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We have three main results. First, we show that a smooth complex projec-
tive variety which contains three disjoint codimension-one subvarieties in the same
homology class must be the union of a whole one-parameter family of disjoint
codimension-one subsets. More precisely, the variety maps onto a smooth curve
with the three given divisors as fibers, possibly multiple fibers (Theorem 2.1). The
beauty of this statement is that it fails completely if we have only two disjoint di-
visors in a homology class, as we will explain. The result seems to be new already
for curves on a surface. The key to the proof is the Albanese map.

We need Theorem 2.1 for our investigation of a question proposed by Fulton, as
part of the study of degeneracy loci. Suppose we have a line bundle on a smooth
projective variety which has a holomorphic section whose divisor of zeros is smooth.
Can we compute the Betti numbers of this divisor in terms of the given variety and
the first Chern class of the line bundle? Equivalently, can we compute the Betti
numbers of any smooth divisor in a smooth projective variety X in terms of its
cohomology class in H2(X,Z)?

The point is that the Betti numbers (and Hodge numbers) of a smooth divisor
are determined by its cohomology class if the divisor is ample or if the first Betti
number of X is zero (see section 4). We want to know if the Betti numbers of a
smooth divisor are determined by its cohomology class without these restrictions.
The answer is no. In fact, there is a variety which contains two homologous smooth
divisors, one of which is connected while the other is not connected. Fortunately,
we can show that this is a rare phenomenon: if a variety contains a connected
smooth divisor which is homologous to a non-connected smooth divisor, then it has
a surjective morphism to a curve with some multiple fibers, and the two divisors
are both unions of fibers. This is our second main result, Theorem 5.1.

We also give an example of two connected smooth divisors which are homolo-
gous but have different Betti numbers. Conjecture 6.1, suggested by this example,
asserts that two connected smooth divisors in a smooth complex projective variety
X which are homologous should have cyclic etale coverings which are deformation
equivalent to each other. The third main result of this paper, Theorem 6.3, is that
this conjecture holds, in a slightly weaker form (allowing deformations into positive
characteristic), under the strange assumption that the Picard variety of X is isoge-
nous to a product of elliptic curves. The statement in general would follow from a
well-known open problem in the arithmetic theory of abelian varieties, Conjecture
6.2: for any abelian variety A over a number field F , there are infinitely many
primes p of the ring of integers oF such that the finite group A(oF /p) has order
prime to the characteristic of the field oF /p.
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I am grateful to Bill Fulton for asking the right question. Brendan Hassett
found an elegant example related to these questions, a version of which is included
in section 2.

1 Notation

If X is a smooth algebraic variety, a divisor is an element of the free abelian group
on the set of codimension-one subvarieties of X. (Varieties are irreducible by defi-
nition.) In other words, a divisor is a finite sum

∑
aiDi where ai are integers and

Di are codimension-one subvarieties of X. An effective divisor is such a sum with
every integer ai nonnegative. A smooth divisor is a sum

∑
Di with each subvariety

Di smooth and Di disjoint from Dj for i 6= j. The support of a divisor
∑
aiDi is

the union of the subvarieties Di with ai 6= 0. An effective divisor is connected if it
is not 0 and its support is connected.

Let X be a smooth complex projective variety of dimension n, and let H be a
fixed ample divisor on X. Throughout this paper, we use the intersection pairing
on divisors defined by

(D,E) = D · E ·Hn−2 ∈ Z.

We often use the easy fact that if D and E are effective divisors with no irreducible
component in common, then (D,E) ≥ 0, with equality if and only if D and E are
disjoint. We also use the Hodge index theorem for divisors: the symmetric bilinear
form (D,E) on the group of divisors modulo homological equivalence, tensored with
the real numbers, is nondegenerate with signature (1, N − 1). This follows from the
Hodge-Riemann bilinear relations [4], p. 123.

Alternatively, using the Lefschetz hyperplane theorem, the above Hodge index
theorem for divisors follows from the Hodge index theorem for divisors on a surface,
applied to a surface in X which is the intersection of n−2 divisors linearly equivalent
to multiples of H. This proof has the advantage that it works for varieties over fields
of any characteristic, using etale cohomology.

2 Characterization of varieties which fiber over a curve

We prove a little more than was stated in the introduction.

Theorem 2.1 Let X be a smooth complex projective variety. Let D1, . . . , Dr, r ≥
3, be connected effective divisors (not 0) which are pairwise disjoint and whose
rational cohomology classes lie in a line in H2(X,Q). Then there is a map f :
X → C with connected fibers to a smooth curve C such that D1, . . . , Dr are all
positive rational multiples of fibers of f . In fact, there is only one map f with these
properties.

In this statement, and in the rest of the paper, if f : X → C is a map from a
smooth variety onto a smooth curve, then a “fiber” of f is defined to be the divisor
f−1(p) for a point p in C, that is, the sum of the irreducible components of the
set f−1(p) with multiplicities. To compute the multiplicity of a given irreducible
component D in the divisor f−1(p), let z be a local coordinate function on the curve
which vanishes at p, and compute the order of vanishing of the composed function
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z(f) along the divisor D. In particular, if the divisor f−1(p) equals aD for some
smooth irreducible divisor D and some integer a ≥ 2, we call D a smooth multiple
fiber of f .

Interestingly, the theorem becomes false if we have only two disjoint homologous
divisors D1 and D2, as shown by the following example.

Example. Let D be any curve of genus at least one, and let L be a line
bundle of degree 0 on D which is not torsion in Pic D. Let X be the ruled surface
P (O⊕L) over D. Then X contains two copies of D, call them D1 and D2, at 0 and
infinity: they are disjoint smooth curves and are homologous to each other. But the
conclusion of the above theorem fails: D1 and D2 are not fibers or multiple fibers of
any map of X to a curve. Indeed, if f : X → C is a map with f−1(point) = aD1, for
some positive integer a, then the normal bundle of D1 must be a-torsion in Pic D1.
But in this example, D1 has normal bundle L, which we assumed is not torsion.
Thus Theorem 2.1 would be false for r = 2 . This example was used for essentially
the same purpose by Kollár [8].

Brendan Hassett found that the failure of Theorem 2.1 if we have only two
disjoint homologous divisors is not at all restricted to ruled varieties. The following
example is a variant of his.

Example. Let Y be any smooth projective variety of dimension at least 2 with
H1(Y,Q) 6= 0. Thus Pic0(Y ) is a nontrivial abelian variety. If a line bundle is ample,
it remains ample upon adding an element of Pic0(Y ), so Y contains two smooth
ample divisorsD1 andD2 which are homologous, but differ in Pic Y by a non-torsion
element of Pic0(Y ). We can also arrange that D1 intersects D2 transversely.

Let X be the blow-up of Y along the smooth codimension-two subscheme D1 ∩
D2. Then D1 and D2 become disjoint in X, and they are still homologous. The
normal bundle of D1 in X is the restriction of D1 − D2 ∈ Pic0(Y ) to D1. By the
Lefschetz hyperplane theorem, since Y has dimension at least 2, the restriction map
H1(Y,Q)→ H1(D1,Q) is injective, and so the restriction map Pic0(Y )→ Pic0(D1)
has finite kernel. Since D1−D2 is non-torsion in Pic0(Y ), the normal bundle of D1

in X is non-torsion in Pic0(D1). So Theorem 2.1 again fails here if we have only
two divisors D1, D2.

Proof of Theorem 2.1. Write D̃1 for a resolution of singularities of the
reduced divisor underlying D1, so that D̃1 is a disjoint union of smooth varieties.

The proof is in two cases, depending on whether the map

H1(X,Q)→ H1(D̃1,Q)

is injective. The amazing thing is that if this map is injective, then we can construct
a map from X to P1, and if it is not injective, then we can construct a map from X
to a curve of genus at least 1. This dichotomy was used in a special case by Neeman
[11], pp. 109-110.

First, suppose the above map is injective. Then the map of abelian varieties

Pic0(X)→ Pic0(D̃1)

has finite kernel. (Here Pic0(D̃1) means the product of the Picard varieties of
the connected components of D̃1.) Since the divisors D2 and D3 on X are in
multiples of the same rational cohomology class, there are positive integers a2, a3

such that a2D2 − a3D3 is 0 in H2(X,Z); equivalently, the divisor a2D2 − a3D3
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defines an element of Pic0(X). Since D1 is disjoint from D2 and D3, the divisor
class a2D2 − a3D3 restricts to 0 in Pic D1 and hence in Pic D̃1. Since the above
map has finite kernel, there are larger positive integers b2, b3 such that

b2D2 − b3D3 = 0 ∈ Pic0(X).

That is, the effective divisors b2D2 and b3D3 are linearly equivalent. Since these
divisors are disjoint, there is a map

g : X → P1

with g−1(0) = b2D2 and g−1(∞) = b3D3. This essentially solves the problem. The
full conclusion of Theorem 2.1 in this case (that is, for H1(X,Q) → H1(D̃1,Q)
injective) follows from the following lemma, whose proof we put off until section 3.

Lemma 2.2 Let X be a smooth complex projective variety of dimension n, and let
H be an ample divisor on X. Let D1 be a connected effective divisor (not 0) on
X, and suppose that (D1, D1) = D2

1 · Hn−2 is 0. Suppose there is a map from X
onto some possibly singular curve which maps D1 to a point. Then there is a map
f : X → C onto a smooth curve C such that f has connected fibers and D1 is a
positive rational multiple of a fiber of f . Moreover, f is unique with these properties.

Also, any connected effective divisor which is homologous to a rational multiple
of D1 is a positive rational multiple of a fiber of f .

Now we prove Theorem 2.1 in the other case, for H1(X,Q) → H1(D̃1,Q) not
injective. We use this in the form: the dual map of abelian varieties

Alb (D̃1)→ Alb (X)

is not surjective. (Of course, Alb (D̃1) means the product of the Albanese varieties
of the connected components of D̃1.) There is a natural map from zero cycles of
degree 0 on X to Alb (X). Consider the map g from X to the quotient abelian
variety Alb (X)/Alb (D̃1) given by x 7→ x− p, for a chosen point p in D1. For any
point x ∈ D1 (inside X), x− p ∈ Alb (X) is a sum of differences x1 − x2 where x1,
x2 are two points in the image of the same component of D̃1, since D1 is connected.
So for x ∈ D1, the element x− p ∈ Alb (X) lies in the image of Alb (D̃1). Thus the
map

g : X → Alb (X)/Alb (D̃1)

sends D1 to the point 0.
Also, the image of g generates the abelian variety Alb (X)/Alb (D̃1), and this

abelian variety is nonzero by our assumption. So g(X) has dimension at least 1. In
fact, it has dimension exactly 1, by the following argument. Let L be the pullback
of a hyperplane section on g(X) to X. (Since g(X) is a subvariety of an abelian
variety, it is projective.) If g(X) has dimension at least 2, then, in the notation of
section 1, (L,L) = L2 ·Hn−2 ∈ Z is positive, since L2 is represented by a nonzero
effective codimension-two cycle on X. Also, (L,D1) = 0 since D1 maps to a point
in g(X). So the Hodge index theorem (section 1) implies that (D1, D1) < 0. But in
fact we know that D1 is homologous to a disjoint divisor D2, so that (D1, D1) = 0, a
contradiction. It follows that the variety g(X) has dimension 1. Now we can apply
Lemma 2.2 (to be proved in section 3), and Theorem 2.1 is proved. QED
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3 Proof of Lemma 2.2

This is straightforward.
Proof of Lemma 2.2. We start with the given map g : X → g(X) from a

smooth projective variety X onto a singular curve. Form the Stein factorization
X → C → g(X): f : X → C has connected fibers, C is normal and C → g(X) is
finite [6], p. 280. Since C is normal, it is a smooth curve. The connected divisor D1

in X maps to a point in C since it maps to a point in g(X).
Consider the intersection pairing on divisors discussed in section 1,

(D,E) = D · E ·Hn−2 ∈ Z

for a fixed ample divisor H on X. For effective divisors D and E with no irreducible
components in common, we have (D,E) ≥ 0 with equality if and only if D and E
are disjoint. So (D1, f

−1(p)) = 0 for a general point p in C. We can now start
to check the last statement of the lemma: for any connected effective divisor D
which is homologous to a rational multiple of D1, we have (D, f−1(p)) = 0. So D is
disjoint from f−1(p) for general points p in C. Equivalently, f(D) is a finite subset
of C. Since D is connected, f maps the divisor D to a point.

We now strengthen this statement to say that any connected effective divisor D
which is homologous to a rational multiple of D1 must be a positive rational multiple
of a fiber f−1(p). (This is the last statement of Lemma 2.2.) The statement will
apply in particular to D1 itself. It is a consequence of the following lemma. For
curves on a surface (a case to which one can easily reduce via hyperplane sections),
Beauville gives an elementary proof of this lemma in [2], pp. 122-123. It goes back to
Enriques’s classification of surfaces with Kodaira dimension zero. For completeness
we give a proof here, using the Hodge index theorem.

Lemma 3.1 Let X be a smooth projective variety which has a map f : X → C
with connected fibers onto a smooth curve. Then any nonzero effective divisor D on
X such that (D,D) = 0 which maps to a point p in C must be a positive rational
multiple of the divisor f−1(p).

Proof. We will prove a bit more, namely that any divisor D (not necessarily
effective) with (D,D) = 0 which is supported in f−1(p) is a rational multiple of
f−1(p). The idea is that, if f−1(p) =

∑
i aiEi, then the intersection form (D,E) on

R · E1 ⊕R · E2 ⊕ · · ·

is negative definite except for one 0 eigenvalue. Indeed, f−1(p) is homologous on
X to any other fiber of f , so it has 0 intersection number with each Ei. By the
Hodge index theorem (section 1), the intersection form (D,E) on the subspace of
(R-divisors on X/homological equivalence) which is orthogonal to a nonzero element
A (here = f−1(p)) with (A,A) = 0 is negative definite except for one 0 eigenvalue,
corresponding to A itself. So any divisor D with (D,D) = 0 and f(D) = p must be
rationally homologous on X to a rational multiple of f−1(p).

To show that D is actually a rational multiple of f−1(p) as a divisor, it suffices to
check that the irreducible components E1, E2, . . . of f−1(p) are linearly independent
in H2(X,Q). If they are not, then some positive linear combination of some of the
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Ei’s is homologous to a positive linear combination of a disjoint subset of the Ei’s.
But then this homology class would have nonnegative intersection number with
each Ei, as one sees immediately. Also, it has positive intersection number with
each Ei which intersects the first set of Ei’s without being contained in it; such an
Ei exists, because the union of the Ei’s (= f−1(p)) is connected. Therefore this
homology class has positive intersection number with f−1(p) =

∑
aiEi, since all

the ai’s are positive. This is a contradiction, since f−1(p) has 0 intersection number
with every Ei. This proves that the irreducible components Ei of f−1(p) are linearly
independent in H2(X,Q). QED (Lemma 3.1).

We can now finish the proof of Lemma 2.2. By Lemma 3.1 and the earlier part
of this proof, we know that there is a map f : X → C with the properties we want:
f is a map with connected fibers onto a smooth curve, and the given divisor D1 is
a positive rational multiple of a fiber.

It remains to check that there is only one map f with these properties. By
Hironaka, later used by Mori, we know that maps with connected fibers from a given
projective variety X onto normal projective varieties are uniquely characterized by
which curves in X map to a point [9], p. 235. For a map f with the properties we
want (a map from X onto a smooth curve C with connected fibers, such that the
given divisor D1 is a rational multiple of a fiber), the positive rational multiples of
fibers of f are characterized as those connected effective divisors on X which are
homologous to positive rational multiples of D1. Thus f is determined by X and
D1. QED (Lemma 2.2).

4 Some general comments on the topology of smooth
divisors

This section is not used in the rest of the paper. We will explain how the Betti
numbers (and Hodge numbers) of a smooth ample divisor in a smooth projective
variety are determined by its cohomology class, as mentioned in the introduction.
(In fact, its rational cohomology class is enough.) Also, we will observe that the
Betti numbers (and Hodge numbers) of any smooth divisor in a variety with first
Betti number equal to 0 are determined by its integral cohomology class, although
we will not try to compute these invariants explicitly.

Remark 1. Let X be a smooth projective variety of dimension n. To compute
the Betti and Hodge numbers of an ample divisor D ⊂ X in terms of its class in
H2(X,Q), we first use the Lefschetz hyperplane theorem to deduce that hij(D) =
hij(X) for i+ j < n− 1. The Hodge numbers hij(D) for i+ j > n− 1 follow from
Poincaré duality. It remains to compute the Hodge numbers of D for i+ j = n− 1.

The point is the natural exact sequence of vector bundles which describes the
tangent bundle of D, for any smooth divisor D ⊂ X:

0→ TD → TX|D → O(D)|D → 0.

It follows that the Chern classes of D are the restriction to D of cohomology classes
on X, c(D) = c(X)(1 + [D])−1, where [D] ∈ H2(X,Q). As a result, all the Chern
numbers of a smooth divisor D in a given variety X are determined by the ra-
tional cohomology class of D. By the Hirzebruch-Riemann-Roch theorem, then,
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the rational cohomology class of a smooth divisor D explicitly determines its Euler
characteristic, and more generally certain linear combinations of Hodge numbers:

χ(D,Ωi) =
∑
j

(−1)jhij(D)

[7]. (For example, we get the formula for the Euler characteristic of a smooth
hypersurface D of degree d in projective space Pn:

χ(D) = d−1[(1− d)n+1 + (n+ 1)d− 1].)

Combining Hirzebruch’s results with the previous paragraph’s observation, we see
that if D is an ample smooth divisor, then the Betti numbers and Hodge numbers
of D are determined by its rational cohomology class.

Many of these observations apply to more general degeneracy loci associated
to a map of vector bundles. In particular, Harris and Tu gave formulas for the
Chern numbers of any degeneracy locus which happens to be a smooth subvariety
[5]. Also, for a map of vector bundles σ : E → F such that the vector bundle
Hom(E,F ) is ample, Fulton and Lazarsfeld proved nonemptiness and connectedness
of the degeneracy loci under suitable dimension assumptions, in the spirit of the
Lefschetz hyperplane theorem [3].

Remark 2. We now show that the Betti and Hodge numbers of any smooth
divisor in a smooth projective variety X with b1(X) = 0 are determined by its
cohomology class. The point is that two linearly equivalent smooth divisors in a
smooth projective variety always have the same Betti and Hodge numbers. This
will imply that two homologous smooth divisors in a variety with first Betti number
equal to 0 have the same Betti and Hodge numbers, since the assumption on the
first Betti number implies that linear and homological equivalence of divisors are
the same.

To see that two linearly equivalent smooth divisors have the same Betti and
Hodge numbers, observe that the set of effective divisors in any linear equivalence
class, if nonempty, is isomorphic to projective space PN for some N . Moreover, the
set of smooth effective divisors is a Zariski open subset. So the set of smooth effective
divisors in a given linear equivalence class is always connected if it is nonempty. As
a result, any two linearly equivalent smooth divisors belong to one connected family
of smooth projective varieties. In particular, the two divisors have the same Betti
and Hodge numbers.

5 Connectedness of smooth divisors

We turn to the second topic of this paper. First, we will give examples to show
that a smooth connected divisor on a smooth projective variety can be homologous
to a smooth non-connected divisor. Then we will show that the examples we give,
which are on varieties which fiber over a curve with enough multiple fibers, are the
only possible ones.
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X

2D1 E 2D2

?

-

P1

D

The simplest example of a smooth connected divisor which is homologous to a
smooth non-connected divisor is the following (see the figure). Let D be a curve of
genus at least 1, and let L be a nontrivial line bundle of degree 0 on D such that
L⊗2 is trivial. Let X be the ruled surface P (O ⊕ L) over D. Let D1 and D2 be
the sections of this ruled surface at 0 and infinity. Then the divisor 2D1 is linearly
equivalent to the disjoint divisor 2D2, so there is a morphism f : X → P1 with
f−1(0) = 2D1 and f−1(∞) = 2D2. The inverse image of any other point in P1

is isomorphic to the double cover E of D which corresponds to the 2-torsion line
bundle L. In this situation, the smooth connected curve E ⊂ X is homologous to
the non-connected smooth divisor D1 +D2.

This example can be generalized as follows. Let X be any smooth projective
variety with a morphism f : X → C onto a smooth curve C, and suppose that all
the fibers are connected. The general fibers of f are smooth connected divisors.
There may be other fibers which are smooth “multiple fibers,” meaning that (as a
divisor) f−1(p) = aD, for some a ≥ 2 and smooth divisor D in X. In this case, D
is rationally homologous to (1/a) · (general fiber).

As a result, whenever there are enough smooth multiple fibers, we get examples
of a smooth connected divisor (say, a general fiber) which is at least rationally
homologous to a non-connected smooth divisor (say, a sum of multiple fibers). The
surface constructed above has this form: it has a map f : X → P1 with two double
fibers, so a general fiber is rationally homologous to the sum of the two double
fibers. (In that example, the general fiber happens to be integrally homologous to
the sum of the two double fibers.)

The surprising thing is that these examples are the only thing that can go wrong,
in the following sense.

Theorem 5.1 Let X be a smooth projective variety. Let A =
∑

iAi and B =∑
iBi be rationally homologous smooth divisors on X. (Thus A1, A2, . . . are disjoint

smooth connected divisors, and so are B1, B2, . . . .) Remove any components which
occur in both A and B. Then at least one of the following statements holds.

(1) A = B = 0.
(2) A and B are connected.
(3) There is a map f : X → C onto a smooth curve C such that all the fibers

are connected and each of the divisors Ai and Bi is a fiber of f , possibly a multiple
fiber. In fact there is a unique map f with these properties.

Proof. We have to show that if A or B has at least two components, then (3)
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holds.
As in section 1, we fix an ample divisor H on X and define an intersection

pairing on divisors by
(D,E) = D · E ·Hn−2 ∈ Z.

All the divisors Ai and Bi must have nonnegative self-intersection number, since,
say for A1:

(A1, A1) = (A1, A1 +A2 + · · · )
= (A1, B1 +B2 + · · · )
≥ 0.

The last inequality holds because A and B have no components in common. Since
different components of A are disjoint, it follows that the components of A span
a subspace of H2(X,Q) on which the intersection pairing (D,E) is nonnegative
semidefinite. The Hodge index theorem (section 1) then implies that the compo-
nents of A span only a 1-dimensional subspace of H2(X,Q). The same holds for B.
As a result, all the components of A and B have rational cohomology classes in the
same 1-dimensional subspace of H2(X,Q).

Since A or B has at least two components, say A, we have (A1, A2) = 0. Since
all the components of A and B are homologous up to multiples, it follows that
they all have self-intersection number 0, and they are all disjoint. Thus we have at
least three disjoint smooth connected divisors on X (the components of A and B,
together) whose rational cohomology classes lie in a line.

By Theorem 2.1, statement (3) holds. QED

6 Smooth connected divisors and the arithmetic of abelian
varieties

We begin this section with an example of two disjoint homologous smooth divisors
which are both connected but which have different Betti numbers. Conjecture 6.1,
suggested by this example, says that any two homologous connected smooth divisors
in a smooth complex projective variety X should have cyclic etale coverings which
are deformation equivalent to each other. Theorem 6.3 proves a weaker form of this
conjecture, allowing deformations into positive characteristic, under the assumption
that the Picard variety of X is isogenous to a product of elliptic curves. This
assumption could be omitted if we knew Conjecture 6.2, a well-known conjecture
on the arithmetic of abelian varieties.

Example. We exhibit a smooth complex projective variety containing two
disjoint homologous smooth divisors which are both connected but have different
Betti numbers.

Let C1 and C2 be smooth curves, both of genus at least 1. Let Bi → Ci be a
nontrivial double covering of Ci, for i = 1, 2. Then the group (Z/2)2 acts freely on
B1×B2 with quotient C1×C2. Let (Z/2)2 also act on P1 with generators x 7→ −x
and x 7→ 1/x. The stabilizer of the point 0 in P1 is the subgroup H1 = Z/2 × 0,
and the stabilizer of 1 in P1 is the subgroup H2 = 0× Z/2. Let X be the quotient
variety

X = (B1 ×B2 ×P1)/(Z/2)2.
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Since (Z/2)2 acts freely on B1 × B2, X is smooth. It is straightforward to check
that H2(X,Z) is torsion-free.

The image of B1 × B2 × 0 in X is a smooth divisor D1 isomorphic to (B1 ×
B2)/H1 = C1 × B2, while the image of B1 × B2 × 1 in X is a smooth divisor D2

isomorphic to (B1 ×B2)/H2 = B1 × C2. These two divisors are disjoint. They are
rationally homologous, because 2D1 and 2D2 are both linearly equivalent to the
image of B1 × B2 × p for a general point p in P1. Since H2(X,Z) is torsion-free,
D1 and D2 are integrally homologous. But they can have different Betti numbers.
For example, we can assume that C1 has genus 1 and C2 has genus g ≥ 2. Then
the two divisors B1 × C2 and B2 × C1 have different Betti numbers, as shown in
the following table. They must have the same Euler characteristic by Remark 1 in
section 4.

i 0 1 2 3 4
bi(B1 × C2) 1 2g + 2 4g + 2 2g + 2 1
bi(C1 ×B2) 1 4g 8g − 2 4g 1

In this example, D1 and D2 have isomorphic double coverings. More generally,
for any variety X with a map to a curve such that D1 and D2 are smooth multiple
fibers (as happens in the above example), a cyclic etale covering of D1 will be
deformation equivalent to a general fiber and hence to a cyclic etale covering of D2.
This leads to the following conjecture.

Conjecture 6.1 Let D1 and D2 be smooth connected divisors in a smooth complex
projective variety X which are rationally homologous. Then there is a positive in-
teger n and an etale Z/n-covering D̃1 of D1 which is deformation equivalent to an
etale Z/n-covering D̃2 of D2. Or we could ask only for D̃1 to be homotopy equivalent
to D̃2.

We can assume that D1 and D2 are disjoint in this conjecture. If they are not,
let f : X ′ → X be the blow-up of X along the (possibly non-reduced) subscheme
D1 ∩ D2. An easy calculation shows that X ′ contains disjoint smooth divisors
isomorphic to D1 and D2, and that X ′ is smooth in a neighborhood of these divisors.
We have f∗Di = Di + E where E is the exceptional divisor of f , so D1 and D2

are rationally homologous on X ′ if they were rationally homologous on X, and
they are integrally homologous on X ′ if they were integrally homologous on X.
Finally, we can resolve the singularities of X ′ by Hironaka without changing it in a
neighborhood of D1 and D2. Thus, for any divisors D1 and D2 as in Conjecture 6.1,
the same varieties D1 and D2 occur as disjoint homologous divisors in some other
smooth projective variety. So we can and do assume that D1 and D2 are disjoint
from now on.

The proof of Theorem 2.1 shows that Conjecture 6.1 is true in its stronger form
if D1 −D2 is torsion in the Picard group of X, or, more generally (using that D1

and D2 are disjoint), if the normal bundle of D1 in X is torsion in the Picard group
of D1. Indeed, under these assumptions, the proof of Theorem 2.1 gives a map from
X to a curve in which D1 and D2 are smooth multiple fibers, say with multiplicity
n (clearly the same for D1 and D2, since they are rationally homologous). Then
there is an etale Z/n-covering of D1 which deforms to a general fiber of the map
and hence to an etale Z/n-covering of D2.

But the normal bundle of D1 in X need not be torsion in the Picard group of D1,
under the assumption of Conjecture 6.1 together with the assumption that D1 and
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D2 are disjoint. Simple examples are given in section 2. The only way of attacking
Conjecture 6.1 that comes to mind is to deform (X,D1, D2) in some way until the
normal bundle of D1 becomes torsion in the Picard group of D1. Over the complex
numbers, I do not see any way to do this.

We can instead consider a more general kind of deformation. Every smooth
complex projective variety X can be deformed to one defined over a number field,
and then reduced modulo prime ideals to get a smooth projective variety Xk over
a finite field k. We can assume that D1 and D2 reduce to disjoint homologous
divisors in Xk (using l-adic etale cohomology over the algebraic closure of k, for
some prime number l invertible in k). The advantage of reducing to a finite field k,
or its algebraic closure k, is that a line bundle on Xk which is zero in H2(Xk,Ql) is
torsion in the Picard group of Xk, because the group of points of an abelian variety
over a finite field is finite. Therefore we can apply the proof of Theorem 2 to get
a map f from Xk onto a smooth curve Ck such that f∗OX = OC (that is, f has
connected fibers), f−1(p1) = nD1, and f−1(p2) = nD2 for some points p1 and p2 in
C and some positive integer n dividing the order of D1−D2 in the Picard group of
Xk.

The problem is that the topological implications of such a map are not clear
to me when the number n is a multiple of the characteristic of k. The map f is
separable since f∗OX = OC , but Sard’s theorem still fails: the general fiber need
not be smooth. I do not see how to deduce any topological relation between D1 and
D2 in this case, although it may be possible.

I can only say something if the order of D1 −D2 in the Picard group of Xk is
invertible in k. Then we get a map f from Xk onto a smooth curve Ck such that
f∗OX = OC , f−1(p1) = nD1, and f−1(p2) = nD2, for some points p1 and p2 in
C and some positive integer n dividing the order of D1 − D2 in the Picard group
of Xk, hence invertible in k. It follows that D1 over k has an etale Z/n-covering
which is deformation equivalent to a general fiber of f and hence to an etale Z/n-
covering of D2 over k. Therefore, using the known relations between the topology
of varieties in characteristic zero and their reductions to positive characteristic, the
divisors D1 and D2 in characteristic zero have Z/n-coverings D̃1 and D̃2 with the
same pro-l homotopy type for all prime numbers l invertible in k ([1], pp. 142–144).
In particular these two coverings have isomorphic Zl-cohomology rings for all such
l.

Thus we can prove a slightly weaker form of Conjecture 6.1 if we can find a
prime ideal p of the number field F such that (X,D1, D2) reduces smoothly over
k = oF /p and the order of D1 −D2 in the Picard group of Xk is invertible in k. It
would suffice for this to know that given an abelian variety A over a number field F
(the Picard variety of X over F ) and a point of A over F (the class of D1 −D2, or
a suitable multiple of D1−D2 if D1 and D2 are only rationally homologous), there
are infinitely many primes p of F such that A has good reduction modulo p and the
reduction of x in A(oF /p) has order invertible in oF /p. This would follow from the
following well-known conjecture on the arithmetic of abelian varieties.

Conjecture 6.2 For any abelian variety A over a number field F , there are in-
finitely many primes p of F such that the order of the group A(oF /p) is prime to
the characteristic of the field oF /p.

In fact, it is expected that the set of primes p such that A(oF /p) has order a
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multiple of the characteristic p of oF /p, called anomalous primes in Mazur [10],
has density zero. But even the much weaker statement of Conjecture 6.2 seems
inaccessible in general.

It is known for elliptic curves. For example, it follows from a result of Serre’s
on the distribution of eigenvalues of Frobenius for an elliptic curve as p varies ([12],
exercise 1, p. IV-13). There is also a more elementary argument, as follows. First, to
prove Conjecture 6.2 for a given abelian variety A over a number field F , it suffices
to prove it after extending the field F . Consider the case of an elliptic curve E over
F ; after extending the field F , we can assume that the torsion subgroup of E(F ) is
nonzero. Let l be a prime number such that E(F ) has l-torsion. By the Chebotarev
density theorem, the set of primes p of F such that the field oF /p has prime order
has positive density. For such primes p, by Hasse, the group E(oF /p) = E(Fp) has
order p+ 1− ap where |ap| ≤ 2

√
p. (This is the famous bound generalized by Weil

from elliptic curves to curves of arbitrary genus.) So if p ≥ 7 and E(Fp) has order a
multiple of p, then it has order equal to p. But we arranged that E(F ) has l-torsion,
so E(oF /p) has order a multiple of l for all but finitely many primes p of F . So, for
all but finitely many of the primes p of F with oF /p of prime order p, the group
E(oF /p) cannot have order p and hence does not have order a multiple of p. This
proves Conjecture 6.2 for elliptic curves.

The same argument proves Conjecture 6.2 for any abelian variety A which is a
product of elliptic curves. It follows easily that Conjecture 6.2 holds whenever A
is isogenous to a product of elliptic curves. As we have said, it suffices to prove
Conjecture 6.2 after a finite extension of the number field F , so it suffices that A is
isogenous to a product of elliptic curves over the algebraic closure of Q. Thus we
have proved:

Theorem 6.3 Let D1 and D2 be smooth connected divisors in a smooth complex
projective variety X which represent the same element of H2(X,Q). Suppose that
the Picard variety of X is isogenous to a product of elliptic curves. Then there are
etale Z/n-coverings D̃1 and D̃2 of D1 and D2, for some positive integer n, which
are deformation equivalent via passage to some characteristic p > 0. It follows that
D̃1 and D̃2 have the same pro-l homotopy type in the sense of [1] for all prime
numbers l 6= p, hence, for example, isomorphic Zl-cohomology rings.

The assumption that the Picard variety of X is isogenous to a product of elliptic
curves is strange. It should certainly be unnecessary; this would follow from Con-
jecture 6.2 on abelian varieties, which is universally believed to be true but which
seems inaccessible. It would be very interesting to find some geometric approach to
at least some weaker version of Conjecture 6.1, for example only showing that the
universal coverings of D1 and D2 are homotopy equivalent, which avoids reducing
to characteristic p and thereby avoids the assumption on the Picard variety of X.
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