
Configuration spaces of algebraic varieties
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This paper determines the rational cohomology ring of the configuration space
of n-tuples of distinct points in a smooth complex projective variety X. The answer
depends only on the cohomology ring of X.

1 Introduction

Let X be a topological space. We will consider the configuration space of ordered
n-tuples of points in X:

F (X,n) = {(x1, . . . , xn) ∈ Xn : xi 6= xj if i 6= j}.

The symmetric group Sn acts freely on F (X,n); let B(X,n) = F (X,n)/Sn be the
space of unordered n-tuples of distinct points in X.

The most famous of these spaces is B(R2, n): Fadell and Neuwirth showed
that this space is an Eilenberg-Mac Lane space K(π, 1), with fundamental group
isomorphic to Artin’s braid group on n strings [12]. So the cohomology of B(R2, n)
is just the cohomology of the braid group; it was computed by Fuks [13] and Cohen
[7]. The space F (R2, n) is also a K(π, 1) space, with fundamental group equal to
the “colored braid group,” that is, the kernel of the natural map from the braid
group onto the symmetric group. Arnold computed the cohomology of F (R2, n);
clearly this space is just the complement of a finite union of complex hyperplanes
in Cn [1].

The space B(Rm, n) is not a K(π, 1) for m > 2, but it does have an interesting
homotopy type: as n goes to infinity, the cohomology of B(Rm, n) approximates
the cohomology of the infinite-dimensional space ΩmSm, the space of maps from
the m-sphere to itself. This fact has many consequences in homotopy theory; see
F. Cohen [7] and R. Cohen [10] for surveys.

Recently Bödigheimer, Cohen, and Taylor [6] have computed the homology
groups of B(X,n), for any odd-dimensional manifold X. Also, Löffler and Mil-
gram [18] computed the Z/2-homology groups of B(X,n) for any manifold X. The
answers depend only on the homology of X (along with the dimension of X). By
contrast, the rational Betti numbers of B(X,n) are not determined by the rational
Betti numbers of X for even-dimensional manifolds X, by the example in section 5.
The situation is worse for cohomology rings; we do not even know whether the coho-
mology ring of B(X,n) is a homotopy invariant of closed manifolds X. On the other
hand, Bendersky and Gitler observed that the cohomology groups of F (X,n) and
B(X,n) are homotopy invariants of closed oriented manifolds X, and for rationally
formal manifolds X, such as smooth complex projective varieties, they computed
the rational cohomology groups of F (X,n) and B(X,n) explicitly in terms of the
rational cohomology ring of X [3].
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In this paper we find that if X is a smooth complex projective variety of complex
dimension l, then the rational cohomology rings of F (X,n) and B(X,n) can be com-
puted from the rational cohomology ring of X. This improves Fulton-MacPherson’s
theorem [14] that these cohomology rings can be computed from the rational co-
homology ring of X and the Chern classes of X: the Chern classes are actually
irrelevant. This result was found at the same time by Kriz [17], who proved it by
algebraically simplifying Fulton-MacPherson’s description of the cohomology ring.

Fulton and MacPherson’s computation was an application of their compactifica-
tion of F (X,n), F (X,n) →֒ X[n]. There is an obvious compactification F (X,n) →֒
Xn, but in algebraic geometry one usually prefers to compactify a noncompact va-
riety so that it becomes the complement of a divisor with normal crossings, and this
is what Fulton and MacPherson did. When X is the projective line, their compact-
ification is related to the moduli space M0,n of “n-pointed stable curves of genus
zero,” defined by Grothendieck in SGA 7 and studied by Knudsen [16].

The point of this paper is that the rational cohomology of F (X,n) can be com-
puted just from the naive compactification F (X,n) →֒ Xn.

The rational cohomology rings of F (X,n) and B(X,n) are described explicitly in
section 5, based on the work in earlier sections. The method is to consider the Leray
spectral sequence for the open inclusion F (X,n) →֒ Xn. This spectral sequence,
which converges to H∗F (X,n), makes sense for any space X. Its E2 term and
first nontrivial differential can be explicitly described for any oriented real manifold
X. This spectral sequence was described by Cohen and Taylor ([8], pp. 117-118),
although they did not mention that it was simply a Leray spectral sequence. The E2

term has a very pleasant structure, which we describe in detail after the statement
of Theorem 1.

The surprise is that this spectral sequence degenerates after the first nontrivial
differential, provided that we use rational coefficients and that X is a smooth com-
plex projective variety. A similar phenomenon is well known for inclusions U →֒ Y
when Y − U is a divisor with normal crossings in a smooth projective variety Y ;
but for dimCX > 1, the subset Xn − F (X,n) is not a divisor, and its singularities
are not just normal crossings.

This paper was inspired by the work of Cohen, Taylor, Fulton, and MacPherson.
J. D. Stasheff and the referee made useful suggestions for improving the exposition.

2 The Leray spectral sequence

For a 6= b ∈ {1, . . . , n}, let pa : H∗(X) → H∗(Xn) and p∗ab : H∗(X2) → H∗(Xn)
be the obvious pullbacks. For X an oriented real manifold of dimension m, let
∆ ∈ Hm(X2) denote the class of the diagonal.

For the following theorem we need some combinatorial definitions. Define a
partition J of a set {1, . . . , n} to be a set of nonempty subsets of {1, . . . , n} which
are pairwise disjoint and whose union is {1, . . . , n}. In particular, we do not specify
an order on the set J . For any space X, a partition J of {1, . . . , n}, say into n − r
elements, determines a “diagonal” subspace XJ ⊂ Xn, defined as

XJ = {(x1, . . . , xn) ∈ Xn : xi = xj if i and j belong to the same element of J}.

We will often write Xn−r
J for this subspace, although we do not specify an identifi-

cation of this diagonal subspace with Xn−r; that would depend on an order of the
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set J . Finally, for a partition J of {1, . . . , n} into subsets of orders j1, . . . , jn−r,
define

cJ = (j1 − 1)! · · · (jn−r − 1)!

Theorem 1 Let X be an oriented real manifold of dimension m. Let k be a field.

The inclusion F (X,n) →֒ Xn determines a Leray spectral sequence which converges

to H∗(F (X,n); k) as an algebra. The E2 term is a bigraded algebra which we now

describe. It is the quotient of the graded-commutative k-algebra

H∗(Xn; k)[Gab],

where H i(Xn) has degree (i, 0) and the Gab are generators of degree (0,m − 1) for

1 ≤ a, b ≤ n, a 6= b, modulo the following relations:

(0) Gab = (−1)mGba

(1) (Gab)
2 = 0

(2) GabGac + GbcGba + GcaGcb = 0 for a, b, c distinct

(3) p∗a(x)Gab = p∗b(x)Gab for a 6= b, x ∈ H∗X.

The differential is given by

dGab = p∗ab∆.

The symmetric group Sn acts on F (X,n) and Xn, and so it acts on this Leray

spectral sequence. The action on the E2 term is given by the obvious action on

H∗(Xn) and by σ(Gab) = Gσ(a)σ(b).

In fact, we can describe this E2 term with Z coefficients as well. The only

nonzero rows are the r(m − 1)st rows, 0 ≤ r ≤ n − 1. The r(m − 1)st row is the

direct sum, over all partitions J of {1, . . . , n} into n − r pieces, of the cohomology

of Xn−r
J with integer coefficients, tensored with ZcJ .

...

2(m − 1) ⊕JH0(Xn−2
J ;Z) ⊗ ZcJ ⊕JH1(Xn−2

J ;Z) ⊗ ZcJ ⊕JH2(Xn−2
J ;Z) ⊗ ZcJ · · ·

m − 1 ⊕JH0(Xn−1
J ;Z) ⊕JH1(Xn−1

J ;Z) ⊕JH2(Xn−1
J ;Z) · · ·

0 H0(Xn;Z) H1(Xn;Z) H2(Xn;Z) · · ·

This spectral sequence converges to H∗(F (X,n);Z).
In more detail, the only nonzero rows are the r(m−1)st rows, 0 ≤ r ≤ n−1. The

r(m− 1)st row is a sum over all partitions J of the set {1, . . . , n} into n− r pieces;

clearly each such partition corresponds to a diagonal Xn−r
J ⊂ Xn. For a partition

J into subsets of orders j1, . . . , jn−r,
∑

jk = n, the number cJ which occurs in the

above E2 term is

cJ = (j1 − 1)! · · · (jn−r − 1)!

Remarks. (1) As we mentioned in the introduction, this spectral sequence
was first described by Cohen and Taylor [8]. Also, they observed that the spectral
sequence has no differentials (with integer coefficients) if X is the product of any
manifold with the real line, and that the integer cohomology ring of F (X,n) is

3



isomorphic to the E2 term as a ring (not just modulo filtration) if X is the product
of any manifold with R2.

(2) The E2 term of this spectral sequence has a rich and somehow very natural
structure, as I will explain.

There are two types of generators in cohomology, one type, the classes Gab,
coming from the cohomology of the configuration space of n-tuples of points in
Euclidean space, because X locally looks like Euclidean space, and the other type
coming from the cohomology of X. The relations come in two types, relations (0)-
(2) above coming from the locally Euclidean structure of X, and relation (3) which
connects the classes Gab with the classes coming from the cohomology of X.

The relations giving the vanishing of the squares of the classes Gab and the
three-term relation for the Gab’s are related to the antisymmetry law and the Ja-
cobi identity in graded Lie algebras, as F. Cohen discovered ([7], p. 188). The phrase
“graded Lie algebra” which occurs in his statement has to be explained more pre-
cisely, however, as we will now do. To state the result, we use that the cohomology
ring of F (Rm, n) is generated by the Gab’s modulo relations (0)-(2). Let T (n,m) be
the integer cohomology group of F (Rm, n) in the top dimension (= (m−1)(n−1)),
with its natural action of the symmetric group Sn. Then for a module V over a
commutative ring k, the nth graded piece of the free non-associative algebra over
V with product [x, y] satisfying [x, y] = −[y, x] and the Jacobi identity is given by

T (n,m)∗ ⊗Sn V ⊗n

for any odd m. (If k is a field of characteristic 6= 2, this is the nth graded piece
of the free Lie algebra on V , but in characteristic 2 we have omitted the relation
[x, x] = 0.) Likewise, for m even, the representations T (n,m)∗ of Sn define in the
same way the free graded non-associative algebra on V in degree 1 which satisfies
[x, y] = −(−1)|x||y|[y, x] and the graded Jacobi identity. This is the free graded Lie
algebra in characteristics 6= 2, 3, but the good definition of graded Lie algebras
in characteristics 2 and 3 is more complicated [2]. The proof goes along the lines
suggested by Cohen, but it can be simplified so that it uses only the cohomology of
the spaces F (Rm, n), rather than the homology operations on iterated loop spaces.
Also, these results are mentioned in Cohen-Taylor [9], p. 95, with T (n,m)∗ replaced
by T (n,m), which is just a misquotation of Cohen’s theorem.

Proof of Theorem 1. The Leray spectral sequence for the inclusion f :
F (X,n) →֒ Xn has the form

H i(Xn;Rjf∗Z) ⇒ H i+j(F (X,n);Z).

Here Rjf∗Z is the sheaf on Xn associated to the presheaf

U 7→ Hj(U ∩ F (X,n);Z),

where U runs over the open subsets of Xn. We need to see what these sheaves are.
The stalk of Rjf∗Z at a point x ∈ Xn is easy to describe. Suppose that x =

(x1, . . . x1, . . . , xs, . . . , xs), where x1, . . . , xs ∈ X are distinct and each point xj

occurs ij times, so that
∑

ij = n. Then

(Rjf∗Z)x = Hj(U ∩ F (X,n);Z),
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where U is a nice small neighborhood of x ∈ Xn, and this is

∼= Hj(F (Tx1
X, i1) × · · · × F (TxsX, is);Z).

This is a basic observation. It can be seen, for example, by using the exponential
map of some riemannian metric on X to identify a small open ball in the tangent
space Txj

X with a small neighborhood of xj in X, small enough to be disjoint from
the similar neighborhoods of the other points xj .

Thus, to describe the E2 term of the Leray spectral sequence for F (X,n), we
need to understand the cohomology of F (Rm, n). We will quote Cohen’s results
from [7].

Fix integers m and n with m > 0. Define graded-commutative algebras over Z,
G(m,n), with generators

Gab, 1 ≤ a, b ≤ n, a 6= b;

the degree of Gab is m − 1. The relations are

(0) Gab = (−1)mGba

(1) (Gab)
2 = 0

(2) GabGac + GbcGba + GcaGcb = 0 for a, b, c distinct

Thus, if m is even, G(m,n) is a quotient of the exterior algebra on the Gab. Further,
define σGab = Gσa,σb for σ in the symmetric group Sn.

Lemma 1 The integral cohomology of F (Rm, n) as an algebra over Sn is isomor-

phic to G(m,n).

Lemma 2 A basis for Hr(m−1)F (Rm, n) is given by Ga1b1Ga2b2 · · ·Garbr
, where

a1 < · · · < ar and ai > bi for i = 1, . . . , r. The Poincaré series for F (Rm, n) is
∏k−1

j=1(1 + jtm−1).

In particular, we see that the cohomology of a product F (Rm, i1) × · · · ×
F (Rm, is) is 0 except in dimensions divisible by m− 1. This implies that the coho-
mology sheaves Rjf∗Z for the inclusion F (X,n) →֒ Xn are 0 except for j = r(m−1),
0 ≤ r ≤ n−1. (So the Leray spectral sequence will be zero except in rows r(m−1),
0 ≤ r ≤ n − 1.) Also, we can see that the sheaf Rr(m−1)f∗Z is supported on the
union of the diagonals Xn−r ⊂ Xn. We want to express this sheaf as the direct sum
of sheaves supported on each of the diagonals Xn−r ⊂ Xn (they are in one-to-one
correspondence with partitions of the set {1, . . . , n} into n− r subsets), and luckily
this is possible.

For this purpose, we need to analyze the cohomology of F (Rm, i1) × · · · ×
F (Rm, ik) in dimension r(m − 1). These cohomology groups are nonzero only for
0 ≤ r ≤ n− k, and the crucial point for us is that if r < n− k, that is, if we are not
looking at top-dimensional cohomology, then all r(m − 1)-dimensional classes are
pulled back from similar products F (Rm, j1) × · · · × F (Rm, jn−r), on which these
classes are top-dimensional. More precisely:

Lemma 3 Let I be a partition of the set {1, . . . , n}, and suppose r ≥ 0. Then

Hr(m−1)(F (Rm, i1)×· · ·×F (Rm, ik);Z) ∼= ⊕JHr(m−1)(F (Rm, j1)×· · ·×F (Rm, jn−r);Z).
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More precisely, the natural map from the right side to the left side is an isomorphism.

Here the sum is over all partitions J of {1, . . . , n} into n − r subsets such that J
refines I.

Proof. We will first prove the lemma when I is the trivial partition of {1, . . . , n}
into just one piece. The general result is an easy consequence, using the Künneth
formula.

By Lemma 2, a basis for Hr(m−1)F (Rm, n) is given by monomials Ga1b1 · · ·Garbr
,

a1 < · · · < ar, n ≥ ak > bk ≥ 1 for k = 1, . . . , r. Such a basis element determines a
partition J of {1, . . . , n} into exactly n−r sets, by defining ak ≃ bk for k = 1, . . . , r.
In fact, it is clear that this equivalence relation partitions {1, . . . , n} into at least
n − r sets, since we have made r identifications. The condition that the a’s are
increasing implies that for each 1 ≤ k ≤ r, we have ak > bk, and ak > al and
ak > bl for all l < k; so ak has not been identified to anything before step k (if we
think of first identifying a1 with b1, then a2 with b2, and so on). This implies that
the basis element Ga1b1 · · ·Garbr

determines a partition J of {1, . . . , n} into exactly
n − r sets.

If the partition J consists of subsets of orders j1, . . . , jn−r, then it is clear that
the basis element Ga1b1 · · ·Garbr

∈ Hr(m−1)F (Rm, n) lies in the image of the map
determined by J , Hr(m−1)F (Rm, j1) × · · · × F (Rm, jn−r) → Hr(m−1)F (Rm, n).
Conversely, the image of this map consists of all basis elements Ga1b1 · · ·Garbr

such
that ak is in the same class in J as bk for all 1 ≤ k ≤ r.

This implies the direct-sum splitting of the theorem in the special case where I
is the trivial partition of {1, . . . , n}. The result follows in general by the Kunneth
formula. (The Künneth formula has a simple form here, even with Z coefficients,
because the spaces F (Rm, i) have torsion-free cohomology.)

QED (Lemma)

Remark. Lemma 3 is a special case of Goresky-MacPherson’s splitting theorem
for the homology of the complement of a finite union of linear spaces in Rn ([15],
pp. 237-239). They do not work just with the “braid” arrangement as we have, but,
more generally, with any arrangement of codimension-k linear subspaces Vi ⊂ Rn

such that all intersections Vi1 ∩ · · · ∩Vir have codimension a multiple of k. It should
be possible to generalize Deligne’s explicit description of the rational homotopy
type of the complement of a divisor with normal crossings, in order to describe
the complement of a subvariety with “Goresky-MacPherson crossings”; this paper
is essentially a special case. Would the more general theory have any interesting
applications?

We now see what Lemma 3 says about the sheaf Rr(m−1)f∗Z on Xn. For each
partition J of the set {1, . . . , n} into n − r subsets, of orders j1, . . . , jn−r, consider
the inclusion gJ : F (X, j1) × · · · × F (X, jn−r) ⊂ Xn. There is a commutative
diagram:

F (X,n) −−−→ Xn





y





y

F (X, j1) × · · · × F (X, jn−r) −−−→ Xn
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Define a sheaf ǫJ over Xn by ǫJ = Rr(m−1)gJ∗Z. The commutative diagram gives a
map of sheaves

ǫJ → Rr(m−1)f∗Z,

which comes from restriction of cohomology classes,

Hr(m−1)(U ∩ (F (X, j1) × · · · × F (X, jn−r);Z) → Hr(m−1)(U ∩ F (X,n);Z),

where U ⊂ Xn is an open subset.
The sheaf ǫJ is 0 outside the diagonal Xn−r

J ⊂ Xn and locally constant on
Xn−r

J . To see that it is locally constant, let U be a nice small neighborhood of a
point x ∈ Xn−r

J . We have

ǫJ(U) = Hr(m−1)(F (U1, j1) × · · · × F (Un−r, jn−r);Z),

where Ui ⊂ X is a nice small neighborhood of xi; we can assume that each Ui is
diffeomorphic to Rm. Clearly ǫJ is a locally constant sheaf over Xn−r

J , since it is
just the cohomology of the fibers of a fibration over Xn−r

J . It is locally isomorphic
to ZcJ , where

cJ = (j1 − 1)! · · · (jn−r − 1)!

Indeed, F (Rm, j1) has highest nonzero cohomology group equal to Z(j1−1)!, and the
computation of cJ follows. The lemma implies that the sheaf map ⊕|J |=n−rǫJ →

Rr(m−1)f∗Z is an isomorphism on stalks, so it is an isomorphism.
Up to now, the argument has used only that X is a manifold. We now assume

that X is oriented. Then we have an isomorphism ǫJ
∼= ZcJ over Xn−r

J . This follows
from Cohen’s calculations of H∗F (Rm, n): all the classes are products of pullbacks
of the generator of Hm−1F (Rm, 2) ∼= Hm−1F (Rm×Rm−∆;Z) ∼= Hm−1(Rm−0;Z),
and this depends only on the orientation of Rm.

Therefore, if X is an oriented m-manifold, we have an isomorphism of sheaves
over Xn:

Rr(m−1)f∗Z ∼= ⊕|J |=n−rZ
cJ

Xn−r
J

.

This implies Theorem 1.

3 The first nontrivial differential

Let X be a real oriented m-manifold. From the description of the E2 term of the
Leray spectral sequence for F (X,n) →֒ Xn in theorem 1, we see that most of the
rows are 0. It follows that the first differential which can be nonzero is dm.

Theorem 2 The differential dm takes the generator of H0(Xn−1;Z), for each di-

agonal Xn−1 ⊂ Xn, to the cohomology class [Xn−1] ∈ Hm(Xn;Z), that is, to the

pullback of the class of the diagonal [∆] ∈ Hm(X ×X). This determines dm on the

whole E2 term.

Proof. The E2 term is generated as an algebra by the bottom row, H∗(Xn;Z),
together with the group ⊕1≤i<j≤nH0(Xn−1

ij ;Z). Here, for each 1 ≤ i < j ≤ n,

we define Xn−1
ij = {(x1, . . . , xn) ∈ Xn : xi = xj}. The differential dm is 0 on the
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bottom row, since it maps each row to a lower row. So it suffices to determine the
map

dm : ⊕H0(Xn−1;Z) → Hm(Xn;Z).

Pick a diagonal Xn−1
ij ⊂ Xn as above. Then the cohomology class 1 ∈ H0(Xn−1

ij ;Z)
is pulled back from the corresponding class in the Leray spectral sequence for the
inclusion Xn − Xn−1

ij ⊂ Xn, and by functoriality of Leray spectral sequences it is
enough to determine dm(1) ∈ Hm(Xn;Z) for this latter spectral sequence. But we
know what the differentials are for the Leray spectral sequence of Y −Z ⊂ Y , where
Z is a smooth submanifold with orientable normal bundle in a smooth manifold Y :
they are just Gysin maps. The theorem follows.

Remark. Note that for X a real orientable manifold of dimension m, both
[Xn−1

ij ] ∈ Hm(Xn) and [∆] ∈ Hm(X2) are only determined up to sign.

4 Degeneration

We don’t know any example of an m-manifold X where the Leray spectral sequence
for F (X,n) →֒ Xn in rational cohomology has another differential after the first
nontrivial differential, dm. It would be interesting to know if there are such ex-
amples. We will prove, however, that if X is a smooth complex projective variety
and we use rational coefficients, then the spectral sequence does degenerate after the
first nontrivial differential. Moreover, the E2l+1 = E∞ term of the spectral sequence
(l =dimCX) is isomorphic to the cohomology ring of F (X,n) as a Q-algebra, not
just to the associated graded ring with respect to some filtration of H∗(F (X,n);Q).

Theorem 3 If X is a smooth complex projective variety of complex dimension l,
then the rational cohomology ring of F (X,n) is isomorphic to the cohomology of the

algebra E2 ⊗ Q, where E2 is the algebra described in theorem 1, with respect to the

differential d2l described in theorem 2.

Proof. By Deligne [11], the rational cohomology of every algebraic variety has
a natural filtration called the weight filtration. This filtration is trivial (H i(X;Q) is
pure of weight i) for smooth projective varieties, and in general the weight filtration
on H i(X;Q) expresses how the cohomology of X can be built from the cohomology
of smooth projective varieties. Also, for any algebraic map f : A → B, every group
in the Leray spectral sequence converging to H∗A has a weight filtration, and all
the differentials are strictly compatible with this filtration.

This compatibility of the weight filtration with the Leray spectral sequence is
verified most easily from the definition of the weight filtration in l-adic cohomol-
ogy ([11], pp. 83-84). Here l is a prime number. Given a variety A/C, choose
a finitely generated field K ⊂ C over which A is defined, and then the Galois
group Gal(Kalg/K) acts on H∗(A;Ql). Choose a prime m and a Frobenius element
Fm ∈ Gal(Kalg/K). Then the eigenvalues α of Fm (in a suitable finite extension
of Ql) are in fact algebraic integers, and for each α, there is an integer w(α) such
that all complex conjugates of α have absolute value N(m)w(α)/2. Let mWj be the
sum of the eigenspaces corresponding to the eigenvalues α of Fm with w(α) = j.
Then the filtration by the ⊕j≤i mWj is independent of m and of the choice of Fm;
it comes from a filtration of H∗(A;Q) which is independent of l; this is the weight
filtration.
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Since the Galois group acts on all l-adic cohomology groups, maps, and spec-
tral sequences, we deduce immediately that the differentials in the Leray spectral
sequence with Q coefficients are strictly compatible with the weight filtration.

Next, we need to describe explicitly the weight filtration on H i(Xn;Rjf∗Q),
the E2 term of the Leray spectral sequence. Let l = dimCX. By Theorem 1,
Rjf∗Q = 0 if j is not divisible by 2l − 1, and

Rr(2l−1)f∗Q = ⊕|J |=n−rQ
cJ

Xn−r .

Since Xn−r ⊂ Xn is a smooth subvariety of codimension rl, there is a Gysin iso-
morphism

H i(Xn−r;Q)(−rl) ∼= H i(Xn;QXn−r ).

The (−rl) denotes a shift by −2rl for the weight filtration, so that W (n)k = Wk+2n.
The group H i(Xn−r;Q) is pure of weight i, because Xn−r is a smooth projective
variety. So H i(Xn;QXn−r) and hence H i(Xn;Rr(m−1)f∗Q) are pure of weight i +
2rl.

The differential dj , j ≥ 2, in the Leray spectral sequence can only be nonzero
for j = k(2l− 1) + 1. In this case, it maps a subquotient of H i(Xn;Rr(2l−1)f∗Q) to
a subquotient of H i+k(2l−1)+1(Xn;R(r−k)(2l−1)f∗Q). That is, it maps a group which
is pure of weight i+2rl to one which is pure of weight i+k(2l−1)+1+2(r −k)l =
i + 2rl + (1 − k). Such a map must be zero unless k = 1. So the only differential
which can be nonzero is d2l and we have proved the degeneration of the spectral
sequence.

This implies, by the well-known properties of the Leray spectral sequence, that
there is a filtration of the ring H∗(F (X,n);Q) such that the E2l+1 = E∞ term of
the spectral sequence is isomorphic to the associated graded ring with respect to this
filtration. But the weights of the groups contributing to a given H i(F (X,n);Q) are
all different, and so this filtration is precisely the weight filtration of H∗(F (X,n);Q),
except for trivial changes corresponding to the fact that the only nonzero rows
in the spectral sequence are those numbered r(2l − 1) for some r. Now Deligne
proves ([11], p. 81) that the cohomology ring of any algebraic variety is isomorphic
to the associated graded ring with respect to the weight filtration. Therefore the
cohomology ring H∗(F (X,n);Q) is isomorphic to the E2l+1 = E∞ ring in the Leray
spectral sequence for f : F (X,n) →֒ Xn.

QED.

5 Summary, for smooth projective varieties

In this section, all cohomology will be with rational coefficients. For a 6= b ∈
{1, . . . , n}, let pa : H∗(X) → H∗(Xn) and p∗ab : H∗(X2) → H∗(Xn) be the obvious
pullbacks. For X a smooth projective variety of dimension l over C, let ∆ ∈ H2l(X2)
denote the class of the diagonal.

Theorem 4 Let X be a smooth projective variety of dimension l over C. Then

the rational cohomology ring of the configuration space F (X,n) is the cohomology

of the following differential graded algebra E(n).
E(n) is the quotient of the graded-commutative Q-algebra

H∗(Xn)[Gab],
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where the Gab are generators of degree 2l − 1 for 1 ≤ a, b ≤ n, a 6= b, modulo the

following relations:

(0) Gab = Gba

(1) GabGac + GbcGba + GcaGcb = 0 for a, b, c distinct

(2) p∗a(x)Gab = p∗b(x)Gab for a 6= b, x ∈ H∗X.

The differential is given by

dGab = p∗ab∆.

In particular, the rational cohomology ring of F (X,n) is determined by the ring

H∗X.

Proof. This follows from theorems 1–3, since E(n) is precisely the E2 term
of the Leray spectral sequence for the inclusion F (X,n) →֒ Xn, as described in
theorem 1. We don’t have to mention the relation G2

ab = 0, since that follows from
graded commutativity in this case. Here the algebra E(n) is determined by the
cohomology ring of X, and the differential on E(n) is determined by the class of
the diagonal in H∗(X2), which depends on the cohomology ring of X and on the
orientation class in H2lX.

If we replace the orientation class by a different generator of H2l(X,Q) ∼= Q,
the resulting differential graded algebra E(n)′ is the same algebra as E(n) , with the
differential d multiplied by a nonzero rational constant c. There is an Sn-equivariant

isomorphism of differential graded algebras E(n)
∼=
→ E(n)′ which is the identity on

H∗(Xn) and maps Gab to Gab/c. So the rational cohomology ring of F (X,n) (as
an Sn-algebra) depends only on the rational cohomology ring of X and not on the
orientation class of X. QED.

Theorem 5 The symmetric group Sn acts on F (X,n) in a natural way. The cor-

responding action of Sn on the ring H∗F (X,n) = H∗E(n) comes from the following

action of Sn on the differential graded algebra E(n): Sn acts on H∗(Xn) ⊂ E(n) in

the obvious way, and

σ(Gab) = Gσ(a)σ(b) .

Proof. This follows from theorems 1–3, since Sn acts on the Leray spectral
sequence for the inclusion F (X,n) →֒ Xn. QED.

Corollary 1 Let X be a smooth projective variety over C. Let B(X,n) = F (X,n)/Sn,

the configuration space of n-tuples of distinct unordered points in X. Then the ratio-

nal cohomology ring of B(X,n) is the cohomology of the differential graded algebra

E(n)Sn . In particular, the rational cohomology ring of B(X,n) is determined by the

ring H∗X.

Proof. Since the order of the group Sn is invertible in Q, the rational co-
homology ring of B(X,n) is just the ring of invariants H∗(F (X,n);Q)Sn . Now
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H∗F (X,n) is the cohomology of a differential graded algebra E(n), and the Sn-
action on H∗F (X,n) comes from an action on E(n). We use the fact that the co-
efficients are Q again to show that the cohomology of the ring of invariants E(n)Sn

is the ring of invariants in the cohomology of E(n):

H∗(E(n)Sn) = (H∗E(n))Sn = (H∗F (X,n))Sn = H∗B(X,n).

QED.
Of course, this description of the cohomology ring of B(X,n) is not as explicit

as one would like; in particular, one has to work to compute the Betti numbers.
Two interesting cases where the Betti numbers have been computed are:

(1) Bödigheimer and Cohen computed the Betti numbers of B(X,n) for all
Riemann surfaces X [4]. (There are also some results on the torsion [5].)

(2) Fulton and MacPherson computed that the Betti numbers of F (X, 3) are not
determined by the Betti numbers of X, for the particular pair of closed manifolds
X = CP1 × CP2 and Y the nontrivial CP1-bundle P (O(1) ⊕ O(−1)) over CP2.
We can compute that the same is true for the unordered configuration spaces in
this example: X and Y have the same Betti numbers, but B(X, 3) and B(Y, 3) do
not. (By contrast, for odd-dimensional real manifolds X, the Betti numbers of X
determine those of B(X,n), and in fact the Z/p-Betti numbers of X determine the
Z/p-Betti numbers of B(X,n) [6].)

The calculation is slightly easier using this paper’s spectral sequence. The E∞

term of the spectral sequence computing H∗(B(X, 3),Q) has Q-rank as follows:

0 0 0 0
0 0 0 2 3 2 0
1 2 5 8 7 3 1 0 0 0

(Here I am only showing the rows which are nonzero in the E2 term, that is, rows
0, 5, and 10, and only the even columns. Thus the first “2” in the middle row is
in row 5, column 6, and so it contributes to H11(B(X, 3),Q).) The E∞ term for
H∗(B(Y, 3),Q), on the other hand, looks like:

0 0 0 0
0 0 0 1 3 2 0
1 2 5 8 7 3 0 0 0 0

So B(X, 3) has Betti numbers b11 = 2, b12 = 1, while B(Y, 3) has Betti numbers
b11 = 1, b12 = 0. (It is easy to see a priori that the Betti numbers of F (Y, n) and
B(Y, n) will be at most the corresponding numbers for F (X,n) and B(X,n) for all
n. The point is that the cohomology ring of Y is a deformation of the cohomology
ring of X, in the sense that the ring Ra := Q[u, v]/(u2 − (av)2, v3) is isomorphic to
H∗Y for a 6= 0 and to H∗X for a = 0. So, in the differential graded algebras E(n)
and E(n)Sn constructed from Ra, the linear maps d will have the same rank for all
a 6= 0, and their ranks for a = 0 will be at most that. This implies the statement
about Betti numbers.)
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