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1 Introduction

A central idea of minimal model theory as formulated by Mori is to study algebraic
varieties using convex geometry. The cone of curves of a projective variety is defined
as the convex cone spanned by the numerical equivalence classes of algebraic curves;
the dual cone is the cone of nef line bundles. For Fano varieties (varieties with ample
anticanonical bundle), these cones are rational polyhedral by the cone theorem [21,
Theorem 3.7]. For more general varieties, these cones are not well understood: they
can have infinitely many isolated extremal rays, or they can be “round”. Both
phenomena occur among Calabi-Yau varieties such as K3 surfaces [22], which can
be considered the next simplest varieties after Fano varieties.

The Morrison-Kawamata cone conjecture would give a clear picture of the nef
cone for Calabi-Yau varieties [29, 30, 19]. The conjecture says that the action of
the automorphism group of the variety on the nef cone has a rational polyhedral
fundamental domain. (The conjecture includes an analogous statement about the
movable cone; see section 2 for details.) Thus, for Calabi-Yau varieties, the failure
of the nef cone to be rational polyhedral is always explained by an infinite discrete
group of automorphisms of the variety. It is not clear where these automorphisms
should come from. Nonetheless, the conjecture has been proved for Calabi-Yau
surfaces by Sterk, Looijenga, and Namikawa [41, 33, 19], the heart of the proof being
the Torelli theorem for K3 surfaces of Piatetski-Shapiro and Shafarevich [3, Theorem
11.1]. Kawamata proved the cone conjecture for all 3-dimensional Calabi-Yau fiber
spaces over a positive-dimensional base [19]. The conjecture is wide open for Calabi-
Yau 3-folds, despite significant results by Oguiso and Peternell [38], Szendröi [43],
Uehara [46], and Wilson [48].

The conjecture was generalized from Calabi-Yau varieties to klt Calabi-Yau pairs
(X, ∆) in [45]. Here ∆ is a divisor on X and “Calabi-Yau” means that KX + ∆
(rather than KX) is numerically trivial. In this paper we prove the cone conjecture
for all klt Calabi-Yau pairs of dimension 2 (Theorem 4.1), using the geometry of
groups acting on convex cones and reduction to the case of K3 surfaces. This is
enough to show that the conjecture is reasonable in the greater generality of pairs.
More concretely, the theorem gives control over the nef cone and the automorphism
group for a large class of rational surfaces, including the Fano surfaces as well as
many others. In particular, we get a good description of when the Cox ring (or total
coordinate ring) is finitely generated in this class of surfaces (Corollary 5.1).

Thanks to Caucher Birkar, Igor Dolgachev, Brian Harbourne, Artie Prendergast-
Smith, Chenyang Xu, and the referees for their comments.
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2 The cone conjecture

In this section, we state the cone conjecture for klt Calabi-Yau pairs following [45],
and discuss some history and examples.

Varieties are irreducible by definition, and a curve means a variety of dimension
1. Our main Theorem 4.1 takes the base field to be the complex numbers, but
Conjecture 2.1 makes sense over any field. For a projective morphism f : X → S
of normal varieties with connected fibers, define N1(X/S) as the real vector space
spanned by Cartier divisors on X modulo numerical equivalence on curves on X
mapped to a point in S (that is, D1 ≡ D2 if D1 · C = D2 · C for all curves C
mapped to a point in S). Define a pseudo-isomorphism from X1 to X2 over S to be
a birational map X1 99K X2 over S which is an isomorphism in codimension one.
A small Q-factorial modification (SQM) of X over S means a pseudo-isomorphism
over S from X to some other Q-factorial variety with a projective morphism to S.
A Cartier divisor D on X is called nef over S (resp. movable over S, effective over
S) if D · C ≥ 0 for every curve C on X which is mapped to a point in S (resp., if
codim(supp(coker(f∗f∗OX(D) → OX(D)))) ≥ 2, if f∗OX(D) 6= 0).

The canonical divisor is denoted KX . For an R-divisor ∆ on a normal Q-
factorial variety X, the pair (X, ∆) is klt if, for all resolutions π : X̃ → X with a
simple normal crossing R-divisor ∆̃ such that K eX+∆̃ = π∗(KX+∆), the coefficients
of ∆̃ are less than 1 [21, Definition 2.34]. It suffices to check this property on one
resolution. For a complex surface X, the pair (X, 0) is klt if and only if X has
only quotient singularities [21, Proposition 4.18]. For later use, we define a pair
(X, ∆) to be terminal if, for all resolutions π : X̃ → X as above, the coefficients in
∆̃ of all exceptional divisors of π are less than 0. (The definition of terminal pairs
puts no restriction on the coefficients of ∆ itself, although one checks easily (for
dim(X) ≥ 2) that they are less than 1; that is, a terminal pair is klt.) For a surface
X, (X, 0) is terminal if and only if X is smooth.

The nef cone A(X/S) (resp. the closed movable cone M(X/S)) of X over S is
the closed convex cone in N1(X/S) generated by the numerical classes of divisors
that are nef over S (resp. divisors that are movable over S). The effective cone
Be(X/S) of X over S is the convex cone, not necessarily closed, generated by
Cartier divisors that are effective over S. We call Ae(X/S) = A(X/S) ∩ Be(X/S)
and M e(X/S) = M(X/S)∩Be(X/S) the nef effective cone and the movable effective
cone of X over S, respectively. Finally, a rational polyhedral cone in N1(X/S) means
the closed convex cone spanned by a finite set of Cartier divisors on X.

We say that (X/S,∆) is a klt Calabi-Yau pair if (X, ∆) is a Q-factorial klt pair
with ∆ effective such that KX +∆ is numerically trivial over S. (Our main Theorem
4.1 takes S to be a point.) Let Aut(X/S,∆) and PsAut(X/S,∆) denote the groups
of automorphisms or pseudo-automorphisms of X over the identity on S that map
the divisor ∆ to itself.

Conjecture 2.1 Let (X/S,∆) be a klt Calabi-Yau pair.
(1) The number of Aut(X/S,∆)-equivalence classes of faces of the cone Ae(X/S)

corresponding to birational contractions or fiber space structures is finite. Moreover,
there exists a rational polyhedral cone Π which is a fundamental domain for the
action of Aut(X/S,∆) on Ae(X/S) in the sense that

(a) Ae(X/S) = ∪g∈Aut(X/S,∆)g∗Π,
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(b) IntΠ ∩ g∗IntΠ = ∅ unless g∗ = 1.
(2) The number of PsAut(X/S,∆)-equivalence classes of chambers Ae(X ′/S)

in the cone M e(X/S) corresponding to marked SQMs X ′ → S of X → S is fi-
nite. Equivalently, the number of isomorphism classes over S of SQMs of X over
S (ignoring the birational identification with X) is finite. Moreover, there exists
a rational polyhedral cone Π′ which is a fundamental domain for the action of
PsAut(X/S,∆) on M e(X/S).

For X terminal and ∆ = 0, Conjecture 2.1 is exactly Kawamata’s conjecture on
Calabi-Yau fiber spaces, generalizing Morrison’s conjecture on Calabi-Yau varieties
[19, 29, 30]. (The group in part (2) can then be described as Bir(X/S), since
all birational automorphisms of X over S are pseudo-automorphisms when X is
terminal and KX is numerically trivial over S.)

Conjecture 2.1 implies the analogous statement for the group of automorphisms
or pseudo-automorphisms of X rather than of (X, ∆). (That slightly weaker formu-
lation of the cone conjecture is used in [45].)

The first statement of part (1) follows from the second statement, on funda-
mental domains. Indeed, each contraction of X to a projective variety is given by
some semi-ample line bundle on X (a line bundle for which some positive multiple
is basepoint-free). The class of such a line bundle in N1(X) lies in the nef effective
cone. And two semi-ample line bundles in the interior of the same face of some cone
Π determine the same contraction of X, since they have degree zero on the same
curves. Thus the second statement of (1) implies the first. We include the first
statement in the conjecture because one can try to prove it in some cases where the
conjecture on fundamental domains remains open. The first statements of (1) and
of (2) are what Kawamata proves for Calabi-Yau fiber spaces of dimension 3 over a
positive-dimensional base [19].

For X of dimension at most 2, we only need to consider statement (1), because
any pseudo-isomorphism between normal projective surfaces is an isomorphism, and
every movable divisor on a surface is nef.

Conjecture 2.1 would fail for Calabi-Yau pairs that are log-canonical (or canon-
ical) rather than klt. Let X be the blow-up of P2 at 9 very general points. Let
∆ be the proper transform of the unique smooth cubic curve through the 9 points;
then KX + ∆ ≡ 0, and so (X, ∆) is a canonical Calabi-Yau pair. The surface X
contains infinitely many (−1)-curves by Nagata [32], and so the nef cone is not
finite polyhedral. But the automorphism group Aut(X) is trivial [14, Proposition
8] and hence does not have a finite polyhedral fundamental domain on the nef cone.
There is also an example of a log-canonical Calabi-Yau surface with rational sin-
gularities (with ∆ = 0) for which the cone conjecture fails: contract the divisor
R1 + · · · + R4 + 2R5 ∼ −2KX in the surface X of Dolgachev-Zhang [10, Example
6.10].

The conjecture also fails if we allow the R-divisor ∆ to have negative coefficients.
Let Y be a K3 surface whose nef cone is not finite polyhedral, and let X be the
blow-up of Y at a very general point. Let E be the exceptional curve. Then (X,−E)
is klt and KX − E ≡ 0. The nef cone of X is not finite polyhedral, but Aut(X) is
trivial.

An interesting class of klt Calabi-Yau pairs are the rational elliptic surfaces
(meaning smooth rational surfaces which are minimal elliptic fibrations over P1).
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The cone conjecture was checked for rational elliptic surfaces with no multiple fibers
and Mordell-Weil rank 8 by Grassi-Morrison [15, Theorem 2.3], and for all rational
elliptic surfaces by [45, Theorem 8.2]. This will be generalized by our main result,
Theorem 4.1. Note that the cone conjecture for klt pairs (applied to a suitable
divisor ∆ with KX + ∆ ≡ 0) describes the whole nef cone of a rational elliptic
surface X in N1(X). By contrast, if we take ∆ = 0 and apply the cone conjecture
to the elliptic fibration X → S, then we only get information about the relative
nef cone in N1(X/S). For example, the relative nef cone is (trivially) rational
polyhedral for any rational elliptic surface, whereas the whole nef cone is rational
polyhedral if and only if the Mordell-Weil rank is 0 [45, Theorem 5.2, Theorem 8.2].

Example. We give an example of a rational surface Y , considered by Zhang [49,
Theorem 4.1] and Blache [5, Theorem C(b)(2)], whose nef cone is a 4-dimensional
round cone. The surface Y is klt Calabi-Yau, and so the cone conjecture is true
by our main Theorem 4.1 (known in this case by Oguiso-Sakurai [39, Corollary
1.9]). Thus the automorphism group of Y must be infinite, and in fact it is a
discrete group of isometries of hyperbolic 3-space with quotient of finite volume.
(The quotient of hyperbolic 3-space by an index-24 subgroup of the group here is
familiar to topologists as the complement of the figure eight knot [25, 1.4.3, 4.7.1].)

Let ζ be a primitive cube root of unity. Let X be the blow-up of P2 at the
12 points [1, ζi, ζj ], [1, 0, 0], [0, 1, 0], [0, 0, 1] over the complex numbers. (This is the
dual of the famous Hesse configuration of 9 points lying on 12 lines in the plane [9,
4.6]. Combinatorially, we can identify the Hesse configuration with the 9 points and
12 lines in the affine plane over Z/3.) Let C1, . . . , C9 be the proper transforms of
the 9 lines through quadruples of the 12 points; these curves have self-intersection
−3 in X, and (X, (1/3)

∑
Ci) is a klt Calabi-Yau pair. We can contract the 9

disjoint curves Ei to obtain a klt Calabi-Yau surface Y with 9 singular points of
type (1/3)(1, 1). Then Y has Picard number 4, and the point of this example is that
the nef cone of Y is a round cone (one of the two pieces of {x ∈ N1(Y ) : x2 ≥ 0}).
That follows by viewing Y as the quotient of an abelian surface E×E by Z/3; here
E is the elliptic curve C/Z[ζ] and Z/3 acts by (ζ, ζ) on E ×E. The nef cone of an
abelian surface is always round, and in this case Z/3 acts trivially on N1(E × E)
so that the nef cone of Y is equal to that of E × E.

To prove that Y is isomorphic to the quotient Y0 := (E × E)/(Z/3), first note
that the fixed point set of the automorphism group Z/3 of E is a subgroup of order
3. So the fixed point set of Z/3 acting on E×E is a subgroup of order 9 isomorphic
to (Z/3)2, and these give the 9 singular points of Y0, all of type (1/3)(1, 1). We can
write down 12 curves isomorphic to E on E × E which go through triples of these
9 points: the curves E × 0, 0 × E, the diagonal {(x, x)}, and {(x,−x)}, and their
translates by the points (Z/3)2 ⊂ E×E. The images E1, . . . , E12 of these curves in
Y0 are isomorphic to E/(Z/3) (the quotient by the automorphism group) and hence
to P1. Since Z/3 acts freely in codimension 1 on E×E, the quotient Y0 has KY0 ≡ 0.
It follows that the minimal resolution X0 of Y0 has −KX0 ≡ (1/3)

∑9
i=1 Ci, where

C1, . . . , C9 are the (−3)-curves in X0 contracted in Y0. The proper transforms of
the 12 curves E1, . . . , E12 on the minimal resolution X0 of Y0 have −KX0 · Ej = 1
(since each curve Ej meets 3 curves Ci transversely in one point), and so the curves
Ej are (−1)-curves. The (−1)-curves E1, . . . , E12 are disjoint on X0, and so we can
contract them all and get a smooth surface P0.

The surface E × E has Picard number 4 (the maximum possible for a complex
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abelian surface), spanned by the curves E×0, 0×E, the diagonal {(x, x)}, and the
graph of an order-3 automorphism of E, {(x, ζx)}. Each of these curves is preserved
by the action of Z/3 on E × E, and so the quotient Y0 also has Picard number 4.
Therefore the minimal resolution X0 of Y0 has Picard number 4 + 9 = 13, and P0

has Picard number 13 − 12 = 1. We have −KP0 = (1/3)
∑9

i=1 Ci, where C1, . . . C9

are the images in P0 of the curves Ci on X0. Since −KP0 is effective and not zero
while P0 has Picard number 1, −KP0 must be ample. But the only smooth complex
Fano surface with Picard number 1 is P2, and so P0 is isomorphic to P2. We
compute that −KP0 · Ci = 3 for each curve Ci; since −KP2 = O(3), this says that
C1, . . . , C9 are lines in P2. We have a set of 9 lines and 12 points (the images of the
curves Ei on X0) in the complex projective plane such that every line goes through
4 points and every point lies on 3 lines. One can check by hand that the only such
arrangement, modulo automorphisms of the plane, is the dual Hesse arrangement
mentioned above. Thus we have identified the blow-up X of P2 defined earlier with
the minimal resolution of (E × E)/(Z/3), as promised.

The cone conjecture, a theorem in this case, implies that Aut(Y ) must be a
discrete group acting on hyperbolic 3-space (the ample cone of Y modulo scalars)
with finite-volume quotient (since every finite polytope in hyperbolic space has finite
volume, even if its vertices are at infinity). In this example, the endomorphism ring
of the elliptic curve E is Z[ζ], and so the endomorphism ring of E × E is the
ring of 2 × 2 matrices M2(Z[ζ]). So the automorphism group of E × E, fixing the
origin, is GL(2,Z[ζ]); the automorphism group of E × E as a surface is this group
together with translations. Any automorphism of Y = (E × E)/(Z/3) lifts to an
automorphism of E × E as a surface, since E × E is the “index-one cover” of Y
(defined in section 3). We deduce that Aut(Y ) is the group (GL(2,Z[ζ])/(Z/3)) n
(Z/3)2, and its image Aut∗(Y ) in GL(N1(Y )) is PGL(2,Z[ζ]). A decomposition of
hyperbolic 3-space into fundamental domains for this group looks roughly like the
figure (an analogous picture in the hyperbolic plane).

In particular, any choice of rational polyhedral fun-
damental domain has a vertex at the boundary of hyper-
bolic space as in the figure, because there are rational
points on the boundary of the nef cone (corresponding
to elliptic fibrations of Y ). The automorphism group
of the smooth rational surface X is the same as that
of Y , but now acting on hyperbolic space of dimension
ρ(X)− 1 = 12. (Clearly every automorphism of Y lifts

to the minimal resolution X; the converse holds because −KX ≡ (1/3)
∑

Ci, and
so the 9 (−3)-curves Ci on X which are contracted in Y are intrinsically picked
out as the only curves on which −KX has negative degree.) The nef cone of X
modulo scalars is not all of hyperbolic space, because X contains curves of negative
self-intersection (including infinitely many (−1)-curves). The cone conjecture for X
is not immediate from that for Y , but it also follows from Theorem 4.1.

Another feature of this example is that PGL(2,Z[ζ]) is the unique non-cocompact
group of orientation-preserving isometries of hyperbolic 3-space of minimum covol-
ume (about 0.085) [26].
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3 Klt Calabi-Yau surfaces

In this section, we prove the cone conjecture for klt Calabi-Yau surfaces (as opposed
to pairs), Theorem 3.3. This result was stated by Suzuki [42]. Suzuki’s ideas were
inspiring for this paper, but the proof there is incomplete.

To see the difficulty, let Y be a K3 surface with a node. Then there are two pos-
sible types of curves on Y with negative self-intersection, those with self-intersection
−2 disjoint from the node and those with self-intersection −3/2. (If X → Y is the
minimal resolution with exceptional curve E, the second type of curve is the image
of a (−2)-curve on X that meets E transversely in one point.) The second type is
missing in [42] (see the definition of the set N ′ and the reflection group Γ). This
makes a difference because the reflection in a (−3/2)-curve does not preserve the Z-
lattice S = {x ∈ Pic(X) : x ·E = 0}. Worse, the angle between two such reflections
need not be a rational multiple of π (take (−3/2)-curves C1 and C2 through the
same node of Y with C1 · C2 = 1/2; this is what happens if the proper transforms
of C1 and C2 are disjoint on the minimal resolution X). So the group generated
by reflections in (−3/2)-curves need not be discrete in GL(SR). As a result, the
nef cone of Y need not be a Weyl chamber for any reflection group acting on the
positive cone. So Lemma 2.4 and Proposition 2.5 in [42] do not work.

Our proof of Theorem 3.3, applied to the example of a K3 surface with a node,
works instead by reducing to the minimal resolution. The first version of our proof
used hyperbolic geometry to make this reduction, but we can now use a simple
general result by Looijenga, Theorem 3.1 below. (Under the same hypothesis as in
Theorem 3.1, plus the assumption that the group preserves a bilinear form of sig-
nature (1, ∗), our proof constructed a fundamental domain as a “Dirichlet domain.”
That assumption holds for the automorphism group of a projective surface Y acting
on N1(Y ); as a result, such a group can be viewed as a group of isometries of real
hyperbolic space. Looijenga constructs a fundamental domain using the dual vector
space, thereby avoiding any need for the given group representation to be self-dual.
His fundamental domain coincides with a Dirichlet domain when the representation
preserves a bilinear form of signature (1, ∗).)

Theorem 3.1 (Looijenga [24, Proposition 4.1, Application 4.15]) Let S be a finitely
generated free Z-module and A a closed strictly convex cone in SR with nonempty
interior. Let G be a subgroup of GL(S) which preserves the cone A. Suppose that
there is a rational polyhedral cone C ⊂ A such that ∪g∈GgC contains the interior of
A. Then ∪g∈GgC is equal to the convex hull A+ of the rational points in A, and G
has a rational polyhedral fundamental domain on A+. That is, there is a rational
polyhedral cone Π such that ∪g∈GgΠ = A+ and IntΠ ∩ g(Int (Π)) = ∅ unless g = 1.

We first note the following consequence of the abundance theorem in dimension
2.

Lemma 3.2 Let (X, ∆) be a klt Calabi-Yau pair of dimension 2. Then any nef
effective R-divisor on X is semi-ample.

Proof. Since (X, ∆) is a klt pair and KX +∆ is nef (being numerically trivial),
KX +∆ is semi-ample by the abundance theorem in dimension 2 [12, 11]. Therefore
KX + ∆ is R-linearly equivalent to zero. Next, for any nef effective R-divisor D,
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(X, ∆ + εD) is a klt pair for ε > 0 small, and KX + ∆ + εD is nef. By abundance
again, KX + ∆ + εD is semi-ample. That is, εD is semi-ample. QED

Theorem 3.3 The cone conjecture holds for any klt Calabi-Yau surface.

Proof. Let Y be a klt Calabi-Yau surface. Let I = I(Y ) be the global index of
Y , that is, the least positive integer such that IKY is Cartier and linearly equivalent
to zero, and let Z = Spec(⊕I−1

i=0 OY (−iKY )) → Y be the global index-one cover of
Y . Then Z is a surface with Du Val singularities that has trivial canonical bundle,
and Y is the quotient of Z by an action of Z/I. Let M be the minimal resolution
of Z. The smooth surface M has trivial canonical bundle and hence is a K3 surface
or abelian surface. By uniqueness of the minimal resolution, Z/I acts on M ; let X
be the quotient surface.

M −−−−→
Z/I

Xy y
Z −−−−→

Z/I
Y

By Sterk-Looijenga-Namikawa, we know the cone conjecture for the smooth
Calabi-Yau surface M [41], [19, Theorem 2.1]. Oguiso-Sakurai proved the cone
conjecture for the quotient of a smooth Calabi-Yau surface by a finite group action,
in particular for X = M/(Z/I) [39, Corollary 1.9]. That is, there is a rational
polyhedral cone B ⊂ Ae(X) which is a fundamental domain for the action of Aut(X)
on the nef effective cone Ae(X). The theorem follows from Lemma 3.4, where we
take ∆ = 0. QED

Lemma 3.4 Let X → Y be a proper birational morphism of klt surfaces. Let ∆
be an R-divisor on X and ∆Y its pushforward to Y . If Aut(X, ∆) has a rational
polyhedral fundamental domain on the nef effective cone of X, then Aut(Y, ∆Y ) has
a rational polyhedral fundamental domain on the nef effective cone of Y .

Proof. The cone of curves Curv(X) is defined as the convex cone spanned by
the classes of curves in N1(X) = N1(X)∗. Let F0 be the face of Curv(X) spanned by
the curves in X that map to a point in Y . Then the nef cone A(X) has nonnegative
pairing with F0, and the nef cone of Y is A(Y ) = A(X) ∩ F⊥

0 ; thus A(Y ) is a face
of A(X). Likewise, the nef effective cone of Y is Ae(Y ) = Ae(X) ∩ F⊥

0 , as one
immediately checks. (In one direction, the image in Y of an effective divisor on X is
effective; in the other, the pullback to X of an effective Q-divisor on Y is effective.)

The subgroup H of G = Aut(X, ∆) that maps the face F0 of curves contracted
by X → Y into itself is a subgroup of Aut(Y, ∆Y ). Equivalently, H is the subgroup
of G that maps the face A(Y ) of A(X) into itself. If we prove the cone conjecture
for this subgroup of Aut(Y, ∆Y ), the statement for the whole group Aut(Y, ∆Y )
follows.

We know that there is a rational polyhedral fundamental domain B for G acting
on Ae(X), and so Ae(X) = ∪g∈G gB. It follows that Ae(Y ) = ∪g∈G gB ∩ F⊥

0 . Here
each set gB ∩ F⊥

0 is a rational polyhedral cone contained in Ae(Y ).
We will show that these cones fall into finitely many orbits under H ⊂ Aut(Y, ∆Y ).

For an element g of G, gB ∩ F⊥
0 is a face of gB (possibly just 0). So we can divide
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the nonzero intersections gB ∩ F⊥
0 into finitely many classes corresponding to the

faces Bi of B such that gB ∩ F⊥
0 = gBi. Fix the face Bi of B (as we can, because

the rational polyhedral cone B has only finitely many faces). If Bi = 0, then all the
cones gBi are equal to 0 and so they form a single H-orbit. So we can assume that
the face Bi of B is not 0.

Consider the contraction X → Z given by a Q-divisor in the interior of Bi.
This makes sense because Bi is contained in the nef effective cone of X and every
nef effective Q-divisor on X is semi-ample by Lemma 3.2. Here Z is not a point,
because Bi 6= 0. Since X → Z has fiber dimension at most 1, there are only finitely
many numerical equivalence classes of curves in X contracted by X → Z. Therefore
there are only finitely many intermediate contractions X → Yj → Z, say 1 ≤ j ≤ r.
For all the cones gBi with g ∈ G that are contained in F⊥

0 (the nef cone of Y ), the
automorphism g of X moves the contraction X → Z into one that factors through
Y ; so g moves the contraction X → Yj to X → Y for some 1 ≤ j ≤ r. Fix one
value of j, and consider only those cones gBi such that g moves the contraction
X → Yj to X → Y . I claim that these cones form only a single orbit under the
group H. Indeed, for two cones g1Bi and g2Bi with the properties mentioned, the
automorphism g2g

−1
1 of X moves the cone g1Bi to the cone g2Bi, and it preserves

the contraction X → Y , which means that it belongs to the subgroup H of G.
Thus Ae(Y ) is the union of the rational polyhedral cones gB ∩ F⊥

0 , and these
cones fall into finitely many orbits under H ⊂ Aut(Y, ∆Y ). Taking the convex hull
of finitely many of these cones, we find a rational polyhedral cone C inside Ae(Y )
such that Ae(Y ) = ∪g∈HgC. By Theorem 3.1, this statement implies the cone
conjecture for (Y, ∆Y ). QED

4 Klt Calabi-Yau pairs of dimension 2

Theorem 4.1 Let (X, ∆) be a klt Calabi-Yau pair of dimension 2 over the complex
numbers. Then Conjecture 2.1 is true. That is, the action of Aut(X, ∆) on the nef
effective cone has a rational polyhedral fundamental domain. As a result, the number
of Aut(X, ∆)-equivalence classes of faces of the nef effective cone corresponding to
birational contractions or fiber space structures is finite.

We remark that Harbourne’s “K3-like rational surfaces” have similar finiteness
properties [16], although they never have a divisor ∆ with (X, ∆) klt Calabi-Yau.

Proof of Theorem 4.1. Since (X, ∆) is a klt pair, it has a terminal model
(X̃, ∆̃) [4, Corollary 1.4.3]. That is, we have a birational projective morphism
π : X̃ → X, ∆̃ is effective, K eX + ∆̃ = π∗(KX + ∆), and (X̃, ∆̃) is terminal.
(Informally, the terminal model of (X, ∆) is the maximum blow-up of X such that ∆̃
is effective.) By our assumptions, (X̃, ∆̃) is a terminal Calabi-Yau pair of dimension
2, and in particular X̃ is smooth. The cone conjecture for (X̃, ∆̃) implies it for
(X, ∆), by Lemma 3.4. So we can assume that X is smooth and (X, ∆) is a terminal
Calabi-Yau pair.

It is straightforward from the definition that any two terminal models of a pair
(X, ∆) are isomorphic in codimension 1. As a result, the terminal model of a 2-
dimensional pair is unique.

Example. The terminal model of a pair (X, 0) of dimension 2 may involve
more blowing up than the usual minimal resolution of X. For a smooth surface X
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and a divisor ∆ consisting of two smooth curves with coefficients a and b that meet
transversely at a point p, the pair (X, ∆) is klt if and only if a < 1 and b < 1. Let
X̃ be the blow-up of X at p; then the coefficient in ∆̃ of the exceptional curve E is
a + b− 1. Therefore the terminal model of (X, ∆) will involve blowing up the point
p exactly when a + b− 1 ≥ 0. In fact, if a and b are close to 1, then a + b− 1 is also
close to 1, although slightly smaller. So the terminal model of (X, ∆) may involve
arbitrarily many blow-ups, depending on how close the coefficients a and b are to 1.

We are given a terminal Calabi-Yau pair (X, ∆). If ∆ = 0, then X is a smooth
Calabi-Yau surface and we know the cone conjecture by Sterk-Looijenga-Namikawa
[41, 19]. So we can assume that ∆ 6= 0. Using the minimal model program for
surfaces, Nikulin showed that X is either rational or a P1-bundle over an elliptic
curve with ∆ nef [35, 4.2.1], [1, Lemma 1.4]. In the latter case, the nef effective
cone is rational polyhedral in N1(X) ∼= R2, spanned by a fiber of the P1-bundle
together with ∆ (which gives an elliptic fibration of X). Thus the cone conjecture
is true for X.

Thus, from now on, we can assume that the smooth projective surface X is
rational. One consequence is that Pic(X) ⊗Z R = N1(X); that is, we need not
distinguish between linear and numerical equivalence on X. We also deduce that
rational points in the nef cone are effective, as follows.

Lemma 4.2 Let X be a smooth projective rational surface with −nKX effective for
some n > 0. Let L be a nef line bundle on X. Then L is effective.

Proof. Since X is a rational variety, the holomorphic Euler characteristic
χ(X, O) is 1. By Riemann-Roch, χ(X, L) = (L2 + L · (−KX))/2 + 1. Since
L is nef and a multiple of −KX is effective, we have χ(X, L) ≥ 1. (The in-
tersection of two nef divisors on a projective surface is nonnegative, because the
nef cone is the closure of the ample cone.) An effective divisor equivalent to
−nKX is nonzero, since X is rational. Since L is nef, it follows that an am-
ple line bundle A has A · (KX − L) < 0. Therefore h0(X, KX − L) = 0. Thus
h0(X, L) = h0(X, L) + h0(X, KX − L) ≥ χ(X, L) ≥ 1. QED

If X has Picard number at most 2, then Ae(X) is rational polyhedral and so the
cone conjecture is true. (For Picard number 2, since X is rational, it is a P1-bundle
over P1, X ∼= P (O⊕O(a)) for some a ≥ 0. The nef effective cone is spanned by two
semi-ample divisors, corresponding to the projection X → P1 and the contraction
of the (−a)-section.) From now on, we can assume that X has Picard number at
least 3. We do this to ensure that every KX -negative extremal ray in Curv(X) is
spanned by a (−1)-curve [21, Lemma 1.28].

We are assuming that KX + ∆ ≡ 0, and so −KX ≡ ∆ is effective. As a result,
−KX has a Zariski decomposition −KX = P +N , meaning that P is a nef Q-divisor
class, N is an effective Q-divisor with negative definite intersection pairing among
its components, and P · N = 0 [2, Theorem 14.14]. I claim that P is semi-ample.
Indeed, the properties stated of the Zariski decomposition imply that the effective
R-divisor ∆ numerically equivalent to −KX must contain N ; that is, the divisor
P := ∆ − N is effective. By Lemma 3.2, every nef effective R-divisor on X is
semi-ample. Thus P is semi-ample.

In particular, the Iitaka dimension of P is either 0, 1, or 2, and this gives the main
division of the proof into cases. (By definition, P has Iitaka dimension r if there is
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a positive integer m0 and positive numbers a, b such that amr ≤ h0(X, mP ) ≤ bmr

for all positive multiples m of m0 [18, Chapter 10].) The sections of multiples mP
can be identified with the sections of −mKX by adding mN , when −mKX and mP
are both integral divisors; so we can also describe the three cases as −KX having
Iitaka dimension 0, 1, or 2. The group Aut∗(X) = im(Aut(X) → GL(N1(X))) is
finite when −KX has Iitaka dimension 2 and virtually abelian for Iitaka dimension
1, whereas it can be a fairly general group acting on hyperbolic space when the
Iitaka dimension is 0.

We start with the easiest case, where −KX is big (that is, it has Iitaka dimension
2). In this case, we will show that the Cox ring Cox(X) ∼= ⊕L∈Pic(X)H

0(X, L) is
finitely generated, which is stronger than the cone conjecture.

The following argument works in any dimension. Since ∆ is big, it is R-linearly
equivalent to A + E for an ample R-divisor A and an effective R-divisor E [23,
Proposition 2.2.22]. Let Γ = (1 − ε)∆ + εE for ε > 0 small. Then Γ is effective,
(X, Γ) is klt, and −(KX + Γ) ≡ εA is ample. That is, (X, Γ) is a klt Fano pair.
Birkar-Cascini-Hacon-McKernan showed that klt Fano pairs of any dimension have
finitely generated Cox ring [4, Corollary 1.3.1], as we want.

In dimension 2, this was known earlier: by the cone theorem, a klt Fano pair
(X, Γ) has rational polyhedral cone of curves, and every face of this cone can
be contracted [21, Theorem 3.7]. In dimension 2, that is enough (together with
Pic(X) ⊗ R = N1(X)) to imply that the Cox ring is finitely generated [17]. In
particular, the nef effective cone is rational polyhedral, and so the cone conjecture
is true for X.

Next, suppose that −KX has Iitaka dimension 1. Then the semi-ample divisor
P determines a fibration of X over a curve B, and P 2 = 0. We have −KX ·P = (P +
N)·P = 0, and so the generic fiber of X → B has genus 1. By repeatedly contracting
(−1)-curves contained in the fibers of X → B, we find a factorization X → Y → B
through a minimal elliptic surface Y → B. (The curves being contracted need not
be those in N , as one sees in examples.) Write π for the contraction X → Y and
∆Y = π∗(∆). Since KX + ∆ ≡ 0, we have KX + ∆ = π∗(KY + ∆Y ). So (Y, ∆Y ) is
a klt Calabi-Yau pair and (X, ∆) is the terminal model of (Y, ∆Y ).

We know the cone conjecture for the minimal rational elliptic surface Y [45,
Theorem 8.2]. But in general, blowing up a point on a surface can increase the
complexity of the nef cone, for example turning a finite polyhedral cone into one
which is not finite polyhedral. Rather than reduce to that earlier result, we will go
through the argument directly for X.

Since −KY ≡ ∆Y , where KY has degree zero on all curves contracted by Y → B,
∆Y is the sum of some positive real multiples of fibers of Y → B. (Here a fiber
means the pullback to Y of a point in B, as a divisor. We are using that the
intersection pairing on the curves contained in a fiber is negative semidefinite, with
radical spanned by the whole fiber [3, Lemma 8.2].) The Mordell-Weil group of
the elliptic fibration X → B is defined as the group Pic0(Xη) where Xη is the
generic fiber. The Mordell-Weil group acts by birational automorphisms on Y over
B, hence by automorphisms of Y since Y → B is minimal. Since ∆Y is a sum of
some multiples of fibers, the Mordell-Weil group preserves ∆Y on Y . Since (X, ∆)
is the terminal model of (Y, ∆Y ) (and terminal models are unique in dimension 2),
the Mordell-Weil group acts by automorphisms of (X, ∆).

The main problem is to show that Aut(X, ∆) has finitely many orbits on the set
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of (−1)-curves in X. To do that, we first show that for each curve C in a fiber of
X → B, the intersection number of a (−1)-curve E with C is bounded, independent
of E. Indeed, we have 1 = −KX ·E = (P +N) ·E. So, if E is not one of the finitely
many curves in N , we have N · E ≥ 0 and hence P · E ≤ 1. Since each fiber of
X → B is numerically equivalent to a multiple of P , this gives a bound for E · C
for each curve C contained in a fiber of X → B, as we want.

The Picard group Pic(Xη) is the quotient of Pic(X) by some class aP , a > 0,
together with all the curves C1, . . . , Cr in reducible fibers of X → B. (Indeed, if
a fiber contains only one curve C, then the class of C in Pic(X) is some positive
multiple of P .) The degree of a line bundle on X on a general fiber of X → B is
given by the intersection number with bP , for some b > 0, and so the Mordell-Weil
group G := Pic0(Xη) is the subquotient of Pic(X) given by

G = P⊥/(aP, C1, . . . , Cr).

An element x of the group G acts by a translation on the curve Xη of genus 1,
which extends to an automorphism of X as we have shown. This gives an action
of G on Pic(X). We know how translation by an element x of Pic0(Xη) acts on
Pic(Xη): by ϕx(y) = y + deg(y)x. Since bP ∈ Pic(X) is the class of a general fiber
of X → B, this means that ϕx acts on Pic(X) by

ϕx(y) = y + (y · bP )x (mod aP, C1, . . . , Cr).

For an element x ∈ P⊥ with x · Ci = 0 for all the curves Ci, I claim that the
automorphism ϕx gives the identity permutation of the curves C1, . . . , Cr in the
fiber of X over any point 0 ∈ B. To prove this, we can replace B by Spec(R)
where R is the henselian local ring of B at 0 (that is, Spec(R) is the limit of
all etale open neighborhoods of 0 in B). The group ker(Pic(XR) → Z) (where
the homomorphism gives the degree of a line bundle on the generic fiber) acts by
translations on the generic fiber, hence by automorphisms of the minimal elliptic
surface YR, and finally (since (XR,∆) is the terminal model of (YR,∆Y ) where ∆Y

is some nonnegative real multiple of the whole special fiber) by automorphisms of
XR. The proper base change theorem for etale cohomology [27, Corollary VI.2.5]
gives that H2(XR, µm) ∼= H2(X0, µm) for any positive integer m, and this group is
⊕r

i=1Z/m. Since the given element x ∈ Pic(XR) has degree zero on each curve Ci,
it maps to zero in H2(XR, µm). By the Kummer exact sequence

Pic(XR) −−−−→
m

Pic(XR) −−−−→ H2(XR, µm),

x is divisible in Pic(XR), and more precisely in the kernel of the homomorphism
Pic(XR) → Z given by the degree of a line bundle on the generic fiber of XR →
Spec(R). Since the group ker(Pic(XR) → Z) acts by automorphisms on XR, it
permutes the curves C1, . . . , Cr. The divisibility we proved implies that x induces
the identity permutation of C1, . . . , Cr, as we want.

Using that the action of G on Pic(X) preserves the intersection product, we
deduce that ϕx acts on Pic(X) by the transformation

ϕx(y) = y + (y · bP )x−
[
x · y + (1/2)(x · x)(y · bP )

]
(bP )

for all x ∈ P⊥ with x ·Ci = 0 for all the curves Ci, and for all y ∈ Pic(X). (In terms
of hyperbolic geometry, this formula defines a strictly parabolic transformation.)
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Now let E1 and E2 be any two (−1)-curves on X not contained in fibers of
X → B such that E1 · bP = E2 · bP (write m = E1 · bP ), E1 ·Ci = E2 ·Ci for all the
curves Ci, and E1 ≡ E2 (mod mPic(X)). Let x = (E2 − E1)/m ∈ Pic(X). Then x
is in P⊥, we have x · Ci = 0 for all the curves Ci, and

ϕx(E1) = E1 + (E1 · bP )x−
[
(x · E1) + (1/2)(x · x)(E1 · bP )

]
(bP )

= E2.

We have shown that the intersection numbers m = E ·bP and E ·Ci are bounded,
among all (−1)-curves E on X. So, apart from the finitely many (−1)-curves
contained in fibers of X → B, the (−1)-curves E are divided into finitely many
classes according to m, the intersection numbers of E with the curves Ci, and the
class of E in Pic(X)/m. By the previous paragraph, the (−1)-curves on X fall into
finitely many orbits under the action of G we defined. This completes the proof
that Aut(X, ∆) has finitely many orbits on the set of (−1)-curves.

We now describe all the extremal rays of the cone of curves Curv(X), following
Nikulin [36, Proposition 3.1]. We have mentioned that every KX -negative extremal
ray is spanned by a (−1)-curve. On the other side, a KX -positive extremal ray must
be spanned by one of the finitely many curves in N . (Since P ·N = 0, the curves
in N are contained in fibers of the elliptic fibration X → B given by P .) Finally,
let R≥0x be an extremal ray of Curv(X) in K⊥

X . Suppose x is not a multiple of a
curve in N ; then N · x ≥ 0 and P · x = 0. Since −KX ≡ P + N , it follows that
P · x = 0. Since P 2 = 0, the Hodge index theorem gives that x is a multiple of P
in N1(X) or x2 < 0. In the latter case, the ray R≥0x must be spanned by a curve
C. Since P · C = 0, C is a curve in some fiber of X → B. There are only finitely
many numerical equivalence classes of curves in the fibers of X → B. We conclude
that almost all (all but finitely many) extremal rays of Curv(X) are spanned by
(−1)-curves.

Moreover, the only possible limit ray of the (−1)-rays is R≥0P . Indeed, if R≥0x
is a limit ray of (−1)-rays, then x2 = 0 and −KX ·x = 0. (For an ample line bundle
A, all (−1)-curves have E2 = −1 and −KX · E = −1, while their degrees A · E in
an infinite sequence must tend to infinity. Since 0 < A · x < ∞, this proves the
properties stated of x.) Also, N · x ≥ 0 since N has nonnegative intersection with
almost all (−1)-curves, and P · x ≥ 0, while −KX = P + N ; so P · x = 0. Since
P 2 = 0 and x2 = 0, x is a multiple of P by the Hodge index theorem.

We can deduce that the nef cone A(X) is rational polyhedral near any point y
in A(X) not in the ray R>0P . First, such a point has y2 ≥ 0 and also P · y ≥ 0,
since y and P are nef. If P · y were zero, these properties would imply that y was
a multiple of P ; so we must have P · y > 0. Since the only possible limit ray of
(−1)-rays is R≥0P , there is a neighborhood of y which has positive intersection with
almost all (−1)-curves. Since almost all extremal rays of Curv(X) are spanned by
(−1)-curves, we conclude that the nef cone A(X) is rational polyhedral near y, as
claimed.

In particular, for each (−1)-curve E not contained in a fiber of X → B, the face
A(X) ∩ E⊥ of the nef cone is rational polyhedral, since it does not contain P . So
the cone ΠE spanned by P and A(X) ∩ E⊥ is rational polyhedral.

Let x be any nef R-divisor on X. Let c be the maximum real number such that
y := x− cP is nef. Then x and y have the same degree on all curves contained in a
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fiber of X → B. By our list of the extremal rays in Curv(X), there must be some
(−1)-curve E not contained in a fiber such that y ∈ E⊥. Therefore x is in the cone
ΠE . That is, the nef cone A(X) is the union of the rational polyhedral cones ΠE ,
as in the figure. (The positive cone modulo scalars can be viewed canonically as
real hyperbolic space, and the figure shows the nef cone modulo scalars as a convex
subset of hyperbolic space.)

Any rational point x in the nef cone A(X) is effec-

P

tive, by Lemma 4.2. So the rational polyhedral cones
ΠE are contained in Ae(X), and Ae(X) = A(X) is the
union of these cones. Since there are only finitely many
Aut(X, ∆)-orbits of (−1)-curves E, Theorem 3.1 proves

the cone conjecture for X.
It remains to consider the case where −KX has Iitaka dimension 0. In the Zariski

decomposition −KX ≡ ∆ = P +N , P is numerically trivial, so −KX ≡ N where N
is an effective Q-divisor with negative definite intersection pairing on its irreducible
components. In this case, N is the unique effective R-divisor numerically equivalent
to −KX , and so the given divisor ∆ is equal to N .

We use the following negativity lemma, which is essentially an elementary result
on quadratic forms [6, Lemma V.3.5.6].

Lemma 4.3 (Negativity lemma) Let N be a set of curves on a smooth projective
surface on which the intersection pairing is negative definite. Let −D be a linear
combination of the curves Ni which has nonnegative intersection with each Ni. Then
D is effective. Moreover, the support of D is a union of some connected components
of N .

In our case, we can contract all the curves in N . (There is a positive linear
combination D =

∑
aiNi with D · Ni = −1 for all i by Lemma 4.3. The pair

(X, ∆ + εD) is klt for ε > 0 small, and (KX + ∆ + εD) ·Ni = −ε < 0 for all i, so we
can contract the Ni’s by the cone theorem [21, Theorem 3.7].) Write π : X → Y
for the resulting contraction. Since KX + ∆ ≡ 0, we have KX + ∆ = π∗(KY ). So
Y is a klt Calabi-Yau surface and (X, ∆) is the terminal model of Y .

We know the cone conjecture for Y by Theorem 3.3. But that does not im-
mediately imply the statement for X. In general, blowing up a point on a surface
increases the Picard number and can make the nef cone more complicated, for ex-
ample turning a finite polyhedral cone into one which is not finite polyhedral. Since
(X, ∆) is the terminal model of Y (and terminal models are unique in dimension 2),
every automorphism of Y lifts to an automorphism of (X, ∆). Thus it will suffice
to show that Aut(Y ) = Aut(X, ∆) has a rational polyhedral fundamental domain
on the nef effective cone of X.

We can describe all the extremal rays of the cone of curves Curv(X), following
Nikulin [36, Proposition 3.1]. We have mentioned that every KX -negative extremal
ray is spanned by a (−1)-curve. On the other side, a KX -positive extremal ray R≥0x
must be spanned by one of the finitely many curves in N , since 0 > −KX · x =
N · x. Finally, let R≥0x be an extremal ray of Curv(X) in K⊥

X . This ray may be
spanned by one of the curves Ni. If it is not, then x · Ni ≥ 0 for all i. Therefore
0 = −KX · x = N · x ≥ 0, and so Ni · x = 0 for all i. That is, x = π∗(w) for some
w ∈ Curv(Y ).
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Let N1, . . . , Nr be the irreducible components of N . A (−1)-curve C in X has
1 = −KX ·C = (

∑
aiNi) ·C =

∑
aiλi, where a1, . . . , ar are fixed positive numbers

and we write λi = C ·Ni. As a result, there are only finitely many possibilities for
the natural numbers (λ1, . . . , λr), for all (−1)-curves on X not among the curves
Ni. Call these the finitely many types of (−1)-curves on X.

We now describe the nef cone of X. Every divisor class u on X can be written
as π∗(y)−

∑
biNi for some real numbers bi and some y ∈ N1(Y ). If u is nef, then y

must be nef on Y . Also, u has nonnegative degree on the curves Ni, which says that
(b1, . . . , br) lies in a certain rational polyhedral cone B. The cone B is contained in
[0,∞)r by the negativity lemma, Lemma 4.3. By our description of the extremal
rays of Curv(X), a class u = π∗(y)−

∑
biNi in N1(X) is nef if and only if y is nef

on Y , (b1, . . . , br) is in the cone B, and u has nonnegative degree on all (−1)-curves
not among the curves Ni in X. The last condition says, more explicitly: for each
(−1)-curve C not among the curves Ni in X, we must have

0 ≤ C · [π∗(y)−
∑

biNi]

= y · π∗(C)−
∑

λibi

where we write λi = C ·Ni.
Thus, for u = π∗(y) −

∑
biNi to be nef means that the numbers bi satisfy

the upper bounds
∑

λibi ≤ y · π∗(C) for all (−1)-curves C on X not among the
curves Ni, where (λ1, . . . , λr) is the type of C. Notice that a (−1)-curve C on X is
determined by its type together with the class π∗(C) in N1(Y ).

Since Aut(X, ∆) = Aut(Y ), the theorem holds if for every rational polyhedral
cone S ⊂ Ae(Y ), the inverse image T of S under π∗ : Ae(X) → Ae(Y ) is ratio-
nal polyhedral. (Then the inverse images of any decomposition given by the cone
conjecture for Y form a decomposition satisfying the cone conjecture for (X, ∆).)
Let us first define T to be the inverse image of S in the nef cone A(X); at the end
we will check that T is actually contained in the nef effective cone. Since S \ 0 is
compact modulo scalars, it suffices to prove that T is rational polyhedral in the
inverse image of some neighborhood of each nonzero point in S.

First, let y0 ∈ S be a point with y2
0 > 0. We want to show that only finitely

many (−1)-curves in X are needed to define the cone T over a neighborhood of
y0 in S. It suffices to show that for each type λ of (−1)-curves on X, there is a
finite set Q of (−1)-curves of type λ such that for all y in some neighborhood of
y0, y · π∗(C) is minimized among all (−1)-curves C of type λ by one of the curves
in Q. The point is that the type of the (−1)-curve determines the rational number
c := π∗(C)2. (This can be positive, negative, or zero, as examples show.) The
intersection pairing on N1(Y ) has signature (1, ∗) by the Hodge index theorem.
Since y2

0 > 0, the intersection of the hyperboloid {z ∈ N1(Y ) : z2 = c} with
{z ∈ N1(Y ) : |z ·y0| ≤ M} is compact, for any number M . So there are only finitely
many integral classes z in N1(Y ) with z2 = c and with given bounds on z · y0, and
the same finiteness applies for y in some neighborhood of y0. Thus only finitely
many classes z = π∗(C), and hence only finitely many (−1)-curves C, can minimize
y · π∗(C) for any y in a neighborhood of y0, as we want.

It remains to consider a nonzero point y0 in S with y2
0 = 0. Since S ⊂ Ae(Y ) is a

rational polyhedral cone contained in the positive cone {y ∈ N1(Y ) : y2 ≥ 0, A ·y ≥
0}, y0 must belong to an extremal ray of S. Therefore we can scale y0 to make it an
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integral point in N1(Y ) (the class of a line bundle on Y ). Since y0 is a nef integral
divisor on the klt Calabi-Yau surface Y , it is semi-ample by Lemmas 4.2 and 3.2.
Since y2

0 = 0, the corresponding contraction maps Y onto a curve L.
For each point p of Y over which π : X → Y is not an isomorphism, let D be

a curve through p which is contained in a fiber of Y → L (clearly there is such a
curve). Let C be the proper transform of D in X. Since C is contained in a singular
fiber of X → L, C has negative self-intersection and hence spans an extremal ray
of Curv(X). Since C is not among the curves Ni and has positive intersection with
some curve Ni, our description of the extremal rays of Curv(X) shows that C is a
(−1)-curve. Thus, for each connected component R of N (corresponding to a point
over which π : X → Y is not an isomorphism), there is a (−1)-curve C on X such
that y0 · π∗(C) = 0 and λi = C ·Ni is positive for some Ni in R.

Moreover, the set Q of (−1)-curves C in X with y0 · π∗(C) = 0 is finite, since
such a curve must be contained in one of the finitely many singular fibers of X → L.
I claim that these finitely many (−1)-curves are enough to define the cone T over a
neighborhood of the vertex y0 in the rational polyhedral cone S. We can view such
a neighborhood (up to scalars) as the set of linear combinations y = y0 +

∑
civi,

for some nef classes vi on Y , with ci ≥ 0 near zero. Therefore y · π∗(C) ≥ y0 · π∗(C)
for all (−1)-curves C in X. So y · π∗(C) is at least 1 for the (−1)-curves C outside
the set Q, whereas it is small (for ci near zero) for C in the set Q. Therefore the
inequality

∑
λibi ≤ y · π∗(C) is only needed for the finitely many curves C in Q;

that is, T is rational polyhedral over a neighborhood of y0 in S.
To check this in detail, we have to recall our earlier comment that for each

connected component R of N , Q contains a (−1)-curve C with λi > 0 for some Ni

in R. This is needed to show that the inequalities for C in Q imply the inequalities
for all (−1)-curves C in X. Namely, the inequalities for C in Q imply that bi is
small (assuming y is near y0) for some Ni in each connected component of N . By
the negativity lemma, since (b1, . . . , br) is in B, it follows that every bi is small.
Indeed, Lemma 4.3 says that if a point in the rational polyhedral cone B has one
bi equal to zero, then bj is also zero for every Nj in the same connected component
as Ni. This implies the same statement for “small” in place of “zero”.

Thus the cone T ⊂ A(X) is rational polyhedral. We actually want to know that
this rational polyhedral cone is contained in Ae(X). That is the case, by Lemma
4.2 (on a smooth projective rational surface, every nef Q-divisor class is effective).
As explained earlier, since T ⊂ Ae(X) is rational polyhedral, the cone conjecture
for (X, ∆) is proved. QED

5 Finite generation of the Cox ring

Corollary 5.1 Let (X, ∆) be a klt Calabi-Yau pair of dimension 2 over the complex
numbers. The following are equivalent:

(1) The nef effective cone of X is rational polyhedral. (This means in particular
that the nef effective cone is closed.)

(2) The nef cone of X is rational polyhedral.
(3) The image of Aut(X) → GL(N1(X)) is a finite group.
(4) The image of Aut(X, ∆) → GL(N1(X)) is a finite group.
If the first Betti number of X is zero (equivalently, if the irregularity of X is
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zero), then properties (1) to (4) are equivalent to finite generation of the Cox ring
Cox(X) ∼= ⊕L∈Pic(X)H

0(X, L).

For this class of varieties, property (4) is often an easy way to determine whether
the Cox ring is finitely generated. For example, for minimal rational elliptic surfaces,
property (4) is equivalent to finiteness of the Mordell-Weil group, which can be
described in simple geometric terms [45, Theorem 5.2, Theorem 8.2]. The rational
elliptic surfaces with finite Mordell-Weil group have been classified by Miranda-
Persson [28] and Cossec-Dolgachev [8]. (See Prendergast-Smith [40] for an analogous
classification in dimension three.) The K3 surfaces and Enriques surfaces with finite
automorphism group were classified by Nikulin, Vinberg, and Kondo [34, 37, 20, 47].

In any dimension, every variety X of Fano type, meaning that there is a divisor
Γ with (X, Γ) klt Fano, has finitely generated Cox ring, by Birkar-Cascini-Hacon-
McKernan [4, Corollary 1.3.1]. The varieties of Fano type form a subclass of the
varieties X which have a divisor ∆ with (X, ∆) klt Calabi-Yau, namely the subclass
with −KX big. (Compare the proof of Theorem 4.1 in the case where −KX is
big.) For example, the blow-up X of P2 at any number of points on a conic is
of Fano type. Therefore X has finitely generated Cox ring, as Galindo-Monserrat
[13, Corollary 3.3], Castravet-Tevelev [7], and Mukai [31] proved by other methods.
Recently Testa, Várilly-Alvarado, and Velasco showed that every smooth rational
surface with −KX big has finitely generated Cox ring [44]; Chenyang Xu showed
that such a surface need not be of Fano type.

Proof of Corollary 5.1. The closure of the nef effective cone is the nef cone,
and so (1) implies (2). The subgroup of GL(n,Z) preserving a rational polyhedral
cone that does not contain a line and has nonempty interior is finite, and so (2)
implies (3). Clearly (3) implies (4). Theorem 4.1 shows that Aut(X, ∆) acts with
rational polyhedral fundamental domain on the nef effective cone, and so (4) implies
(1).

Suppose that these equivalent conditions hold. Since (X, ∆) is a klt Calabi-Yau
pair, every nef effective Q-divisor on X is semi-ample by Lemma 3.2. Another way
to say this is that every face of the cone of curves can be contracted. If b1(X) = 0,
Hu and Keel showed that (since X has dimension 2) finite generation of the Cox
ring is equivalent to the nef cone being rational polyhedral together with every nef
divisor being semi-ample [17]. QED
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[2] L. Bădescu. Algebraic surfaces. Springer (2001).

[3] W. Barth, C. Peters, and A. Van de Ven. Compact complex surfaces. Springer
(1984).

[4] C. Birkar, P. Cascini, C. Hacon, and J. McKernan. Existence of minimal models
for varieties of log general type. J. Amer. Math. Soc., to appear.

16



[5] R. Blache. The structure of l.c. surfaces of Kodaira dimension zero. J. Alg.
Geom. 4 (1995), 137–179.
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[43] B. Szendröi. Some finiteness results for Calabi-Yau threefolds. J. London Math.
Soc. 60 (1999), 689–699.

[44] D. Testa, A. Várilly-Alvarado, and M. Velasco. Big rational surfaces.
arXiv:0901.1094

[45] B. Totaro. Hilbert’s fourteenth problem over finite fields, and a conjecture on
the cone of curves. Compos. Math. 144 (2008), 1176–1198.

[46] H. Uehara. Calabi-Yau threefolds with infinitely many divisorial contractions.
J. Math. Kyoto Univ. 44 (2004), 99–118.

[47] E. Vinberg. Classification of 2-reflective hyperbolic lattices of rank 4. Trans.
Moscow. Math. Soc. 2007, 39–66.

[48] P.M.H. Wilson. Minimal models of Calabi-Yau threefolds. Classification of al-
gebraic varieties (L’Aquila, 1992), 403–410.

[49] D.-Q. Zhang. Logarithmic Enriques surfaces, I, II. J. Math. Kyoto Univ. 31
(1991), 419–466; 33 (1993), 357–397.

DPMMS, Wilberforce Road, Cambridge CB3 0WB, England
b.totaro@dpmms.cam.ac.uk

19


