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In this paper we consider three spaces which can be viewed as finite-
dimensional approximations to the 2-fold loop space 2252, These are Rat,(CP),
the space of based holomorphic maps $2— 2 of degree k; Bf,, the classify-
ing space of Artin’s braid group on g strings; and Cj(R?2, S!), which is the
space of configurations of < k distinct points in R? with labels in S!, with
some identifications. The space Rat; can be described more explicitly as
the space of rational functions
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q(z) 2k bp_gzPl 4 g by

where the polynomials p(») and g(z) are relatively prime. Extending a
fundamental theorem of G. Segal [8], Cohen, Cohen, Mann, and Milgram
([3], [4]) have shown that the spaces Rat,, Bpsi, and Cj are all stably
homotopy equivalent; in fact they all split stably as a wedge VjSij(Sl),
where D; = C;/Cj—1 is a well-known space related to Brown-Gitler spectra.
In this paper we show that for most values of k, the space Rat; is not
homotopy equivalent to Bfy; or to Cj.
More precisely, we prove:

Theorem 1 For all k > 0 such that k + 1 is not a power of 2, the Z/2
cohomology ring of Raty is not isomorphic (as a graded ring) to that of
Bﬁgk or Ck.

So, for k + 1 not a power of 2, there are no maps between Rat; and
one of Bfsy or C) which induce isomorphisms on homology. What happens
when k + 1 is a power of 2? For k = 1 there are homotopy equivalences
Raty ~ BBy ~ Cy ~ S!, but I don’t know what happens for other such k.



For k = 3, all three spaces Rats, Bf3, C3 have isomorphic Z/2-cohomology
rings. For all k¥ and all p > 3, the three spaces Raty, BOsx, and O} all have
isomorphic Z/p-cohomology rings.

We can also ask how Bf,;, differs from Ck. We have 71(Bfar) = Par and
71(Ck) = Z, so they are not homotopy equivalent for k > 2 because the braid
group fs; is not abelian. Less trivially, R. Cohen [6] asked whether there
is a map Bfar— C) which gives an isomorphism on homology. As evidence
for this, we prove that By, and C} have isomorphic Z/p-cohomology rings
for all primes p. Nonetheless, if one considers homology with non-constant
coefficients, then R. Cohen’s statement can fail. This is easier to state in
terms of the natural Z-covers Raty, BB, and Cj of these spaces: namely,
in general, all three of these covering spaces have different homology groups.
The proof will appear in the final version of this paper. For example II*(C’",e )
is sometimes infinite-dimensional, while Bﬁgk and Rat; always have finite-
dimensional homology.

This paper was inspired by Cohen-Shimamoto [7]. They proved that
Rat, and C5 are not homotopy equivalent. Then I proved Theorem 1 for
k = 2, using results from their paper. R. Cohen suggested that one could
give a better proof by comparing the action of the Araki-Kudo operations on
different components of 0252, This idea allowed me to generalize Theorem
1 to its current form.

I thank Ralph Cohen for his help. !

1 Homology of 025? with Z/2 coefficients

The standard May-Milgram-Segal approximation to Q252 is the disjoint
union of braid spaces, [[,59 BB;. See Fred Cohen [2], for example. We
can describe B, geometncally as follows. Define the conﬁguratlon space
F(R2,q) of q distinct points in R? to be {(z,.. sy g) s 25 € R? z; # zi}:
The symmetric group ¥, acts on F(R2 ¢) in a natural way. Then By =
F(R2,q)/Z,. Thus Bp, is the space of ¢ distinct unordered points in R2.
Cohen computed the Z/2-homology of I_[q>0 BB, and Q25? as follows.
(In this section, all homology will have Z/2 coefficients.) To begin, we note
that 190252 = 75(S5?) = Z, where the isomorphism is given by the degree
of a map S2—52. Let 225? denote the ith component of 2252, i € Z.
Both spaces are “Cs-spaces,” so they each have an Araki-Kudo operation
Q : Hy;—Hagy1 as well as a Pontrjagin product which makes the homology
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a commutative nng More precisely, the map [] 5, Bﬁq—>9252 of Us-spaces
maps Bf, into Q1 262 and Q maps H,0%5? to H2q+102,52 Let g € Ho(Bp1)
he the generator of this group; we also let g denote the image in Hy(Q25?)
of this element. (Thus ¢ € HyN2S5? represents the component of 0252
containing the identity map $2—S5? (viewing this as a point in 02252).)
Then we have algebra isomorphisms as follows:

H.(]] BB, = Z/2[g,Q9,Q%,...]

H.(9%5%) = Z/2[g,97'] ® Z/2(Qg, Q% . . ]

In particular, we can view H, (U Bp,) as a subring of H,(02%25?), as I do
from now on. We note that Q'g is a homology class of dimension 2* — 1
living in the 2°th component of 0252,

Thus H.(Bp,) is the span of the monomials in g, Qg, @?g,... of weight
= g, where Qg is given weight 2° and dimension 2° — 1.

Using the fact that the “Browder operation” on H,025?% is 0, F. Cohen
shows ([2], p. 372) that the Araki-Kudo operation @ : H,025% - H,,,10%52
is linear, and that the Cartan formula Q(zy) = 2*Qy +Qz-9? holds with no
error terms. This indicates that 252 is easier to nunderstand than a general
2-fold loop space.

Cohen also computes the coproduct on the homology of these spaces (or,
equivalently, he computes the cup product on cohomology). The result is
that H.(]] BB,) is a primitively generated Hopf algebra. More precisely, if
we denote the coproduct by ¢ : H,—H.® H., we have ¥(g) = ¢®g, and Qig
for ¢ > 1 is primitive in its component, that is, ¥(Q'g) = ¢ ®Q*g+Q'g®¢>".
To verify this formula, use the diagonal Cartan formula for @, [2], p. 217.
In particular, it helps to notice that, by the Cartan formula for @@, we have
Q(z?) = z2Qz + Qz - 22 = 0 for all z in H,025?, since we are using Z/2
coefficients. (This is a sort of Adem relation, since z - 22 is an Araki-Kudo
operation just as @ is.)

2 Bpy and C) have isomorphic Z/2-cohomology
rings

We first prove that Bfy, and C) have isomorphic Z/2-cohomology rings.
The next three paragraphs quote [7]’s description of C} verbatim.



Let C(R?,Y) denote the space of all configurations of distinct points in
R? with labels in ¥. That is,

C(R%Y) = U F(R? g) x5, Y/ ~

where F(R?,¢) = {(21,...,24) : 2; € R, 2; # 2;} and E; is the symmetric
group on g letters. The relation is generated by setting

(zl,...,zq) Xz, (tl,...,tq_l,*) ~ (zl,...,zq_l) X3, 4 (tl,...,tq_l)
q

where ¥ € Y is a fixed basepoint.
A well-known result of May, Milgram, and Segal states that, when Y is
a connected CW-complex, C(R?,Y) is homotopy equivalent to the based
loop space
0?2y = {f: 52532 : f(o) =% € Y}
Now let Cx(R2,Y) C C(R2,Y) denote the subspace of configurations of
length < k. That is,

Cu(R%,Y) = Ug_ F(R?, q) x5, Y/ ~.

The space we want to consider is C := C(R2, §1), a finite-dimensional
approximation to 2253. F. Cohen’s calculations show that

H.(Ur>0Ch) = H.(02S?) = Z/2[h, Qh, Q?h,.. ]

where h € H;(0253) is the image of the generator of H;S! via the standard
map S'-0?%%(S') = Q283 This is also a primitively generated Hopf
algebra; namely, Q*h is primitive for all ¢ > 0.

Define a weight on the monomials in H,(Q25%) hy

wt(Q'h) = 2°, wt(ab) = wt(a) + wi(b).

By SLN 533, p. 239, H,C), — H,0253 is the span of the monomials of
weight < k.

Now the Hopf map §*— 5?2 induces a map of 2-fold loop spaces 0250252
in fact this map is a homotopy equivalence from Q2253 to the component
0352, as follows from the long exact sequence of homotopy groups of the
Hopf fibration S'—$%—S2. From now on we identify 0253 with the com-
ponent 0352.

In these terms, the generator h € H;(0253) is equal to g~2Qg, the
generator of H1(035%) = Z/2. So we can say that:

H.(Ur>oCh) = H.(035%) = Z/2[g7%Qg, Q(972Q9), Q*(s?Qy), .. ]
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And H,C, is the span of the monomials of weight < k, where Q*(¢72Qg) is
given weight 2* and dimension 2°*! — 1.

Proposition 1 The homotopy equivalenie gk 5 n§k52—»0352 sends H, B3, C
H.Q32,5? onto H,C\, C H.O}S?. Therefore H.(Bfax,Z/2) = H.(Ck,Z/2)
as coalgebras.

This proposition says in particular that Bf,; and Cj have isomorphic
Z /2-cohomology rings, as I claimed at the beginning of this section.

The key computation for the proof of this proposition is that Q* '(972Qg) =
g"z‘“Q'“g for all i > 0. This is clear for i = 0, and the induction uses the
Cartan formula for Q and the fact that Q(z?) = 0 for all z € H. n?s?,

By Section 1, the homology H. (Bﬂq) is the span of the monomials in
g, Qg, Q%g, ... of weight = ¢, where Qg is given weight 2* and dimension
2* — 1. Therefore the image of H,Bpy in H.Q2S? under the map -g —2k .
H., ngksz S H. 0252 is the span of the monomla,ls in 1, ¢7%Qg, ¢ 'Qy,

. of weight = 2k, where g~2'Q'g is given weight 2¢ and dimension 2¢ — 1.
Equivalently, by the previous paragraph, this is the span of the monomials in
972Qg, Q(¢72Qg), Q*(¢7%Qg), ... of weight < k, where (after we multiply
the previous weights by 1/2) Q*(¢72Qg) is given weight 2° and dimension
271 _ 1. But this is exactly the space H.C) C H.035?.
This proves the proposition.

3 Rat1

It is easy to see that the space Rat; of based holomorphic maps 5?2552 of
degree 1 is homotopy equivalent to the circle S!. For example, take the bas-
ing condition to be 0o > oo; then Rat; is the group of affine tranformations
zv az+b,a, b€ C,a#0, which is homotopy equivalent to C — 0 and
hence to S!. In particular H;(Rat,Z) = Z.
By Segal’s stability theorem (8], the inclusion Rat;—025? induces a sur-
jection Hq(Raty, Z)—+H1(Qf5'2, Z). Since both groups are isomorphic to Z,
this map is actually an isomorphism. We deduce that Hy(Raty, Z/p)— H1(Q152,Z/p) =
Z/p is an isomorphism for all primes p, a fact which we will need later.

4 Proof of Theorem 1

We have proved that H.C} and H.Bpfy, are isomorphic as coalgebras. To
complete the proof of Theorem 1, we have to show that H.Rat; is not



isomorphic to H,Bf3y; as a coalgebra, assuming that k + 1 is not a power of
2;

By F. Cohen and Boyer-Mann [1], x>0 Raty is a Cy-space, and the natu-
ral map [[x>o Rat,—025? is a map of Cy-spaces. Thei image of HyRat;— H,Q35? =
Z/2 is not zero, so it contains the generator of the latter group, g~ !Qg. So
the image of H.(II, Rati)— H.Q?S? contains the subring A of H.Q?5? gen-
erated by g and Q*~!(¢g~!Qyg), + > 1. Here g has weight 1, dimension 0, and
Q' Y(g7'Qg), i > 1, has weight 2°~! and dimension 2' — 1. We need to check
that A is actually a polynomial ring on the generators g and Q' "1(g71Qyg),
i> 1.

To see this, define subrings B; of the ring H.Q%52 = Z/2[g,¢7 !, Qg, Q%g, .. .]
to be B; = Z/2[g,g"1,Qg, L@ g] Then the Cartan formula for Q shows
that Q*~1(¢g~1Qg) = g_2 Q'g(mod B;_1), for i > 1. Although this is not
an equality in H.Q25?, the equality modulo B;_; suffices to imply that A4 is
a polynomial ring with generators g and Qi_l(g‘ng), ¢ > 1. (To see this,
filter the ring B; by the subspaces Bjx = ¥ ;< Bi-1 - (Q'g).)

In particular, since A is a polynomial ring, we can compute dim A},
where 4} = dim AﬂH;Q2 52, The weights of the generators of A are exactly
1/2 times the corresponding generators of H.([], BB,), with Q" Y97'Qg) €
A corresponding to Qg € H. (LI, BB,) for i > 1; so dim A} = dim H. Bpfy.
By (3], dim H,.Bfs, = dim H, Ra,t;¢ Thus

dim H,Bpy, = dim H.Rat; > dim A} = dim H, Bfa.

So dim H.Rat, = dim A};. Thus H.([[; Raty)— H.Q%S? is injective and
the image is exactly the polynomial ring A = Z/2[g, Q"' (9~'Qg) : i > 1] c
H.0%252,

Thus the homology of Rat,, is “built up” using the Araki-Kudo operation
@ just as the homology of Cy is; the difference between them, as coalgebras,
arises because the basic homology class for Rat; lies in H;Q%5?%, while the
basic homology class for C; lies in H;Q252. This makes a difference because
of the Cartan formula for ) and the fact that Q is nonzero on HyQ252.

We now compute the coproduct on H.Rati. By the diagonal Cartan
formula for Q,

¥(9™'Qg) P97 )¥(Qg)
(97'® 9 )9 ® Qg + Qg ® G?)

= g®97'Qe+97'Qs®y.

So g~1Qg is primitive in its component.
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But Q‘(g‘ng) is not primitive in its component for 1 > 1. In fact, we
have:

¥Q'(97'Q0) = ¥ ®Q'(¢7'Q0) +Q9®(s7'Qe)" +(97'Q9)* ® Qg

Dimensions: 0,271 — 1 2" — 1,2 282 1

For i > 1, these four terms are all in different dimensions, and each is
nonzero, so we see that Q*(g~'Qg) is not primitive in its component. This
formula is verified by induction, using the Cartan formula for Q and the fact
that Q(z?) =0, z € H.(N25?).

Although I won’t need it for the proof of Theorem 1, I should explain
how to compute the Z/2 cohomology ring of Rat; from the above formulas
for $Q'(97'Qg). Namely, we need to expand Q'g (which appears in the
formula for ¥Q*(¢~'Qg)) as a polynomial in g and the Q*(¢~'Qg), since
H.(]] Raty) is a polynomial ring in the latter generators. The result is, for
12> 1:

il st s
Qo =3 ¢"(671Qa)" " Q(s71Qg).
1=0

As usual, this is easy to check by induction. Plugging this into the for-
mula for ¥Q'(¢ ' Qg) gives a complete, althongh complicated, description
of H.(I] Raty) = Z/2[9,97"'Qg,Q(37'Qg),...] as a Hopf algebra.

We now come to the proof of Theorem 1. We observe that the top-
dimensional homology group of Raty and Bf,; is 1-dimensional. Namely,
let k have binary expansion k = ch-.l 27; then the lop dimension is Hapo ()
where |J| is the order of the set J. For Raty, this homology group is spanned
by = = [l;es Qi(g"Qg); for Bfy. it is spanned by v = [[;¢; Q’*'g. The
idea is to consider the sets S(z) = {r > 0: ¥(z)|n,0n,,_,,_, # 0}, and the
set S(y) defined the same way for y. If S(z) # S(¥), then the cohomology
rings H* Rat, and H* Bfj, are not isomorphic.

If k 4+ 1is not a power of 2, then there exists an integer j > 1 such that
J€Jbut j—1¢ J;let 7 be the smallest such integer. (Recall that J is the
set of nonzero digits in the binary expansion of k.)

Then one can check that 9(z) is nonzero in Hyj_, ® H gim(s)-(2i-1) 28

follows. One has ¥(z) = [[ie; ¥(Q'(¢71Qg)), and we can use the formu-
las above for ¢Q'(g"Qg) to express ¥(z) as a sum of various products of
monomials. In this sum there is only one term in Hyj_; @ H §im(e)-(25 1)
namely
. , _ ; _
(@) [[¢* ®(s7'Qe)* [[ Q'(s7Qg)

ter 34

I#; 1#5

+Q'(97'Qg) ® g7
2|+l - 1,0.



And this is not zero, given the description of H.025? as a polynomial ring.
Since j — 1 ¢ J, there is no other term in this dimension when ¥(z) is
expanded. So ¥(z) is not zero in Hyj_y ® Hdim(z)—(2j—-1)'

Now 9(y) is easier to write out, and one sees that since j > 1 and
J—-1¢J,¥(y)is 0in Hyj_; ® Hdim(!)_(zj_l). Therefore the cohomology
rings H* Rat, and H*Bf,, = H*C), are not isomorphic, provided that k + 1
is not a power of 2.

5 Homology of 025% with Z/p coefficients, p > 3

The reference for this section is [2]. Throughout this section we consider
homology with Z/p coefficients, p > 3.
For C3-spaces X, in particular 2-fold loop spaces, there is a function
Q@ : H X > Hyq4p-1X defined for ¢ odd, as well as a Pontrjagin product
which makes H.X a graded-commutative ring. In addition, Browder defined
an operation
[ 5 ] TH; X ® HjX—>H,‘+j+1X

which makes H*~! a graded Lie algebra. The signs are such that (=, 2l =10
for z odd-dimensional, but not necessarily for z even-dimensional. For X =
0252, Q and the Browder operation map as follows:

Q : H035%> Hygip-102, 52

[,]: H:0}S? @ H;0} S’ - H;y 11 02,82

F. Cohen computed H.(][ BB,) and H.Q25? as algebras. The result is
as follows. Let g be the generator of Ho0}S?. Let \ = [g,9] € H 0352
The Lie algebra generated by g is spanned by g and ), since [A,A] = 0 by
anticommutativity and [g,A\] = 0 by the Jacobi identity. (For p = 3, the
Jacobi identity doesn’t prove this, but Cohen states explicitly, p. 216, that
[z,[2,2]] = 0 even when p = 3.) Then we have:

H.(IIBB,) = Z/pls] QE[N\QXQ%),...]®Z/p[BQ),B8Q%),...]
H.Q’S* = Z/plg,g7'] ®E[\Q)\Q%)\,...]|®Z/p[BQ)AQ%),..]

Here E denotes the exterior algebra on the given generators and Z/p|.. ]
represents a polynomial ring. Here g has dimension 0 and weight 1, Q*),
i > 0 has dimension 2p* — 1 and weight 2p", and AQ*), i > 1 has dimension
2p' — 2 and weight 2p'. Finally, 8 denotes the Bockstein operation 3 :
H;X—>H; ;X.



Using the fact that the Browder operation on H.0Q2S? is 2-step nilpo-
tent, F. Cohen shows ([2], p. 372) that the Dyer-Lashof operation @ :
anzsn__,quHstz is linear, and that the Cartan formula Q(zy) = zPQy
holds with no error terms. (Here z is even-dimensional and y is odd-
dimensional.) This indicates that 0252 is easier to understand than a general
2-fold loop space.

6 Rati, BBk, and C) have isomorphic Z/p-cohomology
rings, p > 3

Let p > 3. In this section we use the Cartan formula in H.0%52 to com-
pute the precise image of H, Rat; in H*ﬂisz, and to describe the coalgebra
structure on H,Raty. In particular, we will see that Ratx, Bfak, and Cy
have isomorphic Z/p-cohomology rings, unlike what happens for p = 2.

The Cartan formula for Q in H.0Q25? says that Q(zy) = zPQy for =
even-dimensional, y odd-dimensional. In particular (and this is the only
case we need),

Qg™ = gPQA
BQI(g™N) = ¢7P'BQIA

Now the image of the map HyRat;— Hy2S? obviously contains g. Also,
the map Hj Rat;— H1025? is not 0, so the image contains the generator of
H1038% = Z/p, namely g ). Since ], Rat,—N25% is a map of Ca-spaces
[1], the image of H.(II) Raty)— H.N25? contains the subring A of H.0?5?
generated by g, Q*(¢~')) for i > 0, and BQi(g~')\) for i > 1. By the
previous paragraph, A can also be described as the ring generated by g,
g P'Q'A, and g P BQ*) for i > 1.

It is now easy to check that the isomorphism -g* : H.02S? 5 H.03,5°
maps A} C H,.ﬂz.S'2 onto H,.Bf C H*Q3k52. We have dim H.Bf3y, =
dim H.Rat, by [3]. So

dim H.Bfs, = dim H.Rat, > dim A} = dim H.Bfs,

sodim H,Rat; = dim Aj}. Thisimplies that the map H. (]I, Iitzt,,)—»]‘[,.,('lzs2
is injective and that the image is exactly the ring

A=Z/plg] ® E[g"):j > 01 ® Z/plg P’ BQIA: j > 1].



The isomorphism -g* : H.Q25? 5 H.02, 5% maps H.Rat, C H.Q2S?
onto H,Bfy C H.03,5%. Since -g* is induced by a map of spaces -g* :
025202, 52, it preserves the coalgebra structure on homology. So the
coalgebra H,(Raty,Z/p) is isomorphic to the coalgebra H,(Bfa,Z/p) for
p > 3, as desired.
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