
Euler and algebraic geometry

Burt Totaro

Euler’s work on elliptic integrals is a milestone in the history of algebraic geom-
etry. The founders of calculus understood that some algebraic functions could be
integrated using elementary functions (logarithms and inverse trigonometric func-
tions). Euler realized that integrating other algebraic functions leads to genuinely
different functions, elliptic integrals. These functions are not something ugly. They
have a richer symmetry than the elementary functions. As Abel discovered, their in-
verses are doubly periodic functions on the complex plane. Although elliptic curves
had been studied earlier, indeed in great depth by Fermat, Euler’s analysis clarifies
the key points: elliptic curves (algebraic curves of genus 1) are fundamentally dif-
ferent from rational curves, and not only in a negative way. They have a different
kind of symmetry, the famous group structure possessed by an elliptic curve.

This paper considers two main themes in algebraic geometry descended from
Euler’s work: integrals of algebraic functions (in fancier terms, Hodge theory) and
birational geometry. In section 1, we reach a major open problem of algebraic
geometry: which representations of the fundamental group are summands of the
cohomology of some family of algebraic varieties? Or, equivalently: which linear
differential equations can be solved by integrals of algebraic functions? One might
not expect any good answer to these questions, but in fact there are two promising
approaches (the Simpson and Bombieri-Dwork conjectures).

Section 2, more elementary, gives an introduction to birational geometry. I hope
to explain the significance of the problem of finite generation of the canonical ring,
which has just been solved.

Thanks to Carlos Simpson for his comments on an earlier version.

1 Integrals of algebraic functions

1.1 Elliptic integrals

Euler’s main theorem on elliptic integrals, inspired by Fagnano’s work on a special
case, is the addition formula. Let P (x) be a polynomial of degree 3 or 4 with
distinct roots. An elliptic integral means the integral

∫ b
a F (x)dx/

√
P (x) for some

rational function F (x) [44, 22.7]. For simplicity, let us consider the elliptic integrals∫ b
a dx/

√
P (x), which in modern language are the integrals of the differential form

ω = dx/y along paths in the elliptic curve y2 = P (x). Then Euler’s addition formula
says that ∫ p

0
ω +

∫ q

0
ω =

∫ p+q

0
ω,

where p+q refers to the group structure on the elliptic curve, which Euler wrote out
as a rational function in the coordinates (x, y). In retrospect, the addition formula
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follows from the invariance of the 1-form ω with respect to the group structure of
the elliptic curve. The general elliptic integrals

∫
F (x)dx/

√
P (x) satisfy a similar

addition formula modulo elementary functions.
When we work over the complex numbers, the integral

∫ p
0 ω depends on the

choice of a homotopy class of paths from 0 to p in the smooth compact elliptic
curve E(C) ⊂ CP2, and so it is really a function on the universal cover of E(C).
(The notation X(k) means the set of solutions of a given set of algebraic equations
over a field k. If the given polynomial P (x) has real coefficients, then E(R) is
a real curve, whereas E(C) is a complex curve and thus a real 2-manifold.) The
addition formula says that the elliptic integral

∫ p
0 ω is a group homomorphism from

the universal cover of E(C) to the complex numbers. This homomorphism is an
fact an isomorphism. Passing from the universal cover to the elliptic curve itself,
we find that the group E(C) is the quotient C/(Zω1 ⊕ Zω2), where ω1 and ω2 are
the two periods of ω, the integrals

∫
γ1

ω and
∫
γ2

ω along two closed loops γ1 and γ2

which form a basis for the homology group H1(E(C),Z) ∼= H1((S1)2,Z) ∼= Z2. By
rescaling, this gives the description of a complex elliptic curve as E(C) = C/(Z⊕Zτ)
for some number τ in the upper half plane.

We can view Euler’s theorem as a generalization of the properties of the loga-
rithm function log p =

∫ p
1 dx/x, which satisfies its own addition formula

log(pq) = log p + log q,

based on the group structure on another 1-dimensional algebraic group, the mul-
tiplicative group C∗. As with elliptic functions, the logarithm is really defined on
the universal cover of C∗ and gives an isomorphism C∗ ∼= C/(Z · 2πi), where the
number 2πi enters as the integral of the 1-form dx/x over a closed loop around the
origin in C∗.

Elliptic integrals show the richness of integrals of algebraic functions. More
general periods of integrals are central to Hodge theory, the main analytic technique
for the study of algebraic varieties. The question of what sort of numbers arise as
periods has also been a constant inspiration for transcendence theory [33, 41].

1.2 The Picard-Fuchs differential equation satisfied by a family of
algebraic integrals

It is good to think about how the periods of an elliptic curve vary as a function of
the coefficients. There are useful expositions by Carlson, Müller-Stach, and Peters
[8, 1.1] and Husemöller [26, Chapter 9]. Explicitly, consider the Legendre family of
elliptic curves

y2 = x(x− 1)(x− λ)

for λ ∈ C− {0, 1}. We can ask how the periods ω1 and ω2 of the 1-form ω = dx/y,
with respect to some basis for H1(Eλ,Z) ∼= Z2, vary as a function of λ. This makes
sense because such a basis determines a basis for H1(Eµ,Z) ∼= Z2 for all nearby
points µ ∈ C− {0, 1}. Since ω = dx/

√
x(x− 1)(x− λ), we have

ω′ :=
∂

∂λ
ω =

1
2

dx√
x(x− 1)(x− λ)3

.
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Figure 1: Monodromy group Γ/{±1} in PGL(2,C) for the hypergeometric differ-
ential equation with (a, b, c) = (1/2, 1/2, 1)

This is a rational 1-form on E with a double pole at p = (λ, 0), but its residue at p
vanishes, and so it represents an element of the de Rham cohomology H1

DR(E/C) ∼=
C2.

Here ω and ω′ form a basis for H1
DR(E/C) for all λ 6= 0, 1, and so the second

derivative ω′′ must be a linear combination of ω and ω′ in H1
DR(E/C). Explicitly,

we compute [8, 1.1.17] that

λ(λ− 1)ω′′ + (2λ− 1)ω′ +
1
4
ω = 0.

Equivalently, if we fix a basis γ1, γ2 for H1(Eλ,Z), the periods ω1 =
∫
γ1

ω and
ω2 =

∫
γ2

ω both satisfy the differential equation

λ(λ− 1)f ′′ + (2λ− 1)f ′ +
1
4
f = 0,

called the Picard-Fuchs equation of the Legendre family of elliptic curves.
This differential equation encodes many of the properties of the given family

of elliptic curves. In a neighborhood of each point of C − {0, 1}, the solutions of
the Picard-Fuchs equation form a two-dimensional vector space over the complex
numbers. But following a local solution around a loop in C−{0, 1} may transform
it to a different solution. Thus the differential equation describes a flat bundle
of rank 2 over C − {0, 1}, or equivalently a 2-dimensional complex representation
of the fundamental group π1(C − {0, 1}), the free group on 2 generators. The
representation is injective, with image conjugate to

Γ :=
{ (

a b
c d

)
∈ SL(2,Z) : a ≡ c ≡ 1 (mod 4), b ≡ d ≡ 0 (mod 2)

}
.

This is the monodromy group for the given family of elliptic curves, the image of
π1(C − {0, 1}) acting on H1(Eλ,Z). Indeed, the Legendre family is the universal
family of elliptic curves with the level structure described by Γ. From inspection
of the differential equation, it would be hard to see that its monodromy group is
a discrete subgroup of GL(2,C), let alone a subgroup of SL(2,Z). Figure 1 is
Klein-Fricke’s picture of a fundamental domain (the union of one white and one
black triangle) for the action of Γ on the unit disc D, yielding an isomorphism of
C− {0, 1} with the quotient D/Γ [31, pp. 111–112].

The Picard-Fuchs equation for the Legendre family of elliptic curves is a special
case of the Gauss hypergeometric differential equation:

y′′ +
(a + b− 1)z − c

z(z − 1)
y′ +

ab

z(z − 1)
y = 0,
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Figure 2: Monodromy group SL(2,Z)/{±1} in PGL(2,C) for the hypergeometric
differential equation with (a, b, c) = (1/12, 1/12, 2/3) [24, section 0.1]

with a = b = 1/2 and c = 1. Euler found the famous power-series solution on the
unit disc around z = 0:

F (a, b, c; z) = 1 +
a · b
1 · c

z +
a(a + 1) · b(b + 1)

1 · 2 · c(c + 1)
z2 + · · · .

Euler also expressed the hypergeometric function as an integral [18], [27, Theorem
3.2.1]:

F (a, b, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− tz)−bdt.

The hypergeometric equation satisfied by the function F (1/2, 1/2, 1; z), the
Picard-Fuchs equation for the Legendre family of elliptic curves, is the simplest
nontrivial example of a variation of Hodge structures [21, 43]. We can first define
the Hodge structure of a single elliptic curve E over the complex numbers. It means
the vector space H1

DR(E/C) ∼= C2 together with the integral lattice H1(E,Z) ∼=
Z2 ⊂ H1

DR(E/C) and the linear subspace H0(E,Ω1) ∼= C ⊂ H1
DR(E/C). For ellip-

tic curves, as more generally for all smooth projective curves, the Hodge structure,
essentially an object of linear algebra, determines the curve up to isomorphism (the
Torelli theorem).

A beautiful Picard-Fuchs equation is the one for the 1-parameter “Dwork family”
of Calabi-Yau hypersurfaces Xλ in Pm−1 given by

xm
1 + · · ·+ xm

m −mλx1 · · ·xm = 0.,

More precisely, we look at a summand of the cohomology, the invariants in the
middle-dimensional cohomology Hm−2(Xλ,Q) under the obvious action of the group
(Z/m)m−1. (Equivalently, we are looking at the cohomology of the quotient of Xλ

by this finite group.) This subspace of the cohomology has dimension m− 1, and it
has the unusually simple Hodge numbers (1, 1, . . . , 1). (For m = 3, Xλ is an ellip-
tic curve, and H1 has Hodge numbers (1, 1).) We can define a nowhere-vanishing
(m− 2)-form on the (m− 2)-dimensional variety Xλ by

ω =
dx1 ∧ · · · ∧ dxm−2

xm−1
m−1 − λx1 . . . xm−2

,

in coordinates with xm = 1. The Picard-Fuchs equation describing the periods of
ω on the given summand of the cohomology of Xλ is(

d

dλ

)m−1

y =
(

λ
d

dλ

)m−1

(λy)

[29, Remark 2.3.8.5]. This is a generalized hypergeometric equation, with a power
series solution around λ = ∞ given by

G(λ) =
1

mλ

∞∑
a=0

(1/m)a · · · ((m− 1)/m)a

a! · · · a!
λ−am
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[29, Corollary 2.3.8.1], where (a)n means a(a + 1) · · · (a + n− 1).
The Dwork family of Calabi-Yau varieties (and specifically the summand of its

cohomology we considered) has rich applications because it can be understood so
explicitly. In the hands of Candelas, de la Ossa, Green and Parkes, this example
inspired the whole phenomenon of mirror symmetry in string theory [7, 25]. The
same family of hypersurfaces plays a starring role in number theory, as a general-
ization of elliptic curves. Using this family, Harris, Shepherd-Barron and Taylor
were able to prove modularity for a broad class of Galois representations (not just
of dimension 2), leading to the proof of the Sato-Tate conjecture for elliptic curves
with non-integral j-invariant [40, 22]. (The Sato-Tate conjecture, previously not
known for any elliptic curve, is the following equidistribution statement. For an
elliptic curve E over Q, Hasse showed that the number of Fp-points of E has the
form p + 1 − ap where |ap| ≤ 2

√
p. Write ap = 2

√
p cos θp where θp is between 0

and π. If E does not have complex multiplication over the algebraic closure of Q,
then the Sato-Tate conjecture predicts that the angles θp are equidistributed with
respect to the measure (2/π) sin2 θ dθ as p varies.)

1.3 Rigid representations and Simpson’s conjecture

It is a tantalizing problem to characterize the linear differential equations (or the
representations of the fundamental group of a given base variety) that come from
the cohomology of some family of algebraic varieties. This problem has the flavor of
some other wildly difficult problems of mathematics, like the Fontaine-Mazur con-
jecture which aims to characterize the representations of the Galois group Gal(Q/Q)
that come from the cohomology of algebraic varieties over Q [19]. To be precise,
for an algebraic variety U , we try to characterize the complex representations of the
fundamental group of U that are summands of the cohomology with complex coef-
ficients of some family of smooth projective varieties over U . Such representations
are called motivic or of geometric origin.

It is equivalent to ask which linear differential equations with irreducible mon-
odromy group have the property that their solutions are integrals of algebraic func-
tions. (We allow definite integrals of an algebraic differential form over a domain in
some Rn defined by algebraic equations and inequalities, where the function and the
domain may depend algebraically on a point in the given variety. See Kontsevich-
Zagier [33] for a related formulation.) For example, the Euler integral shows that the
solutions of the hypergeometric equation can be written as integrals of the function
ta−1(1− t)c−a−1(1− tz)−b, which is algebraic if a, b, c are all rational.

Technically, let us take a “differential equation” on a variety U to mean an
algebraic vector bundle with an algebraic flat connection over U . The monodromy
of the solutions of a differential equation yields a representation of the fundamental
group of U . The differential equations of geometric origin have regular singularities
at infinity, which means that solutions have at most polynomial growth. Deligne’s
book on the topic is very readable [13, Theorem II.1.19, Theorem II.7.9]. Since the
exponential function ex does not have polynomial growth at infinity, for example,
the differential equation y′ − y = 0 satisfied by ex has an irregular singularity at
infinity. It follows that ex cannot be expressed as an integral of an algebraic function,
in contrast to log x.

The Riemann-Hilbert correspondence states that passing from differential equa-
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tions with regular singularities over a smooth complex variety U to complex rep-
resentations of the fundamental group of U is a one-to-one correspondence [13,
Theorem 5.9]. As a result, we can casually identify the two objects.

The rationality of the coefficients a, b, c in the hypergeometric equation general-
izes to a property of all differential equations of geometric origin over a noncompact
variety U (in the hypergeometric case, U is CP1 − {0, 1,∞}). Think of U as the
complement of some codimension-1 subvarieties D1, . . . , Dr in a smooth projective
variety. Then, for a differential equation of geometric origin (the de Rham coho-
mology of a family of varieties over U with its flat connection, or a summand of
that), the eigenvalues of the monodromy on a small loop around each Di are roots
of unity [13, Theorem III.2.3], [21], [28]. (The monodromy at infinity is said to be
quasi-unipotent; “unipotent” would mean that all the eigenvalues were equal to 1.)
For the hypergeometric differential equation, the eigenvalues of the monodromy are
(1, e2πi(1−c)) around 0, (1, e2πi(c−a−b)) around 1, and (e2πia, e2πib) around ∞. So
these eigenvalues are roots of unity if and only if a, b, c are rational. Thus quasi-
unipotence at infinity is enough to characterize which cases of the hypergeometric
equation are of geometric origin.

A vast generalization of the hypergeometric differential equation is the class of
rigid representations of the fundamental group of an algebraic variety. For a smooth
variety U over the complex numbers, possibly noncompact, we say that an irre-
ducible representation ρ : π1(U) → GL(n,C) is rigid if any nearby representation
with the same eigenvalues on a small loop around each codimension-1 subvariety at
infinity is conjugate to ρ. Riemann’s study of the hypergeometric equation is based
on its rigidity: the differential equation is determined by the conjugacy classes of
the monodromy around 0, 1, and ∞, in the typical case where its monodromy is
irreducible [27, Theorem 4.3.2].

Simpson conjectured:

Conjecture 1.1 Every rigid irreducible representation of the fundamental group of
a smooth complex algebraic variety U , with quasi-unipotent monodromy at infinity
in case U is noncompact, is motivic.

The first result in this direction, still surprising, is Simpson’s theorem that a
rigid representation of the fundamental group of a smooth projective variety always
comes from a complex variation of Hodge structures [38, Lemma 4.5]. Rigidity au-
tomatically implies that the representation maps into GL(n, E) for some number
field E. Conjecture 1.1 would imply that rigid representations actually map into
GL(n, OE) where OE is a ring of integers, since for a family of smooth projective
varieties, the fundamental group of the base acts on the integral cohomology of the
fibers. In support of Conjecture 1.1, it is known that at primes where the repre-
sentation is integral, it extends to a representation of the arithmetic fundamental
group of some model of U over a number field [38, Theorem 4].

The conjecture has been proved for U of dimension 1 by Katz [30]. He gave
an algorithm that produces all rigid representations of the fundamental group of a
curve, the interesting ones being on P1 minus a finite set. If the monodromy at
infinity (that is, around each point removed from P1) is quasi-unipotent, then Katz’s
construction shows that the representation is motivic, generalizing what happens for
the hypergeometric equation on P1−{0, 1,∞}, essentially the only rank-2 example.
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Recently Corlette and Simpson proved the main part of Conjecture 1.1 for 2-
dimensional representations with determinant 1 [11]. Namely, let U be a smooth
complex quasi-projective variety, and let ρ : π1(U) → SL(2,C) be a representation
with quasi-unipotent monodromy at infinity. Assume that ρ is irreducible and
remains so on all finite-index subgroups of π1(U). If ρ is rigid, then it factors
through a map U → Y with Y a moduli space of abelian varieties with given
endomorphisms. Here the Shimura varieties Y that occur have fundamental group
(as an orbifold, in general) the unitary group of a hermitian form of dimension 2 over
the ring of integers of some CM field. Such a group has obvious representations in
SL(2,C), yielding exactly the given representation of π1(U). This theorem is in fact
more precise than Simpson’s conjecture, where we expect certain representations of
the fundamental group to come from some family of algebraic varieties, but we do
not know what sort of varieties to expect. Here we get abelian varieties of a very
precise kind.

1.4 The Bombieri-Dwork conjecture

There is another attempt to characterize the differential equations of geometric
origin, the Bombieri-Dwork conjecture. Here there is no need to restrict to rigid
representations of the fundamental group. The differential equation satisfied by
the periods of an elliptic curve, and the more general hypergeometric differential
equation, are model examples that helped to inspire the conjecture.

Consider a differential equation

y(n) + an−1(z)y(n−1) + · · ·+ a0(z)y = 0

with aj(z) rational functions with coefficients in the field Q of algebraic numbers.
(More generally, the following definitions extend to differential equations on arbi-
trary smooth varieties over Q.) We say that the corresponding rank-n vector bundle
with flat connection over P1 minus a finite set is of geometric origin if there is an
affine curve C over Q with a nonconstant map C → P1 such that the bundle with
connection pulled back to C is a successive extension of summands of the de Rham
cohomology of a family of smooth projective varieties over C with its flat connec-
tion. On the other hand, we say that the flat connection is a G-connection if its
solutions

∑
an(z − z0)n at some nonsingular point z0 ∈ Q, where we can assume

an ∈ Q, are G-functions in the sense that the denominators of an grow at most
exponentially. By that we mean that there are positive integers bn such that aibn is
an algebraic integer for all i ≤ n and bn is at most Cn for some constant C > 0. If
this condition holds at one nonsingular point z0 ∈ Q, then it holds at all of them,
by D. and G. Chudnovsky [16, section VIII.1]. There is a similar characterization
of G-connections at a singular point, which is often easier to check in examples.

Every flat connection of geometric origin is a G-connection [2, Main Theorem].
For example, the equation y′− y = 0 is not a G-connection, because the denomina-
tors of its solution ex =

∑
xn/n! grow too fast. This proves again that ex cannot

be expressed as an integral of an algebraic function (over a domain depending alge-
braically on x).

Conjecture 1.2 (Bombieri-Dwork) Every G-connection on a smooth variety over
Q is of geometric origin. [1, 2].
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Among the evidence for Conjecture 1.2 is Katz’s theorem that every G-connection
has regular singularities at infinity and quasi-unipotent monodromy at infinity, both
of which are well-known properties of the flat connection on the cohomology of a
family of algebraic varieties [16, Theorem III.6.1]. (The theorem was initially stated
under the slightly stronger assumption of “global nilpotence” [28, Theorem 13.0].)
Conjecture 1.2 is true for G-connections of rank 1 on any smooth variety by the
Chudnovskys, generalized by André [10], [9, Théorème 3.5]. The rank-1 connections
which are motivic are exactly those which are of finite order in the group of line
bundles with connection, and so this theorem says that every rank-1 G-connection
is of finite order.

The case of rank-2 bundles over P1 minus 4 points is an intriguing test case
for the Bombieri-Dwork conjecture. The only known cases seem to be where the
monodromy group has an abelian subgroup of finite index, as happens for the “Lamé
equation” with parameter n a natural number [10, Theorem 7.2], [16, Example
V.1.4].

It is tempting to bring in the analytic approach here. There is a hyperkahler
moduli space of 2-dimensional representations of the fundamental group of P1 minus
4 points with given local monodromy and determinant 1, which can be viewed
as a complex affine cubic surface described by Fricke [20]. What is the subspace
consisting of complex variations of Hodge structure over P1 minus 4 points? Which
of those are motivic? It may be useful to think about varying the 4 points while
keeping the monodromy fixed: such variations are described by the famous Painlevé
VI equation [27], a central object in the theory of integrable systems. Several
of the known algebraic solutions of Painlevé VI are known to describe motivic
representations of π1(P1 − 4 points) [23, 14, 15, 6, 4]. A case worth considering is
where the eigenvalues of the monodromy at all four singular points are equal to 1.
Beauville’s six families of semistable elliptic curves over P1 with 4 singular fibers
give examples of motivic representations with local monodromy of that type [3].

2 Birational geometry

2.1 The beginnings of birational geometry

The problem of birational classification of algebraic varieties is ancient: this is a
fundamental problem we are faced with, in trying to understand algebraic equa-
tions. Indeed, users of algebraic geometry such as engineers often begin by hop-
ing that every algebraic variety is rational, that is, that its points (outside some
lower-dimensional subset) can be parametrized by affine space. Modern algebraic
geometry begins with the realization that not every variety is rational: most simply,
an elliptic curve is not rational, and this is reflected by the nontriviality of Euler’s
elliptic integrals. Let us consider how to prove that elliptic curves are not rational.
The questions suggested by the proof lead naturally to minimal model theory, which
has seen decisive advances in the past year.

We say that two algebraic varieties over a given field are birational if, after
removing a lower-dimensional subset from both varieties, they become isomorphic.
The formulas defining a birational equivalence will be rational functions: the map
may fail to be defined where these functions have poles. What makes it hard to
determine whether two varieties are birational is that we have no idea how big
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the lower-dimensional subsets are that we might have to remove. Or, in algebraic
terms, we do not know how high the degrees of the numerator and denominator
of the rational functions might be. As a result, there is no known algorithm for
determining whether two varieties are birational. (Is it possible to prove that there
is no algorithm in full generality, say for varieties over the field Q of algebraic
numbers?)

In particular, we say that a variety is rational if it is birational to affine space
(or equivalently to projective space) of some dimension. For example, every plane
conic (a curve defined by an equation of degree 2, such as a circle, parabola, or
hyperbola) is rational. (More precisely, a conic C over a field k is rational over k if
its set C(k) of k-rational points is nonempty.) The proof by stereographic projection
(attributed to Diophantus [42, I.X]) is simple. Choose a point p on a conic C. Then
consider the family of lines through p, which forms a projective line P1. Because
C has degree 2, a general line in this family will meet C in 2 points, which must
be p and some other point. Conversely, a point on C other than C lies on a unique
line through p; so we have constructed an isomorphism between C minus a finite
set and P1 minus a finite set. That is, C is rational. (We need to remove finite sets
if we start with a curve C in the affine plane A2; if we work in the projective plane
P2, this map actually gives an isomorphism C ∼= P1.)

For example, let us apply this proof to show that the circle S1 = {(x, y) ∈ A2 :
x2 + y2 = 1} is rational. The reader might like to compute the other point on
the circle on the line through p = (1, 0) with slope t. We obtain a birational map
A1 99K S1 given by the formula

t 7→
(

t2 − 1
t2 + 1

,
−2t

t2 + 1

)
.

We see the appearance of rational functions. Notice that the proof works over any
field, for example the rational numbers: thus this formula parametrizes all the pairs
(x, y) of rational numbers with x2 + y2 = 1 (apart from (1, 0)), by plugging in all
the rational numbers t. This diophantine problem is not obvious until we see that
the circle is a rational curve.

Euler used the rationality of conics y2 = ax2 + bx + c to show that for every
rational function g(x, y), the integral

∫
g(x,

√
ax2 + bx + c)dx can be expressed in

terms of elementary functions. See Shafarevich’s introduction to algebraic geometry
[36, v. 1, p. 7; v. 2, Historical Sketch]. Euler felt the analogy between number theory
and analysis which we now call birational geometry as a tantalizing possibility. In
his words: “this shows how much more there is left to do in Diophantine Analysis,
which beyond any doubt could contribute greatly to the whole of Analysis, finite
and infinitesimal. In fact, one main tool of integral calculus consists in transforming
irrational differential expressions into rational ones, and this comes directly from
Diophantine Analysis, so that one has every right to expect further progress from
that same study ....” [42, II.XVII], [17, p. 454].

In that paper, Euler proved the rationality of the cubic surface x3+y3+z3 = w3

over the rational numbers, by a “Diophantine method” extending the proof for con-
ics. (The paper is called “A general solution of some Diophantine problems which
seem to ordinary people to have only special solutions.”) The key point is that over
the quadratic field Q(ζ3) = Q(

√
−3), this surface contains two disjoint conjugate

lines. A general line in P3 that meets each of those two lines will meet the cubic
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surface in exactly one other point, which gives the desired rational parametriza-
tion. See Kollár-Smith-Corti’s introduction to birational geometry for details [32,
Example 1.35].

The simplest examples of non-rational varieties are the smooth cubic curves,
such as the Fermat cubic x3 + y3 = z3 in P2; more generally, every smooth curve
of degree at least 3 in P2 is not rational. Riemann’s topological proof marks the
beginning of modern algebraic geometry. A first step is to check that a birational
map between smooth projective curves is in fact an isomorphism; all the hypotheses
are needed here. So it suffices to show that a smooth curve of degree at least 3 in
P2 is not isomorphic to P1. Riemann did this by considering these algebraic curves
over the complex numbers as 2-dimensional real manifolds, and computing that
they are topologically different. Indeed, CP1 is homeomorphic to the 2-sphere and
hence has genus zero, whereas a smooth curve of degree d has genus (d−1)(d−2)/2,
which is positive for d at least 3.

Unfortunately, this topological proof does not generalize well to higher dimen-
sions. In complex dimension at least 2, two smooth projective varieties which are
birational need not be homeomorphic, as shown by the phenomenon of “blowing
up” which changes the Betti numbers. The main topological invariant which is
preserved by birational equivalences between smooth projective varieties is the fun-
damental group. There are many simply connected varieties, however, including all
smooth complex hypersurfaces of dimension at least 2 in projective space. So the
birational invariance of the fundamental group is of limited usefulness.

2.2 The canonical bundle

A better proof that smooth plane curves of degree at least 3 are not rational uses
1-forms, as in the definition of elliptic integrals. For n-dimensional varieties, we use
the line bundle of n-forms on X, called the canonical bundle. Let me try to say
why the canonical bundle is so important in birational geometry. The fundamental
point is that we can pull back differential forms.

Let f : X → Y be a morphism of smooth algebraic varieties over a field k; it
would be harmless to stick to the field of complex numbers. It is easy to define the
derivative of a polynomial, and so we can talk about the derivative of f : this is a
linear map between the tangent spaces, df : TxX → Tf(x)Y , for each point x in X.
This does not allow us to push forward vector fields, however; that is, there is no
map “f∗” from the global sections H0(X, TX) to H0(Y, TY ), as we see already in
differential geometry. For example, if f is not injective, the derivative of f may well
map a given vector field at different points in X to different tangent vectors at the
same point of Y .

But if we dualize, then we can pull back 1-forms, the sections of the dual to the
tangent bundle, Ω1

X = T ∗X. It is not so easy to say why this works, but it does:
every morphism f : X → Y of smooth varieties determines a pullback map

f∗ : H0(Y, Ω1
Y ) → H0(X, Ω1

X),

defined by the only formula that would make sense,

f∗(α)(v) = α(df(v))
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for any tangent vector v at any point x of X. More generally, as in differential
geometry, we can pull back differential forms of any degree, defined as the exterior
powers Ωi

X = ΛiΩ1X. In particular, for X smooth of dimension n, the line bundle
Ωn

X = det(Ω1
X) is called the canonical bundle KX of X. At first sight, one might

think that the dual line bundle, the anticanonical line bundle −KX = det(TX),
was more natural; but (as with the tangent bundle) we can neither pull back nor
push forward sections of the anticanonical bundle in general. (Algebraic geometers
commonly use additive notation for line bundles, so that aKX , for any integer a,
means the line bundle K⊗a

X .)
We can now prove the fundamental result linking the canonical bundle to bira-

tional geometry.

Theorem 2.1 A rational map between smooth projective varieties of the same di-
mension over a field, f : X 99K Y , induces a pullback map on sections of the
canonical bundle,

f∗ : H0(Y, KY ) → H0(X, KX).

More generally, f induces pullbacks

f∗ : H0(Y, aKY ) → H0(X, aKX)

for every integer a ≥ 0.
For a birational map f : X 99K Y , the pullback map f∗ : H0(Y, aKY ) →

H0(X, aKX) is an isomorphism for every a ≥ 0.

The restriction to a ≥ 0 is unavoidable. For example, on the projective plane
P2, the anticanonical bundle −KX is 3H where H is the hyperplane line bundle,
and so H0(P2,−KP2) is the vector space of homogeneous cubic polynomials in 3
variables, which has dimension 10. On the other hand, the space of sections of the
anticanonical bundle on P1 × P1 is the tensor product of two copies of the vector
space H0(P1,−KP1) = H0(P1, 2H) of dimension 3, so it has dimension only 9.
Here P1 × P1 is birational to P2, since both contain the affine plane as an open
subset.

Proof. Let f : X 99K Y be a rational map between smooth projective varieties
of the same dimension. By definition, this means that f is a morphism from the
complement of some lower-dimensional subset in X to Y . The first step is to show
that f extends to the complement of some closed set of codimension at least 2 in
X. Here is a naive method. We are assuming that Y is projective, that is, a closed
subvariety of Pn for some n. Therefore f can be defined by n+1 rational functions
on X,

x 7→ [f0(x), . . . , fn(x)],

not all zero. These functions are not uniquely determined; multiplying them all
by the same rational function on X (not identically zero) gives the same map to
projective space.

It suffices to show that for every point p in X, f is defined outside a closed
codimension-2 subset in a neighborhood of p. (We use the Zariski topology, which
means that a closed subset is exactly the zero locus of some set of polynomial
equations.) By multiplying f0, . . . , fn by a suitable rational function, we can assume
that f0, . . . , fn are all regular functions (functions with no poles) in a neighborhood
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of p. Then our map is clearly defined outside the subset where f0 = 0, . . . , fn = 0.
(At those points, the map is at first sight not defined, because [0, . . . , 0] is not a
well-defined point in projective space.) We are done if the subset of X defined
by f0 = 0, . . . , fn = 0 has codimension at least 2 in a neighborhood of p. So
suppose this closed set has codimension 1 near p. It then contains an irreducible
subvariety D of codimension 1 through p. The point is that because X is smooth,
a codimension-1 subvariety is defined locally by just one equation, say g = 0. Since
f0, . . . , fn all vanish on the set where g = 0, they must all be multiples of g near x;
so we can divide f0, . . . , fn by g and still have regular functions that define our map
f . By repeating the process if necessary, we can arrange that the common zero set
of f0, . . . , fn has codimension at least 2 near p, as we want.

Thus, our rational map f : X 99K Y is defined by a morphism f : U → Y for
some open subset U of X whose complement has codimension at least 2. This gives
us a pullback map

f∗ : H0(Y, KY ) → H0(U,KX),

and the same construction gives pullbacks

f∗ : H0(Y, aKY ) → H0(U, aKX)

for all a ≥ 0. To finish the proof, it suffices to show that for any line bundle L on
X, every section of L over U extends (obviously uniquely) to a section of L over X;
that will give the desired pullback map

f∗ : H0(Y, aKY ) → H0(X, aKX)

for all a ≥ 0.
It suffices to prove the statement about extending sections locally on X. That is,

for each point p in X and any closed subset S of codimension at least 2 in X, we have
to show that a section of L over a neighborhood of p minus S extends to the whole
neighborhood of p. By definition of line bundles, we can choose a trivialization of
L on a neighborhood of p. So it suffices to show that a rational function f/g on
a neighborhood of p which is regular outside a subset of codimension at least 2 is
in fact regular. By the earlier argument, we can assume that f and g do not both
vanish on any codimension-1 subvariety through p. Then our assumption gives that
g does not vanish on any codimension-1 subvariety through p, and hence that g is
nonzero at p, since the zero set of a regular function is a union of codimension-1
subvarieties. Thus f/g is regular at p as we want. (In complex analysis this is
known as Hartogs’s theorem.)

Finally, if we have a birational map f : X 99K Y , then we have pullback maps
associated to the rational maps f and f−1, and it is easy to deduce that the corre-
sponding pullback maps on sections of aKX , a ≥ 0, are isomorphisms. QED

As we wanted, this implies that smooth plane curves of degree at least 3 are not
rational. More generally, consider a hypersurface in projective space, meaning a
closed subvariety of codimension 1, or equivalently the subvariety defined by f = 0
for some irreducible homogeneous polynomial f . The degree of f is called the degree
of the hypersurface. We have:

Corollary 2.2 Let X be a smooth hypersurface of degree d in Pn+1 over a field. If
d ≥ n + 2, then X is not rational.
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Proof. We begin by computing the canonical bundle of projective space Pn.
By definition, this is the line bundle of holomorphic n-forms, KPn = Ωn

Pn . On the
open subset of points [x0, . . . , xn] in Pn with x0 6= 0, we can scale to make x0 = 1.
In these coordinates, we can write down a rational section α of the canonical bundle
by dx1

x1
∧· · ·∧ dxn

xn
. A moment’s calculation shows that this differential form looks the

same, up to sign, in the other affine coordinate systems defined by setting xi = 1
for some i. Therefore, we read off that the n-form α has poles of order 1 at the
n + 1 hyperplanes x0 = 0, . . . , xn = 0 in Pn, and it has no zeros. This means
by the correspondence between divisors and line bundles that KPn = −(n + 1)H
where H is the hyperplane line bundle. (A topologist would write instead that
c1(TCPn) = (n + 1)c1(H), where c1(H) is the generator of H2(CPn,Z) ∼= Z.)

For any smooth hypersurface Y in a smooth variety X, we have an obvious exact
sequence of vector bundles on Y ,

0 → TY → TX|Y → NY/X → 0,

where the normal bundle NY/X can be identified with the restriction of the line
bundle O(Y ) to Y . (Here O(Y ) is the line bundle on X whose first Chern class
is represented by the codimension-1 subvariety Y of X.) Therefore, taking deter-
minants of these vector bundles, we have an isomorphism of line bundles on Y :
(−KX)|Y ∼= (−KY )⊗O(Y )|Y , which is usually written in additive notation for line
bundles as the adjunction formula:

KY = (KX + Y )|Y .

The adjunction formula lets us compute the canonical bundle of a hypersurface.
In particular, for X a hypersurface of degree d in Pn+1, we have

KX = (KPn+1 + X)|X
= (−(n + 2)H + dH)|X
= (d− n− 2)H|X .

Therefore, if X has degree d ≥ n + 2, KX is a nonnegative multiple of H, and
so H0(X, KX) is not zero. (In fact, it is exactly the vector space of homogeneous
polynomials of degree d−n− 2 in n+2 variables.) By contrast, H0(Pn, aKPn) = 0
for all a > 0, because the canonical bundle of Pn is a negative multiple of the ample
line bundle H. Thus X is not birational to Pn for d ≥ n + 2. QED

2.3 Varieties with positive, zero, or negative curvature

The proof of Corollary 2.2 suggests the central importance of the canonical bundle in
algebraic geometry. In particular, the three extreme types of algebraic varieties are:
Fano varieties, the varieties with ample anticanonical bundle; Calabi-Yau varieties,
those with numerically trivial canonical bundle; and varieties with ample canonical
bundle. (There is no standard name for the last class, but they are included in the
larger class of varieties of general type.) For these three types of varieties X, the
canonical line bundle is (respectively) of negative degree on all algebraic curves in
X, zero on all curves, or positive on all curves. (Note that a complex manifold, in
particular a complex curve, has a canonical orientation; that fact is needed for these
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signs to have an intrinsic meaning.) There are many varieties X which are of mixed
type in the sense that the canonical bundle X is positive on some curves but not
on others, but minimal model theory attempts to relate any variety to these three
extreme types.

For example, the only Fano curve over the complex numbers is P1; the Calabi-
Yau curves are the elliptic curves, and the curves with ample canonical bundle are
the curves of genus at least 2. This division into three cases is famously related
to curvature: the standard metric on CP1 = S2 has positive curvature, elliptic
curves (being quotients C/(Z2)) have flat metrics, and curves of genus at least 2
have metrics with negative curvature. These three classes generalize naturally to
higher dimensions in terms of Ricci curvature. Namely, for complex manifolds with
a Kähler metric (such as the restriction of the standard metric on CPn to any
subvariety), the Ricci curvature can be identified with a real closed 2-form whose
class in H2(X,R) is the first Chern class of the anticanonical bundle −KX . And
indeed Yau showed that, among all smooth complex projective varieties, the Fano
varieties are exactly those admitting a Kähler metric with positive Ricci curvature;
the Calabi-Yau varieties are those admitting a Ricci-flat Kähler metric; and the
varieties with ample canonical bundle are those admitting a Kähler metric with
negative Ricci curvature.

For real manifolds of dimension at least 3, we cannot expect every manifold
to have curvature with a fixed sign. In dimension 3, Perelman’s geometrization
theorem at least allows us to relate every 3-manifold to those with curvature of a
fixed sign, and it makes clear that “most” 3-manifolds are hyperbolic. There is
no hope of generalizing these ideas to real manifolds of higher dimensions. Rather
amazingly, in algebraic geometry these ideas do generalize to all dimensions, ac-
cording to the minimal model conjecture. That is, we can relate all varieties to
the three extreme types: Fano varieties, Calabi-Yau varieties, and varieties with
ample canonical bundle. Enough of the conjecture is now known to make the story
convincing.

A weak analogue of this trichotomy which works for arbitrary varieties is given
by the Kodaira dimension. The Kodaira dimension of a smooth projective variety
X is the most basic birational invariant, measuring the growth of the vector spaces
H0(X, aKX) of “pluricanonical forms” as a goes to infinity. We say that X has
Kodaira dimension −∞ if the spaces H0(X, aKX) are 0 for all a > 0, as happens in
the case of projective space. Otherwise, the Kodaira dimension of X is the unique
integer m such that the dimension of H0(X, aKX) grows like a constant times am

for all multiples a of some fixed positive integer. The Kodaira dimension divides all
varieties of dimension n into n+1 classes, those of Kodaira dimension −∞, 0, 1, . . .,
or n. A variety X is defined to be of general type if its Kodaira dimension is equal to
its dimension, the maximum possible value. Informally, most varieties are of general
type, as we saw in the case of smooth hypersurfaces in projective space: those of
degree greater than n+2 in Pn+1 are of general type, and in fact have the stronger
property that the canonical bundle is ample.

There is a definitive result on the birational classification of varieties with ample
canonical bundle, that is, for the varieties with negative curvature:

Theorem 2.3 If two smooth projective varieties with ample canonical bundle over
a field k are birational, then they are isomorphic.
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Proof. For any smooth projective variety X over a field k, we define the
canonical ring of X to be the direct sum

⊕a≥0H
0(X, aKX),

which is a graded algebra over k. More generally, for any line bundle L, let us write
R(X, L) for the ring ⊕a≥0H

0(X, aL). For any rational map f : X 99K Y between
varieties of the same dimension, the pullback map

f∗ : R(Y, KY ) → R(X, KX)

constructed in Theorem 2.1 is a ring homomorphism, as is immediate from the
definition. Therefore, if two smooth projective varieties are birational, then their
canonical rings are isomorphic.

Next, we note that for any ample line bundle L on a projective variety X, we
can reconstruct the variety X from the graded ring R(X, L), the standard notation
being that X = Proj R(X, L). We recall briefly what the projective variety Proj R
means, for any finitely generated commutative graded algebra R over a field k. First
find a positive integer a such that the vector space Ra in degree a generates the ring
R in all degrees a multiple of a. Then Proj R will be a subvariety of the projective
space associated to the vector space Ra of generators. We then find the relations
that define the ring R (in degrees a multiple of a); these give the equations that
define the projective variety Proj R.

Thus, if X and Y are birational varieties with ample canonical bundle, then we
have

X ∼= Proj R(X, KX) ∼= Proj R(Y, KY ) ∼= Y,

using the birational invariance of the canonical ring. QED
The corresponding statement is far from true for varieties with ample anticanon-

ical bundle (Fano varieties). For example, P2 and P2 blown up at a point both have
ample anticanonical bundle, and they are birational, but they are not isomorphic.
Again, the canonical bundle behaves better than the anticanonical bundle.

2.4 The canonical model

When you blow up a point p on a smooth variety X of dimension n, you obtain
a new smooth variety Y with a proper birational morphism f : Y → X, in which
the point p is replaced by the projective space Pn−1 of lines in the tangent space
to X at p. If X has dimension n at least 2 (otherwise blowing up does nothing),
then the canonical bundle KY has negative degree (namely −(n − 1)) on a line
P1 ⊂ E ∼= Pn−1. In short, every blown-up variety contains a K-negative curve.
So if you blow up a point on a variety with ample canonical bundle, you still get
a variety of general type because that property is birationally invariant, but you
lose the property that the canonical bundle is ample. (This is inevitable in view of
Theorem 2.3.)

This leads to the question: could it be that every variety X of general type is
birational to a variety with ample canonical bundle, called the canonical model of
X? The canonical model is unique if it exists by Theorem 2.3. If that were true, it
would reduce the problem of birational classification for varieties of general type to
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problems of classifying varieties with ample canonical bundle up to isomorphism,
which is elementary by comparison.

It follows from Theorem 2.3 that every variety X of general type is birational
to at most one variety Y with ample canonical bundle. In fact, the proof makes
clear what Y must be: it must be Proj of the canonical ring of X. But there are
two obstacles here: (1) If the canonical ring of X is not finitely generated as a
k-algebra, then Proj does not make sense, and X has no canonical model. (2) Even
if the canonical ring of X is finitely generated, the corresponding projective variety
may be singular, as we see in examples. In that case, X has no smooth canonical
model.

Issue (2) was understood by 1980. We simply have to accept canonical models
with singularities. Moreover, the singularities that occur on canonical models of
varieties of general type are not bad: they are exactly the canonical singularities
defined by Reid. His recent memoir is recommended as a survey [35].

For example, the canonical singularities of surfaces are the famous ADE singu-
larities, the quotient singularities C2/G for finite subgroups G of SL(2,C). In par-
ticular, the simplest canonical singularity is C2/{±1} ∼= {(x, y, z) ∈ C3 : xy = z2},
the surface node.

We can pull back sections of the canonical bundle (and its positive powers) for
varieties with canonical singularities. As a result, the proof that the canonical ring
is a birational invariant generalizes from smooth projective varieties to projective
varieties with canonical singularities. This justifies the definition: a canonical model
of a variety X of general type is a projective variety Y birational to X which has
canonical singularities and ample canonical bundle. A canonical model is unique if it
exists, since the proof of Theorem 2.3 works for varieties with canonical singularities.
Indeed, Reid proved:

Theorem 2.4 Let X be a smooth projective variety of general type. The following
are equivalent:

(1) X has a canonical model, which is unique if it exists.
(2) The canonical ring of X is finitely generated.

This shows the fundamental importance of determining whether the canonical
ring is finitely generated. This was proved by Mumford [45] for surfaces in any
characteristic, by Mori [34] for 3-folds, and by Shokurov for 4-folds (see [37] and the
new book on flips for 3-folds and 4-folds [12]). It is now known in all dimensions.
Many of the ideas were introduced by Shokurov, who has been pushing the mini-
mal model program forward for many years by finding inductive approaches to the
problem.

Theorem 2.5 (Birkar-Cascini-Hacon-McKernan [5], 2006; Siu [39], 2006) Let X
be a smooth projective variety over a field of characteristic zero. Then the canonical
ring of X is finitely generated.

As a result, every variety of general type over a field of characteristic zero has
a unique canonical model.

Thus the problem of birational classification for varieties of general type (the
biggest class of algebraic varieties) reduces to the problem of classifying varieties
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with ample canonical bundle (and canonical singularities) up to isomorphism. This
is a much easier problem; for example, it is a finite problem to check whether
two varieties with ample canonical bundle over an algebraically closed field are
isomorphic. So we now have an algorithm to determine whether two varieties of
general type are birational.

The problem of birational classification is harder for varieties of Kodaira dimen-
sion less than the dimension, and much harder for varieties of Kodaira dimension
−∞ such as Fano varieties. Determining exactly which Fano varieties (for example,
which hypersurfaces of low degree) are rational looks like the hardest problem in
birational geometry in dimensions at least 3, despite many recent advances.
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