
Splitting fields for E8-torsors

Burt Totaro

Several of the fundamental problems of algebra can be unified into the problem
of classifying G-torsors over an arbitrary field k, for a linear algebraic group G.
(A G-torsor can be defined as a principal G-bundle over Spec k, or as an algebraic
variety over k with a free transitive action of G.) For example, PGL(n)-torsors
are equivalent to central simple algebras, and torsors for the orthogonal group are
equivalent to quadratic forms. See Serre [36] for a recent survey of the classification
problem for G-torsors over a field.

The study of G-torsors is still in its early stages. Indeed, it is not completely
known how complicated G-torsors can be, if we fix the type of the group but allow
arbitrary base fields. Tits showed that there is a bound on how complicated they
can be. For each split semisimple group G, there is an integer d(G) depending only
on the type of G, not on the field, such that every G-torsor over a field k becomes
trivial over some finite extension E of k of degree dividing d(G) [40]. For example,
it is easy to see that one can take d(G) to be the order of the Weyl group of G.
But it is a fundamental problem to determine the best possible number d(G) for
each type of group. Tits found the optimal value of d for the simply connected split
groups of exceptional type other than E8: one can take d(G2) = 2, d(F4) = 2·3 = 6,
d(E6) = 2·3 = 6, and d(E7) = 22 ·3 = 12 [40].

As in other problems, the group E8 is far more difficult. Most of Tits’s paper is
devoted to the proof that one can take d(E8) = 29·33·5 = 69120, which is much better
than the easy result that one can take d(E8) to be the order of the Weyl group,
214·35·52·7 = 696, 729, 600. (That is, Tits shows that every torsor for the split group
E8 over a field becomes trivial over some field extension of degree dividing 29·33·5.
Because E8 has no center or outer automorphisms, it is equivalent to say, as Tits
does, that every algebraic group of type E8 over a field becomes split over some
extension of degree dividing 29 ·33 ·5.)

In this paper, we will show that we can take d(E8) = 26 ·32 ·5 = 2880 (Theorem
0.1, below). The proof is completed at the end of section 7. It turns out that this
result is optimal. Indeed, Grothendieck defined a topological invariant, the torsion
index, for every split group G [22]. He showed that for a “versal” G-torsor over
a field, the greatest common divisor of all degrees of splitting fields is the torsion
index of G. I computed that the torsion index of E8 is exactly 26 ·32 ·5 [41], which
implies the optimality of the following theorem.
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Theorem 0.1 Every torsor for the split algebraic group E8 over a field becomes
trivial over some separable field extension of degree dividing 26 ·32 ·5 = 2880. Equi-
valently, every algebraic group of type E8 over a field becomes split over some sep-
arable field extension of degree dividing 26 ·32 ·5.

The field extension we construct will not be Galois. The fact that it is separable
is nontrivial only if the base field is imperfect and of characteristic 2, 3, or 5. But
the theorem is new even over fields of characteristic zero.

One interesting aspect of Theorem 0.1 is that it is relatively easy to show that
every E8-torsor over a field k can be split by some field extensions K1,K2, . . . such
that gcd [Ki : k] divides 26 ·32 ·5. This follows from the fact that Grothendieck’s
torsion index of E8 divides 26 ·32 ·5, which is an easy topological calculation [41].
That is, if we think of an E8-torsor as a homogeneous variety, it is relatively easy
to show that every E8-torsor over a field has a zero-cycle of degree dividing 26·32·5,
whereas Theorem 0.1 asserts that every E8-torsor in fact has a closed point of degree
dividing 26·32·5. We can therefore think of Theorem 0.1 as one step toward a positive
answer to the following general question in the arithmetic theory of homogeneous
varieties.

Question 0.2 Let k be a field, G a smooth connected linear algebraic group over k,
and X a quasi-projective variety which is a homogeneous space for G. Suppose that
there is a zero-cycle (not necessarily effective) of degree d > 0 on X. Then X has
a closed point of degree dividing d, which moreover can be chosen to be etale (that
is, separable) over k.

See section 9 for the history of Question 0.2. We will give a positive answer to
Question 0.2 for torsors over the split simply connected exceptional groups G2, F4,
and E6, as well as a partial result for E7, in Theorem 5.1. We need the result for
E7 as part of the proof of Theorem 0.1 about E8. The case d = 1 of Question 0.2 is
already known for torsors under any split simple group except E8, by Bayer-Lenstra
[3] and Gille [18], Théorème C.

A big part of the proof of Theorem 0.1 involves an analysis of the subgroup
structure of the Weyl group of E8. The maximal subgroups of the Weyl group of
E8 were listed in the Atlas [14], and the list is reprinted in section 8, but I have not
used the list in the proofs. The point is that the Atlas list was compiled using the
classification of the finite simple groups, or at least of the simple groups of order less
than two million or so, and it seems preferable not to use such a huge body of work
when it can be avoided. I have therefore given a direct group-theoretic analysis of
the subgroups of the Weyl group of E8 for the purposes of this paper. The deepest
tool used is Brauer’s 1940s theory of blocks of defect one [7]. Using the Atlas list of
maximal subgroups would shorten the paper, but not too much, because the paper
requires a lot of further analysis of the subgroups, not only the maximal ones.

Although the proof does not require computer work, I found the group-theory
program GAP convenient for calculations when needed [16]. Also, I would like to
thank Jean-Louis Colliot-Thélène, Philippe Gille, and Jan Saxl for helpful discus-
sions. The referee observed that the proof becomes much easier when the base field
k is Hilbertian; see section 2 for details.

2



1 Notation

We follow Atlas notation in that one-letter names such as S2a(pb), Ua(pb), and
La(pb) are used for the finite groups PSp, PSU , and PSL that are simple for most
values of the parameters. An integer a denotes the cyclic group of order a, and
ab denotes the product of b cyclic groups of order a. We write A.B or sometimes
AB for any group extension with normal subgroup A and quotient group B, while
A :B denotes a split extension. The notation ab+c indicates an extension ab.ac; in
particular, 21+2n

+ denotes the extraspecial group of plus type, the central product of
n copies of the dihedral group of order 8. The wreath product A oSn is the obvious
split extension An :Sn. Finally, [n] means an unspecified group of order n.

Much of our analysis is concerned with the action of the Weyl group W (E8) on
the 240 roots which form the E8 root system. A standard reference is Bourbaki
[6]. In fact, we formulate the analysis in terms of the action of the quotient group
W (E8)/{±1} on the set R of 120 E8 roots modulo sign. For calculations, it is useful
to think of W (E8)/{±1} as the orthogonal group of the 8-dimensional quadratic
form q = x1x2 + x3x4 + x5x6 + x7x8 over F2, and R as the set of vectors v in (F2)8

with q(v) = 1, as mentioned in Bourbaki, exercise VI.4.1. We use the standard (but
non-Atlas) notation O+

8 (2) for this orthogonal group. Also, we write G1 = Ω+
8 (2)

for the simple subgroup of index 2 in the orthogonal group O+
8 (2). In these terms,

the orthogonal group O+
8 (2) is an extension G1.2, and the Weyl group of E8 is an

extension 2.G1.2.

2 First steps of the proof

This section explains the general shape of the proof, which is divided into cases
depending on the structure of a maximal torus in a given algebraic group of type
E8.

Let E8 denote the split group of type E8 over a field k. The set H1(k,E8)
of isomorphism classes of E8-torsors over k is naturally in bijection with the set
of isomorphism classes of algebraic groups of type E8 over k, because the group
E8 has no center or outer automorphisms. (To a given E8-torsor we associate
its automorphism group: this is an algebraic group of type E8, not necessarily
isomorphic to the split group E8.) This explains the equivalence between the two
statements of the theorem.

Given any E8-torsor over k, let L be the corresponding group of type E8 over k,
and let T be a maximal torus in L defined over k. (Such a torus exists, by Chevalley,
Rosenlicht, and Grothendieck; a reference is Borel-Springer [5], 7.10.) We want to
show that L becomes split over an extension of k of degree dividing 26 ·32 ·5. Let Φ
be the set of roots of L relative to T , |Φ| = 240, and let R = Φ/{±1}, |R| = 120.
The Galois group Gal(ks/k) acts on Φ through the Weyl group W (E8). We prefer
to analyze the action of the Galois group on the smaller set R of roots modulo sign,
where it acts through G1.2 = W (E8)/{±1}. Let G be the image of the Galois group
in G1.2, which is well-defined up to conjugacy.

Definition 2.1 A conjugacy class of subgroups G of G1.2 = W (E8)/{±1} is good if
the following holds. Let L be any group of type E8 over a field k which has a maximal
torus T defined over k such that the image of the homomorphism Gal(ks/k)→ G1.2
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associated to T is conjugate to G. Then L splits over a separable extension of k of
degree dividing 26 ·32 ·5.

In these terms, Theorem 0.1 will follow from the statement that all subgroups
G of G1.2 are good. A big step in that direction is the following.

Lemma 2.2 Let G be a subgroup of G1.2 which has an orbit on R of order dividing
120 = 23 ·3·5. Then G is good.

Proof. We have to show that any group L of type E8 over a field k with
a maximal torus T such that the associated homomorphism of the Galois group
Gal(ks/k) to G1.2 has image G must split over an extension of k of degree dividing
26 ·32 ·5. We are given that some element {±x} of R has orbit under the Galois
group of order dividing 23 ·3·5. We can make a separable extension k1/k of degree
equal to this orbit size, hence dividing 23 ·3·5, so that Gal(ks/k1) fixes the element
{±x} of R. The roots {±x} form a subsystem of type A1 in the E8 root system.
So Gal(ks/k1) also preserves the orthogonal complement of {±x} in the E8 root
lattice, which is a subsystem of type E7. Equivalently, the group L over k1 has a
subgroup of type A1 × E7 which contains the given torus.

For any closed subgroup H of the split group E8 over a field k, the set of
isomorphism classes of pairs H ′ ⊂ G′ such that G′ is a group of type E8 over k and
H ′ is a subgroup that becomes conjugate to H ⊂ E8 over the algebraic closure can
be identified with the set H1(k,Aut(H ⊂ E8)) of isomorphism classes of torsors
for the group scheme Aut(H ⊂ E8) over k ([43], section 17.6, Theorem). Since
E8 has no outer automorphisms, this group scheme is the normalizer NE8(H). We
observe that the subgroup H = (SL(2)× E7)/Z/2 of the split group E8 is its own
normalizer; this follows from the analogous calculation in the Weyl group of E8,
which can be found in Table 11 of Carter [11]. So, in the situation we have been
considering, the isomorphism class of L over k1 is determined by an element of
H1(k1,H).

Tits showed that any element of H1(k1,H) can be killed by an extension of
k1 of degree dividing 23 ·3 ([40], Lemma 3). It is straightforward to check that the
extension Tits constructs can be arranged to be separable (see the proof of Theorem
5.1 in this paper, for example). Thus the group L becomes split over a separable
extension of k of degree dividing (23 ·3·5)(23 ·3) = 26 ·32 ·5. QED (Lemma 2.2).

In particular, Lemma 2.2 shows that the theorem is true in the “generic” case
where G is the whole group G1.2, since then G acts transitively on the set R of
order 120. Unfortunately, Theorem 0.1 cannot simply be reduced to this “generic”
case. (Such a reduction would only show that every E8-torsor over a field can be
killed by a collection of field extensions Ki such that

∑
[Ki : k] = 26 ·32 ·5.) At

worst, one might have to prove the theorem separately for all possible subgroups G
of G1.2. In fact, I have written the proof to use as little case-by-case checking as I
could arrange.

The referee pointed out that when the base field k is Hilbertian, such as any
infinite field which is finitely generated over Q or over Fp (see Serre [34], 9.5, 9.6),
then Theorem 0.1 can be proved much more easily. Indeed, we have just shown that
whenever a group L of type E8 over a field k contains a “generic” torus, meaning
one such that that the Galois group of k maps onto the Weyl group of E8, then L
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splits over a separable field extension of degree dividing 26·32·5. Let Y be the variety
of maximal tori of L. Then the natural torus in the group L ×k k(Y ) is “generic”
in this sense. The variety Y is rational over k, by Grothendieck (see Borel-Springer
[5], 7.9). For k Hilbertian, it follows that there is a k-point of Y such that the
corresponding torus in L is “generic” in the same sense. Therefore, L is split by a
separable extension of degree dividing 26·32·5, proving Theorem 0.1 for k Hilbertian.
Unfortunately, this seems not to help in proving Theorem 0.1 for arbitrary fields.

3 Subsystems of E8

Lemma 3.1 Any subgroup G of G1.2 = W (E8)/{±1} which preserves a nontrivial
proper subsystem of the E8 root system is good.

We will usually just say “a subsystem” to mean a nontrivial proper subsystem.
Equivalently, the statement means that any group L of type E8 over a field k which
has a reductive subgroup of maximal rank other than a maximal torus or the whole
group must split over a separable extension of k of degree dividing 26·32·5. This was
in fact stated by Tits [40], Lemma 4, but proved there only for subsystems other
than A8 and D8. Here A8 is easy, but D8 is not. (Also, Tits did not mention that
the field extensions can be chosen to be separable, but that is clear from his proof
in the cases he considers.)

More precisely, confirming the statement of Tits’s Lemma 4, we will show that a
group of type E8 splits over an extension of degree dividing 2·32 if it has a subgroup
of type A8, or of degree dividing 26 if it has a subgroup of type D8.

Proof. To complete Tits’s proof, we only need to show that a subgroup
G ⊂ G1.2 which preserves an A8 or D8 subsystem of the E8 root system is good.
Equivalently, we have to show that a group L of type E8 over a field k which has
a subgroup of type A8 or D8 becomes split over a separable extension of degree
dividing 26 ·32 ·5. This is clear for A8, because any group of type A8 becomes split
over a separable extension of degree dividing 2·32. Here 2 is to reduce to an inner
form of SL(9)/Z and 9 is to split the corresponding central simple algebra [40].

So suppose that we have a group L of type E8 over a field k which has a subgroup
of type D8. Over the algebraic closure, such a subgroup is the semispin group
Ss(16), the quotient of the split simply connected group Spin(16) by a subgroup
Z/2 of the center (Z/2)2 other than the one with quotient SO(16). The subgroup
Ss(16) of the split group E8 is its own normalizer, by the analogous calculation
in the Weyl group in Carter [11], Table 11. So the isomorphism class of L over k
together with its subgroup of type D8 is described by an element of H1(k, Ss(16)).
We will show that any element of H1(k, Ss(16)) splits in degree dividing 26, so in
particular in degree dividing 26·32·5. This proof will have the same structure as the
whole proof for E8 in this paper, though on a smaller scale.

Given an element of H1(k, Ss(16)), we can look at the associated inner form M
of Ss(16) over k, and find a maximal torus T in M defined over k. Let G be the
image of the homomorphism from Gal(ks/k) to the Weyl group W (D8) = 27 : S8

associated to T . Consider the action of G on the set S of the 8 coordinate lines
R · ei, in the usual notation for the D8 root system [6].

First suppose that G has an orbit of order dividing 8 on S. Then we can make a
separable extension k1 of k of degree dividing 23 = 8 to make the Galois group fix an
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element of S. Equivalently, the Galois group Gal(ks/k1) preserves a D7 subsystem
of D8. By making a further separable extension k2/k1 of degree dividing 2, we can
split the 1-dimensional torus which is the centralizer of D7 in D8 = Ss(16). What
is left is an element of H1(k2, Spin(14)), which corresponds to a 14-dimensional
quadratic form with trivial invariants in H1(k2,Z/2) and in H2(k2,Z/2). Pick a
2-dimensional subspace on which the associated symmetric bilinear form is nonde-
generate; then, even in characteristic 2, all we need is a separable extension k3/k2

of degree dividing 2 to make this subspace isotropic, in other words to produce
a 2-dimensional hyperbolic summand of our 14-dimensional form. What is left is
an element of H1(k3, Spin(12)), or equivalently a 12-dimensional form with trivial
invariants in H1 and H2. At this point we can apply Pfister’s beautiful theorem
that every 12-dimensional quadratic form with trivial invariants in H1 and H2 splits
after a separable extension of degree dividing 2 [28]. (The proof was extended to
characteristic 2 by Baeza [2], pp. 130-131.) Thus, if the subgroup G ⊂ W (D8) has
an orbit on the set S of order dividing 8, then we have shown that the given element
of H1(k, Ss(16)) can be killed by some extension of degree dividing 23 ·2·2·2 = 26,
as we want.

Otherwise, every orbit of G on S has order not dividing 8. It follows that G
has orbit sizes 3 + 5 = 8 on S. The situation now is much simpler than in the
analogous situation for E8, to be described in Lemma 4.1. Namely, by definition of
S, G permutes 3 of the coordinate lines R ·ei in R8 and also permutes the remaining
5 coordinate lines. This means that G preserves a D3 × D5 subsystem of the D8

root system, which makes things easy. Clearly G is contained in a subgroup of the
form 27 : (S3 × S5) in the Weyl group of D8. First, make a extension k1/k of degree
dividing 2 to make the Galois group map into (22 :S3) × (24 :S5) = W (D3 ×D5).
Then we have an element of H1(k1, (Spin(6)× Spin(10))/Z/4), where Z/4 injects
into both factors. We use the exact sequence of Galois cohomology [35],

H1(k1, Spin(10))→ H1(k1, (Spin(6)× Spin(10))/Z/4)→ H1(k1, Spin(6)/Z/4).

We can make a separable extension k2/k1 of degree dividing 22 = 4 to kill the
image of our element in H1(k1, Spin(6)/Z/4) = H1(k1, SL(4)/Z/4), so that the
given element lifts to H1(k2, Spin(10)). By another result of Pfister’s, every element
of H1(k2, Spin(10)), corresponding to a 10-dimensional quadratic form with trivial
invariants inH1(k2,Z/2) andH2(k2,Z/2), can be killed by some separable extension
of degree dividing 2 [28]. Again, the proof was extended to characteristic 2 by Baeza
[2], pp. 129-130. Thus, on the assumption that G has orbit sizes 3 + 5 = 8 on S, we
have split the given group of type D8 by a separable extension of degree dividing
2·22·2 = 24, so in particular dividing 26. This completes the proof that every element
of H1(k, Ss(16)) is killed by some separable extension of k of degree dividing 26.
QED (Lemma 3.1)
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4 Bad orbit decompositions

Lemma 4.1 Let G ⊂ G1.2 = W (E8)/{±1} be a subgroup such that no orbit of G
on R has order dividing 120. Then the orbit sizes of G on R are either

64 + (multiples of 7 summing to 56),
50 + (multiples of 7 summing to 70),
36 + (multiples of 7 summing to 84),

45 + (multiples of 25 summing to 75), or
(multiples of 16 summing to 48) + (multiples of 9 summing to 72).

We call these the possible bad orbit decompositions.

Several of these bad orbit decompositions can actually occur, for suitable sub-
groups of G1.2. The subgroup of G1.2 which preserves a D8 subsystem of the E8

root system has orbit sizes 56 + 64 on the set R of E8 roots modulo sign, where
the orbit of size 56 is the set of D8 roots modulo sign. Likewise, the subgroup of
G1.2 preserving an A8 subsystem has orbit sizes 36 + 84 on R. The decomposition
48 + 72 also occurs for some subgroups of G1.2, which forces some proofs later to
be more complex than one would like. (By Lemma 3.1, a subgroup of G1.2 that
preserves a subsystem of the E8 root system must be good. But a subgroup with
orbit sizes 48 + 72 on R cannot preserve a subsystem, so we will have to show that
all such subgroups are good by other methods.)

Proof. We know that all orbits have order dividing |G1.2| = 213 ·35 ·52 ·7, and
their sum is 120. It is convenient to compute that a Sylow 7-subgroup Z/7 ⊂ G1.2
has only one fixed point in R, so that all its other orbits have size 7. This calculation
is made at the beginning of the proof of Lemma 7.1, for example. It follows that for
any subgroup G of G1.2 of order a multiple of 7, all orbits of G on R have order a
multiple of 7 except for exactly one, which has order ≡ 1 (mod 7). Combining this
with the fact that all G-orbits have order dividing |G1.2| = 213·35·52·7, we find that,
if G has any orbits on R of order a multiple of 7, then all orbits of G are multiples
of 7 except one which is either 36, 50, or 64. (We are assuming that no orbit of G
has order dividing 120.)

Alternatively, suppose that G has no orbits of order a multiple of 7, but that
G has an orbit of order a multiple of 52. Then G has order a multiple of 52, so G
contains a Sylow 5-subgroup of G1.2. We compute, for example at the beginning of
the proof of Lemma 6.1, that the orbits of a Sylow 5-subgroup of G1.2 on R are 4
of order 25 and 4 of order 5. So all orbits of G on R have order which is a multiple
of 5, and which divides |G|, while (we assume) not dividing 120 = 23·3·5. The only
way this can happen is for all orbits of G to have order a multiple of 25 except for
one orbit of order 45.

Finally, suppose that G has no orbits of order a multiple of 7 or of 52. Since
all orbits have order not dividing 23 ·3 ·5, they all have orders a multiple of 16 or
of 9. The only way this can happen is for G to have some orbits whose orders
are multiples of 16, with total size 48, together with some orbits whose orders are
multiples of 9, with total size 72. QED (Lemma 4.1)

The bad orbit decomposition 64 + (multiples of 7 summing to 56) = 120 caused
a lot of trouble in the first version of this paper. But it turns out that it can be
handled very quickly, as follows.
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Lemma 4.2 For any subgroup G of G1.2 which has an orbit of order 64 on R, the
complementary subset of order 56 in R forms a subsystem of type D8 in the E8 root
system. So G preserves a D8 subsystem, and hence G is good.

Proof. Let X2 be a Sylow 2-subgroup of G. Since X2 has odd index in G and
64 is a power of 2, X2 must act transitively on the G-orbit of order 64. Let Y2 be
a Sylow 2-subgroup of G1.2 containing X2. Then all orbits of Y2 on R have size a
power of 2 at most 120, hence at most 64, and so the orbit of size 64 for X2 is also
an orbit for the larger group Y2.

On the other hand, the subgroup W (D8)/{±1} of W (E8)/{±1} = G1.2 which
preserves a D8 subsystem has odd index (namely 33 ·5 = 135). So the Sylow 2-
subgroup Y2 of G1.2 preserves a D8 subsystem, consisting of 56 roots modulo sign.
Since Y2 has an orbit of size 64 on R, the complement of this orbit must be a D8

subsystem. Since the original group G preserves the same set of order 64, G also
preserves its complement, a D8 subsystem. So G is good by Lemma 3.1. QED

5 Sharper results for E7

The proof of Theorem 0.1 began with Lemma 2.2, which rests on Tits’s theorem that
every E7-torsor is killed by some field extension of degree dividing 12. In the course
of the proof of Theorem 0.1, in Lemma 6.2, we will need more precise information
on the group E7. Namely, we will give a positive answer to the general Question
0.2 for torsors under the simply connected split groups G2, F4, E6 over any field,
as well as a partial result for E7. This is a fairly straightforward consequence of
known results on these groups by Tits, Rost, Gille, Garibaldi, and others, although
the proof for F4-torsors in characteristic 2 requires some extra effort. We will use
the result for E7 to show that subgroups of G1.2 = W (E8)/{±1} whose 3-Sylow
subgroup is small enough must be good.

Theorem 5.1 Let G be a simply connected split group of type G2, F4, E6, or
E7 over a field k. Then any element of H1(k,G) can be killed by some separable
extension of degree dividing 2, 2·3 = 6, 2·3 = 6, or 22·3 = 12, respectively. Moreover,
Question 0.2 has a positive answer for G-torsors when G is G2, F4, or E6. For E7,
we have the following partial result on Question 0.2: any E7-torsor which is killed
by an extension of degree prime to 3 can be killed by a separable extension of degree
dividing 22 = 4.

Corollary 5.2 Any subgroup G ⊂ G1.2 with an orbit on R of order dividing 23·32·5
(not necessarily dividing 23 ·3·5 = 120) and with ord3|G| ≤ 2 is good.

Proof of Corollary 5.2. The corollary is true without the assumption on the
order of G if G has an orbit on R of order dividing 23 ·3·5, by Lemma 2.2. So we
can assume that G has an orbit of order dividing 23 ·32 ·5 but not 23 ·3·5. It follows
that ord3|G| = 2. We can make a separable extension k1/k of degree equal to the
size of the given orbit, thus dividing 23 ·32 ·5, so that Gal(ks/k1) fixes a point of R.
Equivalently, this Galois group preserves a subsystem of type A1 × E7 of the E8

root system. Moreover, since ord3|G| = 2, the image H of Gal(ks/k1) in G1.2 has
ord3|H| = 0. Using Theorem 5.1, it follows that the subgroup of type A1 × E7 in
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L over k1 becomes split over an extension of k1 of degree dividing 23, rather than
23 ·3 as we have in general. Thus L splits over an extension of k of degree dividing
(23 ·32 ·5)(23) = 26 ·32 ·5. QED (Corollary 5.2)

Before giving the proof of Theorem 5.1, let us state a consequence of the above
result which will be used in the proof of Theorem 0.1.

Corollary 5.3 Any subgroup G ⊂ G1.2 with ord3|G| ≤ 2 and either ord5|G| ≤ 1 or
ord7|G| = 0 is good.

Proof. If G has an orbit on R of order dividing 120, then G is good by Lemma
2.2. Otherwise, the set of orbit sizes of G on R is one of those listed in Lemma
4.1. If G has orbit sizes 64 + (multiples of 7 summing to 56), then G is good by
Lemma 4.2. By our assumptions on the order of G, G cannot have orbit sizes
50 + (multiples of 7 summing to 70). The remaining possibilities for the orbit sizes
of G on R are

36 + (multiples of 7 summing to 84),
45 + (multiples of 25 summing to 75), or

(multiples of 16 summing to 48) + (multiples of 9 summing to 72).

In each of these cases, there is an orbit of size 9·1, 9·2, 9·4 = 36, 9·5 = 45, or 9·8 = 72,
thus of order 32 times a divisor of 23 ·5. By Corollary 5.2, using that ord3|G| ≤ 2,
G is good. QED (Corollary 5.3).

Proof of Theorem 5.1. For any field k, any element of H1(k,G2) can be
killed by a separable extension of k of degree dividing 2. Equivalently, any octonion
algebra over a field splits over such an extension. For example, this is clear from
the identification of H1(k,G2) with the set of isomorphism classes of 3-fold Pfister
forms, which works even in characteristic 2: see Serre [36], completing the earlier
works of Jacobson [23] and van der Blij and Springer [4]. It follows from the same
result that any G2-torsor over a field which is killed by an extension of odd degree is
trivial, in view of Springer’s theorem, the analogous statement for quadratic forms
[38]. The proof of Springer’s theorem was extended to characteristic 2 by Baeza [2],
p. 119. This answers Question 0.2 for the split group G2.

Tits’s argument [40] shows that any element of H1(k, F4) can be killed by a
separable extension of degree dividing 2 followed by a separable extension of degree
dividing 3. Moreover, the Rost invariant H1(k, F4) → H3(k,Q/Z(2)) has trivial
kernel, by Rost [29] and (in characteristic 2 or 3, where the invariant takes values in
Kato’s modified version of Galois cohomology) Gille [19]. An F4-torsor which can
be killed by a field extension of degree prime to 2 and by an extension of degree
prime to 3 clearly has trivial Rost invariant, and hence is trivial; this answers part
of Question 0.2 for F4.

We now solve the remaining cases of Question 0.2 for F4. It is immediate from
Tits’s statement, above, that for any F4-torsor over a field k, the 2-part of the Rost
invariant is killed by a separable extension of degree dividing 2 (since the extension
of degree dividing 3 that follows is injective on H3(·,Z/2(2))). Now let X be any
F4-torsor which is killed by a field extension of degree prime to 3. Then the 3-part
of the Rost invariant of X is 0, and the 2-part of the Rost invariant can be killed
by a separable extension of degree dividing 2, so the above result of Rost and Gille
implies that X itself is killed by this separable extension of degree dividing 2.
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The last case of Question 0.2 for F4 is that any F4-torsor X which is killed
by a field extension of odd degree can be killed by a separable extension of degree
dividing 3. The hypothesis implies that the 2-part of the Rost invariant of X is
0. For k not of characteristic 2, Rost showed that, since the 2-part of the Rost
invariant of X is 0, the 27-dimensional Jordan algebra J corresponding to X is a
“first Tits construction” J = J(A, λ) for some central simple algebra A of degree 3
over k and some λ ∈ k∗ ([25], Proposition 40.5). Then we can split A by a separable
extension of k of degree dividing 3, which makes J split.

We need a different argument in characteristic 2, since the above theorem of
Rost seems to be unknown in characteristic 2. To begin, let X be any F4-torsor
over a field k of characteristic 2. (Actually, the following argument works in any
characteristic other than 3.) The F4-torsor X is equivalent to the characteristic 2
version of a Jordan algebra, a “cubic norm structure” J of dimension 27 over k, as
defined in [25], p. 520. By Petersson and Racine ([25], Theorem 39.19), which uses
that the characteristic is not 3, every such algebra is a “second Tits construction”
J = J(B, τ, u, ν) for some quadratic etale algebra l/k, a central simple algebra B
of degree 3 over l with a unitary involution τ , a hermitian element u of B with
NB(u) = 1, and an element ν of l∗ with Nl/k(ν) = 1, that is, τ(ν) = ν−1. The
element ν determines an element Lν of H1(k, µ3[l]), where µ3[l] denotes the twist of
the Gal(ks/k)-module µ3 by the homomorphism Gal(ks/k) → {±1} corresponding
to l/k, by identifying this group with the anti-invariant subgroup of H1(l, µ3) =
l∗/(l∗)3. The point is that in this situation, we can define the 3-part of the Rost
invariant of an F4-torsor X as the product g2(B, τ)·Lν , where g2(B, τ) is the class of
the algebra with involution (B, τ) in H2(k, µ3[l]) and the product is in H3(k, µ⊗2

3 ).
This is the way Knus-Merkurkev-Rost-Tignol define the 3-part of the Rost invariant
in characteristics not 2 or 3 (p. 537), but it also makes sense in characteristic 2. We
have to check that this definition in characteristic 2 agrees with the Petersson-Racine
definition of the 3-part of the Rost invariant [27], which will imply in particular that
it is an invariant of the F4-torsor X. It suffices to prove this equality after making
the quadratic etale extension l/k, since we are considering 3-primary invariants.
But over l, J becomes a first Tits construction, and in that case this definition is
the same as Petersson-Racine’s definition.

The interest of this definition of the 3-primary Rost invariant in characteristic 2
is that any element of H1(k,M), where M is a Galois module which is isomorphic
to Z/3 as an abelian group, can be killed by a separable extension of k of degree
dividing 3 (not a Galois extension, in general). Thus, the above definition shows
that the 3-part of the Rost invariant of any F4-torsor in characteristic 2 can be killed
by an extension of degree dividing 3. We can now solve the last case of Question 0.2
for F4-torsors. If X is an F4-torsor in characteristic 2 which is killed by an extension
of odd degree, then the 2-part of the Rost invariant is 0. We have just shown that
the 3-part of the Rost invariant can be killed by an extension of degree dividing 3.
Since the whole Rost invariant has trivial kernel, the F4-torsor itself is killed by this
extension of degree dividing 3. This completes the solution of Question 0.2 for F4.

Write E6 for the simply connected split group of type E6 over k. Tits’s proof in
[40] shows that every element of H1(k,E6) is killed by some separable extension of
degree dividing 6. Moreover, the map H1(k, F4) → H1(k,E6) is surjective, and is
compatible with the Rost invariants, by Garibaldi [17], 7.2. So Question 0.2 for E6

follows from the above argument proving it for F4.
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For the results on E7, we will need similar information about any quasi-split
group E2

6 of type E6 over k. First, every element of H1(k,E2
6) can be killed by

a separable extension of degree dividing 12, since we can first split the group E2
6

by a separable quadratic extension K/k and then split the resulting element of
H1(K,E6). Next, we need to prove a partial result on Question 0.2 for the quasi-
split group E2

6 . Namely, we will show that an element x of H1(k,E2
6) which is killed

by an extension of degree prime to 3 is killed by a separable extension of degree
dividing 22 = 4. Indeed, the assumption implies that the 3-primary Rost invariant
of x is zero. This remains true after we make a separable quadratic extension K/k
to split the group E2

6 , and then we have an element of H1(K,E6) whose 3-primary
Rost invariant is zero. It follows that this element is killed by a separable extension
of K of degree dividing 2. Thus the given element x of H1(k,E2

6) is killed by a
separable extension of degree dividing 22 = 4, as claimed.

We now prove the last statement of the lemma, that an element x of H1(k,E7)
which is killed by an extension of degree prime to 3 can be killed by a separable
extension of k of degree dividing 22 = 4. The assumption implies that the 3-primary
Rost invariant of x is zero. By Garibaldi [17], Proposition 3.6, x is the image of
some element y of H1(k,E2

6) for some quasi-split group E2
6 , possibly split, and the

Rost invariants are compatible. So y also has 3-primary Rost invariant zero. By
the argument above, y is killed by some separable extension of k of degree dividing
22 = 4. So the same goes for x. QED

6 Subgroups with bad orbit decompositions

We now analyze in detail the subgroups of G1.2 with bad orbit decompositions, as
defined in Lemma 4.1. For the reasons mentioned in the introduction, we will not
use the Atlas list of maximal subgroups of G1, but the reader may wish to refer to
it for convenience. It is given in section 8, along with some extra information about
the action of the maximal subgroups on the set R of the 120 E8 roots modulo sign.

Here are the easiest cases after Lemma 4.2.

Lemma 6.1 No subgroup G of G1.2 has orbit sizes 50+(multiples of 7 summing to 70)
or 45 + (multiples of 25 summing to 75) on R.

Proof. Suppose that a subgroup G of G1.2 has orbit sizes as above on R.
Then 52 divides the order of G, so that, after conjugating G, we can assume that G
contains a fixed Sylow 5-subgroup X5 = (Z/5)2 of G1.2. We can describe the orbits
of X5 on R explicitly, and then the orbits of G will have to be unions of some of
the X5-orbits.

To describe the action of the Sylow 5-subgroup X5 on R, we think of the 8-
dimensional quadratic space (F2)8 of plus type (maximal Witt index) as the sum
of two 4-dimensional spaces W1 and W2 of minus type. Explicitly, we can take W1

and W2 to be the F2-vector space of even subsets of {1, . . . , 5}, with addition the
Boolean sum, and with the quadratic form q(A) = (1/2)|A| (mod 2) and associated
bilinear form (A,B) = |A∩B| (mod 2). (These quadratic forms were described by
Griess [20], for example.) Then X5 = (Z/5)2 acts by cyclic permutations on each
summand of (F2)8 = W1 ⊕W2. The orbits of X5 on the set R of vectors x ∈ (F2)8

with q(x) = 1 are 4 of size 5, the orbits of (12, 0), (13, 0), (0, 12), and (0, 13), and
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4 of size 25, the orbits of (12, 1234), (13, 1234), (1234, 12), and (1234, 13). (Here
we write 0 to mean the empty set, because it is the zero element in these vector
spaces.) Write A1, A2, A3, A4 and B1, B2, B3, B4 for the X5-orbits of size 5 and 25,
respectively.

This construction exhibits an inclusion S5 o S2 ⊂ G1.2. In particular, the nor-
malizer of X5

∼= (Z/5)2 in G1.2 is at least its normalizer in S5 o S2, which has the
form (5 : 4) o S2. We see that the normalizer of X5 in G1.2 acts transitively on the
4 X5-orbits Bi of size 25. Also, this normalizer has at most 2 orbits on the set of
unordered pairs of X5-orbits of size 25, the orbit of B1 ∪ B2 (which also contains
B3 ∪B4) and that of B2 ∪B3.

Suppose that the given groupG ⊂ G1.2 has orbit sizes 45+(multiples of 25 summing to 75)
on R. Since G contains X5, the G-orbit of size 45 must be the union of some X5-
orbit Bi of size 25 with all 4 X5-orbits Aj of order 5. Since the normalizer of X5 in
G1.2 acts transitively on the 4 sets Bi, we can assume after conjugating G that the
G-orbit of size 45 is the union S of B1 with all 4 sets Aj . Since G is contained in the
orthogonal group G1.2 = O+

8 (2), it preserves the bilinear form on R ⊂ (F2)8. But
we compute that an element of B1 is orthogonal to 21 points in S, while an element
of A1 is orthogonal to 29 points in S. So S cannot be a G-orbit. This contradiction
shows that the given orbit sizes cannot occur.

Similarly, suppose thatG ⊂ G1.2 has orbit sizes 50+(multiples of 7 summing to 70)
on R. Since G contains X5, all G-orbits have order a multiple of 5. It follows that
the G-orbits besides the one of order 50 have sizes either 70 or 35+35. The G-orbit
of order 50 must be the union Bi ∪ Bj for some 1 ≤ i < j ≤ 4. By the above
description of the normalizer of X5, we can assume after conjugating G that the
G-orbit of size 50 is either B1 ∪B2 or B2 ∪B3.

Suppose that the G-orbit of size 50 is B1∪B2. We compute that the orthogonal
complement of an element of A1 in B1 ∪ B2 has order 20, while the orthogonal
complement of an element of B3 or B4 in B1 ∪ B2 has order 26. So there is no
G-orbit in R containing both A1 and a set Bi, which contradicts what we know
about the orbit sizes.

Finally, suppose that the G-orbit of size 50 is B2 ∪ B3. We compute that the
orthogonal complement of an element of A1 in B2 ∪ B3 has order 20, while the
orthogonal complement of an element of B1 or B4 in B2∪B3 has order 30. So, again,
there is no G-orbit in R which contains both A1 and a set Bi, which contradicts
what we know about the orbit sizes. QED

The next more difficult orbit decomposition we need to consider is as follows.

Lemma 6.2 Any subgroup G ⊂ G1.2 with orbits on R of sizes (multiples of 16 summing to 48)+
(multiples of 9 summing to 72) has ord3|G| ≤ 2 and hence is good.

Proof. Clearly G has an orbit of size 16 or 48. Neither of these sizes is congruent
to 0 or 1 modulo 7. So G cannot contain a Sylow 7-subgroup of G1.2, since such a
subgroup acts freely on R outside one point, as we observed in the proof of Lemma
4.1. That is, G has order of the form 2a·3b·5c. Thus, if we can show that the exponent
of 3 in the order of G is at most 2, it will follow that G is good by Corollary 5.3.

Also, we can see easily that the exponent of 5 in the order of G is at most 1.
The point is that the group G1.2 acts transitively on the set R of size 120, where
120 is a multiple of 5, whereas G has an orbit of size not a multiple of 5. So the
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index of G in G1.2 must be a multiple of 5. Since G1.2 has order 213 ·35 ·52 ·7, it
follows that the exponent of 5 in the order of G is at most 1.

It seems natural to use Aschbacher’s theorem on the maximal subgroups of the
classical groups over finite fields, since the proof is elementary [1]. Namely, the
theorem says that any subgroup of a classical group such as the orthogonal group
G1.2 = O+

8 (2) is either contained in one of a list of “classical” proper subgroups, to
be described in Lemma 6.4, or else is almost simple and absolutely irreducible on
(F2)8. (By definition, a group G is almost simple if there is a nonabelian simple
group Y such that Y ⊂ G ⊂ Aut(Y ).) So an important step in this proof will be to
analyze the case where G is almost simple. In fact, any subgroup G of G1.2 which
satisfies the hypotheses of Lemma 6.2 must be solvable, but we will not carry the
argument to that point. We will merely assume now that G is almost simple, and
derive a contradiction. We know that the simple subgroup Y of G has order 2a·3b·5,
where the exponent of 5 is 1 rather than 0 by Burnside’s theorem that groups of
order pa ·qb are solvable.

Brauer showed in 1968 that any simple group of order 2a ·3b ·5 is isomorphic to
A5 of order 22 ·3 ·5 = 60, A6 of order 23 ·32 ·5 = 360, or U4(2) ∼= Ω5(3) of order
26 ·34 ·5 = 25, 920 [8]. We prefer not to use this classification, but only the first
lemma in Brauer’s paper, which follows easily from his 1940s work on block theory:
if G is a simple group of order pa ·qb ·r with p, q, r distinct primes, then an r-Sylow
subgroup of G is its own centralizer in G.

That is enough to show that the simple subgroup Y of the almost simple group
G inside G1.2 cannot have an orbit on R of order 48. Indeed, by Brauer’s lemma, a
Sylow 5-subgroup P ∼= Z/5 in Y is its own centralizer, so the normalizer has order
5c for some c dividing 4. If H is any subgroup of Y of index not a multiple of 5,
then H is conjugate to a subgroup containing the Sylow 5-subgroup P of Y , and
the normalizer of P in H has order 5d for some d dividing c. By Sylow’s theorem
that [Y :NY (P )] ≡ 1 (mod p), applied to Y and H, it follows that the index of H
in Y is congruent mod 5 to c/d, thus to 1, 2, or 4. Thus Y has no subgroup of index
≡ 3 (mod 5). In particular, Y cannot have an orbit in R of order 48.

With a little more effort, let us show that Y does not have an orbit in R of size
24 on which it acts primitively. We will use the following lemma from Wielandt’s
book [44]:

Lemma 6.3 Let G be a primitive permutation group of degree n. Let H ⊂ G be
the stabilizer of a point, with orbit sizes n = 1 + n2 + · · · + nr, 1 ≤ n2 ≤ · · · ≤ nr.
If nr > 1, then (ni, nr) 6= 1 for all 2 ≤ i ≤ r.

Now suppose that the simple group Y has an orbit S in R of size 24 on which
it acts primitively. Let H be the stabilizer in Y of a point in S. Since 24 ≡ 4
(mod 5), the argument using Sylow’s theorem shows that all subgroups of H have
index congruent to 0 or 1 modulo 5. Since H has order 2c ·3d ·5, the H-orbit sizes
not a multiple of 5 must be 1, 6, or 16. If there is an H-orbit of size 16, then this
must be the biggest H-orbit on S. By Lemma 6.3, all H-orbit sizes in S except
the one H-orbit of size 1 have a common factor with 16, thus are even, which is a
contradiction since S has size 24. We know there is only one H-orbit on S of size 1
because the Y -action on S is primitive, so the only possible H-orbit sizes on 24 are
24 = 1 + 5 + 6 + 6 + 6. This also contradicts Lemma 6.3, since 5 and 6 are relatively
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prime. Thus we have shown that Y does not have an orbit in R of size 24 on which
it acts primitively.

We know that the almost simple group G has an orbit of size 16 or 48. Choose
one such orbit. Since the simple group Y is a normal subgroup of G, its orbits on
the given G-orbit are permuted transitively by G; in particular, they all have the
same size. This size is greater than 1, that is, Y does not act trivially on the G-orbit
of size 16 or 48. To see that, we use that an element of order 5 in G1.2, which Y
must contain, fixes at most 10 points in R, as we see from the action of the Sylow
5-subgroup (Z/5)2 of G1 on R, which is described in the proof of Lemma 6.1. So
the simple group Y is a subgroup of Sn for some divisor n of 48 between 2 and 48.
But we have shown that Y does not have an orbit of size 48, and that if it has an
orbit of size 24 then it does not act primitively. It follows that the simple group
Y , of order 2a ·3b ·5, is isomorphic to a primitive subgroup of Sd for some divisor d
of 48 between 2 and 16. It seems reasonable to use the list of primitive subgroups
of Sn for n ≤ 20 worked out in the period 1893–1912 by F. N. Cole, G. A. Miller,
and others (see Sims [37] for a table of the results). We find that d = 6 and Y is
isomorphic to A5 or A6.

The outer automorphism group of Y has order 2 for Y ∼= A5 or 4 for Y ∼= A6.
Since Y ⊂ G ⊂ Aut(Y ), the exponent of 2 in the order of G is at most 3 if Y ∼= A5,
contradicting the fact that G has an orbit in R of size 16 or 48. So Y ∼= A6. By the
above calculation that d = 6, a Y -orbit inside the given G-orbit must have order 6,
12, or 24 (not 48, as we have shown), and the stabilizer of a point must be contained
in an index-6 subgroup of A6. But an index-6 subgroup of A6 is isomorphic to A5,
which has no subgroup of index 2 or 4. So the Y -orbits inside the given G-orbit
must have size 6. Since the outer automorphism group of Y has order only 4, the
G-orbit containing this Y -orbit has order dividing 24, which contradicts the fact
that this G-orbit has size 16 or 48. Thus we have reached a contradiction from the
assumption that the group G with an orbit of size 16 or 48 on R is almost simple.

We now apply Aschbacher’s theorem, in the case of the orthogonal group G1.2 =
O+

8 (2). The statement is as follows. Here I have followed Kleidman and Liebeck’s
Table 3.5.E [24], p. 73, for a detailed description of the subgroups involved. In
particular, that table shows that some of the subgroups in Aschbacher’s list are
contained in others, and therefore can be omitted from the following statement.

Lemma 6.4 Every subgroup G of the orthogonal group G1.2 = O+
8 (2) is either

almost simple and absolutely irreducible on (F2)8, or is conjugate to a subgroup of
one of the following subgroups, which we call the classical subgroups of G1.2.

(1) Reducible subgroups: the stabilizer Pi of an i-dimensional isotropic subspace
of (F2)8, for i = 1, 2, or 4, where P1

∼= 26 :S8, P2
∼= 21+8

+ : (S3)3.2, and P4
∼= 26 :A8;

the stabilizer O−2 (2) × O−6 (2) of a 2-dimensional nondegenerate subspace of minus
type, which is isomorphic to (3 × U4(2)) : [22]; and the stabilizer S6(2).2 of a non-
isotropic line.

(2) Imprimitive subgroups: O−4 (2)oS2, which is isomorphic to (A5)2 : [23], O−2 (2)o
S4, which is isomorphic to S3 o S4, and L4(2).2, which is isomorphic to S8.

(3) Non-absolutely irreducible subgroups: (3 × U4(2)) : 2 and O+
4 (4).2, which is

isomorphic to (A5)2 :22.

It may be helpful to compare these “classical” subgroups of G1.2 with the list
of all maximal subgroups of G1 given in section 8.
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Several of these subgroups cannot contain the given group G, with orbit sizes
(multiples of 16 summing to 48) + (multiples of 9 summing to 72) on R, because
they have a small orbit on R. Namely, P1

∼= 26 : S8, which we can also view as
the stabilizer in G1.2 of a D8 subsystem of the E8 root system, has orbit sizes
56+64 on R, which implies with some care that G cannot be a subgroup of P1. The
next subgroup P2

∼= 21+8
+ : (S3)3.2, which is the stabilizer of a (D4)2 subsystem, has

orbit sizes 24 + 96, so cannot contain G. The group O−2 (2)×O−6 (2) is the stabilizer
of an A2 × E6 subsystem, and has orbit sizes 3 + 36 + 81, so cannot contain G.
The group S6(2).2 is the stabilizer of an A1 × E7 subsystem, and has orbit sizes
1 + 63 + 56 on R, so does not contain G. The group O−4 (2) o S2 is the stabilizer of
an (A4)2 subsystem, and has orbit sizes 20 + 100, so does not contain G. The group
O−2 (2) o S4 is the stabilizer of an (A2)4 subsystem, and has orbit sizes 12 + 108 on
R, so does not contain G.

The remaining classical subgroups act transitively on the set R of order 120.
Several of them have 3-adic order at most 2, so that Lemma 6.2 is proved if G is
contained in one of those subgroups. This applies to the subgroups P4

∼= 26 :A8,
L4(2).2 ∼= S8, and O+

4 (4).2 ∼= (A5)2 :22. The only remaining possibility is that G is
contained in the classical subgroup (3×U4(2)) :2, which has order 27·35·5. Since this
subgroup acts transitively on R, of size 120, while its subgroup G has some orbit
sizes which are not multiples of 5, the index of G in (3 × U4(2)) : 2 is a multiple of
5. That means that G has order 2a ·3b and hence is solvable.

We can assume that the representation of G on (F2)8 is irreducible and primitive;
otherwiseG would be contained in one of the classical subgroups of types (1) or (2) in
O+

8 (2), and we would already know that ord3|G| ≤ 2. By Jordan and Suprunenko’s
analysis of solvable linear groups [39], since G is a primitive solvable subgroup of
GL8(2), it must be contained in the normalizer of F∗28 inGL8(2), which is isomorphic
to 255 : 8. This group has ord3|G| = 1, and so we have proved that ord3|G| ≤ 2 in
all cases. QED

7 Orbit size 36

This section analyzes the bad orbit decomposition which turns out to be the hardest.
This will complete the proof of Theorem 0.1, in view of Lemma 4.1.

Lemma 7.1 For any subgroup G of G1.2 with orbits on R of sizes

36 + (multiples of 7 summing to 84),

the G-orbit of order 36 is an A8 subsystem of the E8 root system. It follows that G
is good.

Proof. Once we know that G preserves an A8 subsystem, it is good by Lemma
3.1. So the problem is to show that the G-orbit of size 36 is an A8 subsystem. It
suffices to prove this when G is contained in G1. If not, then G ∩G1 is a subgroup
of index 2 in G, so its orbits on R have the form either 36 + (multiples of 7) again
or 18 + 18 + (multiples of 7). But the latter case cannot occur, by Lemma 4.1. So
G∩G1 also satisfies the hypothesis of the lemma. Thus we can assume that G ⊂ G1

from now on.
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Another easy initial observation is that the exponent of 5 in the order of G is at
most 1. Indeed, the group G1.2 acts transitively on the set R of size 120, whereas
G has an orbit on R of size not a multiple of 5, so the index of G in G1.2 must be
a multiple of 5. That is, the exponent of 5 in the order of G is at most 1.

It is clear that 7 divides the order of G, so that G contains a Sylow 7-subgroup
X7
∼= Z/7 ⊂ G1. We compute that the normalizer of this subgroup in G1 is the

affine group 7:6. The proof of Lemma 7.1 will be divided into two parts, depending
on how big the normalizer of X7 in G is. The bigger this normalizer is, the fewer
possibilities there are for what the G-orbit of size 36 can be, and we can look at
all the possibilities. On the other hand, the smaller the normalizer of X7 in G, the
more the structure of G as an abstract group is restricted, as we will see later using
Brauer’s character theory. When the normalizer of X7 in G is as big as possible,
namely 7 : 6, Feit [15] was able to use Brauer’s character theory to describe the
possible simple subgroups G of G1, but only with the aid of computer calculations
which are not described in detail.

There is some choice in where to draw the line between the two parts of the
proof. I have decided to use the elementary approach, looking at the possible G-
orbits in R, when G contains the subgroup 7:3 of index 2 in the normalizer 7 :6 of
G in G1. Thus, under that assumption, we will now prove that the G-orbit of size
36 is an A8 subsystem of the E8 root system.

We need to describe the action of the Sylow 7-subgroup X7
∼= Z/7 of G1 on R

explicitly. Think of (F2)8 as the set of even subsets of {1, . . . , 9}, with addition the
Boolean sum, and with the quadratic form q(A) = (1/2)|A| (mod 2) and associated
bilinear form (A,B) = |A∩B| (mod 2), as in the proof of Lemma 6.1; this quadratic
form is indeed the 8-dimensional form of plus type over F2. This description exhibits
an inclusion of the symmetric group S9 into the orthogonal group G1.2 = O+

8 (2).
Then X7

∼= Z/7 acts on (F2)8 by cyclically permuting the numbers {1, . . . , 7}. We
see that X7 acts freely on the set R of 120 vectors x ∈ (F2)8 with q(x) = 1 outside
the single point 89 ∈ R. Also, the whole symmetric group S9 has 2 orbits on R,
the 36 2-element subsets of {1, . . . , 9} and the 84 6-element subsets of {1, . . . , 9}.
In terms of root systems, the S9-orbit of size 36 is an A8 subsystem of the E8 root
system R.

The normalizer 7 :6 of X7 in G1 is contained in A9 ⊂ G1 (and also in S7× S2 ⊂
S9). Its subgroup 7 : 3 of index 2 can be described as the normalizer of X7 in the
alternating group A7 ⊂ A9 ⊂ G1.

Now let G ⊂ G1 be any subgroup which contains 7:3 ⊂ G1, and which has orbit
sizes 36 + (multiples of 7 summing to 84) on R. Then the G-orbit S of size 36 must
be a union of some of the orbits of 7 :3. We will therefore list the orbits T1, . . . , T10

of the group 7:3 on the set R, using the notation above for elements of R. The left
column of the table shows which pairs of orbits of 7 : 3 are switched by the action
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of 7 :6 ⊂ A9.
Orbit Element of orbit Size of orbit

T1 89 1
T2 123456 7

d T3 18 7
b T4 19 7
d T5 123589 7
b T6 123689 7

T7 12 21
T8 123489 21

d T9 123458 21
b T10 123459 21

For each of these orbits Ti in R, the ith row of the following table lists the
number of elements of each of the sets Tj which are orthogonal to a given element
of Ti. Here we are viewing R as the set of non-isotropic vectors in (F2)8. This table
will be needed in the following calculation. (Or rather, part of it will; it would be
enough to compute the first 5 rows of this table, or even less, by waiting to compute
entries in this table until they are needed in the following calculation.)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 1 7 0 0 7 7 21 21 0 0
T2 1 1 1 1 3 3 15 9 15 15
T3 0 1 1 6 4 4 15 12 15 6
T4 0 1 6 1 4 4 15 12 6 15
T5 1 3 4 4 7 3 9 9 12 12
T6 1 3 4 4 3 7 9 9 12 12
T7 1 5 5 5 3 3 9 13 12 12
T8 1 3 4 4 3 3 9 13 12 12
T9 0 5 5 2 4 4 11 12 11 10
T10 0 5 2 5 4 4 11 12 10 11

The union of 7 :3-orbits T1∪T3∪T4∪T7 in R, of size 1+7+7+21 = 36, is the A8

subsystem of the E8 root system described earlier. We will now show that the G-
orbit S of size 36 can only be that set. Apart from the set T1∪T3∪T4∪T7, there are
40 unions of 7 :3-orbits with total order 36. The quotient group (7:6)/(7 :3) ∼= Z/2
acts on this set of 40 subsets of R, with 22 orbits. We now list 22 subsets of R,
choosing one out of each orbit under conjugation by the bigger group 7:6. To prove
that each of these sets S cannot be an orbit of a subgroup G of the orthogonal group
G1.2 = O+

8 (2), we will exhibit two elements of S which are orthogonal to different
numbers of elements of S. In the following table, say in the first row, “1567” denotes
the subset S = T1 ∪ T5 ∪ T6 ∪ T7 of order 1 + 7 + 7 + 21 = 36 in R, and the row
indicates that an element of T1 is orthogonal to 36 elements of S, while an element
of T5 is orthogonal to 20 elements of S. These numbers are easy to check using the
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previous table.
1567 1 36 5 20
1348 1 22 3 19
1568 1 36 5 20
123456 1 22 2 10
1237 1 29 2 18
1257 1 36 2 20
1357 1 29 3 20
1367 1 29 3 20
1238 1 29 2 12
1258 1 36 2 14
1358 1 29 3 17
1368 1 29 3 17
1239 1 8 2 18
1249 1 8 2 18
1259 1 15 2 20
1269 1 15 2 20
1349 1 1 3 22
1359 1 8 3 20
1369 1 8 3 20
1459 1 8 3 20
1469 1 8 4 11
1569 1 15 5 23

Thus we have shown that the G-orbit of size 36 in R must be an A8 subsystem
of the E8 root system when G contains the group 7 : 3. For G containing only a
smaller subgroup of the normalizer 7 : 6 of a Sylow 7-subgroup in G1, the number
of cases to be considered in a similar approach would grow enough that the work
would require a computer. We therefore turn to a more theoretical approach based
on Aschbacher’s theorem (Lemma 6.4). In this method, the main problem is to
prove Lemma 7.1 when G is almost simple and absolutely irreducible on (F2)8. We
now assume that. Thus there is a simple group Y such that Y ⊂ G ⊂ Aut(Y ).
Since the order of G has the form 2a ·3b ·5c ·7d with c, d ≤ 1, the order of Y has the
same form.

We know that G contains a Sylow 7-subgroup X7
∼= Z/7 of G1. The subgroup

X7 is its own centralizer in G1, and therefore also in G. A first step is to show that 7
divides the order of the simple subgroup Y , rather than the order of G/Y . This has
various proofs, depending on how much group theory we want to use; here is a proof
using the old (1893–1912) classification of primitive groups of degree at most 20.
Suppose that 7 divides the order of G/Y . Let H be the inverse image in G of a Sylow
7-subgroup, isomorphic to Z/7, in G/Y . Then the orbits of H on the complement
in R of the G-orbit of size 36 have orders which are multiples of 7 summing to 84.
The simple subgroup Y must act nontrivially on one of these orbits, since the subset
of R fixed by a nontrivial element of G1, being the intersection of R with a proper
linear subspace of (F2)8, must have size less than 84. Choose an H-orbit of size 7a
on which Y acts nontrivially, where we have a ≤ 12. Then the stabilizer of a point
is a subgroup of index 7a in H, hence a subgroup of index a in Y . Since Y acts
nontrivially on this orbit, this stabilizer must be a proper subgroup of Y , of index
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at most 12. It follows that the simple group Y is a primitive subgroup of Sn for
some n ≤ 12. Also, we know that the order of Y is divisible only by the primes
2, 3, and 5. By the list of primitive groups of degrees at most 12 [37], the simple
group Y must be isomorphic to A5 or A6. In these cases, the outer automorphism
group of Y has order 2 or 4, contradicting the fact that 7 divides the order of G. It
follows that, in fact, 7 must divide the order of the simple group Y .

At this point, we know that the order of the simple group Y has the form 2a·3b·5c·7
with c ≤ 1. The Sylow 7-subgroup X7

∼= Z/7 in Y acts freely on R outside one
point, since it is a Sylow 7-subgroup of G1. In particular, we deduce a weak result
which we will need later: Y does not act trivially on the G-orbit of size 36.

The normalizer of X7 in Y is a subgroup of the normalizer 7 :6 of X7 in G1, so
it is isomorphic to one of 7 :6, 7 :3, 7 :2, or 7. We can assume that NY (X7) is not of
the form 7:3 or 7:6, since we have already proved Lemma 7.1 in those cases. Also,
NY (X7) cannot be equal to X7; by Burnside [10], p. 327, that would imply that the
Sylow subgroup X7 had a normal p-complement in Y , contradicting simplicity of
Y . It follows that NY (7) has the form 7:2.

At this point, we bring in our most advanced tool, Brauer’s 1940s theory of
groups Y whose order is divisible by a prime p to the first order [7]. This method
is more powerful when the normalizer of a Sylow p-subgroup Xp

∼= Z/p is small.
Given a prime number p which divides the order of G to the first order, Brauer’s
theory divides the irreducible complex characters of Y into blocks. Every block
consists either of a single character of degree a multiple of p or of some set of
characters of degree not a multiple of p. If the Sylow subgroup Xp is its own
centralizer in Y , as we know for the simple group Y we have been considering (with
p = 7), then the principal block B0(p) (the one containing the trivial character
1) is the only block containing characters of degree not a multiple of p. Without
any assumption on the centralizer, the quotient NY (Xp)/CY (Xp) has order m for
some m dividing p − 1. Then the principal block consists of m “non-exceptional”
characters χ1 = 1, χ2, . . . , χm and t := (p − 1)/m “exceptional” characters χ(j)

0 ,
j = 1, . . . , t. The exceptional characters all have the same degree x0. There are signs
δi = ±1, i = 1, . . . ,m, such that the degrees xi of the non-exceptional characters
χi satisfy δixi ≡ 1 (mod p). Also, there is a sign δ0 = ±1 such that δ0x0 ≡ −m
(mod p). The following powerful “degree equation” holds:

m∑
i=1

δixi + δ0x0 = 0.

Finally, suppose that a degree appears in B0(p) which is a power of another prime
r and which is greater than 1. Then the highest power of r which divides the order
of G divides the sum of some set of the integers δixi with 0 ≤ i ≤ m which are
multiples of r, including the given power of r, by [9], p. 94.

We apply these results to our simple group Y ⊂ G, with p = 7. As explained
above, we have NY (7) ∼= 7 :2. So the principal block B0(7) of Y consists of 2 non-
exceptional characters χ1 = 1 and χ2, of degrees x1 = 1 and x2, and 3 exceptional
characters χ(j)

0 of some degree x0. There are signs δ2 and δ0 such that δ2x2 ≡ 1
(mod 7) and δ0x0 ≡ −2 ≡ 5 (mod 7), and we have the degree equation

1 + δ2x2 + δ0x0 = 0.
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Moreover, the degree of each irreducible character divides the order of the group
Y . These characters are in the principal block, so their degrees are also prime to
7. It follows that the degrees x2 and x0 have the form 2a ·3b ·5c with c ≤ 1. It is
elementary to check (see Lehmer [26] for a much more general result) that the only
solutions to this diophantine problem are (x2, x0) = (1, 2), (6, 5), (8, 9), or (15, 16).

The case (x2, x0) = (1, 2) cannot occur: since Y is simple, it cannot have another
1-dimensional character besides the trivial character. If (x2, x0) = (6, 5), then Y
has a unique 5-dimensional character. It follows that all algebraic conjugates of
this character are equal; that is, this character must take rational values. By Schur
[33], a finite subgroup of GLn(C) such that the associated character takes rational
values has order divisible only by primes at most n + 1. This is a contradiction in
the case at hand, since 7 divides the order of Y .

If (x2, x0) = (8, 9), then the above result of Brauer’s on the group order implies
that Y has order 23·32·5c·7 for some c ≤ 1. By Sylow’s theorem that [Y :NY (7)] ≡ 1
(mod 7), since NY (7) ∼= 7:2, Y must have order 23·32·7 = 504. By Cole [12], a simple
group Y of this order is isomorphic to L2(8) = PGL(2,F8). Since this group has
trivial Schur multiplier, it lifts to a subgroup of 2.G1 = W (E8)′ ⊂ GL(8,Q). Since
Y is absolutely irreducible on (F2)8, this lifted 8-dimensional representation of Y
over Q is also absolutely irreducible. The character degrees we have computed imply
that this is the unique 8-dimensional irreducible representation of Y . In particular,
it must be isomorphic to the permutation character of L2(8) acting on P1(F8) minus
the trivial character. So the lifted 8-dimensional representation of Y factors through
the symmetric group S9 ⊂ GL(8,Q). Reducing modulo 2, we find that the given
representation of Y on (F2)8 also factors through the standard representation of
S9 on (F2)8. Since Y acts irreducibly on (F2)8, it is elementary to check that it
preserves at most one nonzero quadratic form on (F2)8. So Y ⊂ G1.2 = O+

8 (2)
is conjugate in O+

8 (2) to a subgroup of S9 ⊂ O+
8 (2). That is, Y preserves an A8

subsystem of the E8 root system. Since Y = PGL(2,F8) is a triply transitive
subgroup of S9, we can check from the explicit description earlier of the S9-orbit S
of size 36 in R that Y acts transitively on S. The other Y -orbits on R must have
order a multiple of 7, and so the almost simple group G which normalizes Y must
preserve the set S, which is an A8 subsystem. Lemma 7.1 is proved in this case,
where (x2, x0) = (8, 9).

Next, suppose (x2, x0) = (15, 16). We derive a contradiction in this case. Since
Y has a character of degree 15, 5 divides the order of Y , in fact exactly once because
we know that ord5|Y | ≤ 1. The characters of Y have degrees 1, 15, 16, and possibly
some multiples of 7. Consider the principal 5-block. It consists of 1, possibly the
character of degree 16, and possibly some characters of degree a multiple of 7. There
is no way the degree equation for B0(5) can be satisfied, as we see by looking at it
modulo 7.

That completes the proof of Lemma 7.1 for all almost simple groups G in G1.
By Aschbacher’s theorem, Lemma 6.4, it remains to prove the lemma for subgroups
G of one of the classical subgroups of G1.2.

Several of the classical subgroups of G1.2 cannot contain a group G with orbit
sizes 36 + (multiples of 7 summing to 84) because they have a small orbit on R.
This applies to the parabolic subgroup P2, with orbit sizes 24 + 96 = 120 on R, to
O−2 (2)×O−6 (2), with orbit sizes 3 + 36 + 81, to S6(2).2, with orbit sizes 1 + 63 + 56,
to O−4 (2) o S2, with orbits 20 + 100, and to O−2 (2) o S4, with orbits 12 + 108.
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Some of the other classical subgroups of G1.2 have order not a multiple of 7,
so they cannot contain G. This applies to (3 × U4(2)) : 2, of order 27 ·35 ·5, and
O+

4 (4).2 ∼= (A5)2 :22, of order 26 ·32 ·52.
So G must be contained in one of the remaining classical subgroups from the

list in Lemma 6.4: P1
∼= 26 :S8, P4

∼= 26 :A8, or L4(2).2 ∼= S8. These groups all have
ord3 ≤ 2 and ord5 ≤ 1, so it is clear that G is good in these cases by Corollary 5.3.
But it is not hard to prove the stronger statement of Lemma 7.1, that G preserves
an A8 subsystem.

To prove that, consider the image Q of G in S8, which all three classical groups
we are considering map to. The kernel is a 2-group. Since G has an orbit on R of size
36 and another orbit of size a multiple of 7, the order of G is a multiple of 32·7, and
so is the order of Q ⊂ S8. By the list of primitive permutation groups of degrees
at most 8 [37], it follows that the image of Q in S8 contains A7. In particular,
Q contains the normalizer of a Sylow 7-subgroup in A7, which is isomorphic to
7 : 3. Since G maps onto Q with kernel a 2-group, the subgroup 7 : 3 ⊂ Q lifts
to a subgroup of G. Thus the normalizer of a Sylow 7-subgroup in G is at least
7 :3. It follows from the first part of this proof that the G-orbit of size 36 is an A8

subsystem. Lemma 7.1 is proved. QED
Lemmas 2.2, 4.1, 4.2, 6.1, 6.2, and 7.1 together imply that all subgroups of

G1.2 = W (E8)/{±1} are good. As explained in section 2, this statement implies
Theorem 0.1. QED

8 Maximal subgroups of G1

Although we have proved Theorem 0.1 without using the Atlas table of maximal
subgroups of G1 = Ω+

8 (F2) = W (E8)′/{±1}, this table does help to see how the
various subgroups we encountered fit together, so we print it here [14]. See section
1 for the notation used in this table. I have added some extra information to the
Atlas table: the orbit sizes of each group on the set R (of the E8 roots modulo sign,
or equivalently of the non-isotropic vectors in (F2)8), and the subsystem of the E8

root system preserved by a given group, if any.
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Conjugacy classes of maximal subgroups of G1 = Ω+
8 (2) = W (E8)′/{±1}

[G1 :Hi] |Hi| Orbits on R Description Subsystem
120 = 23 ·3·5 29 ·34 ·5·7 H1 1 + 63 + 56 S6(2) A1 × E7

120 = 23 ·3·5 29 ·34 ·5·7 H2 120 S6(2)
120 = 23 ·3·5 29 ·34 ·5·7 H3 120 S6(2)
135 = 33 ·5 212 ·32 ·5·7 H4 56 + 64 26 :A8 D8

135 = 33 ·5 212 ·32 ·5·7 H5 120 26 :A8

135 = 33 ·5 212 ·32 ·5·7 H6 120 26 :A8

960 = 26 ·3·5 26 ·34 ·5·7 H7 36 + 84 A9 A8

960 = 26 ·3·5 26 ·34 ·5·7 H8 120 A9

960 = 26 ·3·5 26 ·34 ·5·7 H9 120 A9

1120 = 25 ·5·7 27 ·35 ·5 H10 3 + 36 + 81 (3× U4(2)) :2 A2 × E6

1120 = 25 ·5·7 27 ·35 ·5 H11 120 (3× U4(2)) :2
1120 = 25 ·5·7 27 ·35 ·5 H12 120 (3× U4(2)) :2
1575 = 32 ·52 ·7 212 ·33 H13 24 + 96 21+8

+ : (S3)3 (D4)2

11200 = 26 ·52 ·7 26 ·35 H14 12 + 108 (34 :23).S4 (A2)4

12096 = 26 ·33 ·7 26 ·32 ·52 H15 20 + 100 (A5)2 :22 (A4)2

12096 = 26 ·33 ·7 26 ·32 ·52 H16 120 (A5)2 :22

12096 = 26 ·33 ·7 26 ·32 ·52 H17 120 (A5)2 :22

The pairs of subgroups H2 and H3, H5 and H6, H8 and H9, H11 and H12, and
H16 and H17 become conjugate in G1.2 = O+

8 (2). All the other subgroups Hi of G1

have index 2 in their normalizers in G1.2. Also, all the triples of isomorphic groups
in the above table become conjugate in the famous “triality” automorphism group
Aut(G1) = G1.S3. As a result, the table shows that all maximal subgroups of G1

are conjugate in Aut(G1) to subgroups that preserve a subsystem of the E8 root
system. Unfortunately, for the purpose of analyzing algebraic groups of type E8 as
in this paper, that is not as good as actually preserving a subsystem.

Also, by the Atlas, the whole group G1.2 = O+
8 (2) = W (E8)/{±1} has 9 con-

jugacy classes of maximal subgroups: G1, H1.2, H4.2, H7.2, H10.2, H13.2, H14.2,
H15.2, and one “novelty”, Y ∼= 23+6 : (L3(2) × 2), which has index 2025 = 34 ·52 in
G1.2 and order 213·3·7. (By definition, a novelty is a maximal subgroup of G1.2 which
is not G1 and whose intersection with G1 is not maximal in G1.) As it happens,
8 of the 9 maximal subgroups of G1.2, all of those other than G1, are equal to the
subgroup preserving a certain subsystem of the E8 root system. These subsystems
have type, respectively, A1 × E7, D8, A8, A2 × E6, (D4)2, (A2)4, (A4)2, and (cor-
responding to the novelty) (A1)8. The Atlas mentions some of these facts, but not
all; one also has to check that the subgroups of G1.2 preserving the subsystems A8,
(D4)2, and (A1)8 are the indicated maximal subgroups, for example using Carter’s
Table 11 [11], which describes the subgroup of W (E8) preserving each subsystem of
the E8 root system.

9 History of Question 0.2

Question 0.2 unifies several known properties of quadratic forms and division al-
gebras. We recall the statement: a quasi-projective homogeneous variety X over
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a field with a zero-cycle (not necessarily effective) of degree d > 0 should have a
closed point of degree dividing d. When d = 1 and X is a projective homogeneous
variety, the question was formulated by Veisfeiler in 1969 [42]. He also formulates
the analogous question about splitting fields for semisimple groups, which amounts
to taking X to be a torsor for Aut(G) with G is a split group. Veisfeiler claimed
to solve these problems for the split groups G2, F4, E6, and E7, but the proofs for
F4, E6, and E7 are incorrect. Question 0.2 for d = 1, X is a G-torsor, and G is the
split group F4, E6, or E7 follows from the results of Rost and others for F4, and
was proved by Gille for E6 and E7 [18].

When X is a G-torsor, d = 1, and G is absolutely simple, Question 0.2 (for all
inner twists of G) is equivalent to Serre’s Question 2 [36]: the map H1(k,G) →∏
H1(Ki, G) should be injective when K1,K2, . . . is a set of finite extension fields

of k such that gcd [Ki : k] = 1. For example, when G = O(q) for a quadratic
form q (although this is not a connected group), Question 2 follows from Springer’s
theorem that two quadratic forms which become isomorphic over a field extension of
odd degree are in fact isomorphic [38]. Bayer-Lenstra proved analogous results for
all the classical groups [3]. Also, Sansuc gave a positive solution to Question 2 for
arbitrary connected linear algebraic groups over a number field [32], building upon
the Kneser-Harder-Chernousov proof of the Hasse principle for simply connected
groups over a number field.

Colliot-Thélène suggested the generalization of Question 0.2, still in the case
d = 1, to arbitrary quasi-projective homogeneous spaces X. That is, if X has a
zero-cycle of degree 1, then X should have a rational point. For X a quadric, this
is equivalent to Springer’s theorem that a quadratic form which becomes isotropic
over a field extension of odd degree is isotropic [38]. Colliot-Thélène and Coray
showed that zero-cycles of degree 1 need not imply the existence of rational points
for rational varieties X other than homogeneous varieties, in particular for conic
bundles over P1

k with k a p-adic field [13].
Almost all the evidence for Question 0.2, including the present paper, is con-

cerned with the case where X is either a projective homogeneous variety or a torsor.
Gille observed that the question for general quasi-projective homogeneous varieties
may be too optimistic, as the following example indicates. Let p be a prime number,
G = PGL(p), and H = (Gm)p−1.Z/p ⊂ G. Let A be a central simple algebra of
degree p over a field k, and let X be the corresponding G-torsor. The automor-
phism group of X as a G-torsor is a twisted form G′ of G. The algebra A is said
to be cyclic if it is trivial or has a splitting field which is cyclic of degree p over
k [30]. It is elementary that A is cyclic if and only if the G-torsor X comes from
some H-torsor over k, or equivalently if and only if the quotient variety H\X has
a k-point. Here H\X is a homogeneous variety for the twisted group G′. We know
that any central simple algebra A of degree p becomes trivial and hence cyclic over
some field extension of degree 1 or p, and it also becomes cyclic over some field ex-
tension of degree prime to p (corresponding to the subgroup Z/p ⊂ Sp). Therefore
the homogeneous variety H \X always has a closed point of degree dividing p and
another of degree prime to p, and so it has a zero-cycle of degree 1. Thus a positive
answer to Question 0.2 would imply that H\X always has a k-point, in other words
that every central simple algebra of prime degree is cyclic. But this is a major open
problem on division algebras, and some people expect a negative answer (see Rowen
[31], for example).
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Finally, we turn to Question 0.2 for general positive integers d rather than d = 1.
There is less evidence for the question in the case of general d, even if we assume that
X is a torsor, but there is some evidence. For example, the question has a positive
answer for PGL(n)-torsors, and also (equivalently) for Severi-Brauer varieties. That
is, if a central simple algebra splits over extension fields of degrees a1, a2, . . . , then
it is isomorphic to a matrix algebra over a division algebra of dimension m dividing
gcd(a1, a2, . . . ), and therefore it splits over an extension field of degree m, which
can be chosen to be separable over k. Both steps here are basic results in the theory
of central simple algebras, proved by Schur for fields of characteristic zero and by
Noether for arbitrary fields. A reference is [30], Theorems 7.2.3 and 7.1.12. Also, we
have proved Question 0.2 for principal homogeneous spaces under the split simply
connected exceptional groups G2, F4, and E6, as well as a partial result for E7, in
Theorem 5.1.

It seems inevitable that in answering Question 0.2, the case of E8 will be par-
ticularly difficult and will have to be considered separately.
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