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1 Rigidity of the Ochanine genus and the complex el-
liptic genus

The key property of elliptic cohomology that remains interesting even after tensoring
with the rationals is its rigidity. Here is one way to describe what rigidity means.

We can begin by asking which bordism invariants for oriented manifolds are
multiplicative under fiber bundles. Equivalently, what is the quotient ring of the
bordism ring MSO∗ of oriented manifolds by the ideal I of differences E − F · B,
for all fiber bundles F → E → B of closed oriented manifolds? In order to have
an interesting answer, we will always assume that our fiber bundles have structure
group a compact connected Lie group G. That is, we start with a principal G-
bundle over B and an action of G on F , and E is the associated F -bundle over B.
(Examples are sphere bundles, or projective bundles.) The answer has been known
since the 1960s. I will just state the answer rationally.

Theorem 1.1
MSO∗/I ⊗Q ∼= Q[x],

where |x| = 4. The homomorphism MSO∗ → Q[x] is given by the signature of an
oriented manifold.

In other words, the signature behaves multiplicatively on fiber bundles of the
above type (by Chern-Hirzebruch-Serre), and it is the universal genus with this
property. There is a similar answer for complex manifolds. As above, let I denote
the ideal in MU∗ of differences E − F · B, for all fiber bundles of stably complex
manifolds with structure group a compact connected Lie group.

Theorem 1.2
MU∗/I ⊗Q ∼= Q[x1, x2],

where |xi| = 2i. The homomorphism MU∗ → Q[x1, x2] is given by the Hirzebruch
χy-genus of a complex manifold,

χy(X) =
∑

i

χ(X, Ωi
X)yi.

Both the signature and the χy-genus are related to K-theory, rather than to any
deeper cohomology theory.

If one changes the question, however, one finds much more interesting answers.
Namely, consider the same question for spin manifolds.
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Theorem 1.3
MSpin∗/I ⊗Q ∼= Q[δ, ε],

where |δ| = 4 and ε = 8. The homomorphism MSpin∗ → Q[δ, ε] is the Ochanine-
Landweber-Ravenel-Stong elliptic genus.

This is remarkable when one considers that the bordism ring of spin manifolds is
the same, rationally, as the bordism ring of oriented manifolds. This theorem says
that actions of compact connected Lie groups on spin manifolds are much more
special, in an unexpected way, than actions on mere oriented manifolds. This is the
“rigidity” property of the elliptic genus which has fascinated topologists since the
discovery of the elliptic genus in the mid-1980s. The conference volume [4] is an
excellent reference.

One can also consider the same question for complex manifolds with c1 = 0,
“Calabi-Yau manifolds”, which are roughly a complex analogue of spin manifolds.
The result is ([3], [2], [5]):

Theorem 1.4
MSU∗/I ⊗Q ∼= Q[x, y, g2],

where |x| = 4, |y| = 6, and |g2| = 8. The homomorphism MSU∗ → Q[x, y, g2] is
the Krichever-Höhn complex elliptic genus.

The coefficient rings of the Ochanine genus and the complex elliptic genus are
naturally described in terms of elliptic curves. For the Ochanine genus, Q[δ, ε] is the
ring of modular forms for the group Γ0(2) ⊂ SL(2,Z). In other words, it is the ring
of “functions” on the moduli space of elliptic curves together with a point of order
2. (Because one compactifies this space to get a projective variety, one actually
considers sections of powers of a natural line bundle, rather than functions.)

For the complex elliptic genus, the coefficient ring Q[x, y, g2] is the ring of Jacobi
forms. This is the ring of “functions” on the universal elliptic curve M1,2. Here there
is a natural fibration

E → M1,2 → M1,1,

where M1,1 is the moduli space of elliptic curves. Corresponding to the surjection
M1,2 → M1,1 of projective varieties, there is an inclusion of rings:

Q[g2, g3] ⊂ Q[x, y, g2].

Here Q[g2, g3] (sometimes called Q[E4, E6]), with |g2| = 8 and |g3| = 12, is the ring
of “functions” on M1,1, that is, the ring of modular forms for SL(2,Z). The above
inclusion of rings is described by the Weierstrass equation:

y2 = 4x3 − g2x− g3.

2 The elliptic genus of a singular variety

I found in [5] that the complex elliptic genus arises naturally in the context of the
following questions.

Question (Goresky-MacPherson) Which characteristic numbers can be defined
for compact complex algebraic varieties with singularities?
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Question (Morava) Does a singular complex variety have a fundamental class
in complex bordism?

Morava’s question is suggested by the fact that any singular complex variety
Y (which I will always assume to be compact) has a resolution of singularities
f : X → Y . (That is, X is smooth, f is proper, and f is an isomorphism over
a dense open subset of Y .) For Y of complex dimension n, any resolution of Y
determines an element of MU2nY , which is a sort of fundamental class of Y . The
problem is that resolutions of Y are not unique, and different resolutions typically
define different elements of MU2nY . For example, if X1 and X2 are resolutions of
Y which define the same element of MU2nY , then in particular they have the same
Chern numbers; but this is false in general. In particular, blowing up a point on
one resolution of Y gives a “bigger” resolution of Y , with different Chern numbers.

A natural way to address this problem is to consider only resolutions which
are minimal in some sense. However, even with this improvement, I found that
Morava’s question has a negative answer, in the following sense: There is a singular
variety Y with two different and “equally good” minimal resolutions X1 and X2

which have different Chern numbers. Thus a singular variety does not, in general,
have a well-defined fundamental class in complex bordism. (This can be formulated
precisely by requiring that the class is compatible with minimal resolutions.)

In the examples I constructed, X1 and X2 are related in an explicit way, by what
I called a classical flop. This made it natural to ask what is the quotient ring of
the bordism ring defined by identifying any pair of manifolds related by a classical
flop. This leads to a new interpretation of the complex elliptic genus [5]:

Theorem 2.1 The quotient ring of MSU∗ by the ideal of differences X1 − X2,
with X1 and X2 related by a classical flop, is, after inverting 2, a polynomial ring
Z[1/2][x2, x3, x4]. The corresponding homomorphism

MSU∗ → Z[1/2][x2, x3, x4]

is the complex elliptic genus.

Thus we find that the complex elliptic genus arises naturally from a geometric
problem. However, classical flops are a very special class of pairs of manifolds
which are both minimal resolutions of the same singular variety. I asked whether
this theorem could extend to all pairs of manifolds which are minimal resolutions
of the same singular variety. This problem was solved in a spectacular paper by
Borisov and Libgober [1]:

Theorem 2.2 The quotient ring of MSU∗ by the ideal of differences X1 − X2,
for any pair of complex manifolds X1 and X2 with c1 = 0 which are both min-
imal resolutions of a singular variety Y , is, after inverting 2, a polynomial ring
Z[1/2][x2, x3, x4]. The corresponding homomorphism

MSU∗ → Z[1/2][x2, x3, x4]

is the complex elliptic genus.

Given my earlier result, what Borisov and Libgober had to show was that the
complex elliptic genus of X1 was equal to the complex elliptic genus of X2, for
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any two minimal resolutions of a singular variety Y . In this context, we adopt the
following definition of a minimal resolution, which fits with the notion of “minimal
models” in algebraic geometry. Namely, we assume that the singular variety Y
has rational Gorenstein singularities, so it has a canonical line bundle KY , and we
assume that KY is trivial. Then we say that a resolution X → Y is minimal if KX

is also trivial.
This theorem of Borisov and Libgober is a new kind of rigidity theorem for the

complex elliptic genus ϕ. Indeed, I was able to show that ϕ(X1) = ϕ(X2) in the
special case where X1 and X2 are related by a classical flop by identifying X1−X2 in
MU∗ with the total space of a fiber bundle over the singular set of Y , and applying
the usual rigidity theorem for the complex elliptic genus. However, if we know only
that X1 and X2 are minimal resolutions of a singular variety Y , then there is no
obvious geometric description of the relation between X1 and X2. Nonetheless,
Borisov and Libgober were able to show that ϕ(X1) = ϕ(X2).

The key to their proof is to define the elliptic genus of a singular variety Y with
rational Gorenstein singularities using any resolution of singularities f : X → Y , in
such a way that if f : X → Y is a minimal resolution then the definition just gives
the elliptic genus of X. The definition has the form

ϕ(Y ) =
∫

X
ϕ(ciTX,Ej , aj)

for some explicit function ϕ, where Ej runs over the exceptional divisors of the map
f , and the discrepancies aj are defined by

KX = f∗KY +
∑

ajEj .

Thus, to prove their theorem, it suffices to show that this definition is the same
for all resolutions of Y . For that, they use the “weak factorization theorem” of
Abramovich, Matsuki, Karu, and Wlodarczyk, which says that (for any singular
variety whatsoever) any two resolutions can be related by repeatedly blowing up
and down smooth subvarieties. Thus, it suffices to show that the above definition of
ϕ(Y ) does not change when the resolution X is replaced by a blow-up of X along
a smooth subvariety. This turns out to be a straightforward calculation, using the
properties of the Jacobi theta function (which goes into the definition of ϕ).

3 Possible characteristic numbers for real analytic spaces

It is now natural to ask: are there any further rigidity properties of the elliptic
genus which remain to be discovered?

In particular: can one define the Ochanine elliptic genus ϕ for any singular
oriented real analytic space Y , in such a way that

ϕ(Y ) = ϕ(X)

for any minimal resolution X → Y ? (Every real analytic space has a resolution
of singularities, and one can define a resolution to be minimal if the corresponding
complexification, defined locally, is a minimal resolution in the sense defined above.)
This would deserve to be called a “rigidity” property because it would imply that

4



ϕ(X1) = ϕ(X2) whenever X1 and X2 are minimal resolutions of the same singular
real analytic space Y .

This is what Borisov and Libgober do for complex analytic spaces. As evidence
that the real analytic case may also have a positive answer, I can offer the following.
There are other related calculations in my paper [6].

Theorem 3.1 The quotient ring of MSO∗ by the ideal generated by oriented real
flops and complex flops is:

Z[δ, 2γ, 2γ2, 2γ4, . . .],

where CP2 maps to δ and CP4 maps to 2γ + δ2. This quotient ring is exactly the
image of MSO∗ under the Ochanine elliptic genus ([4], p. 63).
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