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A natural problem of algebraic dynamics is to classify the normal complex pro-
jective varieties that admit an endomorphism of degree greater than 1. In dimension
2, Nakayama made this classification except among del Pezzo surfaces with Picard
number 1 and quotient singularities (or equivalently, Kawamata log terminal singu-
larities) [15, Theorem 1.3].

For del Pezzo surfaces with Picard number 1 and canonical singularities (or
equivalently, du Val singularities), Joshi worked out the classification in all cases
except one: the del Pezzo surface with a du Val singularity of type E8 and no nonzero
vector fields, a surface which bears a curious resemblance to P2 [11, Theorem 1.2].
(For example, despite its singular point, it has the same integral cohomology ring
as P2. See section 4 for the equation of this surface.) The E8 surface also arose
as a possible exceptional case in Ou’s classification of contractions of hyperkähler
4-folds, before it was excluded by Huybrechts and Xu [17, 10].

We now resolve the last case of canonical del Pezzo surfaces with Picard number
1. Namely, the E8 surface X with no nonzero vector fields does not have an endo-
morphism of degree greater than 1 (Theorem 5.1). Our method also answers another
question which remained open for this surface: X is not an image of a proper toric
variety by any morphism. After work by Joshi and Gurjar–Pradeep–Zhang [11, 9],
this completes the proof of the following results:

Theorem 0.1. Every canonical del Pezzo surface with Picard number 1 that admits
an endomorphism of degree greater than 1 is the quotient of a projective toric surface
by a finite group that acts freely in codimension 1 and preserves the open torus orbit.

Theorem 0.2. Every normal Gorenstein projective surface that is an image of P2

is isomorphic to P2/G for some finite group G, not necessarily acting freely in
codimension 1.

In many cases, one can show that a variety has no nontrivial endomorphism by
showing that it (or some related variety) fails to satisfy Bott vanishing [12]; but
that seems not to help for the E8 surface X with no nonzero vector fields. Indeed,
X satisfies Bott vanishing for ample Weil divisors, by Baker [4]; its smooth locus
is simply connected (so we cannot relate the problem to a covering); and X has no
nontrivial contractions since it has Picard number 1. (The other del Pezzo surface
with a du Val singularity of type E8, with a nonzero vector field, was known not
to have an endomorphism of degree greater than 1, because it does not satisfy Bott
vanishing [11, Theorem 2.4].)

Instead, we extend the method of Amerik–Rovinsky–Van de Ven, which yields
Chern number inequalities for a variety with an endomorphism, to Deligne-Mumford
stacks [3]. The method requires precise estimates on global generation for the
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cotangent bundle twisted by an ample line bundle. It should be useful for other
hard cases in the classification of varieties with endomorphisms.

This work was supported by NSF grant DMS-2054553. Thanks to Rohan Joshi
for useful conversations.

1 Notation

Let M be an algebraic stack with finite stabilizers IM →M , so that M has a coarse
moduli space M → X by Keel and Mori [19, Tag 0DUT]. We say that a line bundle
L on M is ample if some positive power of L is pulled back from an ample line
bundle on X. Some authors have proposed stronger definitions of ampleness on
stacks [1, 6], but this notion is enough for our applications.

The paper mostly works over C. In this context, the classification of canonical
del Pezzo surfaces with Picard number 1 was worked out by Furushima, Miyanishi–
Zhang, and Ye [8, 14, 22].

By definition, a Fano variety is a klt projective variety X with ample anticanon-
ical class. A del Pezzo surface is a Fano variety of dimension 2.

2 Chern number inequalities

Amerik, Rovinsky, and Van de Ven showed that the only smooth Fano 3-fold with
Picard number 1 that admits an endomorphism of degree greater than 1 is P3 [3].
Their method was to prove certain Chern number inequalities for a smooth variety
with an endomorphism. In some cases, this method does not suffice, and so they
also needed Amerik’s analysis of endomorphisms of X in terms of rational curves
on X [2].

We extend ARV’s method to smooth stacks here. The method requires explicit
information about global generation of twists of the cotangent bundle by ample line
bundles. For the E8 del Pezzo surface with no nonzero vector fields, we will analyze
the latter problem in Lemma 4.1.

Lemma 2.1. Let X and Y be Deligne-Mumford stacks (or varieties) over a field
k of characteristic zero. Assume that X and Y are smooth and proper over k, and
let f : X → Y be a quasi-finite morphism over k. Let L be a line bundle on Y
such that Ω1

Y (L) is globally generated outside a zero-dimensional closed subset of Y .
Then, for a general section s ∈ H0(Y,Ω1

Y (L)), its pullback t in H0(X,Ω1
X(f∗L))

has zero-dimensional zero set.

Throughout, we write Ω1
X for the differentials of X over k, Ω1

X/k.

Proof. For smooth varieties rather than smooth stacks, this is essentially [3, Lemma
1.1]. The same proof works, as follows. To begin, the assumption on global gen-
eration implies that a general section s ∈ H0(Y,Ω1

Y (L)) vanishes only on a zero-
dimensional closed subset of Y , by an easy Bertini-type theorem [13, Remark 6].

We first give the proof when X and Y have dimension 2, the case needed in this
paper. On étale coordinate charts for X and Y , the map ϕ : s 7→ t = f∗(s) is locally
given by the matrix of derivatives of f . So if, for a general section s, its pullback
f∗(s) vanishes on a curve (meaning an integral closed substack of dimension 1),
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then this curve must be an irreducible component V of the ramification divisor of
f (the locus where f is not étale, which is not all of X because k has characteristic
zero). In this case, f∗(s) must vanish on V for all s ∈ H0(Y,Ω1

Y (L)).
Since f is quasi-finite, it is not constant on the curve V , and so the derivative

of f : V → Y is generically nonzero (using again that k has characteristic zero).
Equivalently, the kernel of

f∗(Ω1
Y (L))|V → Ω1

X(f∗L)|V

generically has rank 1. By the previous paragraph, all global sections of Ω1
Y (L) re-

stricted to the curve V lie in this rank-1 subbundle. This contradicts our assumption
that Ω1

Y (L) is globally generated outside a zero-dimensional closed subset.
Following Amerik–Rovinsky–Van de Ven, this proof generalizes to arbitrary di-

mension as follows. Let X and Y have dimension m. Let Ri be the locus in X
where the derivative of f has rank at most i. Since f is quasi-finite and k has
characteristic zero, Ri has dimension ≤ i for each i. Now suppose that for a general
section s ∈ H0(X,Ω1

X(L)), the pullback section t = f∗(s) vanishes along a curve Cs.
Let j be such that Cs ⊂ Rj and Cs 6⊂ Rj−1 for a general s. Let V be an irreducible
component of Rj containing Cs, for a general s.

The section s induces a section sV of the sheaf

Aj = f∗(Ω1
Y (L))|V /Bj ,

where
Bj = ker(f∗(Ω1

Y (L))|V → Ω1
X(f∗L)|V ).

Clearly the section sV vanishes on Cs.
The sheaf sj on V ⊂ Rj has rank j, it is locally free outside Rj−1, and it is

generated by the sections sV outside a finite set (for s ∈ H0(Y,Ω1
Y (L))). By the

easy Bertini-type theorem above, outside of Rj−1 the general sV vanishes only on
a finite set, so Cs ⊂ Rj−1, a contradiction.

As in Amerik–Rovinsky–Van de Ven (for smooth varieties rather than smooth
stacks), we have the consequence:

Corollary 2.2. (the “Hurwitz formula”) In the situation of Lemma 2.1, with X
and Y of dimension n,

deg(f) cn(Ω1
Y (L)) ≤ cn(Ω1

X(f∗L)).

Proof. Let s be a general section of Ω1
Y (L). By Lemma 2.1, both s and f∗(s) ∈

H0(X,Ω1
X(f∗L)) have zero-dimensional zero sets. Clearly the substack {f∗(s) = 0}

in X contains the pullback of the substack {s = 0} in Y , which is a local complete
intersection substack of Y . It follows that the degree of {f∗(s) = 0} in X is least the
degree of that pullback, which is deg(f) times the degree of {s = 0} in Y . (These
degrees are rational numbers, since X and Y are Deligne-Mumford stacks.) The top
Chern class of a vector bundle is represented by the cycle associated to the zeros
of any section for which the zero set has the expected dimension. That proves the
desired inequality.
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Corollary 2.3. Let X be a Deligne-Mumford stack (or variety) of dimension n > 0
over a field k of characteristic zero. Assume that X is smooth and proper over k.
Let L be an ample line bundle on X such that Ω1

X(L) is globally generated outside
a finite set. Suppose that

Ln−1c1(Ω
1
X) + Ln−2c2(Ω

1
X) + · · ·+ cn(Ω1

X) > 0,

or that this expression is ≥ 0 and X is Fano. Then X has no endomorphism f such
that f∗(L) is numerically equivalent to aL with a > 1.

In the inequality, we identify a line bundle with a Cartier divisor up to linear
equivalence, via the first Chern class.

Proof. Suppose that X has an endomorphism f with f∗(L) ≡ aL for some a > 1.
Since Ln > 0, f has degree an, which is greater than 1. Applying Corollary 2.2 to
the iterate fm for any m ≥ 0, we have

amncn(Ω1
X(L)) ≤ cn(Ω1

X(amL)),

that is,

amn(Ln + Ln−1c1(Ω
1
X) + · · ·+ cn(Ω1

X))

≤ amnLn + am(n−1)Ln−1c1(Ω
1
X) + · · ·+ cn(Ω1

X).

Taking m to infinity, it follows that

Ln−1c1(Ω
1
X) + · · ·+ cn(Ω1

X) ≤ 0,

as we want.
Next, suppose that this last inequality is an equality. Then, again taking m to

infinity, it follows that Ln−1c1(Ω
1
X) ≥ 0, that is, Ln−1KX ≥ 0 (where KX is the

canonical line bundle). In particular, this fails if X is Fano. So, if X is Fano, we
have in fact

Ln−1c1(Ω
1
X) + · · ·+ cn(Ω1

X) < 0.

3 Morphisms

Here we apply Corollary 2.2 to some related problems: bounding the degree of
morphisms to a given variety, and showing that a given variety is not the image of
a toric variety.

Theorem 3.1. Let X and Y be Deligne-Mumford stacks (or varieties) of dimension
n > 0 over a field k of characteristic zero. Assume that X and Y are smooth and
proper over k, with Picard number 1. Let L be an ample line bundle on Y such that
Ω1
Y (L) is globally generated outside a finite set. Suppose that

Ln−1c1(Ω
1
Y ) + Ln−2c2(Ω

1
Y ) + · · ·+ cn(Ω1

Y ) > 0,

or that this expression is ≥ 0 and X is Fano. Then there is an upper bound on the
degrees of all morphisms from X to Y .
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Proof. Let HX be an ample line bundle on X. For any morphism f : X → Y , we
must have the numerical equivalence f∗L ≡ mHX for some nonnegative rational
number m. Then f has degree mn(Hn

X/L
n). So if there are morphisms f of arbi-

trarily high degree, then these morphisms have m arbitrarily large. For m > 0, f∗L
is ample, and so f contracts no curves; that is, f is finite.

For such a morphism f , Corollary 2.2 gives that

mn(Hn
X/L

n)(Ln + Ln−1c1(Ω
1
Y ) + · · ·+ cn(Ω1

Y ))

≤ mnHn
X +mn−1Hn−1

X c1(Ω
1
X) + · · ·+ cn(Ω1

X).

Since m can be arbitrarily large, looking at the coefficient of mn gives that

Ln−1c1(Ω
1
Y ) + · · ·+ cn(Ω1

Y ) ≤ 0,

as we want. If equality holds, then looking at the coefficient of mn−1 gives that
Hn−1

X c1(Ω
1
X) ≥ 0, that is, Hn−1

X KX ≥ 0. That cannot occur if X is Fano, as we
want.

One would expect that the coarse moduli space of Y is not an image of any
proper toric variety under the assumption of Theorem 3.1. For smooth varieties
rather than smooth stacks, Occhetta and Wísniewski showed much more: the only
smooth complex projective variety Y with Picard number 1 that is an image of a
proper toric variety is Pn [16, Theorem 1.1]. For varieties Y with klt singularities,
we have only the following result in dimension 2.

Theorem 3.2. Let Y be a klt projective surface over a field k of characteristic
zero. Then Y has quotient singularities; let M be the corresponding smooth Deligne-
Mumford stack. Let L be an ample line bundle on M such that Ω1

M (L) is globally
generated outside a finite set. Suppose that

L · c1(Ω1
M ) + c2(Ω

1
M ) ≥ 0.

Then there is no surjective morphism from a proper toric variety to Y .

Proof. Since Y is a klt surface, it has quotient singularities. Suppose that there is
a surjective morphism from a proper toric variety X to Y . Let X → X1 → Y be
the Stein factorization, so X → X1 is a contraction and X1 → Y is finite. Every
contraction of a toric variety is toric [20, Proposition 2.7]. (This was known earlier
for projective toric varieties [7, Theorem 6.28 and exercise 7.2.3].) So, replacing X
by X1, we can assume that the surjection f : X → Y is finite.

Then X is a toric surface, and so it also has quotient singularities. Let N be
the corresponding smooth Deligne-Mumford stack [21, Proposition 2.8]. We have
coarse moduli spaces N → X and M → Y , and N and M have trivial stabilizer in
codimension 1. Since N is smooth, the proof of Theorem 5.1 shows that the finite
morphism f : X → Y lifts to a quasi-finite morphism g : N →M . Then HN := g∗L
is an ample line bundle on N .

For each positive integer m, the toric variety X has a “multiplication” endo-
morphism em, extending the morphism x 7→ xm on the open torus in X. Since
this morphism is finite, the same argument shows that em lifts to an endomorphism
of the stack N , which we also call em. Then e∗m(HN ) ∼= mHN . So the morphism
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g ◦ em : N → M satisfies (g ◦ em)∗(L) ∼= mHN . Apply Corollary 2.2 to these mor-
phisms with m arbitrarily large. As in the proof of Theorem 3.1, it follows that

L · c1(Ω1
M ) + c2(Ω

1
M ) ≤ 0,

and if equality holds, then HN ·KN ≥ 0. But every toric variety X has −KX big,
and hence −KN is big since N → X is an isomorphism in codimension 1. It follows
that HN ·KN < 0. So in fact we must have

L · c1(Ω1
M ) + c2(Ω

1
M ) < 0.

4 Global generation for the E8 del Pezzo surface

Lemma 4.1. Let X be the del Pezzo surface over C with a du Val singularity of
type E8 and no nonzero vector fields. Write OX(1) for the anticanonical line bundle
−KX , which is the ample generator of the Picard group of X. Then the reflexive

sheaf Ω
[1]
X (2) is globally generated outside finitely many points. Equivalently, if M

denotes the corresponding smooth stack, the vector bundle Ω1
M (2) is globally gener-

ated outside finitely many points.

Proof. Explicitly, X is the sextic surface {w2 + z3 +x5y+x4z = 0} in the weighted
projective plane W = P2(1, 1, 2, 3) [9]. Here X misses the singular points of W , but
it has an E8 singularity at the point q = [0, 1, 0, 0]. (There are two isomorphism
classes of del Pezzo surfaces with a du Val singularity of type E8, the other being
the surface {w2 + z3 + x5y = 0} in W . That one is a degeneration of X and has
a nonzero vector field. Another way to describe the difference is that our surface
X has H1(X,TX) = 0; that is, every locally trivial first-order deformation of X is
trivial.)

Let M be the corresponding smooth Deligne-Mumford stack over C. Thus we
have a coarse moduli map M → X, and M has the binary icosahedral group of
order 120 as stabilizer group at one point q (mapping to [0, 1, 0, 0] in X).

The line bundle −KX pulls back to the line bundle −KM ; write OX(1) and
OM (1) for these line bundles. From the equation for X, we see that the linear
system |OX(1)| is a pencil of genus-1 curves through the point p = [0, 0,−1, 1].
Here H0(M,OM (1)) ∼= H0(X,OX(1)), and so we have the same description of the

linear system |OM (1)|. Likewise, H0(M,Ω1
M (2)) ∼= H0(X,Ω

[1]
X (2)), by definition of

reflexive differentials, and so it will suffice to show that Ω1
M (2) is globally generated

outside finitely many points.
The curves in the linear system |OX(1)| are the curves of the form {ax + by =

0}∩X. We compute that there are exactly three singular curves in this linear system:
{y = ±

√
−4/27x}∩X (both isomorphic to the nodal cubic curve) and {x = 0}∩X

(containing the E8 singularity q of X). Write F1, F2, F3 for the corresponding curves
in the stack M , all going through the point p. Thus F1 and F2 are isomorphic to
the nodal cubic curve. The curve F3 is more complicated, since it contains the point
q of M with nontrivial stabilizer group, and it is also not a smooth stack at that
point. The coarse moduli space C3 of F3 is isomorphic to the cuspidal cubic curve.
(See Figure 1.)
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F1

F2

F3
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q

Figure 1: The singular curves in the elliptic pencil |OM (1)| on M

HereM (or equivalently its coarse moduli spaceX) has Betti numbers 1, 0, 1, 0, 1,
because the minimal resolution of X adds 8 (−2)-curves and is isomorphic to a blow-
up of P2 at 8 points. By the degeneration of the Hodge spectral sequence for M [18,
Theorem 1.9], it follows that h0(M,Ω1

M ) = 0, h1(M,Ω1
M ) = 1, and h2(M,Ω1

M ) = 0.
To analyze the sections of Ω1

M (2), we will use the exact sequence

0→ Ω1
M (a− 1)→ Ω1

M (a)→ Ω1
M (a)|F → 0

of coherent sheaves on M . Here a is an integer and F is any curve in the linear
system |OM (1)|. As a first step, we will analyze sections of Ω1

M (1). In view of the
exact sequence above, we are led to ask about sections of Ω1

M (1)|F .
To analyze these sections, consider the exact sequence of coherent sheaves on F :

0→ N∗
F/M → Ω1

M |F → Ω1
F → 0. (∗)

The conormal bundle N∗
F/M is a line bundle even for F singular, namely OF (−1).

The sheaf Ω1
F is a line bundle on F if F is smooth, but not for the singular

curves F . First consider a general curve F in the linear system of OM (1); so F
is a smooth curve of genus 1. Then the extension (∗) is classified by an element
α in H1(F,N∗

F/M ⊗ TF ). Multiplying by α gives a linear map H0(F,NF/M ) →
H1(F, TF ), which describes how deforming F inside M deforms F up to isomor-
phism. Since the genus-1 curve F1 in the pencil |OM (1)| is nodal (hence has j-
invariant ∞), the pencil is not isotrivial. Thus, for a general curve F in the pencil,
the element α must be nonzero (using that we are in characteristic zero). That is,
for F general, the extension (∗) is nontrivial.

After tensoring with O(1), the exact sequence 0 → N∗
F/X(1) → Ω1

M (1)|F →
Ω1
F (1)→ 0 is still non-split, for F general. Here N∗

F/X(1) ∼= OF and Ω1
F (1) ∼= OF (1).

(Note that OF (1) is the line bundle O(p) associated to the point p in F .) Consider
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the long exact sequence of cohomology,

C C

0 // H0(F,N∗
F/M (1)) // H0(F,Ω1

M (1)) // H0(F,Ω1
F (1))

--
H1(F,N∗

F/M (1)) // H1(F,Ω1
M (1)) // H1(F,Ω1

F (1)).

C 0

I claim that the map H0(F,Ω1
M (1))→ H0(F,Ω1

F (1)) ∼= C must be zero. If not, let
s be a section of Ω1

M (1)|F that maps to the standard section of Ω1
F (1) ∼= O(p) that

vanishes exactly at p. By subtracting a suitable section of the trivial line bundle
N∗

F/X(1), we can assume that s vanishes at p. But then s can be viewed as a

splitting of the surjection Ω1
M (1)|F → O(p), a contradiction. The claim is proved.

Thus the map H0(F,N∗
F/X(1)) ∼= C → H0(F,Ω1

M (1)) is an isomorphism. By the

long exact sequence above, it follows that H1(F,Ω1
M (1)) = 0.

Thus, on M , we have the long exact sequence:

0 C

H0(M,Ω1
M ) // H0(M,Ω1

M (1)) // H0(F,Ω1
M (1))

--
H1(M,Ω1

M ) // H1(M,Ω1
M (1)) // H1(F,Ω1

M (1)).

C 0

I claim that H0(M,Ω1
M (1)) is zero. To see this, let s be a section of Ω1

M (1). By
the analysis above, on a general curve F in |OM (1)|, s lies in the rank-1 subbundle
N∗

F/M (1). So that is true on all of M −p (where this subbundle is defined). Equiva-

lently, in terms of the morphism f : M−p→ P1 given by OM (1), we can view s as an
element of H0(M − p, f∗(Ω1

P1(1))) = H0(M − p,OM (−1)) = H0(M,OM (−1)) = 0.

Thus H0(M,Ω1
M (1)) = 0, as claimed. Therefore, the boundary map in the sequence

above is an isomorphism, and so also H1(M,Ω1
M (1)) = 0.

We made the analysis above for a general curve F in the linear system |OM (1)|.
Now let F be any curve in |OM (1)|, possibly singular. By the exact sequence

H0(M,Ω1
M (1)) // H0(F,Ω1

M (1)) // H1(M,Ω1
M ) // H1(M,Ω1

M (1)),

0 C 0

we have h0(F,Ω1
M (1)) = 1. By the exact sequence

0 // H0(F,N∗
F/M (1)) // H0(F,Ω1

M (1)) // H0(F,Ω1
F (1)) // H1(F,N∗

F/M (1)),

C C C

we have h0(F,Ω1
F (1)) ≤ 1. So the space of sections of the sheaf Ω1

F supported on a
finite set has dimension at most 1 (since this property is not affected by tensoring
with a line bundle). This will be relevant when F is singular.
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We now turn to the bundle Ω1
M (2). As above, for every curve F in the elliptic

pencil |OM (1)|, we have an exact sequence

H0(M,Ω1
M (1))→ H0(M,Ω1

M (2))→ H0(F,Ω1
M (2))→ H1(M,ΩM (1)).

The outer two groups are zero, and so H0(M,Ω1
M (2)) maps isomorphically to

H0(F,Ω1
M (2)).

To analyze the latter group, use the exact sequence of coherent sheaves on F ,
0 → N∗

F/M (2) → Ω1
M (2)|F → Ω1

F (2) → 0. Here N∗
F/M (2) is isomorphic to OF (1) =

O(p), which has base locus the point p. For F smooth, Ω1
F (2) is isomorphic to OF (2),

which is basepoint-free (using that F has genus 1). Also, H1(F,N∗
F/M (2)) = 0, and

so we have a short exact sequence on H0. It follows that h0(F,Ω1
M (2)) = 3 and

that Ω1
M (2)|F is globally generated outside the point p. By the previous paragraph,

it follows that h0(M,Ω1
M (2)) = 3 and that Ω1

M (2) is globally generated outside the
three singular curves F1, F2, F3 in the pencil.

Now let F be one of the singular curves in the pencil |OM (1)|. By two para-
graphs back, we know that H0(F,Ω1

M (2)) has dimension 3, and these sections are
restrictions of global sections of Ω1

M (2) on M . Consider the exact sequence

0→ N∗
F/M (2)→ Ω1

M (2)|F → Ω1
F (2)→ 0

of coherent sheaves on F . Here N∗
F/M (2) is the line bundle O(p) on F ; note that

p is a smooth point of F . Let C be the coarse moduli space of F (which is the
same as F except when F is F3). Then C is a curve of arithmetic genus 1, and
so h0(C,O(p)) = 1 and h1(C,O(p)) = 0 [19, Tag 0E3A]. Since π : F → C is a
good moduli space in Alper’s sense (using that we are in characteristic zero), we
have Hj(F, π∗E) ∼= Hj(C,E) for every integer j and every coherent sheaf E on C
[1, Definition 4.1, Proposition 4.5]. So h0(F,O(p)) = 1 and h1(F,O(p)) = 0, or
equivalently h0(F,N∗

F/M (2)) = 1 and h1(F,N∗
F/M (2)) = 0. In particular, the line

bundle N∗
F/M (2) is globally generated outside finitely many points of F .

Since h1(F,N∗
F/M (2)) = 0, our exact sequence of sheaves on F gives a short

exact sequence

0→ H0(F,N∗
F/M (2))→ H0(F,Ω1

M (2)|F )→ H0(F,Ω1
F (2))→ 0.

Therefore, h0(F,Ω1
F (2)) = 2. We showed earlier that the space of sections of Ω1

F

supported on a finite set has dimension at most 1, and so the same is true for
Ω1
F (2). Therefore, there is a section of Ω1

F (2) that is not supported on a finite set.
It follows that Ω1

M (2)|F is globally generated outside finitely many points of F .
As we said, these sections extend to M . This completes the proof that Ω1

M (2) is
globally generated outside finitely many points of M .

5 Conclusions on the E8 del Pezzo surface

Theorem 5.1. Let X be the del Pezzo surface over C with a du Val singularity
of type E8 and no nonzero vector fields. Then X has no endomorphism of degree
greater than 1.
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Proof. Suppose that there is an endomorphism f : X → X of degree greater than 1.
Since X has Picard number 1, the pullback of the ample line bundle OX(1) := −KX

must be numerically equivalent to OX(a) for some real number a > 1, which in
particular is ample. So f does not contract any curves, and hence f is finite.

Let M be the smooth proper Deligne-Mumford stack associated to X; there is
a coarse moduli map M → X. I claim that f lifts to an endomorphism of M . To

see that, consider the composition M → X
f−→ X. Clearly this lifts uniquely to M

except possibly at the finitely many points z of M that are mapped to the singular
point q ∈ X. The point is that M is smooth of complex dimension 2. As a result,
for a small ball B in a coordinate chart around z, B − z is simply connected. So,
if N denotes a small ball around q in X, the map from B − z to N − q lifts to the
universal cover of N − q (a G-covering, where G is the binary icosahedral group),
and that is a coordinate chart for q in M , as we want. The resulting endomorphism
of M is quasi-finite.

Next, the Chern number c2(Ω
1
M ) is the topological Euler characteristic of M (or

X), namely 3, minus 119/120, because of the stabilizer group G of order 120 at the
point q [5, Theorem 7.3]. That is, c2(Ω

1
M ) = 241/120.

Let L = OM (2). By Lemma 4.1, Ω1
M (L) is globally generated outside a finite

set. We have OM (1)2 = 1, and c1(Ω
1
M ) = OM (−1). Therefore,

L · c1(Ω1
M ) + c2(Ω

1
M ) = −2 OM (1)2 + 241/120

= 1/120,

which is (barely) positive. By Corollary 2.3, it follows that there is no endomorphism
f : M →M with f∗O(1) ≡ O(a) for some a > 1.

By Theorem 3.1, it also follows that the E8 surface X with no nonzero vector
fields does not have morphisms of unbounded degree from any fixed smooth projec-
tive surface with Picard number 1. Finally, by Theorem 3.2, X is not the image of a
proper toric variety by any morphism. By the work of Joshi and Gurjar–Pradeep–
Zhang [11, 9], we have completed the proof of Theorems 0.1 and 0.2.
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