over oK , such that MK is a simple module over rK ∼= sl2K of highest
weight cm.

We have thereby reduced to the following question. Let V be the standard 2-
dimensional representation of sl2K. Given that ∧−1uK =

∑
i(−1)

i ∧i uK is nonzero
in the representation ring Rep(sl2K), find an integer m ≥ 0 such that (∧iuK)ScmV
has no trivial summands for 0 ≤ i ≤ dim uK and (∧−1uK)ScmV has nonzero image
under the homomorphism

χ : Rep6=1(sl2K)→ Z.

The Clebsch-Gordan formula for representations of sl2K says that

SaV · SbV = Sa−bV + Sa−b+2V + · · ·+ Sa+bV

for 0 ≤ b ≤ a. This makes it clear that for 0 ≤ i ≤ dim uK , (∧iuK)ScmV has no
trivial summands for m sufficiently large. Now let j be the largest natural number
such that the multiplicity of SjV in ∧−1uK is not zero; there is such a j, since
∧−1uK is not 0. If we can choose m such that j+cm+2 is divisible by a sufficiently
large power of p, then (∧−1uK)ScmV has nonzero image under the homomorphism

χ : Rep6=1(sl2K)→ Z,

by the Clebsch-Gordan formula together with the formula for that homomorphism
in Proposition 6.2:

χ(SaV ) = 2(ordpa− ordp(a+ 2)).

There is no trouble choosing such an m if p is odd. If p = 2, we can do it unless
j is odd and c = 2. But that cannot happen, since c = 2 means that the highest
weights of rK ∼= sl2K on uK are all even, which would imply that the weights j
occurring in ∧−1uK were also even. So we can always find an m as needed, proving
Theorem 7.4. QED

8 Filtered and graded algebras

In section 9, we will explain how to relate Euler characteristics for Lie algebras over
the p-adic integers to Euler characteristics for p-adic Lie groups. In this section
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we develop the homological algebra needed for that proof. In particular, we need
the spectral sequence defined under various hypotheses by Serre ([26], p. II-17) and
May [24], relating Tor over a filtered ring to Tor over the associated graded ring.
We set up the spectral sequence here under fairly weak hypotheses. We also need a
relative version of that spectral sequence.

We begin with some general homological definitions. For any ring S, we have
the groups TorSj (A,B) for any right S-module A and left S-module B. Given a ring
homomorphism R → S, we can view A and B as R-modules as well and consider
the resulting Tor groups. Our first step is to define relative groups TorS,Rj (A,B) in
this situation which fit into a long exact sequence

TorRj (A,B)→ TorSj (A,B)→ TorS,Rj (A,B)→ TorRj−1(A,B).

To do this, let R∗ be a free resolution of A as a right R-module, and let S∗ be
a free resolution of A as a right S-module. Since R∗ is a complex of projective R-
modules, there is an R-linear homomorphism of chain complexes R∗ → S∗, unique
up to homotopy, which gives the identity map from H0(R∗) = A to H0(S∗) = A.
This homomorphism determines a Z-linear homomorphism of chain complexes from
R∗ ⊗R B to S∗ ⊗S B. We define TorS,R∗ (A,B) to be the homology of the mapping
cone of the map of chain complexes R∗⊗RB → S∗⊗SB. These groups TorS,R∗ (A,B)
fit into a long exact sequence as we wanted.

We now turn to the spectral sequence which relates Tor over filtered rings to
Tor over the associated graded ring. We will need to modify this spectral sequence
to apply to the above relative Tor groups. The proof below is essentially Serre’s
argument in [26], p. II-17.

Proposition 8.1 Let Ω be a complete filtered commutative ring, Ω = Ω0 ⊃ Ω1 ⊃
· · · , with gr Ω noetherian. Let R be a complete filtered Ω-algebra, R = R0 ⊃ R1 ⊃
· · · , with gr R right noetherian. Let A be a complete filtered right R-module with
gr A finitely generated over gr R, and let B be a complete filtered left R-module with
gr B finitely generated as a gr Ω-module (not just as a gr R-module). Then there
is a spectral sequence

E1
ij = Torgr R

i+j (gr A, gr B)degree −i ⇒ TorRi+j(A,B).

This is a homological spectral sequence, meaning that the differential dr has bidegree
(−r, r − 1) for r ≥ 1. The groups TorR∗ (A,B) are finitely generated Ω-modules,
complete with respect to a filtration whose associated graded groups are the E∞

term of the spectral sequence.

In our applications, Ω will be Zp, and gr A and gr B will both be finitely gen-
erated gr Ω-modules. We state Proposition 8.1 under the above weaker (asymmet-
rical) assumptions only because the proof happens to work that way.

Proof. Since gr R is noetherian and gr A is finitely generated over gr R, there
is a resolution G∗ of the graded module gr A over gr R by finitely generated free
graded modules. We will use completeness of R and A to lift G∗ to a filtered free
resolution R∗ of the filtered module A over R. Serre’s Lemma V.2.1.1, p. 545 in
[23], is closely related, but we will prove what we need directly. For each i ≥ 0, let
Ri be a filtered free R-module with generators in degrees so that gr Ri

∼= Gi. The
surjection G0 → gr A lifts to a filtered R-linear map R0 → A by freeness of R0. It
is surjective, by the following lemma.
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Lemma 8.2 Let f : A → B be a homomorphism of filtered abelian groups, A =
A0 ⊃ A1 ⊃ · · · and B = B0 ⊃ B1 ⊃ · · · . Suppose that A is complete (A →
lim←−A/An is an isomorphism), B is separated (B → lim←−B/Bn is injective) and
gr A→ gr B is surjective. Then A→ B is surjective and B is complete.

Proof (repeated from [23], Prop. I.2.3.13, p. 415). For any b ∈ lim←−B/Bn, we
can use surjectivity of gr A→ gr B to define an element a ∈ lim←−A/An, step by step,
which maps to b in lim←−B/Bn. That is, lim←−A/An → lim←−B/Bn is surjective. Since
A→ lim←−A/An is an isomorphism, the map A→ lim←−B/Bn is surjective. Therefore
B → lim←−B/Bn is surjective as well as injective, so B is complete. It also follows
that A→ B is surjective. QED

We continue the proof of Proposition 8.1. By Lemma 8.2, the lift R0 → A is
surjective. Suppose, inductively, that we have defined an exact sequence of filtered
R-modules

Ri → · · · → R0 → A→ 0

which lifts the exact sequence

Gi → · · · → G0 → gr A→ 0.

Let Kj = ker(Rj → Rj−1) for 0 ≤ j ≤ i, with its filtration as a submodule of Rj ,
and let K−1 = A with its given filtration. Then the natural map gr Ri → gr Ki−1

is surjective; this is clear for i = 0, and for i > 0 it follows from injectivity of the
map gr Ki−1 → gr Ri−1 and surjectivity of the map

gr Ri → ker(gr Ri−1 → gr Ri−2).

We have an exact sequence of filtered R-modules,

0→ Ki → Ri → Ki−1 → 0.

Here Ki has the filtration induced from Ri by definition. Moreover, surjectivity of
gr Ri → gr Ki−1 implies that the filtration of Ki−1 is also the one induced from Ri,
that is, that (Ri)

j → (Ki−1)
j is surjective for all j; use Lemma 8.2 to prove this,

noting that Ri is complete since it is a finitely generated free filtered R-module. It
follows that the sequence

0→ gr Ki → gr Ri → gr Ki−1 → 0

is exact. Since gr Ki−1 ⊂ gr Ri−1 by definition of the filtration on Ki−1, it follows
that gr Ki = ker(gr Ri → gr Ri−1). So we have a surjection gr Ri+1 → gr Ki,
which we can lift to a filtered R-linear map Ri+1 → Ki. This map is surjective by
Lemma 8.2. So we have an exact sequence

Ri+1 → Ri → · · · → R0 → A→ 0

of filtered R-modules, lifting the exact sequence

Gi+1 → Gi → · · · → G0 → gr A→ 0.

This completes the induction. Thus, we have shown that G∗ lifts to a filtered free
resolution R∗ of the complete filtered right R-module A.
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In Proposition 8.1, we are also given a complete filtered left R-module B with
gr B finitely generated as a gr Ω-module. Then R∗ ⊗R B is a filtered complex of
Ω-modules, with homology equal to TorR∗ (A,B). Its associated graded complex is
G∗ ⊗gr R gr B, which has homology equal to Torgr R

∗ (gr A, gr B). We define the
spectral sequence of Proposition 8.1 to be the spectral sequence associated to the
filtered complex R∗⊗RB. The strong assumption on B is used to guarantee the con-
vergence of the spectral sequence of this filtered complex, via the following lemma.
QED (Proposition 8.1)

Lemma 8.3 Let Ω = Ω0 ⊃ Ω1 ⊃ · · · be a complete filtered ring with gr Ω noethe-
rian, M∗ a homological complex (meaning that d has degree −1) of complete filtered
Ω-modules with gr Mj finitely generated over gr Ω for each j ∈ Z. Then the spectral
sequence of this filtered complex converges:

E0
ij = gr−iMi+j ⇒ Hi+jM.

This is a homological spectral sequence, meaning that the differential dr has bidegree
(−r, r − 1) for r ≥ 0. The groups HkM are finitely generated Ω-modules, complete
with respect to a filtration whose associated graded groups are the E∞ term of the
spectral sequence.

Proof. We refer to Cartan-Eilenberg [11], Chapter XV, as a reference for the
spectral sequence of a filtered complex, although the gradings there (for a cohomo-
logical complex) are the negatives of ours. For each i, j ∈ Z, we have subgroups

0 ⊂ B1
ij ⊂ B2

ij ⊂ · · · ⊂ Z2
ij ⊂ Z1

ij ⊂ E0
ij = gr−iMi+j ,

with Er
ij = Zr

ij/B
r
ij. Explicitly,

Zr
ij = im({x ∈M−i

i+j : dx ∈M−i+r
i+j−1} → gr−iMi+j)

Br
ij = im({dx ∈M−i

i+j : x ∈M−i−r+1
i+j+1 } → gr−iMi+j).

Moreover, for each k ∈ Z, E0
∗,k−∗ = gr Mk is a finitely generated module over gr Ω,

and the Br’s and Zr’s are all submodules. Since gr Ω is noetherian, the increasing
sequence of submodules

B1
∗,k−∗ ⊂ B2

∗,k−∗ ⊂ · · · ⊂ gr Mk

eventually terminates. That is, all differentials into total degree k are 0 after the
rth term of the spectral sequence, for some r < ∞ depending on k. By the same
statement for k − 1, it follows that all differentials out of total degree k are also 0
after some point. So there is an r = r(k) <∞ such that Er

∗,k−∗ = E∞
∗,k−∗.

Under the weaker assumption that for each i, j ∈ Z there is an r such that
all differentials starting with dr are zero on Er

ij, together with completeness of
the Mk’s, Boardman shows that the filtration induced by each group Mk on its
subquotient HkM is complete, with associated graded groups equal to the E∞ term
of the spectral sequence, in [1], Theorem 7.1, the remark after it, and Theorem 9.2.
Since gr HkM is a subquotient of HkM for each k and gr Ω is noetherian, gr HkM
is a finitely generated gr Ω-module. It follows that HkM is a finitely generated
Ω-module. QED
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Now we set up the relative version of the above spectral sequence, the last
general homological result we need here. Let Ω, R, A, B be as in Proposition 8.1.
Suppose that we also have a homomorphism R→ S of complete filtered Ω-algebras
such that gr S is noetherian and A and B are S-modules.

Proposition 8.4 There is a spectral sequence

E1
ij = Torgr S,gr R

i+j (gr A, gr B)degree −i ⇒ TorS,Ri+j (A,B).

Here the groups TorS,R∗ (A,B) are finitely generated Ω-modules, complete with re-
spect to a filtration whose associated graded groups are the E∞ term of the spectral
sequence.

Proof. Start with a graded finitely generated free resolution G∗ of gr A as a
gr R-module and a graded finitely generated free resolution H∗ of gr A as a gr S-
module. As in the definition of relative Tor groups, above, there is a graded gr R-
linear homomorphism G∗ → H∗, unique up to homotopy, which gives the identity
map from H0(G∗) = gr A to H0(H∗) = gr A.

As in the construction of this spectral sequence for a single ring (Proposition
8.1), we can lift G∗ to a filtered free resolution R∗ of A as an R-module and H∗

to a filtered free resolution S∗ of A as an S-module. The new point here, using
completeness again, is that the homomorphism G∗ → H∗ of complexes of graded
gr R-modules lifts to a homomorphism R∗ → S∗ of complexes of filtered R-modules.
(We can argue as in the proof of Proposition 8.1, or we can just refer to [23], Lemma
V.2.1.5, p. 548.) Then TorS,R∗ (A,B) is defined as the homology of the mapping cone
of the map of chain complexes R∗ ⊗R B → S∗ ⊗S B. This mapping cone is now
a filtered complex, with associated graded complex being the mapping cone of the
map of chain complexes G∗ → H∗. The homology of the latter mapping cone
is therefore Torgr S,gr R

∗ (gr A, gr B), and the spectral sequence we want is the usual
spectral sequence of a filtered complex. It converges in the required sense by Lemma
8.3. QED

9 Relating groups and Lie algebras

We now explain how the results so far about Euler characteristics for Lie alge-
bras over the p-adic integers imply analogous results for a large class of p-adic Lie
groups, what Lazard called p-valued groups. For example, the group GLnZp is not
of this type, but any closed subgroup of the congruence subgroup ker(GLnZp →
GLn(Z/p)) for p odd, or of ker(GLnZ2 → GLn(Z/4)) for p = 2, is p-valued. Groups
of this type are in particular torsion-free pro-p groups.

For completeness, we recall Lazard’s definition of p-valued groups. First ([23],
p. 428), define a filtration ω of a group G to be a function

ω : G→ (0,∞]

such that, for x, y ∈ G,

ω(xy−1) ≥ min(ω(x), ω(y))

ω(x−1y−1xy) ≥ ω(x) + ω(y).
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It follows in particular that Gν := {x ∈ G : ω(x) ≥ ν} and Gν+ := {x ∈ G :
ω(x) > ν} are normal subgroups of G. A filtered group G is said to be complete if
G = lim←−G/Gν . For a fixed prime number p, a filtration ω of a group G is called a
valuation (and G is called p-valued) if

ω(x) <∞ for all x 6= 1 in G

ω(x) > (p− 1)−1

ω(xp) = ω(x) + 1

for x ∈ G ([23], p. 465). Then gr G := ⊕Gν/Gν+ is a Lie algebra over the graded
ring Γ := gr Zp = Fp[π] with π in degree 1 ([23], pp. 464–465). The action of π on
gr G corresponds to taking the pth power of an element of G. The Lie algebra gr G
is torsion-free, hence free, as a Γ-module. The dimension of a p-valued group G is
defined to be the rank of the free Γ-module gr G. In this paper, p-valued groups will
be assumed to be complete and of finite dimension. Such a group is automatically
a p-adic Lie group ([23], Theorem III.3.1.7, p. 478).

Let v : Zp → [0,∞] be the standard valuation, which we sometimes call ordp, so
that v(p) = 1. By definition, a valuation on a Zp-module M is a function w from
M to [0,∞] such that

w(x) <∞ for all x 6= 0 in M

w(x− y) ≥ min(w(x), w(y))

w(ax) = v(a) + w(x)

for a ∈ Zp and x, y ∈ M ([23], Def. I.2.2.2, p. 409). We define a valuation on a
Qp-vector space V to be a function w from M to (−∞,∞] which satisfies the same
three properties; this definition generalizes to vector spaces over any p-adic field
K using the standard valuation v = ordp on K. A valuation on a Zp-module M
extends to a valuation on the vector space M⊗Zp

Qp in a natural way, and we define

div M = {x ∈M ⊗Zp
Qp : w(x) ≥ 0}.

Let Sat M be the completion of div M with respect to the filtration w. A valued
Zp-module M is called saturated if the natural homomorphism M → Sat M is an
isomorphism. For a p-valued group G with valuation ω, we say that an action of G
on a valued Zp-module or Qp-vector space M is compatible with the valuations if

w((g − 1)x) ≥ ω(g) + w(x)

for g ∈ G and x ∈M .
Here is the basic theorem. Corollary 9.3 gives the main applications of this

statement.

Theorem 9.1 Let G be a p-valued group. Suppose that the given valuation of G
takes rational values, and that G has dimension at least 2. Let M be a finitely
generated free Zp-module with G-action. Suppose that M admits a valuation with
rational values, compatible with the valuation of G, and that M is saturated for
this valuation. The Lie algebra gQp of G over Qp acts on M ⊗ Qp; let g be any
Lie algebra over Zp such that g ⊗ Qp = gQp and such that g acts on M . Then
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the homology groups H∗(G,M) are finite in all degrees if and only if the groups
H∗(g,M) are finite in all degrees, and if this is so, then

χ(G,M) = χ(g,M).

The proof relies on Proposition 2.3, which says that for a Lie algebra over a
discrete valuation ring Γ whose rank as a Γ-module is at least 2, the Euler char-
acteristics we are considering do not change upon passage from one Lie algebra to
an open Lie subalgebra. The idea here is to think of both G and the Lie algebra
g as “subgroups of finite index” in the same thing, a ring which Lazard calls the
saturation of the group ring of G. We relate Tor groups over this ring to Tor groups
over its associated graded ring, which is essentially the universal enveloping algebra
of a Lie algebra over the polynomial ring Γ = Fp[π]. Once we reduce to a question
about such Lie algebras, we can apply Proposition 2.3, since Γ is a discrete valuation
ring as a graded ring.

Proof. Let G be a p-valued group. Let ZpG denote the completed group ring
of G,

ZpG := lim←−Zp[G/U ]

where U runs over the open normal subgroups of G. (Lazard uses the name Al G
for this ring.) Then the given valuation of G determines a complete filtration of the
ring ZpG which is also a valuation on ZpG as a Zp-module. The associated graded
ring of ZpG is the universal enveloping algebra of the Lie algebra gr G over the
graded ring Γ := gr Zp = Fp[π], by Theorem III.2.3.3, p. 471, in [23]. Explicitly,
Lazard first defines a filtration on the naive group ring Zp[G] as the infimum w of
all filtrations of Zp[G] as a Zp-algebra which satisfy

w(g − 1) ≥ ω(g)

for all g ∈ G. He then identifies the completed group ring ZpG in the sense defined
above with the completion of Zp[G] with respect to this filtration.

If M is a finitely generated free Zp-module with G-action and with a valuation
compatible with that on G, then M is a filtered ZpG-module. To check this, observe
that M induces a filtration wM on the naive group ring Zp[G] by

wM (f) = inf
x∈M−{0}

[w(f(x))− w(x)] .

Then the above filtration w on Zp[G] clearly satisfies w ≤ wM , which says exactly
that M is a filtered Zp[G]-module. If M is a finitely generated free Zp-module with
G-action and a valuation compatible with that on G, then M is complete for its
filtration and hence is a filtered module over the completed ring ZpG.

Under the assumptions of Theorem 9.1, gr G and gr M are finitely generated
free Γ-modules with all degrees rational. So they are concentrated in degrees (1/e)Z
for some positive integer e.

The spectral sequence of Proposition 8.1, applied to the ZpG-modules Zp and
M , has the form

TorUgr G
∗ (Γ, gr M)⇒ Tor

ZpG
∗ (Zp,M).

In that proposition, we assumed that the rings and modules were filtered by the
integers, but we can apply the proposition to filtrations in (1/e)Z, as here, by
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rescaling the filtrations. By Brumer ([9], Lemma 4.2, p. 455, and Remark 1, p. 452),
the homology of a compact p-adic Lie group G with coefficients in a pseudocompact
ZpG-module M is equal to Tor

ZpG
∗ (Zp,M), since ZpG is noetherian by [23], Prop.

V.2.2.4, p. 550. So the spectral sequence can be rewritten as:

H∗(gr G, gr M)⇒ H∗(G,M).

Here the initial term is the homology of gr G as a Lie algebra over Γ. Under our
assumptions, gr G and gr M are finitely generated free Γ-modules. This spectral
sequence also appears in the paper by Symonds and Weigel [31] in the case of
FpG-modules M .

We use the spectral sequence to compute the cohomology with nontrivial coef-
ficients of congruence subgroups in Theorem 10.1. It is strange that no such direct
relation is known between integral homology for p-adic Lie groups and for Lie alge-
bras over Zp; we have instead a relation between p-adic Lie groups and Lie algebras
over Γ = Fp[π].

There are many cases in which the spectral sequence can be used to compute
the Euler characteristic χ(G,M), assuming that the homology groups H∗(G,M) are
finite. It does not work in the generality of our assumptions here, however, because
it is possible for H∗(G,M) to be finite while H∗(gr G, gr M) is not. For example,
if G is a p-valued open subgroup of SLnZp and M = (Zp)

n is the standard module,
with the standard valuations on G and M as in the proof of Corollary 9.3, then
H∗(G,M) is always finite for n ≥ 2, but H∗(gr G, gr M) is finite if and only if p
does not divide n− 1 or n+ 1.

So we consider instead the more general spectral sequence of Proposition 8.4, for
the homomorphism ZpG→ Sat ZpG of complete filtered rings, where the saturation
of a valued Zp-module such as ZpG is defined before the statement of Theorem 9.1.
Since M has a valuation compatible with the action of G, the ring div ZpG acts
on div M , compatibly with the filtrations, and so the completion Sat ZpG acts
on Sat M . Since we assume M is saturated, the action of ZpG on M extends to
Sat ZpG.

For any valued Zp-module N , it is easy from the definition of Sat N to check
that

gr Sat N = (gr N ⊗Fp[π] Fp[π, π
−1])degrees ≥0.

If the valuation on G takes integer values, then one can show that gr Sat ZpG is
the universal enveloping algebra of a Lie algebra over Γ; in general, one can draw a
similar conclusion after extending scalars as follows.

We know that gr G is concentrated in degrees (1/e)Z. LetK be a finite extension
of Qp with the same residue field Fp such that the maximal ideal of the ring of
integers oK is generated by an element πK with valuation v(πK) = 1/e. We have
gr oK = Fp[πK ] where πK has degree 1/e, and there is a natural inclusion gr Zp =
Fp[π] ⊂ Fp[πK ]. The definitions of valued Zp-modules and their saturations extend
to oK -modules in a natural way. We therefore have

gr Sat oKG = (gr oKG⊗Fp[πK ] Fp[πK , π−1
K ])≥0

= (gr ZpG⊗Fp[π] Fp[πK , π−1
K ])≥0

= (U(gr G)⊗Fp[π] Fp[πK , π−1
K ])≥0.
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Defining a graded Lie algebra s over Fp[πK ] by tensoring gr G up from Fp[π] to
Fp[πK ], we can say that

gr Sat oKG = (Us⊗Fp[πK ] Fp[πK , π−1
K ])≥0.

Let t be the saturation of s, defined by

t = (s⊗Fp[πK ] Fp[πK , π−1
K ])≥0.

Since s is a graded free Fp[πK ]-module of rank n, so is t. Since s is concentrated
in degrees (1/e)Z and πK has degree 1/e, the generators of t are all in degree 0.
Finally, t is a Lie algebra over Fp[πK ] in an obvious way. It follows that gr Sat oK
is the universal enveloping algebra of t.

As a result, the spectral sequence of Proposition 8.4 has the form

TorUt,Us
∗ (Fp[πK ], gr MoK )⇒ TorSat oKG,oKG

∗ (oK ,MoK ).

Again, in the proposition, we assumed that the filtrations were indexed by the
integers, but we can apply the proposition when the filtrations are indexed by
(1/e)Z, as here, by rescaling the filtrations. In a somewhat simpler notation, we
can rename the groups in this spectral sequence as:

H∗(t, s; gr MoK )⇒ H∗(Sat oKG,G;MoK ).

Here, for the augmented algebra Sat oKG over oK , we write H∗(Sat oKG,MoK )
to mean TorSat oKG

∗ (oK ,MoK ), by analogy with the definitions of group homology
and Lie algebra homology. The homomorphism of Lie algebras s → t over Fp[πK ]
is an injection from one free Fp[πK ]-module of finite rank to another, and the t-
module gr MoK is also a free Fp[πK ]-module of finite rank. Since G has dimension
at least 2, the Lie algebras s and t have rank at least 2 as free Fp[πk]-modules. By
Proposition 2.3, the relative Lie algebra homology groups H∗(t, s; gr MoK ) are finite,
and the resulting Euler characteristic is 0. Then the above spectral sequence shows
that the groups H∗(Sat oKG,G;MoK ) are also finite and that the resulting Euler
characteristic is 0. These groups are just the analogous groups over Zp tensored up
to oK , so we deduce the same conclusions for the groups H∗(Sat ZpG,G;M). So
H∗(G,M) is finite if and only if H∗(Sat ZpG,M) is finite; and if either condition
holds, then

χ(G,M) = χ(Sat ZpG,M).

To analyze the homology of Lie algebras over Zp by the above methods, which
as written apply to complete rings, we first need the following lemma.

Lemma 9.2 Let g be a valued Lie algebra over Zp. That is, g is a filtered Lie
algebra over Zp which is valued as a Zp-module. As always, assume that g is free
of finite rank over Zp. For any complete filtered g-module M , we can view M as a
module over the completion Ug∧ of the universal enveloping algebra, and we have

H∗(g,M) = H∗(Ug∧,M).
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Proof. Let

→ Ug⊗Zp ∧
2g→ Ug⊗Zp g→ Ug→ Zp → 0

be the standard resolution of Zp as a Ug-module. Clearly these modules are filtered
in a natural way. The point is that this is a resolution in the filtered sense, meaning
that not only this complex but also the subcomplexes of elements of filtration ≥ ν,
for all real numbers ν, are exact. Indeed, the Zp-linear homotopies that prove ex-
actness of the standard complex are compatible with the filtrations (V.1.3.7, p. 545,
in [23]).

It follows that these Zp-linear homotopies are defined on the completion of this
complex, and so this completion is exact. It clearly has the form

→ Ug∧ ⊗Zp ∧
2g→ Ug∧ ⊗Zp g→ Ug∧ → Zp → 0.

So, for any Ug∧-module M , H∗(g,M) and H∗(Ug∧,M) are computed by the same
complex

→ ∧2g⊗Zp
M → g⊗Zp

M →M → 0.

QED
If g is a sufficiently small open Lie subalgebra over Zp of the Lie algebra of G

over Qp, then g inherits a valuation from G, and we have Sat Ug = Sat ZpG by the
proof of Theorem V.2.4.9, p. 562 in [23]. In particular, we have a homomorphism
from Ug∧ to Sat ZpG. As in the argument for groups, let oK be an extension of
Zp such that a uniformizer πK has valuation 1/e. After tensoring up to oK , the
graded homomorphism associated to Ug∧ → Sat ZpGmaps the universal enveloping
algebra of one graded Lie algebra over Fp[πK ], r := gr g ⊗Fp[π] Fp[πK ], to that of
another, the saturation t of r as above. The Lie algebra homomorphism r → t is
again an injection from one finitely generated free Fp[πK ]-module to another. So
the argument for groups applies, again using that the dimension is at least 2, to
show that H∗(Ug∧,M) is finite if and only if H∗(Sat ZpG,M) is finite, and if either
condition holds then

χ(Ug∧,M) = χ(Sat ZpG,M).

By Lemma 9.2, we can replace H∗(Ug∧,M) in these statements by H∗(g,M).
Having related Euler characteristics for both the group G and the Lie algebra g

to those for Sat ZpG, we have the relation between g and G that we wanted. We
had to assume above that the Lie algebra g was sufficiently small, but that implies
the same result for any open Lie subalgebra over Zp of the Lie algebra of G over
Qp which acts on M , by Proposition 2.3. Theorem 9.1 is proved. QED

Corollary 9.3 Let p be any prime number. Let G be a compact p-adic Lie group
of dimension at least 2, and let M be a finitely generated free Zp-module with G-
action. Suppose that the image of G in Aut(M) is sufficiently small in the sense
that either (1) this image is a pro-p group and p > rank(M) + 1, or else (2) G acts
trivially on M/p if p is odd, or on M/4 if p = 2. Also assume that there is some
faithful G-module (which could be M), finitely generated and free as a Zp-module,
which satisfies (1) or (2).

Let g be any Lie algebra over Zp such that g ⊗Qp is the Lie algebra gQp
of G

and such that g acts on M . Then the homology groups H∗(G,M) are finite if and
only if the groups H∗(g,M) are finite, and if either condition holds then

χ(G,M) = χ(g,M).
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Proof. According to Theorem 9.1, it suffices to show that G has a valuation
and that M has a compatible valuation which is saturated, both taking rational
values. If M is faithful as well as satisfying (1) or (2), then Lazard constructed
the required valuations of G and M ; we will recall his definitions in the following
paragraphs. In general, if there is some faithful module N which satisfies (1) or (2),
then the minimum of the filtrations of G associated to M and N is a valuation of
G which is compatible with the valuation of M , as we want. (To be precise, if M is
not faithful, the filtration of G associated to M alone satisfies all the properties of
a valuation, as defined before Theorem 9.1, except that it takes the value ∞ on the
kernel of G→ Aut(M). The minimum just mentioned is a genuine valuation of G.)

For (2), we use the obvious integral valuations. That is, after choosing a basis
for M , G becomes a subgroup of GLnZp whose image in GLnZ/p is trivial, and we
define

ω(a) = min
1≤i,j≤n

v(aij − δij)

for a ∈ G and
w(x) = min

1≤i≤n
v(xi)

for x ∈ M = (Zp)
n. The stronger assumption for p = 2 is needed to ensure that ω

is a valuation of G (see the definition before Theorem 9.1).
In case (1), use the rational valuation of G defined in section III.3.2.7, pp. 484–

486, of [23]. We will generalize this construction to groups other than GLn in
Proposition 12.1. Namely, since G is a pro-p subgroup of GLnZp, it is conjugate
to a subgroup of the Sylow p-subgroup Iwu ⊂ GLnZp of matrices whose image in
GLnZ/p is strictly upper-triangular. (We call this subgroup Iwu since it is the pro-
p, or pro-unipotent, radical of an Iwahori subgroup of GLnQp, the group of matrices
in GLnZp whose image in GLnZ/p is non-strictly upper triangular.) So it is enough
to define valuations on the group Iwu and its standard module M = (Zp)

n. Since
we assume n < p − 1, there is a rational number α such that α > (p − 1)−1 and
(n− 1)α < 1− (p− 1)−1. Choose such an α and a finite extension K of Qp with an
element a ∈ K such that v(a) = α. Let D denote the diagonal matrix dij = ai−nδij ;
this differs from Lazard’s definition by a constant factor, which makes no difference
in defining the valuation on Iwu. Namely, let w be the standard valuation of the
algebra MnoK , w(X) = min v(xij), and define a valuation of Iwu by

ω(X) = w(D−1XD − 1).

Lazard shows that this is a valuation of Iwu. Similarly, let w be the standard
valuation on M = (Zp)

n, w(m) = min v(mi), and define a new valuation w′ of M
by

w′(m) = w(D−1m).

It is immediate that this valuation is compatible with that on G, in the sense defined
before Theorem 9.1. Also, from our choice of D, M is saturated for this valuation.
QED

Theorem 0.1 follows from Theorem 7.1, Theorem 7.4, and Corollary 9.3 when
the G-module M is a free Zp-module. To include arbitrary finitely generated Zp-
modules M in Theorem 0.1, we use that χ(G,A) = 0 for all p-adic Lie groups G of
positive dimension which are pro-p groups and all finite ZpG-modules A, by [28],
I.4.1, exercise (e).

32



10 Cohomology of congruence subgroups

In this section we show how to use the spectral sequence arising in the proof of
Theorem 9.1 to compute the whole homology with nontrivial coefficients of certain
congruence subgroups, not just an Euler characteristic. See Corollary 10.2 for the
special case of congruence subgroups of SLnZp. In contrast to the results on Euler
characteristics, we need to assume that p does not divide n−1 or n+1 in Corollary
10.2.

Theorem 10.1 Let g be a Lie algebra over Zp, M a finitely generated free Zp-
module on which g acts. Suppose that the homology groups H∗(gFp

,MFp
) are 0.

This holds for example if gQp is semisimple, MQp is a nontrivial simple gQp-module,
and p does not divide the eigenvalue of the Casimir operator, scaled to lie in the
Zp-algebra Ug, on MQp .

Let Gr be the group defined by the Baker-Campbell-Hausdorff formula from the
Lie algebra prg, where r ≥ 1 if p is odd and r ≥ 2 if p = 2. Then the abelian group
Hi(Gr,M) is isomorphic to the direct sum of

(n−1
i

)
rank(M) copies of Z/pr, where

n is the rank of g as a free Zp-module. Also, Hi(p
rg,M) is isomorphic to the same

group.
Moreover, for any group H which acts compatibly on g and M , we have

Hi(Gr,M) = r
i∑

j=0

(−1)i−j(∧jgFp
⊗Fp

MFp
)

in the Grothendieck group of finite p-torsion H-modules.

Proof. Since r ≥ 1 if p is odd and r ≥ 2 if p = 2, Gr is a p-valued group
by Lazard [23], IV.3.2.6, pp. 518–519. The valuation is defined by: ω(x) = a if
x ∈ Gr corresponds to an element of pag − pa+1g. Since M is a g-module, the
standard saturated valuation on M , where w(x) = a if x ∈M lies in paM −pa+1M ,
is compatible with the valuation of Gr.

In the proof of Theorem 9.1, we defined a spectral sequence

H∗(gr Gr, gr M)⇒ H∗(Gr,M).

Here gr Gr is the Lie algebra πrgr g over Γ = gr Zp = Fp[π]. The complex for
computing the Lie algebra homology H∗(π

rgr g, gr M) has the form

→ πrgr g⊗Γ gr M → gr M → 0.

It can be identified in an obvious way with the complex defining H∗(gr g, gr M),

→ gr g⊗Γ gr M → gr M → 0,

but with the differentials multiplied by πr.
Clearly the Lie algebra gr g⊗ΓFp is equal to gFp and gr M⊗ΓFp is equal toMFp .

We assumed that H∗(gFp ,MFp) = 0, and it follows that H∗(gr g, gr M ⊗Γ Fp) = 0
(since these homology groups are defined by the same complex). By the universal
coefficient theorem, using that H∗(gr g, gr M) is a finitely generated Γ-module, it
follows that H∗(gr g, gr M) = 0.
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So the complex defining H∗(gr Gr, gr M) is obtained from an exact complex
by multiplying all the differentials by πr. Since the Γ-modules in the complex are
torsion-free, multiplying by πr does not change the kernels, but the images are
multiplied by πr. Thus we have a canonical isomorphism

Hi(gr Gr, gr M) ∼= ker(di)⊗Γ Γ/πr,

where di : ∧igr g ⊗Γ gr M → ∧i−1gr g ⊗Γ gr M is a differential in the complex
defining H∗(gr g, gr M). By exactness of the latter complex, we have

ker(di) =

i∑

j=0

(−1)i−j(∧jgr g⊗Γ gr M)

in the Grothendieck group of finitely generated Γ-modules. So we know the rank of
the free Γ-module ker(di), and it follows that Hi(gr Gr, gr M) is isomorphic to the
direct sum of

(n−1
i

)
rank(M) copies of Γ/πr, where n is the rank of g as a free Zp-

module. This is a graded Γ-module with generators in degree ir, as we see by going
through the above identifications. We can also describe these homology groups less
precisely but more canonically. Any group H which acts compatibly on g and M
automatically preserves the filtrations of g and M , so it acts on the above spectral
sequence, and we have

Hi(gr Gr, gr M) = r
i∑

j=0

(−1)i−j(∧jgFp
⊗Fp

MFp
)

in the Grothendieck group of finite H-modules.
The differentials dk in the spectral sequence

E1
ij = Hi+j(gr Gr, gr M)degree −i ⇒ Hi+j(Gr,M)

have bidegree (−k, k− 1). Since Hi(gr Gr, gr M) is concentrated in degrees from ir
to ir + r − 1, the spectral sequence degenerates at E1. It follows that the abelian
group Hi(Gr,M) is isomorphic to the direct sum of

(n−1
i

)
rank(M) copies of Z/pr.

Again, for any group H which acts compatibly on g and M , it follows from the
above results that

Hi(Gr,M) = r
i∑

j=0

(−1)i−j(∧jgFp
⊗Fp

MFp
)

in the Grothendieck group of finite H-modules.
The proof of Theorem 9.1 gives a similar spectral sequence

H∗(π
rgr g, gr M)⇒ H∗(p

rg,M)

which degenerates by the same argument. So we get the same description of
H∗(p

rg,M). QED

Corollary 10.2 Let Gr = ker(SLnZp → SLnZ/p
r), where r ≥ 1 if p is odd and

r ≥ 2 if p = 2. Let M = (Zp)
n be the standard representation of Gr. Suppose that

p ∤ (n − 1) and p ∤ (n + 1). Then the abelian group Hi(Gr,M) is isomorphic to
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the direct sum of
(n2−2

i

)
n copies of Z/pr. Moreover, the group SLnZ/p

r acts on
H∗(Gr,M) in a natural way, and we have

Hi(Gr,M) = r

i∑

j=0

(−1)i−j(∧islnFp ⊗Fp MFp)

in the Grothendieck group of finite p-torsion SLnZ/p
r-modules.

Proof. To deduce the first statement from Theorem 10.1, we need to check that
H∗(slnFp,MFp

) = 0 if p ∤ n− 1 and p ∤ n+ 1.
Let g be the Lie algebra slnZ, with its standard module M = Zn. The Casimir

operator c in the center of the enveloping algebra UgQ acts on MQ by multiplication
by (n2 − 1)/2n2, say by formula (25.14) in Fulton and Harris [17], p. 418. Writing
out c in terms of a basis for g = slnZ shows that c′ := 2n2c lies in the integral
enveloping algebra Ug. Clearly it acts by n2 − 1 on M . It is also clear that c′

maps to an element in the center of UgFp , which acts by a nonzero scalar on MFp

if n2 − 1 6≡ 0 (mod p), that is, if p ∤ (n − 1) and p ∤ (n + 1). It follows that
H∗(gFp ,MFp) = 0 if p ∤ (n− 1) and p ∤ (n+ 1), as claimed.

So Theorem 10.1 applies, and we have the computation of H∗(Gr,M) as an
abelian group. The theorem also computesHi(Gr,M) as an element in the Grothendieck
group Rep(SLnZp) of finite p-torsion SLnZp-modules, since SLnZp acts compat-
ibly on slnZp and on MZp

. Since Hi(Gr,M) and the expression on the right are
in fact SLnZ/p

r-modules, we deduce the same equality in the Grothendieck group
Rep(SLnZ/p

r) of finite p-torsion SLnZ/p
r-modules, because the restriction map

Rep(SLnZ/p
r)→ Rep(SLnZp)

is injective. Indeed, Rep(SLnZ/p
r) ∼= Rep(Fp[SLnZ/p

r]) is detected by restriction
to cyclic subgroups of order prime to p by Brauer [16], and these all lift to SLnZp

since the kernel of SLnZp → SLnZ/p
r is a pro-p group. QED

11 Euler characteristics for p-adic Lie groups which are

not pro-p groups

Here at last we prove the vanishing of the Euler characteristics we have been con-
sidering for some p-adic Lie groups such as SLnZp which are not pro-p groups. See
Corollary 11.6 for some more explicit consequences of the following theorem.

Theorem 11.1 Let GQp
be a connected reductive algebraic group whose rank over

Qp is at least 2, and let MQp be a finite-dimensional GQp-module with no trivial
summands. Let G be a compact open subgroup of G(Qp) and let M be a G-invariant
lattice in MQp. Suppose that there is a Sylow p-subgroup Gp ⊂ G with a valua-
tion and that M has a compatible saturated valuation, both taking rational values.
Then the homology groups H∗(G,M) are finite and the resulting Euler characteristic
χ(G,M) is 0.

Proof. Since GQp is a reductive group in characteristic zero, representations
of GQp are completely reducible, and so the assumption on MQp implies that the
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coinvariants of GQp on MQp are 0. Since GQp is connected, it follows that the
coinvariants of its Lie algebra gQp on MQp are 0. It follows that H∗(K,M) is
finite for all open subgroups K of G, by Lemma 3.1 and Lazard’s theorem that
H∗(K,M) ⊗Qp injects into H∗(gQp ,MQp) ([23], V.2.4.10, pp. 562–563).

For any finite group F , let a(ZpF ) denote the Green ring, the free abelian group
on the set of isomorphism classes of indecomposable ZpF -modules that are finitely
generated and free over Zp. Conlon’s induction theorem says that for any finite
group F , there are rational numbers aK such that

Zp =
∑

K

aKZp[F/K]

in a(ZpG) ⊗ Q, where K runs over the set of p-hypoelementary subgroups of F ,
that is, extensions of a cyclic group of order prime to p by a p-group ([16], Theorem
80.51). (The name “hyperelementary” is also used for these subgroups.) In fact,
although we do not need it here, there is an explicit formula for the rational numbers
aK , using Gluck’s formula for the idempotents in the Burnside ring tensored with
the rationals [19]:

Zp =
∑

H

1

|NF (H)|

∑

K⊂H

|K|µ(K,H)Zp[F/K].

Here the first sum runs over the conjugacy classes of p-hypoelementary subgroups
H ⊂ F , and µ denotes the Möbius function on the partially ordered set of subgroups
of F . Boltje’s paper [2] uses Gluck’s formula for similar purposes in Proposition
VI.1.2 and the remarks afterward. For example, for the group F = S3 and p = 2,
the above formula gives the identity

Z2 = −
1

2
Z2S3/1 + Z2S3/〈(12)〉 +

1

2
Z2S3/〈(123)〉.

Returning to the p-adic Lie group G, we know that there is an open normal
subgroup H of G contained in the given Sylow p-subgroup Gp, for example the
intersection of the conjugates of Gp. We apply Conlon’s induction theorem to the
finite group G/H to get an equality

Zp =
∑

K

aKZp[G/K]

in the Green ring of G/H-modules, where K runs over the p-hypoelementary sub-
groups of G containing H (that is, K is an extension of a cyclic group of order
prime to p by a pro-p group). If we multiply this equation by a suitable positive
integer and move terms with aK negative to the other side of the equation, it states
the existence of an isomorphism between two explicit G/H-modules, which we can
view as an isomorphism between the same groups viewed as G-modules.

It follows that, for the given ZpG-module M and all j ≥ 0, we have

Hj(G,M) =
∑

K

aKHj(G,M ⊗Zp
Zp[G/K])

=
∑

K

aKHj(K,M).
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This is an equality in the Grothendieck group tensored with Q of finite abelian
groups with respect to direct sums. It follows that

χ(G,M) =
∑

K

aKχ(K,M).

So, to show that the Euler characteristic χ(G,M) is 0, it suffices to show that
χ(K,M) = 0 for all open p-hypoelementary subgroups K of G. Since such a sub-
group satisfies all the properties we assumed of G, we can assume from now on that
G is itself p-hypoelementary. That is, the Sylow p-subgroup Gp is normal in G and
the quotient group Z := G/Gp is cyclic of order prime to p, and we want to show
that χ(G,M) = 0.

The extension
1→ Gp → G→ Z → 1

splits, and so G is a semidirect product Z ⋉ Gp. Also, H∗(G,M) is equal to the
coinvariants of Z acting on H∗(Gp,M), and taking the coinvariants of Z is an exact
functor on ZpZ-modules. So it suffices to show that χ(Gp,M) = 0 in Rep(Z),
the Grothendieck group of finite p-torsion Z-modules. We are given that M is a
(Z ⋉ Gp)-module and that Gp and M have compatible valuations. Replace the
given valuation of Gp by the minimum of its conjugates under the action of Z on
Gp. This is again a valuation of Gp, now Z-invariant, and still compatible with the
given valuation of M since it is less than or equal to the original valuation of Gp.

Let g be any Z-invariant Lie subalgebra over Zp of the Lie algebra gQp
such

that g ⊗Qp = gQp
. To see that one exists, start with any Z-invariant Zp-lattice

in gQp
, and then multiply it by a big power of p. Propositions 11.2 and 11.4 will

imply that χ(Gp,M) = 0 in Rep(Z), thus proving Theorem 11.1.

Proposition 11.2 In the above notation, we have χ(g,M) = 0 in the Grothendieck
group Rep(Z) of finite p-torsion Z-modules.

Proof. Let g be a generator of the finite cyclic group Z. Since G = Z⋉Gp is an
open subgroup of the connected reductive algebraic group G(Qp), g is an element
of finite order in G(Qp), hence a semisimple element. So g is contained in some
maximal torus TQp , not necessarily split. Over some finite extension K of Qp, TK

is contained in a Borel subgroup BK . Therefore, when g acts on the Lie algebra
gK , it acts trivially on the Cartan subalgebra tK and maps the Borel subalgebra bK
into itself. We will show that χ(goK ,MoK ) = 0 in the Grothendieck group of finite
p-torsion Z-modules, which implies the statement of the proposition.

Briefly, the proofs of Proposition 4.1 and Theorem 5.1 work Z-equivariantly. The
Z-equivariant analogue of Proposition 4.1 which we need is the following lemma.

Lemma 11.3 Let h be an abelian Lie algebra of the form (oK)r for some r ≥ 2.
Let M be a finitely generated oK-module with h-action such that Mh ⊗ K = 0.
Let Z be a group which acts trivially on h and acts compatibly on M (in an obvious
terminology, M is a (Z×h)-module). Then the homology groups H∗(h,M) are finite
and the resulting Euler characteristic χ(h,M) in the Grothendieck group Rep(Z) of
finite Z-modules is 0.
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Proof. First, we show that χ(h,M) = 0 in Rep(Z) for any abelian Lie algebra
h of rank at least 1 as an oK-module and any finite (Z × h)-module M . Indeed, in
Rep(Z),

χ(h,M) =
∑

i

(−1)i ∧i h⊗oK M

= rank(
∑

i

(−1)i ∧i h)M

= 0 ·M

= 0,

where the first equality follows from the complex that computes Lie algebra homol-
ogy, the second equality holds because Z acts trivially on h, and the third is because
h has rank at least 1 as an oK-module.

Now suppose that h has rank at least 2 as an oK-module and that M is finitely
generated over oK , with Mh⊗K = 0. We know that the Z-modules H∗(h,M) are
finite by the corresponding nonequivariant statement, Proposition 4.1. The previous
paragraph implies that the Euler characteristic χ(h,M) in Rep(Z) only depends on
the (Z×hK)-module MK := M ⊗oK K, so we can use the notation χfin(hK ,MK) :=
χ(h,M) in Rep(Z), generalizing Definition 2.4. Also, we can extend scalars as in
Definition 2.5, so it suffices to show that χfin(hQp

,MQp
) = 0 in Rep(Z) for all

(Z × h
Qp

)-modules M
Qp

such that the coinvariants of h
Qp

on M
Qp

are 0.

The simple (Z × hQp
)-modules are 1-dimensional by Schur’s lemma, and the

assumption that the coinvariants of hQp
on MQp

are 0 means that all the sim-

ple subquotients of MQp
as an hQp

-module are nontrivial, by Lemma 3.1. So it

suffices to show that χfin(hQp
,MQp

) = 0 in Rep(Z) for a 1-dimensional (Z × hQp
)-

module M
Qp

which is nontrivial as an h
Qp

-module. That is, it suffices to show that

χ(h,M) = 0 in Rep(Z) for any abelian Lie algebra h of rank at least 2 over a p-adic
ring of integers oK and any (Z × h)-module M of rank 1 which is nontrivial as an
h-module.

Since h has rank at least 2 as an oK-module, there is an oK -submodule l ⊂ h

such that h/l ∼= oK and l acts nontrivially on M . Then

χ(h,M) =
∑

i

(−1)iχ(h/l,Hi(l, N)).

Since Z acts trivially on h, it preserves l, and so this is an equality in Rep(Z). We
have arranged that Hi(l, N) is a finite (Z × h/l)-module for all i, so the individual
terms in this sum are 0 in Rep(Z) by the first paragraph of this proof. So χ(h,M) =
0 in Rep(Z) as we want. QED

To complete the proof of Proposition 11.2, we need to show that χ(goK ,MoK ) = 0
in Rep(Z). We know that M is a (Z ⋉ goK )-module and that Z acts trivially on a
Cartan subalgebra tK and preserves a Borel subalgebra bK containing tK . Then it
is clear that the following formula from the proof of Theorem 5.1 holds in Rep(Z):

χ(g,M) =
∑

j,k

(−1)j+kχ(b/u,Hj(u,M ⊗ ∧
k(g/b))).
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We are assuming in Theorem 11.1 that the algebraic group GQp has rank at least 2
over Qp, so the Lie algebra gK has rank at least 2. That is, bK/uK has dimension
at least 2. Also, the group Z acts trivially on bK/uK ∼= tK , so we can apply Lemma
11.3 to show that all the terms in this sum are 0 in Rep(Z). So χ(g,M) = 0 in
Rep(Z). QED (Proposition 11.2)

Proposition 11.4 In the notation defined before Proposition 11.2, we have χ(g,M) =
χ(Gp,M) in the Grothendieck group of finite p-torsion Z-modules.

Proof. Since the valuation of Gp is Z-invariant, the proof of Theorem 9.1 works
Z-equivariantly. The only point which is not obvious is that Proposition 2.3(2)
works Z-equivariantly, given that the Lie algebra g over a discrete valuation ring Γ
in the proposition has (g⊗Γ F )Z of dimension at least 2 over the field F = Γ[π−1],
as the following lemma asserts. That hypothesis will be valid for our Lie algebra
gr G over the graded discrete valuation ring Γ = Fp[π] because gZQp

has dimension
at least 2 over Qp. Indeed, since the reductive algebraic group GQp

has rank at
least 2 over Qp, every element of G(Qp) (in particular, a generator of the cyclic
group Z ⊂ G(Qp)) has centralizer of dimension at least 2.

Lemma 11.5 Let Γ be a discrete valuation ring with uniformizer π. Let g be a
Lie algebra over Γ which is a finitely generated free Γ-module, and h ⊂ g a Lie
subalgebra of the same rank as a free Γ-module. Let M be a finitely generated free
Γ-module with g-action. Finally, let Z be a group which acts compatibly on g, h, and
M such that the trivial Z-module over the field F = Γ[π−1] occurs with multiplicity
at least 2 in g⊗F . Then the relative Lie algebra homology groups H∗(g, h;M) have
finite length as Γ-modules, and the corresponding Euler characteristic χ(g, h;M) is
0 in the Grothendieck group of Γ[Z]-modules of finite length over Γ.

Proof. It suffices to consider the case where πg ⊂ h ⊂ g. We apply that special
case to the sequence of Z-invariant Lie subalgebras of g,

g ⊃ πg+ h ⊃ π2g+ h ⊃ · · · ,

which eventually equals h.
For πg ⊂ h ⊂ g, let B = g/h and A = ker(g/π → g/h). These are representations

of the group Z over the field Γ/π which form an exact sequence

0→ A→ g/π → B → 0.

We compute that, in the Grothendieck group Rep(Z) of Γ[Z]-modules of finite
length over Γ,

∧ig/ ∧i h =

i∑

j=0

j(∧i−jA⊗Γ/π ∧
jB).

This is proved using a canonical filtration of the finite-length Γ-module ∧ig/ ∧i h
with quotients vector spaces over Γ/π. It follows that, in Rep(Z),

∑

i

(−1)i ∧i g/ ∧i h =
∑

j≤i

(−1)ij(∧i−jA)(∧jB)

=
∑

i,j

(−1)i ∧i (A) · j(−1)j ∧j B

= F1(A)F2(B),
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where we define

F1(A) =
∑

i

(−1)i ∧i A

F2(A) =
∑

i

(−1)ii ∧i A.

The operations F1 and F2 take a representation A of Z over Γ/π to an element
of the corresponding Grothendieck group. For A of dimension n, the operation
F1(A) = ∧−1(A) is related to the top gamma operation γn (the top Chern class with
values in K-theory) and F2(A) is related to the operation γn−1, in the terminology
of λ-rings [18]. We do not need that terminology, but only the elementary properties
that

F1(A+B) = F1(A)F1(B)

and
F2(A+B) = F1(A)F2(B) + F2(A)F1(B).

Also, F1(1) = 0, so F1(A + 1) = 0 for all representations A, and F2(1) = −1 and
F2(2) = 0, so F2(A+ 2) = 0 for all representations A.

The relative Lie algebra homology H∗(g, h;M) is computed by a chain complex
with Z-action, with ith group equal to (∧ig/∧i h)⊗Γ M . From this it is immediate
that the Γ-modules H∗(g, h;M) have finite length. Moreover, the previous para-
graph shows that, in the Grothendieck group Rep(Z) of finite-length Γ[Z]-modules,

χ(g, h;M) =
∑

i

(−1)i(∧ig/ ∧i h)⊗Γ M

= F1(A)F2(B)M/π,

where B = g/h and A = ker(g/π → g/h).
We are assuming that the trivial Z-module over the field F occurs with multi-

plicity at least 2 in g⊗ F . It follows easily that the trivial Z-module over the field
Γ/π occurs with multiplicity at least 2 in g/π. So it occurs either with multiplic-
ity at least 1 in A or with multiplicity at least 2 in B. By the properties of the
operations F1 and F2 listed above, either F1(A) = 0 or F2(B) = 0 in Rep(Z). So
χ(g, h;M) = 0 in Rep(Z), as we want. QED (Lemma 11.5 and hence Proposition
11.4).

Theorem 11.1 follows from Propositions 11.2 and 11.4, together with the analysis
before Proposition 11.2. QED

Corollary 11.6 Let GQp
be a connected reductive algebraic group, of rank over Qp

at least 2. Suppose that p is greater than the dimension of some faithful GQp
-module

plus 1. (For GQp
semisimple, it suffices to assume instead the lower bound for p

given in Proposition 12.1.) Let MQp
be a GQp

-module with no trivial summands.
Let G be a compact open subgroup of G(Qp), and let M be a G-invariant Zp-lattice
in MQp . Then the homology groups H∗(G,M) are finite and the resulting Euler
characteristic χ(G,M) is 0.

Proof. The bound on p in Proposition 12.1 will imply that any Sylow p-
subgroup Gp of G admits a valuation, and that the vector space MQp has a com-
patible valuation. Let us now prove the same statements when p is greater than the
dimension of some faithful GQp-module plus 1.
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LetNQp be a faithfulGQp-module with p > dim(NQp)+1. SinceG is compact, it
preserves some Zp-lattice N in NQp . Any Sylow p-subgroup Gp of G is a subgroup
of some Sylow p-subgroup Iwu ⊂ GL(N). Since p > rank(N) + 1, the proof of
Corollary 9.3 shows that Iwu has a valuation, which we can restrict to Gp, and that
N has a compatible saturated valuation.

Since the group GQp
is reductive, any GQp

-module MQp
is a direct summand of

some direct sum of tensor products N⊗a
Qp
⊗ (N∗

Qp
)⊗b for a, b ≥ 0, by [25], II.4.3.2(a),

p. 156. The valuation of N induces a vector space valuation

w : N⊗a
Qp
⊗ (N∗

Qp
)⊗b → (∞,∞],

which we can restrict to the subspace MQp . Let

M0 = {x ∈MQp : w(x) ≥ 0}.

Then w is a saturated valuation on M0. Since the valuation of Gp is compatible
with that of N , it is compatible with that of M0. By Theorem 11.1, given that MQp

has no trivial summand, we have χ(G,M0) = 0. To deduce that χ(G,M) = 0 for
all G-invariant lattices M in MQp , we use Serre’s theorem that χ(G,A) = 0 for all
finite ZpG-modules A, since G is an open subgroup of a connected algebraic group
over Qp of dimension greater than zero ([29], Corollary to Theorem C). QED

For example, Corollary 11.6 implies that χ(G,M) = 0 for all open subgroups G
of SLnZp when M = (Zp)

n is the standard module, n ≥ 3, and p > n+ 1.

12 Construction of valuations on pro-p subgroups of a

semisimple group

In this section, we will improve the bound on p in Corollary 11.6, which says that for
p sufficiently large, the Euler characteristics are zero for all compact open subgroups
of a reductive group of rank at least 2. By the proof of Corollary 11.6, all we need
is to give a weaker sufficient condition on a group GK so that every closed pro-p
subgroup of G(K) is p-valued. Proposition 12.1 will give such a weaker sufficient
condition when the group GK is semisimple. It may be interesting for other purposes
to know that every closed pro-p subgroup of G(K) has a valuation; in particular, it
follows that G(K) has no p-torsion. The proof combines the Bruhat-Tits structure
theory of p-adic groups [32] with a generalization of Lazard’s construction of a
valuation for pro-p subgroups of GLnK (given in the proof of Corollary 9.3, above).

For the group SLnQp, the bound in Corollary 11.6 is optimal: every closed pro-p
subgroup of SLnQp is p-valued if p > n+1. Indeed, if p = n+1 and n ≥ 2, then the
cyclic group Z/p imbeds in SLnZ and hence in SLnQp. For other groups, however,
we can do better. For example, let D be a division algebra of degree n (that is, of
dimension n2) over Qp. Then the proof of Corollary 11.6 shows that every pro-p
subgroup of SL1D is p-valued if p > n2 + 1, but in fact p > n + 1 is enough, as
the following proposition gives, using that SL1D becomes isomorphic to SLn over
some unramified extension of Qp. The need for an improvement in Corollary 11.6 is
most apparent for the exceptional groups. For example, E8(Qp) has p-torsion if and
only if p = 2, 3, 5, 7, 11, 13, 19, or 31 by [29], p. 492, but the proof of Corollary 11.6
shows only that every pro-p subgroup of E8(Qp) is p-valued (hence E8(Qp) has no
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p-torsion) if p > 248 + 1. The following proposition gives the optimal estimate that
every pro-p subgroup of E8(Qp) is p-valued if p > 30 + 1, since 30 is the Coxeter
number of E8.

To state a sharp bound even for non-split groups, we need to define a general-
ization of the Coxeter number. Let GK be an absolutely simple quasi-split group
over a field K. (Quasi-split means that GK has a Borel subgroup defined over K
[3]). Such a group is described by its Dynkin diagram over the separable closure
K of K, of type An, Bn, Cn,Dn, E6, E7, E8, F4, or G2, together with an action of
the Galois group Gal(K/K) on the Dynkin diagram. That is, the Galois group
maps into the automorphism group of the Dynkin diagram, which has order 1 or
2, except that the automorphism group of the Dynkin diagram D4 is isomorphic to
the symmetric group S3. Equivalently, the Galois group acts on the root system,
preserving the set of positive roots. Let α1, . . . , αn be the simple roots. We define
the generalized Coxeter number h(GK) to be the maximum over all positive roots
α =

∑
riαi of the numbers (1+

∑
ri)|Gal(K/K)α|, unless the Dynkin diagram is of

type An with n even and the Galois action is nontrivial (so that the universal cover
of GK is a unitary group SUn+1K with n + 1 odd); in that case, we define h(GK)
to be 2(n+1). If GK is split, meaning that the Galois action is trivial, then h(GK)
is the Coxeter number as defined in Bourbaki [5], VI.1, Proposition 31. Using the
notation iXn to denote a quasi-split group with Dynkin diagram of type Xn where
the image of the Galois group has order i, we tabulate the numbers h(GK) below.

GK h(GK)
1An n+ 1
2An 2n if n is odd
2An 2(n+ 1) if n is even
Bn 2n
Cn 2n
1Dn 2n − 2
2Dn 2n
3D4 12
6D4 12
1E6 12
2E6 18
E7 18
E8 30
F4 12
G2 6

Proposition 12.1 Let GK be a connected semisimple algebraic group over a p-adic
field K. Let eK be the absolute ramification degree of K. By Steinberg [30], GK

becomes quasi-split over some finite unramified extension E of K. Let E be any
such extension. The universal covering of GE is a product of restrictions of scalars
of absolutely simple quasi-split groups HM over finite extensions M of E. Suppose
that

p > h(HM )eM + 1

for all the simple factors HM , where h(HM ) is the generalized Coxeter number as
listed above. Then every pro-p subgroup Gp of the original group G(K) admits
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a valuation. Moreover, every representation of the algebraic group GK admits a
valuation compatible with that of Gp. Both valuations take rational values.

Proof. We first reduce to the case of a simply connected group. Let G̃K → GK

be the universal covering of the semisimple group GK , and let Z be its kernel,
which is a finite subgroup of the center of G̃K . From the above table, and the
known centers of the simple algebraic groups, we see that any prime number p that
divides the order of the center of a simply connected semisimple group is at most the
maximum of the Coxeter numbers of its simple factors over the algebraic closure.
So our assumption on p is more than enough to ensure that Z has order prime to
p. By the exact sequence

Z(K)→ G̃(K)→ G(K)→ H1(K,Z(K)),

where the groups on the ends are abelian groups in which every element has order
prime to p, we see that every pro-p subgroup of G(K) is the isomorphic image of
some pro-p subgroup of G̃(K). Also, any representation of GK can be viewed as a
representation of G̃K . So it suffices to prove the proposition with GK replaced by
G̃K , that is, for GK simply connected.

For a simply connected semisimple group GK over a p-adic field K, Bruhat
and Tits, generalizing earlier work by Iwahori-Matsumoto and Hijikata, defined a
conjugacy class of compact open subgroups of G(K), the Iwahori subgroups Iw.
A convenient reference is [32], 3.7. Write k for the finite residue field of K. For
example, the group of matrices in SLnoK whose image in SLnk is upper-triangular
is an Iwahori subgroup of SLnK. Bruhat and Tits showed that every compact
subgroup of G(K) is contained in a maximal compact subgroup, and they classified
the maximal compact subgroups C. In particular, every maximal compact subgroup
contains an Iwahori subgroup. Moreover, using that GK is simply connected, each
maximal compact subgroup C is an extension of the k-points of some connected
group G(k) over the finite residue field k by a pro-p group, by [32], 3.5.2. The inverse
image of a Borel subgroup B(k) ⊂ G(k) in C is an Iwahori subgroup, by [32], 3.7.
Let Iwu denote the inverse image of a Sylow p-subgroup U(k) ⊂ B(k) ⊂ G(k) in
C; then Iwu is a pro-p group. We see that Iwu is a Sylow p-subgroup of C. Also,
all these subgroups Iwu in different maximal compact subgroups are conjugate in
G(K), since they are all Sylow p-subgroups of Iwahori subgroups. It is natural
to call Iwu the pro-p radical of an Iwahori subgroup, since it is normal in Iw and
Iw/Iwu is a finite group of order prime to p. It follows that any pro-p subgroup in
the whole group G(K) is contained in some subgroup conjugate to Iwu.

As a result, to prove the proposition, it suffices to define a valuation on one
subgroup Iwu ⊂ G(K), and to show that every representation of the algebraic
group GK admits a valuation compatible with that on Iwu. Generalizing Lazard’s
definition of a valuation on Iwu ⊂ GLnK (given in the proof of Corollary 9.3,
above), the idea is to find an element a ∈ G(L) for some finite extension L of
K and a Chevalley group GoL extending GL such that a−1(Iwu)a is contained in
the subgroup of elements g ∈ G(oL) with g ≡ 1 (mod m) for some m ∈ oL with
ordp(m) > (p − 1)−1. Then, taking a faithful representation V of GoL , a

−1(Iwu)a
is contained in the subgroup of elements g ∈ GL(V ) with g ≡ 1 (mod m) for some
m ∈ oL with ordp(m) > (p − 1)−1. So the group a−1(Iwu)a has the valuation

ω(g) = ordp(g − 1) ∈ (1/eL)Z.
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Moreover, this valuation is compatible with the obvious valuation w on V . It follows
that Iwu ⊂ G(K) has a valuation defined by

ω′(g) = ω(a−1ga),

and this is compatible with the valuation of VL defined by

w′(x) = w(a−1x).

Every representation of GL (in particular, any representation of GK tensored up
to L) is a direct summand of a direct sum of tensor products of VL and V ∗

L , by
[25], II.4.3.2(a), p. 156. It follows that every representation of GK has a valuation
compatible with that of Iwu, as we want. Thus, the proposition is proved if we can
find an element a ∈ G(L) as above.

For this purpose, as mentioned in the proposition, we can choose a finite un-
ramified extension E of K such that GE is quasi-split, by Steinberg [30], Corollary
10.2(a), applied to the maximal unramified extension of K. The original pro-p sub-
group Iwu of G(K) is contained in the analogous subgroup of G(E), so it suffices to
prove the same statement for GE in place of GK . Since GE is simply connected and
quasi-split, it is a product of restrictions of scalars of absolutely simple quasi-split
groups HM over finite extensions M of E, by [3], 6.21(ii). The pro-p subgroup
Iwu of G(E) is the product of the analogous subgroups for the simple factors, so it
suffices to consider the simple factors.

That is, writing GK in place of HM , we are given an absolutely simple quasi-
split group GK over a p-adic field K such that p > h(GK)eK + 1. Write Iwu

for the pro-p radical of an Iwahori subgroup of G(K), as above. To prove the
proposition, it suffices to find an element a ∈ G(L) for some finite extension L of
K and a Chevalley group GoL extending GL such that a−1(Iwu)a is contained in
the subgroup of elements x ∈ G(oL) with x ≡ 1 (mod m) for some m ∈ oL with
ordp(m) > (p− 1)−1.

For GK of type 2An with n even, so that GK is the unitary group SUn+1K
associated to a quadratic extension L/K, we defined h(GK) = 2(n + 1), while
h(GL) is the Coxeter number of SLn+1L, that is, n + 1. The assumption that
p > h(GK)eK + 1 implies that p > h(GL)eL + 1. Thus, if we can prove the above
statement for GL in place of GK , then the statement for GK follows. So we can
assume from now on that GK is not of type 2An with n even. Equivalently, the
relative root system Φ of GK (defined below, or see Borel-Tits [3]) is reduced, that
is, there is no root a such that 2a is also a root. (If GK is split, its relative root
system is reduced. Otherwise, GK is of type 2A2m,2 A2m−1,

2Dn,
2E6,

3 D4, or
6D4,

and then the relative root system is of type BCm, Cm, Bn−1, F4, G2, G2, respectively,
of which only BCm is non-reduced.)

To prove the above statement, we need a more explicit description of an Iwahori
subgroup of G(K), following [8], section 4. Let S be a maximal split torus in GK .
Since GK is quasi-split, the centralizer T of S is a maximal torus in GK , and there
is a Borel subgroup B defined over K that contains T . Let Φ ⊂ X∗(S) be the
set of roots of GK relative to S, and let Ua ⊂ G(K) be the unipotent subgroup
corresponding to a ∈ Φ. We know that the root system Φ is reduced because we
have arranged that GK is not of type 2An with n even.

44



Also, let K̃ be the Galois extension of K which corresponds to the kernel of
the action of the Galois group Gal(K/K) on X∗(T ), let Φ̃ ⊂ X∗(T ) be the set of
roots of GK̃ relative to T , and let Ũα ⊂ G(K) be the unipotent subgroup corre-

sponding to α ∈ Φ̃. We can choose isomorphisms xα : K → Ũα which satisfy the
compatibility conditions with the action of the Galois group GalK on Φ̃ needed to
form a “Chevalley-Steinberg system,” by [8], 4.1.3. These define a valuation of the
root datum (T (K̃), Ũα : α ∈ Φ̃), meaning a set of functions ϕ̃α : Ũα → (−∞,∞]
satisfying certain properties, by

ϕ̃α(xα(u)) = ordpu.

In particular, the subsets Ũα,c = ϕ̃−1
α ([c,∞]) and Ũα,c+ = ϕ̃−1

α ((c,∞]) are subgroups

of Ũα for all real numbers c.
The Chevalley system of the split group G

K̃
determines a model GoK of GK over

the ring of integers o
K̃

which is a Chevalley group; see [8], proof of 4.6.15. By the

construction, the obvious integral model Ũα,0 ∼= oK̃ of Ũα
∼= K is a closed subgroup

of GoK .
The Chevalley-Steinberg system also determines a valuation of the root datum

(T,Ua : a ∈ Φ), by [8], 4.2. The definition is simplest in the case we need here,
where Φ is reduced. Namely, any element u of Ua can be written uniquely as a
product

u =
∏

α∈A

ũα

where α runs over the set A of roots in Φ̃ that restrict to a, ordered in some fixed
way. The functions ϕa : Ua → (−∞,∞] are defined by

ϕa(u) = inf
α∈A

ϕ̃α(ũα).

Moreover, since Φ is reduced, the Chevalley-Steinberg system of G(K̃) induces an
isomorphism

xa : La → Ua

for every root a ∈ Φ, where La ⊂ K̃ is the extension field of K corresponding to
the subgroup of Gal(K̃/K) which fixes some root α ∈ Φ̃ that restricts to a. By [8],
4.2.2, the valuation of Ua is given in terms of this isomorphism by

ϕa(xa(u)) = ordpu

for u ∈ La. Combining the two descriptions, we can say that the subgroup Ua,0 ⊂

G(K) is contained in the subgroup of G(K̃) generated by Uα,0 for roots α ∈ Φ̃ re-

stricting to a. Likewise, Ua,0+ ⊂ G(K) is contained in the subgroup of G(K̃) gener-

ated by Uα,(c(α)eK )−1 for roots α ∈ Φ̃ restricting to a, where c(α) := |Gal(K̃/K)α| =
1, 2, or 3. This uses that La is an extension of degree c(α) of K. We should add
that the roots α of Φ̃ which restrict to a given element of Φ form a single orbit
under the Galois group, by Borel and Tits [3], 6.4(2).

The reason for the above comments is that we can define an Iwahori subgroup
Iw of G(K) as the subgroup generated by the subgroups Ua,0 for all positive roots
a ∈ Φ, Ua,0+ for all negative roots a ∈ Φ, and the maximal compact subgroup H of
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T (K), by [7], 6.4.2 and 7.2.6 (where we take x to be the origin of the affine space
A corresponding to the given valuation ϕ). Since Ua,0 and Ua,0+ are pro-p groups,
they map trivially into the quotient group Iw/Iwu, of order prime to p. So the
pro-p radical Iwu of Iw is the subgroup of G(K) generated by the subgroups Ua,0

for positive roots a ∈ Φ, Ua,0+ for negative roots a ∈ Φ, and the maximal pro-p
subgroup Hu of T (K). By the previous paragraph, it follows that Iwu is contained
in the subgroup of G(K̃) generated by Ũα,0 for positive roots α ∈ Φ̃, Ũα,(c(α)eK )−1

for negative roots α ∈ Φ̃, and the group H̃u := {x ∈ T (K̃) : x ≡ 1 (mod πK̃)}.

Let α1, . . . , αn be the simple roots of Φ̃. We have assumed that p−1 > h(GK)eK ,
which means (since GK is not of type 2An with n even) that p−1 > (1+

∑
ri)c(α) for

all positive roots α =
∑

riαi in Φ̃. Equivalently, for all positive roots α =
∑

riαi,
∑

ri
p− 1

<
1

c(α)eK
−

1

p− 1
.

It follows that there is an element x ∈ X∗(T )⊗Q such that 〈x, αi〉 > 1/(p − 1) for
all the simple roots αi and 〈x, α〉 < (c(α)eK)−1 − (p− 1)−1 for all positive roots α.

We can find an element a ∈ T (L) for some finite extension L of K̃ whose absolute
value is x ∈ X∗(T ) ⊗ Q. (We identify a cocharacter of T , f : Gm → T , with
|f(p)|.) It follows that a−1(Iwu)a is contained in the subgroup of G(L) generated
by the subgroups Uα,〈x,α〉 for positive roots α ∈ Φ̃, U−α,(c(α)eK )−1−〈x,α〉 for negative

roots −α, and H̃u := {x ∈ T (K̃) : x ≡ 1 (mod π
K̃
)}. The inequalities on x

imply that the first two subgroups are contained in the subgroups Uα,1/(p−1)+ for

all roots α ∈ Φ̃. We check immediately from the table of values of h(GK) that
h(GK) ≥ [K̃ : K], so that the assumption p−1 > h(GK)eK implies that p−1 > eK̃ ,

or in other words e−1

K̃
> (p − 1)−1. It follows that the subgroup H̃u is contained in

{x ∈ T (K̃) : ordp(x− 1) > (p− 1)−1}.
In terms of the Chevalley group GoK extending GK discussed earlier, these

statements say that a−1(Iwu)a is contained in the subgroup of elements x ∈ G(oL)
with x ≡ 1 (mod m) for some m ∈ oL with ordp(m) > (p − 1)−1. This completes
the proof, as explained earlier. QED

13 Open subgroups of SL2Zp

We will now show that the assumption that GQp has rank at least 2 in Theorem
11.1 and Corollary 11.6 is essential. Some examples of nonzero Euler characteristics
for open subgroups of SL2Zp follow already from Proposition 6.2, combined with
Corollary 9.3. Those examples involve prime numbers p which are small compared
to the representation considered. For example, if G is an open pro-p subgroup of
SL2Zp, p ≥ 5, and M is the standard moduleM = (Zp)

2, then those results just say
that χ(G,M) = 0. In this section, we will show that for any prime p ≥ 5, there is
an open subgroup G in SL2Zp, necessarily not a pro-p group, such that χ(G,M) is
not zero. We do this by computing all the homology groups H∗(G,M) for a natural
class of subgroups of SL2Zp.

Proposition 13.1 Let p ≥ 5 be a prime number, and G be the inverse image in
SL2Zp of some subgroup Q of SL2Z/p. Let M = (Zp)

2 be the standard represen-
tation of G. Then the homology groups H∗(G,M) are zero unless Q is either the
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trivial group, a cyclic group Z/3, a Sylow p-subgroup Z/p, or a semidirect product
Z/3⋉Z/p. In those four cases, the homology groups H∗(G,M) are Fp-vector spaces,
zero except in degrees 0, 1, 2, of dimensions

2, 4, 2 if Q = 1

0, 2, 0 if Q ∼= Z/3

1, 2, 1 if Q ∼= Z/p

0, 2, 0 if Q ∼= Z/3⋉ Z/p.

So the Euler characteristic χ(G,M) is 0 unless Q is isomorphic to Z/3 or Z/3⋉Z/p,
in which case it is −2.

In particular, for every p ≥ 5, the group SL2Z/p contains a subgroup Q of order
3, and the Proposition implies that the inverse image G of Q in SL2Zp has χ(G,M)
equal to −2, not zero. This is the counterexample described above. For p ≡ 1
(mod 3), SL2Z/p also has a subgroup isomorphic to Z/3 ⋉ Z/p, giving another
counterexample.

Proof. We first prepare to analyze subgroups Q of SL2Z/p of order prime to
p. Let G1 be the congruence subgroup

ker(SL2Zp → SL2Z/p).

By Corollary 10.2, the homology groups H∗(G1,M) are Fp-vector spaces, zero ex-
cept in degrees 0, 1, 2, of dimensions 2, 4, 2. Moreover, the action of SL2Z/p on
these groups is given by

H0(G1,M) = MFp

H1(G1,M) = sl2Fp −MFp

H2(G1,M) = ∧2sl2Fp − sl2Fp +MFp

in the Grothendieck group of finite p-torsion SL2Z/p-modules. Using the represen-
tation theory of SL2, we compute that these homology groups are MFp , S

3MFp ,
MFp

in this Grothendieck group. In fact, these SL2Z/p-modules are simple, since
p ≥ 5, and so the homology groups H∗(G1,M) are actually isomorphic to these
SL2Z/p-modules. The restrictions of these modules to the diagonal torus (Z/p)∗ in
SL2Z/p have the form

H0(G1,M) = L−1 + L

H1(G1,M) = L−3 + L−1 + L+ L3

H2(G1,M) = L−1 + L,

where L is the standard 1-dimensional representation over Fp of the group (Z/p)∗.
The restrictions of these modules to a non-split torus ker(F∗

p2 → F∗
p) in SL2Z/p

have the same form, after extending scalars from Fp to Fp2 .
Let Q be a subgroup of SL2Z/p of order prime to p, and let G be its inverse image

in SL2Zp. Then the homology groups H∗(G,M) are the coinvariants of Q acting
on H∗(G1,M). Since every element of SL2Z/p of order prime to p belongs to some
torus, possibly non-split, the calculation of H∗(G1,M) shows that H∗(G,M) = 0
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if Q contains any elements of order not equal to 1 or 3. The Sylow 3-subgroup of
SL2Z/p is cyclic, so this leaves only the cases Q = 1 and Q ∼= Z/3. We read off from
the calculation of H∗(G1,M) that the Fp-vector spaces H∗(G,M) have dimension
2, 4, 2 for Q = 1 and 0, 2, 0 for Q ∼= Z/3, as we want.

Next, let Iwu be the inverse image in SL2Zp of the strictly upper-triangular
matrices in SL2Z/p. Since p ≥ 5, the group Iwu has a valuation as described in the
proof of Corollary 9.3, and M has a compatible saturated valuation. So we have a
spectral sequence

H∗(gr Iwu, gr M)⇒ H∗(Iwu,M)

as in the proof of Theorem 9.1. Moreover, the diagonal subgroup Z∗
p ⊂ SL2Zp

normalizes Iwu, preserving its valuation, and acts compatibly on M , so it acts on
this spectral sequence. The Lie algebra homology is easy to compute, and the
spectral sequence degenerates for degree reasons. The result is that the groups
H∗(Iwu,M) are Fp-vector spaces of dimensions 1, 2, 1, on which Z∗

p acts by

H0(Iwu,M) = L−1

H1(Iwu,M) = L−3 + L3

H2(Iwu,M) = L.

Here L is the standard 1-dimensional representation over Fp of the quotient group
(Z/p)∗ of Z∗

p.
Let Q be any subgroup of SL2Z/p of order a multiple of p. By conjugating Q,

we can assume that it contains the Sylow p-subgroup U ∼= Z/p of strictly upper-
triangular matrices. The normalizer of U in SL2Z/p is the Borel subgroup B =
(Z/p)∗ ⋉ Z/p. Let G be the inverse image of Q in SL2Zp; then H∗(G,M) is a
quotient of the coinvariants of Q ∩ (Z/p)∗ on H∗(Iwu,M). Using the calculation
of H∗(Iwu,M), it follows that H∗(G,M) = 0 unless Q ∩ (Z/p)∗ has order 1 or
3. So suppose that Q ∩ (Z/p)∗ has order 1 or 3. Then Q is contained in the
normalizer B of U in SL2Z/p, since any subgroup of SL2Z/p which contains U but
is not contained in B must contain two distinct subgroups of order p, hence the
subgroup they generate, which is the whole group SL2Z/p. Thus, either Q = U or
Q ∼= Z/3⋉U , and we can read off H∗(G,M) in these two cases as the coinvariants of
Q/U on H∗(Iwu,M). The dimensions of the Fp-vector spaces H∗(G,M) are 1, 2, 1
for Q = U and 0, 2, 0 for Q ∼= Z/3⋉ U . QED
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