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This paper gives improved counterexamples to a question by Grove ([11], 5.7).
The question was whether for each positive integer n and real number D, the sim-
ply connected closed Riemannian n-manifolds M with sectional curvature ≥ −1
and diameter ≤ D fall into only finitely many rational homotopy types. This was
suggested by Gromov’s theorem which bounds the Betti numbers of M in terms of
n and D [10]. It was known that there can be infinitely many integral homotopy
types already in dimension 7, perhaps first by Aloff and Wallach [2].

Fang and Rong recently gave a negative answer to Grove’s question in all dimen-
sions ≥ 22 ([7], Theorem B). We use certain biquotient manifolds, that is, quotients
of homogeneous manifolds G/H by a subgroup of G which acts freely, to show that
the question has a negative answer already in dimension 6. Our examples are in fact
nonnegatively curved. More precisely, we find infinitely many rational cohomology
rings among simply connected closed Riemannian 6-manifolds with nonnegative sec-
tional curvature. (Of course, we can arrange that these manifolds also have diameter
at most 1, by scaling.) The dimension 6 here is optimal, meaning that Grove’s ques-
tion has a positive answer in dimensions ≤ 5. This follows from Gromov’s bound
on the Betti numbers, since the Betti numbers of a simply connected manifold of
dimension ≤ 5 determine its rational homotopy type up to finitely many possibili-
ties. More precisely, the conjecture that simply connected manifolds of nonnegative
curvature are integrally elliptic would imply, by Paternain and Petean ([15], Corol-
lary 3.6), that simply connected 5-manifolds of nonnegative curvature fall into only
4 diffeomorphism classes: S5, S3 × S2, the nontrivial S3-bundle over S2, and the
Wu manifold SU(3)/SO(3) [4].

Fang and Rong’s examples have the merit of also having an upper bound on
curvature. That is, for n ≥ 22, Fang and Rong find numbers C and D such that
there are infinitely many rational cohomology rings among simply connected closed
Riemannian n-manifolds with curvature −1 ≤ K ≤ C and diameter ≤ D. The next
main result of this paper is that such examples exist already among 7-manifolds.
This is optimal, since Fang and Rong [6], and also Tuschmann [19], have proved
that in dimensions ≤ 6 there are only finitely many diffeomorphism classes in the
given class of manifolds. Finally, in dimension 9, we use biquotients to give a
similar counterexample using only nonnegatively curved manifolds. That is, for
some C and D, there are infinitely many rational cohomology rings among simply
connected closed 9-manifolds with curvature 0 ≤ K ≤ C and diameter ≤ D.

To conclude, one can ask what substitute for Grove’s question might be true.
For the problem with an upper curvature bound, there is already a remarkable
substitute for Grove’s question, the Petrunin-Tuschmann theorem ([16], Corollary
0.2). Namely, for each n, C, and D, there is a finite set of closed smooth manifolds
Ei of dimension ≥ n such that any simply connected closed Riemannian n-manifold
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with curvature −1 ≤ K ≤ C and diameter ≤ D is diffeomorphic to the quotient of
some Ei by a free action of a torus. Thus, in Fang and Rong’s examples and in our
examples in dimensions 7 and 9, the infiniteness comes entirely from considering
quotients of a single manifold by different free torus actions.

In section 4, we suggest some possible substitutes for Grove’s question with no
upper curvature bound.

I would like to thank Gabriel Paternain, Xiaochun Rong, and Krishnan Shankar
for their papers, as well as many useful conversations.

1 Counterexamples to Grove’s question among nonneg-
atively curved 6-manifolds

Here we prove:

Theorem 1.1 There are infinitely many isomorphism classes of rational cohomol-
ogy rings among simply connected closed Riemannian 6-manifolds with nonnegative
sectional curvature.

As explained in the introduction, this gives a negative answer to Grove’s question
in dimension 6, which is optimal. Also, it follows from the theorem of Tuschmann
[19] and Fang-Rong [6] discussed in the introduction that there cannot be an upper
bound on the curvature of the manifolds we construct, if we fix their diameter to
be 1.

Proof. The 6-manifolds M we construct will all be biquotients, of the form
(S3)3/(S1)3 for different free isometric actions of the group (S1)3 on the Riemannian
manifold (S3)3. Like all biquotients, these manifolds M have nonnegative sectional
curvature, by O’Neill’s curvature formula for Riemannian submersions [14], which
we state in the proof of Theorem 2.1.

Let (S1)2 ⊂ SO(4) be the standard maximal torus, with (λ, µ) ∈ (S1)2 acting
isometrically on S3 ⊂ C2 by (λ, µ)(u, v) = (λu, µv). Therefore we have a natural
isometric action of (S1)6 on (S3)3. The actions of (S1)3 on (S3)3 we consider will
be given by homomorphisms (S1)3 → (S1)6, which we will specify further as we
go along. As a first simplification, let us assume that the homomorphism (S1)3 →
(S1)6 � (S1)3 which gives the action of (S1)3 on the coordinates (u1, u2, u3) is
the identity. Given this, the homomorphisms (S1)3 → (S1)6 we consider will be
determined by a 3× 3 matrix of integersa1 a2 a3

b1 b2 b3
c1 c2 c3

 ,

with the action of (S1)3 on (S3)3 given by

(λ1, λ2, λ3)((u1, v1), (u2, v2), (u3, v3))

= ((λ1u1, λ
a1
1 λ

a2
2 λ

a3
3 v1), (λ2u2, λ

b1
1 λ

b2
2 λ

b3
3 v2), (λ3u3, λ

c1
1 λ

c2
2 λ

c3
3 v3)).

To check whether this action of (S1)3 on (S3)3 is free, one sees easily that it
suffices to check freeness at the 8 points (p1, p2, p3) in (S3)3 with each pi equal to
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(1, 0) or (0, 1). Here freeness at the point ((1, 0), (1, 0), (1, 0)) is automatic by our
choice of the action on the variables ui. Freeness at the 3 points with one (0, 1)
component means that the diagonal entries a1, b2, c3 of our matrix are ±1. Freeness
at the 3 points with two (0, 1) component means that the 3 determinants

det

(
b2 b3
c2 c3

)
, det

(
a1 a3
c1 c3

)
,det

(
a1 a2
b1 b2

)
are ±1. Finally, freeness at the point ((0, 1), (0, 1), (0, 1)) means that the whole 3×3
matrix has determinant ±1.

Let us choose our 3× 3 integer matrix to have the form 1 0 0
b1 1 1
c1 2 1

 .

Then the above conditions are satisfied for all integers b1 and c1. Thus the corre-
sponding actions of (S1)3 on (S3)3 are free. We will show that the corresponding
quotient manifolds M = (S3)3/(S1)3 have infinitely many non-isomorphic rational
cohomology rings.

To compute the cohomology ring of such a manifold M , we consider the associ-
ated fibration

(S3)3 → (S3)3/(S1)3 → (BS1)3.

Thus we can consider M , up to homotopy, as being obtained from (BS1)3 by passing
three times from the base space to the total space of an S3-bundle. The cohomology
ring of (BS1)3 = (CP∞)3 is the polynomial ring Z[x1, x2, x3]. By our choice of the
action of (S1)3 on (S3)3, our three S3-bundles over (BS1)3 have Euler classes in
H4((BS1)3,Z) of the form x21, x2(b1x1+x2+x3), and x3(c1x1+2x2+x3). We observe
that these elements form a regular sequence in the polynomial ring Z[x1, x2, x3].
Therefore, applying the spectral sequence successively for these three S3-bundles
shows that

H∗(M,Z) = Z[x1, x2, x3]/(x
2
1, x2(b1x1 + x2 + x3), x3(c1x1 + 2x2 + x3)).

It remains to show that these 6-manifoldsM have infinitely many non-isomorphic
rational cohomology rings, as the integers b1 and c1 vary. It turns out that later
calculations are slightly simplified if we define the rational numbers a = c1/4 and
b = (2b1 − c1)/4, so that b1 = 2(a+ b) and c1 = 4a. Things will also simplify if we
multiply the second relation by 2. In these terms, M has rational cohomology ring

H∗(M,Q) = Q[x1, x2, x3]/(x
2
1, 2x2(2(a+ b)x1 + x2 + x3), x3(4ax1 + 2x2 + x3)).

We will only consider the manifolds M associated to integers b1 and c1 which are
not both zero. Then a and b are not both zero.

It turns out that we only need to consider the rational cohomology ring of M
in degrees ≤ 4. In this range, the ring is described by a 3-dimensional vector space
V = H2(M,Q) together with a 3-dimensional linear subspace of S2V , the kernel
of the product map S2V → H4(M,Q). We need to extract a more understandable
invariant from this 3-dimensional linear system of quadrics, which is spanned by the
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above 3 relations. One approach, which I learned from Wall [21], is to consider the
determinant of the quadratic form given by an arbitrary linear combination of the
above 3 relations,

λx21 + µ · 2x2(2(a+ b)x1 + x2 + x3) + νx3(4ax1 + 2x2 + x3).

The determinant of this quadratic form is:

det

 λ 2(a+ b)µ 2aν
2(a+ b)µ 2µ µ+ ν

2aν µ+ ν ν

 = −λµ2 − λν2 + 4(a2 − b2)µ2ν + 8abµν2.

This is a more geometrically understandable object, a cubic curve over Q which is
an invariant of the rational cohomology ring of M , modulo the action of GL(3,Q)
on λ, µ, ν and modulo scalars. For convenience, write α = 4(a2 − b2) and β = 8ab,
so the cubic has the form

−λµ2 − λν2 + αµ2ν + βµν2 = 0.

Since a and b are not both zero, α and β are not both zero. Then we compute that
the cubic curve has exactly one singular point, a node at the point [1, 0, 0] in P2.

We still need to extract a more computable invariant from this nodal cubic over
Q. We use that this curve has 3 inflection points over the algebraic closure of Q,
apart from the singular point. The lines from these 3 inflection points to the singular
point [1, 0, 0] are specified by the point [µ, ν] ∈ P1 associated to each inflection point
[λ, µ, ν] ∈ P2. Here we are thinking of P1 as the space of lines through the singular
point [1, 0, 0] in P2. Computing shows that lines through the 3 inflection points are
the 3 roots of the equation:

βµ3 − 3αµ2ν − 3βµν2 + αν3 = 0.

The two tangent lines to the nodal cubic curve at its singular point are de-
scribed by the binary quadratic form µ2 + ν2. Therefore, knowing the nodal cubic
curve modulo scalars and automorphisms of P2 determines the above binary cubic
form modulo scalars and modulo automorphisms of P1 which preserve the binary
quadratic form µ2 + ν2 up to scalars. This automorphism group is an orthogonal
group O(2) times the scalars, and so it has two connected components. The identity
component consists of the automorphisms

µ 7→ cµ+ dν

ν 7→ −dµ+ cν

with c, d ∈ Q, not both zero. We compute that this group acts on the above binary
cubic by the following change in α and β:

α+ βi 7→ (α+ βi)(c+ di)3,

where i =
√
−1 as usual. All our notation has been chosen in order to make this

formula as simple as possible.
Thus, to the above binary cubic we associate the number α+βi in K = Q(i). It

is nonzero since we assumed α and β are not both 0. Scaling the binary cubic leaves
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a well-defined class in K∗/Q∗. Making the above coordinate change leaves a well-
defined class in K∗/(Q∗ ·(K∗)3)) = (K∗/3)/(Q∗/3). Finally, we have to consider the
effect of a coordinate change not in the identity component of the above orthogonal
group; for example, we can switch µ and ν. This changes α+ βi to β +αi. To sum
up, we can say that the rational cohomology ring of the 6-manifold M determines
an unordered pair of elements of the group (K∗/3)/(Q∗/3), the class of α+ βi and
the class of β + αi.

We can now see that we have infinitely many isomorphism classes of rational
cohomology rings among the 6-manifolds M . First, the group (K∗/3)/(Q∗/3) is
infinite. This follows, for example, from the existence of infinitely many prime
numbers p which split in K = Q(i), namely all primes p ≡ 1 (mod 4). If π1 and π2
are the two prime ideals in K which lie over p, then ordπ1(x)−ordπ2(x) is a surjective
homomorphism from (K∗/3)/(Q∗/3) to Z/3. Since we have infinitely many such
homomorphisms, only finitely many of which can be nontrivial on a given element
of K∗, the group (K∗/3)/(Q∗/3) is infinite.

Furthermore, any element of the group (K∗/3)/(Q∗/3) has the form α+ βi for
some α, β coming from a 6-manifold M as above. Indeed, the 6-manifold M is
described by a pair of integers b1, c1, and then our definitions say that

a = c1/4

b = (2b1 − c1)/4
α+ βi = 4(a+ bi)2.

Since the group (K∗/3)/(Q∗/3) is 3-torsion, every element α+βi is a square in this
group, and so every element can be written as 4(a + bi)2 for some a, b ∈ Q. Also,
multiplying a+bi by any nonzero integer does not change its class in (K∗/3)/(Q∗/3),
so every element of the latter group has the form 4(a + bi)2 for some a, b ∈ Z.
Then the corresponding numbers b1 and c1 are also integers. Thus we have shown
that the 6-manifolds we consider can give rise to any element of the infinite group
(K∗/3)/(Q∗/3).

To be precise, the invariant of the rational cohomology ring we defined is an
unordered pair of elements of this group. This is enough to show that there are
infinitely many isomorphism classes of rational cohomology rings among these 6-
manifolds. QED

2 Counterexamples to Grove’s question among 7-manifolds
with upper curvature bound

Here we prove:

Theorem 2.1 There are numbers C and D such that there are infinitely many
isomorphism classes of rational cohomology rings among simply connected closed
Riemannian 7-manifolds with curvature −1 ≤ K ≤ C and diameter ≤ D.

As mentioned in the introduction, this strengthens the examples of Fang and
Rong ([7], Theorem B), by lowering the dimension from 22 to 7. The dimension 7
is optimal, by the theorem of Tuschmann [19] and Fang-Rong [6], as discussed in
the introduction.
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Proof. The manifolds we construct will all be quotients of a fixed manifold E
by different free torus actions. In fact, this is the only way to get examples as in
the theorem, by the Petrunin-Tuschmann theorem ([16], 0.2), as discussed in the
introduction.

In this case, E will be an 11-manifold with a free (S1)5-action. Before defining E,
we will construct a 6-manifold M which will be the quotient E/(S1)5. By Sullivan
[18], Theorem 13.2, for any graded-commutative Q-algebra which is Q in degree
0, 0 in degree 1, and which satisfies Poincaré duality of dimension 6, there is a
smooth simply connected 6-manifold M with the given rational cohomology ring.
(One could also use Wall’s more precise results on 6-manifolds [20].) We will take
M to have b2 = 5 and b3 = 0. Let x0, . . . , x4 be a basis for V := H2(M,Q). Then
we choose M so that the cubic form on H2(M,Q) is given by∫

M
(a0x0 + . . .+ a4x4)

3 = c(a20a1 + a21a2 + a22a3 + a23a4 + a24a0)

for some nonzero constant c. The corresponding cubic 3-fold in P4 is known as
the Klein cubic. It is not the only cubic form one could use, but calculations
with it are particularly easy. For example, Adler used the Klein cubic as a tool
to describe the Hessian quintic 3-fold of a general cubic 3-fold ([1], Appendix IV).
Using the above formula for the cubic form, it is easy to check that the product
map S2H2(M,Q)→ H4(M,Q) is surjective.

Since M is simply connected, H2(M,Z) is torsion-free and hence isomorphic to
Z5, since H2(M,Q) is the 5-dimensional vector space V . Let E be the total space
of the corresponding (S1)5-bundle over M . Thus E is an 11-manifold with a free
(S1)5-action. Choose a Riemannian metric on E preserved by the torus action. We
can scale the metric so as to have curvature ≥ −1. Let D be the diameter of E.

We consider the 7-manifolds Y which are quotients of E by subtori (S1)4 ⊂
(S1)5. These 7-manifolds are all simply connected. With the metric induced from
E, they all have diameter ≤ D. By O’Neill’s formula [14], sectional curvature
increases under Riemannian submersions, and so all these quotient manifolds have
curvature ≥ −1. For clarity, we recall O’Neill’s formula here. Let π : E → M be a
Riemannian submersion. Let X,Y be linearly independent vector fields on an open
subset of E which are orthogonal to the fibers of π (“horizontal” vector fields). Let
K denote sectional curvature on E and M . Then

K(π∗X,π∗Y ) = K(X,Y ) + 3|(∇XY )v|2/|X ∧ Y |2,

where the subscript v denotes the projection to the tangent bundle of the fibers of
π (“vertical” projection).

Because (S1)5 acts freely on E, there is also an upper bound C for the sectional
curvature of all quotients of E by subtori (S1)4 ⊂ (S1)5. The idea here goes
back to Eschenburg [5], Proposition 22. Namely, O’Neill’s formula shows that the
sectional curvature of a quotient manifold E/(S1)4 can be computed locally on
E. Furthermore, the same formula for the curvature formally makes sense for the
non-closed subgroup of (S1)5 associated to any real linear subspace R4 in the Lie
algebra R5 of (S1)5, using that (S1)5 acts freely on E. The “curvature” so defined
is continuous on the compact manifold of all subspaces R4 ⊂ R5 and all 2-planes
in the tangent bundle of E which are orthogonal to the associated foliation of E.
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Therefore, there is a uniform upper bound for this curvature function, and hence
for the curvature of all quotients E/(S1)4 associated to subtori (S1)4 ⊂ (S1)5.

It remains to show that the different 7-manifolds Y have infinitely many non-
isomorphic rational cohomology rings. We will only consider the cohomology ring
in degrees ≤ 4. Here Y is an S1-bundle over the 6-manifold M . We use the
corresponding spectral sequence to compute the rational cohomology of Y . First,
W := H2(Y,Q) = H2((BS1)4,Q) is the 4-dimensional space V/(Q · y), where y in
V = H2((BS1)5,Q) is dual to the subtorus (S1)4 ⊂ (S1)5 used to define Y . Also,
by the same spectral sequence, the image of S2W in H4(Y,Q) is H4(M,Q)/(y ·V ).

It seems that “general” S1-bundles Y over M will not have interesting cohomol-
ogy rings. Fortunately, we can exhibit a special class of S1-bundles which do have
interesting cohomology rings. Namely, consider S1-bundles Y over M correspond-
ing to elements y = a0x0−a1x1 + (a31/a

2
0)x3 in V = H2(M,Q), for nonzero rational

numbers a0 and a1. (For each nonzero element y up to scalars in H2(M,Q), there
is a corresponding S1-bundle Y over M which is simply connected.) That is, y is a
rational point on a certain cuspidal cubic curve in the projective space P4 of lines
in V . We will see that the corresponding S1-bundles Y over M have infinitely many
non-isomorphic rational cohomology rings.

The first useful property of points y as above is that multiplication by y, from
V = H2(M,Q) to H4(M,Q) ∼= V ∗, is not an isomorphism, as we compute directly
from the cubic form. In the 19th-century terminology, which we will not really need,
this means that the above cuspidal curve lies on the Hessian quintic 3-fold of the
given cubic 3-fold. In fact, we compute that the kernel of multiplication by y, from
H2M to H4M , is 1-dimensional, spanned by

z := a0x0 + a1x1 + (a20/a1)x2.

I have the impression that what makes the following proof work is the curious fact
that the birational involution of the Hessian quintic which takes y to z transforms
the cuspidal cubic curve of points y to the smooth conic curve of points z. In
general, it is well known that a quintic 3-fold will have many rational curves, but
the difference between these two curves still seems surprising. In any case, the
following proof will not use these vague ideas.

Because multiplication by y from H2M to H4M has 1-dimensional kernel, the
cokernel H4M/(y · H2M) is also 1-dimensional. We identified this cokernel with
the image of the product map S2(H2Y ) → H4Y . Thus the cup product on the
7-manifold Y determines a nonzero quadratic form on H2(Y,Q), well-defined up to
scalars. Explicitly, using that yz = 0 ∈ H4M , this quadratic form is defined, up to
scalars, by

(u, v) :=

∫
M
uvz

for u, v ∈ H2M/(Q · y) ∼= H2Y .
Since H2(Y,Q) has dimension 4, which is even, the determinant in Q/(Q∗)2 of

a quadratic form on H2(Y,Q) is not changed upon multiplying the quadratic form
by a nonzero scalar. Thus the determinant of the above quadratic form in Q/(Q∗)2

is an invariant of the rational cohomology ring of Y .
Let a2 = a20/a1, so that z = a0x0 +a1x1 +a2x2. We compute that the quadratic

form (u, v) :=
∫
M uvz on the 5-dimensional space H2M is given, up to a constant
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factor, by the matrix 
a1 a0 0 0 0
a0 a2 a1 0 0
0 a1 0 a2 0
0 0 a2 0 0
0 0 0 0 a0

 .

This matrix has determinant 0, because this quadratic form on H2M has at least
a 1-dimensional kernel spanned by y. To compute the determinant of the resulting
quadratic form on H2M/(Q · y) ∼= H2Y , we can use the lower right 4 × 4 minor,
which has determinant equal to:

−a32a0 = −(a20/a1)
3a0 = −a70/a31 ∼ −a0/a1 ∈ Q∗/(Q∗)2.

Thus, as we vary the nonzero rational numbers a0 and a1, the determinant of the
quadratic form up to scalars on H2Y can take arbitrary values in the infinite group
Q∗/(Q∗)2. It follows that the 7-manifolds Y have infinitely many non-isomorphic
rational cohomology rings. QED

3 Counterexamples to Grove’s question among nonneg-
atively curved 9-manifolds with upper curvature bound

Here we prove:

Theorem 3.1 There are numbers C and D such that there are infinitely many
isomorphism classes of rational cohomology rings among simply connected closed
Riemannian 9-manifolds with curvature 0 ≤ K ≤ C and diameter ≤ D.

It seems an interesting challenge to find out whether the dimension here can be
improved. Another comment is that, at least in slightly higher dimensions, there
are examples as in Theorem 3.1 which have infinitely many isomorphism classes of
cohomology rings with complex coefficients.

Proof. The manifolds we construct will all be quotients of a fixed manifold
by different free torus actions, as in Theorem 2.1. In fact, this is the only way to
get examples as in the theorem, by the Petrunin-Tuschmann theorem ([16], 0.2), as
discussed in the introduction.

Precisely, we consider biquotients of the form (S3)4/(S1)3, for the different sub-
groups (S1)3 ⊂ (S1)4, where we will specify a free isometric action of (S1)4 on
(S3)4, not the obvious one. These 9-manifolds are all simply connected. With the
metric induced from the standard metric on (S3)4, they all have diameter ≤ D
where D is the diameter of (S3)4. By O’Neill’s formula [14], sectional curvature
increases under Riemannian submersions, and so all these quotient manifolds have
nonnegative curvature. Finally, by the same argument as in the proof of Theorem
2.1, since the whole group (S1)4 acts freely on (S3)4, there is also an upper bound
C for the sectional curvature of all quotients of (S3)4 by subtori (S1)3 ⊂ (S1)4.

We now explain the free isometric action of (S1)4 on (S3)4 which we will use.
We think of S3 as the unit sphere in C2. For any 4 × 4 lower-triangular matrix
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A = (aij) of integers with 1’s on the diagonal, the following isometric action of
(S1)4 on (S3)4 is free:

(λ1, λ2, λ3, λ4)((u1, v1), (u2, v2), (u3, v3), (u4, v4))

= ((λ1u1, (
∏
j

λ
a1j
j )v1), . . . , (λ4u4, (

∏
j

λ
a4j
j )v4)).

Let M be the quotient 8-manifold (S3)4/(S1)4. By viewing M as the total space of
a 4-fold iterated S3-bundle over (BS1)4, we find that M has cohomology ring

H∗(M,Z) = Z[x1, x2, x3, x4]/(x
2
1, x2(a21x1 + x2), x3(a31x1 + a32x2 + x3),

x4(a41x1 + a42x2 + a43x3 + x4)).

We now specialize the integers aij to make the cohomology ring of the 8-manifold
M equal to:

H∗(M,Z) = Z[x1, x2, x3, x4]/(x
2
1, x

2
2, x3(x1 + 2x2 + x3), x4(x1 + 2x2 + x4)).

Changing variables over Q by x3 7→ x3 − x1/2 − x2 and x4 7→ x4 − x1/2 − x2, we
find that

H∗(M,Q) = Q[x1, x2, x3, x4]/(x
2
1, x

2
2, x

2
3 − x1x2, x24 − x1x2).

We want to show that the 9-manifolds Y = (S3)4/(S1)3 associated to subtori
(S1)3 ⊂ (S1)4 can have infinitely many non-isomorphic rational cohomology rings.
As in our previous examples, we only need to consider the cohomology ring of Y in
degrees ≤ 4. Here Y can be the S1-bundle over M corresponding to any element
of H2(M,Z) which generates a summand of H2(M,Z). In particular, for each
a, b, c ∈ Q, there is an S1-bundle Y over M such that H2(Y,Q) is the quotient of
H2(X,Q) by the line spanned by x4− (ax1 + bx2 + cx3). Then H2(Y,Q) is spanned
by x1, x2, x3. We compute using the spectral sequence of this S1-bundle that the
kernel of the cup product S2H2(Y,Q)→ H4(Y,Q) is the linear system of quadrics
spanned by

x21, x
2
2, x

2
3 − x1x2, (ax1 + bx2 + cx3)

2 − x1x2.

To prove the theorem, it suffices to show that we obtain infinitely many linear
systems of quadrics modulo coordinate changes in GL(3,Q), as a, b, c ∈ Q vary.
Let us assume that a, b, c are all nonzero, as we are free to.

The idea is to consider what squares of linear forms in x1, x2, x3 belong to this
linear system, over a given field k containing Q. It is easy to check that x21 and
x22 are the only squares of linear forms, up to scalars, in the span of x21, x

2
2, and

x23 − x1x2. So suppose that we have a linear form with coefficients in k whose
square is a nonzero multiple of (ax1 + bx2 + cx3)

2 − x1x2 plus a linear combination
of x21, x

2
2, x

2
3 − x1x2. By considering the coefficients of x1x3 and x2x3, we see that

the given linear form must be, after multiplying by a constant in k, of the form
ax1 + bx2 + tx3 for some t in k.

So we have to work out for which values of t does the square (ax1 + bx2 + tx3)
2

belong to our linear system of quadrics. We compute that, modulo this linear
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system:

(ax1 + bx2 + tx3)
2 ≡ (ax1 + bx2 + tx3)

2 − (t/c)[(ax1 + bx2 + cx3)
2 − x1x2]

≡ (t2 − ct)x23 + (1/c)(2abc− 2abt+ t)x1x2

≡ (t2 + (1/c)(−c2 − 2ab+ 1)t+ 2ab)x1x2.

It is easy to check that x1x2 is not zero modulo our linear system of quadrics. So
the square (ax1 + bx2 + tx3)

2 belongs to our linear system of quadrics if and only t
satisfies the quadratic equation

t2 + (1/c)(−c2 − 2ab+ 1)t+ 2ab = 0.

Thus, the given linear system of quadrics contains the squares of two linear
forms x21 and x22 defined over Q, together with two others defined over the quadratic
extension of Q corresponding to the above equation. It follows that this quadratic
extension of Q is an invariant of the rational cohomology ring of the given 9-manifold
Y . It remains to show that as the rational numbers a, b, c vary, we obtain infinitely
many different quadratic extensions of Q, and therefore infinitely many isomorphism
classes of rational cohomology rings for these 9-manifolds.

The quadratic extension of Q given by the above quadratic equation is specified
by the class of its discriminant ∆ = B2 − 4AC in Q∗/(Q∗)2. Here we have

∆ = 4
[(2ab− c2 − 1

2c

)2
− 1
]
.

We assume that ∆ is nonzero, as is clearly true for most a, b, c. Since a, b, c can be
arbitrary nonzero rational numbers, it is easy to see that the class of ∆ in Q∗/(Q∗)2

can be any element of the form 4(x2−1) ∼ x2−1 for x ∈ Q, x 6= ±1. In particular,
∆ can take infinitely many values in Q∗/(Q∗)2: for example, for any odd prime p,
we can take x = p+1, and then x2−1 has nonzero image under the homomorphism
ordp : Q∗/(Q∗)2 → Z/2. Therefore, the 9-manifolds we consider have infinitely
many isomorphism classes of rational cohomology rings. QED

4 Some possible substitutes for Grove’s question

The following questions can be viewed as substitutes for Grove’s question. They
are only slight extensions of well-known conjectures.

Bott’s conjecture that simply connected manifolds with nonnegative curvature
are elliptic ([8], p. 519) suggests that there should be strong restrictions on the
homotopy type of manifolds with curvature ≥ −1 and diameter ≤ D. On the
other hand, any conjecture must be compatible with Grove and Ziller’s examples
of nonnegatively curved manifolds, including all S2-bundles over S4 and all S3-
bundles over S4 ([12], Theorem B). Any conjecture must also cover the almost
nonnegatively curved manifolds found by Fukaya and Yamaguchi ([9], Theorem 0.18)
and Schwachhöfer and Tuschmann ([17], Theorem 4.2). By definition, a manifold
M has almost nonnegative curvature if for every ε > 0, M has a Riemannian metric
with KM · diam(M)2 > −ε. For example, any (linear) sphere bundle over a sphere
has almost nonnegative curvature, by Fukaya and Yamaguchi.
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Question 1. Is every closed simply connected manifold with nonnegative sec-
tional curvature pure elliptic?

By definition, a manifold M is pure elliptic if there is a minimal model for the
cochain algebra C∗(M,Q) such that the space of algebra generators V = Vev⊕Vodd
is finite-dimensional (this says that M is elliptic), while d(Vev) = 0 and d(Vodd)
is contained in the subalgebra generated by Vev ([8], p. 435). For example, every
biquotient manifold is pure elliptic [13].

Question 2. Is every closed simply connected manifold with almost nonnegative
curvature elliptic?

An almost nonnegatively curved manifold need not be pure elliptic. For example,
an S5-bundle over S3×S3 with nonzero Euler class has almost nonnegative curvature
by Fukaya and Yamaguchi, but it is not pure elliptic. It is helpful to observe that for
a pure elliptic space M , the Lie algebra πev(ΩM)⊗Q is abelian, while for M elliptic,
it is only nilpotent. Thus Questions 1 and 2 can be viewed as higher-dimensional
analogues of the known results that a manifold with nonnegative curvature has
almost abelian fundamental group [3], whereas a manifold with almost nonnegative
curvature only has almost nilpotent fundamental group [9].

Question 3. Given n and D, is there a finite set of closed Riemannian orbifolds
Bi such that every simply connected closed Riemannian n-manifold with sectional
curvature ≥ −1 and diameter ≤ D fibers over some Bi with fiber almost nonnega-
tively curved?

Here “orbifolds” are allowed to have stabilizer groups equal to any compact Lie
groups, not just finite groups. Question 3 is strongly suggested by Yamaguchi’s
Main Theorem (p. 318) and Conjecture (p. 323) [22]. Questions 2 and 3 together
would imply that simply connected n-manifolds with curvature ≥ −1 and diameter
≤ D have only finitely many sequences of rational homotopy groups π∗(M) ⊗ Q,
using Friedlander and Halperin’s determination of the possible rational homotopy
groups of elliptic spaces ([8], p. 441).
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