RECEIVED RESEARCH INSTITUTE AND THE WATTER AND THE SCIENCES RESEARCH INSTITUTE AND THE SCIENCES RESEAR

The cohomology ring of the space of rational functions

Burt Totaro

July 16, 1990.

In this paper we consider three spaces which can be viewed as finite-dimensional approximations to the 2-fold loop space $\Omega^2 S^2$. These are $Rat_k(\mathbf{C}P^1)$, the space of based holomorphic maps $S^2 \to S^2$ of degree k; $B\beta_q$, the classifying space of Artin's braid group on q strings; and $C_k(\mathbf{R}^2, S^1)$, which is the space of configurations of $\leq k$ distinct points in \mathbf{R}^2 with labels in S^1 , with some identifications. The space Rat_k can be described more explicitly as the space of rational functions

$$\frac{p(z)}{q(z)} = \frac{z^k + a_{k-1}z^{k-1} + \dots + a_0}{z^k + b_{k-1}z^{k-1} + \dots + b_0}$$

where the polynomials p(z) and q(z) are relatively prime. Extending a fundamental theorem of G. Segal [8], Cohen, Cohen, Mann, and Milgram ([3], [4]) have shown that the spaces Rat_k , $B\beta_{2k}$, and C_k are all stably homotopy equivalent; in fact they all split stably as a wedge $\bigvee_{j\leq k} D_j(S^1)$, where $D_j = C_j/C_{j-1}$ is a well-known space related to Brown-Gitler spectra. In this paper we show that for most values of k, the space Rat_k is not homotopy equivalent to $B\beta_{2k}$ or to C_k .

More precisely, we prove:

Theorem 1 For all $k \geq 0$ such that k+1 is not a power of 2, the $\mathbb{Z}/2$ cohomology ring of Rat_k is not isomorphic (as a graded ring) to that of $B\beta_{2k}$ or C_k .

So, for k+1 not a power of 2, there are no maps between Rat_k and one of $B\beta_{2k}$ or C_k which induce isomorphisms on homology. What happens when k+1 is a power of 2? For k=1 there are homotopy equivalences $Rat_1 \simeq B\beta_2 \simeq C_1 \simeq S^1$, but I don't know what happens for other such k.

For k=3, all three spaces Rat_3 , $B\beta_6$, C_3 have isomorphic $\mathbb{Z}/2$ -cohomology rings. For all k and all $p\geq 3$, the three spaces Rat_k , $B\beta_{2k}$, and C_k all have isomorphic \mathbb{Z}/p -cohomology rings.

We can also ask how $B\beta_{2k}$ differs from C_k . We have $\pi_1(B\beta_{2k}) = \beta_{2k}$ and $\pi_1(C_k) = \mathbf{Z}$, so they are not homotopy equivalent for $k \geq 2$ because the braid group β_{2k} is not abelian. Less trivially, R. Cohen [6] asked whether there is a map $B\beta_{2k} \to C_k$ which gives an isomorphism on homology. As evidence for this, we prove that $B\beta_{2k}$ and C_k have isomorphic \mathbf{Z}/p -cohomology rings for all primes p. Nonetheless, if one considers homology with non-constant coefficients, then R. Cohen's statement can fail. This is easier to state in terms of the natural \mathbf{Z} -covers $R\tilde{a}t_k$, $B\tilde{\beta}_{2k}$, and \tilde{C}_k of these spaces: namely, in general, all three of these covering spaces have different homology groups. The proof will appear in the final version of this paper. For example $H_*(\tilde{C}_k)$ is sometimes infinite-dimensional, while $B\tilde{\beta}_{2k}$ and $R\tilde{a}t_k$ always have finite-dimensional homology.

This paper was inspired by Cohen-Shimamoto [7]. They proved that Rat_2 and C_2 are not homotopy equivalent. Then I proved Theorem 1 for k=2, using results from their paper. R. Cohen suggested that one could give a better proof by comparing the action of the Araki-Kudo operations on different components of $\Omega^2 S^2$. This idea allowed me to generalize Theorem 1 to its current form.

I thank Ralph Cohen for his help. 1

1 Homology of $\Omega^2 S^2$ with $\mathbb{Z}/2$ coefficients

The standard May-Milgram-Segal approximation to $\Omega^2 S^2$ is the disjoint union of braid spaces, $\coprod_{q\geq 0} B\beta_q$. See Fred Cohen [2], for example. We can describe $B\beta_q$ geometrically as follows. Define the configuration space $F(\mathbf{R}^2,q)$ of q distinct points in \mathbf{R}^2 to be $\{(x_1,\ldots,x_q):x_i\in\mathbf{R}^2,x_i\neq x_j\}$. The symmetric group Σ_q acts on $F(\mathbf{R}^2,q)$ in a natural way. Then $B\beta_q=F(\mathbf{R}^2,q)/\Sigma_q$. Thus $B\beta_q$ is the space of q distinct unordered points in \mathbf{R}^2 .

Cohen computed the $\mathbb{Z}/2$ -homology of $\coprod_{q\geq 0} B\beta_q$ and Ω^2S^2 as follows. (In this section, all homology will have $\mathbb{Z}/2$ coefficients.) To begin, we note that $\pi_0\Omega^2S^2=\pi_2(S^2)\cong\mathbb{Z}$, where the isomorphism is given by the degree of a map $S^2\to S^2$. Let $\Omega_i^2S^2$ denote the *i*th component of Ω^2S^2 , $i\in\mathbb{Z}$.

Both spaces are " C_2 -spaces," so they each have an Araki-Kudo operation $Q: H_q \rightarrow H_{2q+1}$ as well as a Pontrjagin product which makes the homology

¹The author was supported by NSF grant DMS 8505550 through MSRI.

a commutative ring. More precisely, the map $\coprod_{q\geq 0} B\beta_q \to \Omega^2 S^2$ of C_2 -spaces maps $B\beta_q$ into $\Omega_q^2 S^2$, and Q maps $H_q \Omega_i^2 S^2$ to $H_{2q+1} \Omega_{2i}^2 S^2$. Let $g\in H_0(B\beta_1)$ be the generator of this group; we also let g denote the image in $H_0(\Omega_1^2 S^2)$ of this element. (Thus $g\in H_0\Omega^2 S^2$ represents the component of $\Omega^2 S^2$ containing the identity map $S^2\to S^2$ (viewing this as a point in $\Omega^2 S^2$).) Then we have algebra isomorphisms as follows:

$$H_*(\coprod B\beta_q)\cong \mathbf{Z}/2[g,Qg,Q^2g,\ldots]$$

$$H_*(\Omega^2 S^2) \cong \mathbf{Z}/2[g,g^{-1}] \otimes \mathbf{Z}/2[Qg,Q^2g,\ldots]$$

In particular, we can view $H_*(\coprod B\beta_q)$ as a subring of $H_*(\Omega^2 S^2)$, as I do from now on. We note that Q^ig is a homology class of dimension 2^i-1 living in the 2^i th component of $\Omega^2 S^2$.

Thus $H_*(B\beta_q)$ is the span of the monomials in g, Qg, Q^2g ,... of weight = q, where Q^ig is given weight 2^i and dimension $2^i - 1$.

Using the fact that the "Browder operation" on $H_*\Omega^2S^2$ is 0, F. Cohen shows ([2], p. 372) that the Araki-Kudo operation $Q:H_q\Omega^2S^2\to H_{2q+1}\Omega^2S^2$ is linear, and that the Cartan formula $Q(xy)=x^2Qy+Qx\cdot y^2$ holds with no error terms. This indicates that Ω^2S^2 is easier to understand than a general 2-fold loop space.

Cohen also computes the coproduct on the homology of these spaces (or, equivalently, he computes the cup product on cohomology). The result is that $H_*(\coprod B\beta_q)$ is a primitively generated Hopf algebra. More precisely, if we denote the coproduct by $\psi: H_* \to H_* \otimes H_*$, we have $\psi(g) = g \otimes g$, and $Q^i g$ for $i \geq 1$ is primitive in its component, that is, $\psi(Q^i g) = g^{2^i} \otimes Q^i g + Q^i g \otimes g^{2^i}$. To verify this formula, use the diagonal Cartan formula for Q, [2], p. 217. In particular, it helps to notice that, by the Cartan formula for Q, we have $Q(x^2) = x^2 Qx + Qx \cdot x^2 = 0$ for all x in $H_*\Omega^2 S^2$, since we are using $\mathbb{Z}/2$ coefficients. (This is a sort of Adem relation, since $x \mapsto x^2$ is an Araki-Kudo operation just as Q is.)

2 $Beta_{2k}$ and C_k have isomorphic ${f Z}/2$ -cohomology rings

We first prove that $B\beta_{2k}$ and C_k have isomorphic $\mathbb{Z}/2$ -cohomology rings. The next three paragraphs quote [7]'s description of C_k verbatim.

Let $C(\mathbb{R}^2, Y)$ denote the space of all configurations of distinct points in \mathbb{R}^2 with labels in Y. That is,

$$C(\mathbf{R}^2, Y) = \bigcup_{q=1}^{\infty} F(\mathbf{R}^2, q) \times_{\Sigma_q} Y^q / \sim$$

where $F(\mathbf{R}^2, q) = \{(x_1, \dots, x_q) : x_i \in \mathbf{R}^2, x_i \neq x_j\}$ and Σ_j is the symmetric group on q letters. The relation is generated by setting

$$(x_1,\ldots,x_q)\times_{\Sigma_q}(t_1,\ldots,t_{q-1},*)\sim(x_1,\ldots,x_{q-1})\times_{\Sigma_{q-1}}(t_1,\ldots,t_{q-1})$$

where $* \in Y$ is a fixed basepoint.

A well-known result of May, Milgram, and Segal states that, when Y is a connected CW-complex, $C(\mathbf{R}^2, Y)$ is homotopy equivalent to the based loop space

$$\Omega^2 \Sigma^2 Y = \{ f : S^2 \rightarrow \Sigma^2 Y : f(\infty) = * \in Y \}.$$

Now let $C_k(\mathbf{R}^2, Y) \subset C(\mathbf{R}^2, Y)$ denote the subspace of configurations of length $\leq k$. That is,

$$C_k(\mathbf{R}^2, Y) = \bigcup_{q=1}^k F(\mathbf{R}^2, q) \times_{\Sigma_q} Y^q / \sim.$$

The space we want to consider is $C_k := C_k(\mathbb{R}^2, S^1)$, a finite-dimensional approximation to $\Omega^2 S^3$. F. Cohen's calculations show that

$$H_*(\cup_{k>0}C_k) = H_*(\Omega^2 S^3) = \mathbf{Z}/2[h, Qh, Q^2h, \ldots]$$

where $h \in H_1(\Omega^2 S^3)$ is the image of the generator of $H_1 S^1$ via the standard map $S^1 \to \Omega^2 \Sigma^2(S^1) = \Omega^2 S^3$. This is also a primitively generated Hopf algebra; namely, $Q^i h$ is primitive for all $i \geq 0$.

Define a weight on the monomials in $H_*(\Omega^2 S^3)$ by

$$\operatorname{wt}(Q^i h) = 2^i, \ \operatorname{wt}(ab) = \operatorname{wt}(a) + \operatorname{wt}(b).$$

By SLN 533, p. 239, $H_*C_k \hookrightarrow H_*\Omega^2S^3$ is the span of the monomials of weight $\leq k$.

Now the Hopf map $S^3 \to S^2$ induces a map of 2-fold loop spaces $\Omega^2 S^3 \to \Omega^2 S^2$; in fact this map is a homotopy equivalence from $\Omega^2 S^3$ to the component $\Omega_0^2 S^2$, as follows from the long exact sequence of homotopy groups of the Hopf fibration $S^1 \to S^3 \to S^2$. From now on we identify $\Omega^2 S^3$ with the component $\Omega_0^2 S^2$.

In these terms, the generator $h \in H_1(\Omega^2 S^3)$ is equal to $g^{-2}Qg$, the generator of $H_1(\Omega_0^2 S^2) \cong \mathbb{Z}/2$. So we can say that:

$$H_*(\cup_{k\geq 0}C_k) = H_*(\Omega_0^2S^2) = \mathbf{Z}/2[g^{-2}Qg, Q(g^{-2}Qg), Q^2(g^{-2}Qg), \ldots]$$

And H_*C_k is the span of the monomials of weight $\leq k$, where $Q^i(g^{-2}Qg)$ is given weight 2^i and dimension $2^{i+1}-1$.

Proposition 1 The homotopy equivalence $g^{-2k}: \Omega_{2k}^2 S^2 \to \Omega_0^2 S^2$ sends $H_*B\beta_{2k} \subset H_*\Omega_{2k}^2 S^2$ onto $H_*C_k \subset H_*\Omega_0^2 S^2$. Therefore $H_*(B\beta_{2k}, \mathbb{Z}/2) \cong H_*(C_k, \mathbb{Z}/2)$ as coalgebras.

This proposition says in particular that $B\beta_{2k}$ and C_k have isomorphic $\mathbb{Z}/2$ -cohomology rings, as I claimed at the beginning of this section.

The key computation for the proof of this proposition is that $Q^i(g^{-2}Qg) = g^{-2^{i+1}}Q^{i+1}g$ for all $i \geq 0$. This is clear for i = 0, and the induction uses the Cartan formula for Q and the fact that $Q(x^2) = 0$ for all $x \in H_*\Omega^2 S^2$.

By Section 1, the homology $H_*(B\beta_q)$ is the span of the monomials in g, Qg, Q^2g, \ldots of weight = q, where Q^ig is given weight 2^i and dimension 2^i-1 . Therefore the image of $H_*B\beta_{2k}$ in $H_*\Omega_0^2S^2$ under the map $g^{-2k}:H_*\Omega_{2k}^2S^2\stackrel{\sim}{\to} H_*\Omega_0^2S^2$ is the span of the monomials in $1, g^{-2}Qg, g^{-4}Qg, \ldots$ of weight = 2k, where $g^{-2^i}Q^ig$ is given weight 2^i and dimension 2^i-1 . Equivalently, by the previous paragraph, this is the span of the monomials in $g^{-2}Qg, Q(g^{-2}Qg), Q^2(g^{-2}Qg), \ldots$ of weight $\leq k$, where (after we multiply the previous weights by 1/2) $Q^i(g^{-2}Qg)$ is given weight 2^i and dimension $2^{i+1}-1$. But this is exactly the space $H_*C_k \subset H_*\Omega_0^2S^2$.

This proves the proposition.

3 Rat_1

It is easy to see that the space Rat_1 of based holomorphic maps $S^2 \to S^2$ of degree 1 is homotopy equivalent to the circle S^1 . For example, take the basing condition to be $\infty \mapsto \infty$; then Rat_1 is the group of affine transformations $z \mapsto az + b$, $a, b \in \mathbb{C}$, $a \neq 0$, which is homotopy equivalent to $\mathbb{C} - 0$ and hence to S^1 . In particular $H_1(Rat_1, \mathbb{Z}) \cong \mathbb{Z}$.

By Segal's stability theorem [8], the inclusion $Rat_1 \to \Omega_1^2 S^2$ induces a surjection $H_1(Rat_1, \mathbf{Z}) \to H_1(\Omega_1^2 S^2, \mathbf{Z})$. Since both groups are isomorphic to \mathbf{Z} , this map is actually an isomorphism. We deduce that $H_1(Rat_1, \mathbf{Z}/p) \to H_1(\Omega_1^2 S^2, \mathbf{Z}/p) \cong \mathbf{Z}/p$ is an isomorphism for all primes p, a fact which we will need later.

4 Proof of Theorem 1

We have proved that H_*C_k and $H_*B\beta_{2k}$ are isomorphic as coalgebras. To complete the proof of Theorem 1, we have to show that H_*Rat_k is not

isomorphic to $H_*B\beta_{2k}$ as a coalgebra, assuming that k+1 is not a power of 2.

By F. Cohen and Boyer-Mann [1], $\coprod_{k\geq 0} Rat_k$ is a C_2 -space, and the natural map $\coprod_{k\geq 0} Rat_k \to \Omega^2 S^2$ is a map of C_2 -spaces. The image of $H_1Rat_1 \to H_1\Omega_1^2 S^2 \cong \mathbb{Z}/2$ is not zero, so it contains the generator of the latter group, $g^{-1}Qg$. So the image of $H_*(\coprod_k Rat_k) \to H_*\Omega^2 S^2$ contains the subring A of $H_*\Omega^2 S^2$ generated by g and $Q^{i-1}(g^{-1}Qg)$, $i\geq 1$. Here g has weight 1, dimension 0, and $Q^{i-1}(g^{-1}Qg)$, $i\geq 1$, has weight 2^{i-1} and dimension 2^i-1 . We need to check that A is actually a polynomial ring on the generators g and $Q^{i-1}(g^{-1}Qg)$, $i\geq 1$.

To see this, define subrings B_i of the ring $H_*\Omega^2S^2=\mathbf{Z}/2[g,g^{-1},Qg,Q^2g,\ldots]$ to be $B_i=\mathbf{Z}/2[g,g^{-1},Qg,\ldots,Q^ig]$. Then the Cartan formula for Q shows that $Q^{i-1}(g^{-1}Qg)\equiv g^{-2^{i-1}}Q^ig \pmod{B_{i-1}}$, for $i\geq 1$. Although this is not an equality in $H_*\Omega^2S^2$, the equality modulo B_{i-1} suffices to imply that A is a polynomial ring with generators g and $Q^{i-1}(g^{-1}Qg)$, $i\geq 1$. (To see this, filter the ring B_i by the subspaces $B_{ik}=\sum_{j\leq k}B_{i-1}\cdot(Q^ig)^j$.)

In particular, since A is a polynomial ring, we can compute dim A_k^l , where $A_k^l = \dim A \cap H_l \Omega_k^2 S^2$. The weights of the generators of A are exactly 1/2 times the corresponding generators of $H_*(\coprod_q B\beta_q)$, with $Q^{i-1}(g^{-1}Qg) \in A$ corresponding to $Q^ig \in H_*(\coprod_q B\beta_q)$ for $i \geq 1$; so dim $A_k^* = \dim H_*B\beta_{2k}$. By [3], dim $H_*B\beta_{2k} = \dim H_*Rat_k$. Thus

$$\dim\ H_*B\beta_{2k}=\dim\ H_*Rat_k\geq \dim\ A_k^*=\dim\ H_*B\beta_{2k}.$$

So dim $H_*Rat_k = \dim A_k^*$. Thus $H_*(\coprod_k Rat_k) \to H_*\Omega^2 S^2$ is injective and the image is exactly the polynomial ring $A = \mathbb{Z}/2[g, Q^{i-1}(g^{-1}Qg): i \geq 1] \subset H_*\Omega^2 S^2$.

Thus the homology of Rat_k is "built up" using the Araki-Kudo operation Q just as the homology of C_k is; the difference between them, as coalgebras, arises because the basic homology class for Rat_1 lies in $H_1\Omega_1^2S^2$, while the basic homology class for C_1 lies in $H_1\Omega_0^2S^2$. This makes a difference because of the Cartan formula for Q and the fact that Q is nonzero on $H_0\Omega^2S^2$.

We now compute the coproduct on H_*Rat_k . By the diagonal Cartan formula for Q,

$$\psi(g^{-1}Qg) = \psi(g^{-1})\psi(Qg)$$

$$= (g^{-1} \otimes g^{-1})(g^2 \otimes Qg + Qg \otimes G^2)$$

$$= g \otimes g^{-1}Qg + g^{-1}Qg \otimes g.$$

So $g^{-1}Qg$ is primitive in its component.

But $Q^i(g^{-1}Qg)$ is not primitive in its component for $i \geq 1$. In fact, we have:

$$\begin{array}{lll} \psi Q^{\mathbf{i}}(g^{-1}Qg) = & g^{2^{\mathbf{i}}} \otimes Q^{\mathbf{i}}(g^{-1}Qg) & +Q^{\mathbf{i}}g \otimes (g^{-1}Qg)^{2^{\mathbf{i}}} & +(g^{-1}Qg)^{2^{\mathbf{i}}} \otimes Q^{\mathbf{i}}g & +Q^{\mathbf{i}}(g^{-1}Qg) \otimes g^{2^{\mathbf{i}}}. \\ \text{Dimensions:} & 0, 2^{\mathbf{i}+1}-1 & 2^{\mathbf{i}}-1, 2^{\mathbf{i}} & 2^{\mathbf{i}}, 2^{\mathbf{i}}-1 & 2^{\mathbf{i}+1}-1, 0. \end{array}$$

For $i \geq 1$, these four terms are all in different dimensions, and each is nonzero, so we see that $Q^i(g^{-1}Qg)$ is not primitive in its component. This formula is verified by induction, using the Cartan formula for Q and the fact that $Q(x^2) = 0$, $x \in H_*(\Omega^2 S^2)$.

Although I won't need it for the proof of Theorem 1, I should explain how to compute the $\mathbb{Z}/2$ cohomology ring of Rat_k from the above formulas for $\psi Q^i(g^{-1}Qg)$. Namely, we need to expand Q^ig (which appears in the formula for $\psi Q^i(g^{-1}Qg)$) as a polynomial in g and the $Q^i(g^{-1}Qg)$, since $H_*(\coprod Rat_k)$ is a polynomial ring in the latter generators. The result is, for $i \geq 1$:

$$Q^{i}g = \sum_{j=0}^{i-1} g^{2^{j}} (g^{-1}Qg)^{2^{i}-2^{j+1}} Q^{j} (g^{-1}Qg).$$

As usual, this is easy to check by induction. Plugging this into the formula for $\psi Q^i(g^{-1}Qg)$ gives a complete, although complicated, description of $H_*(\coprod Rat_k) = \mathbb{Z}/2[g,g^{-1}Qg,Q(g^{-1}Qg),\ldots]$ as a Hopf algebra.

We now come to the proof of Theorem 1. We observe that the top-dimensional homology group of Rat_k and $B\beta_{2k}$ is 1-dimensional. Namely, let k have binary expansion $k = \sum_{j \in J} 2^j$; then the top dimension is $H_{2k-|J|}$, where |J| is the order of the set J. For Rat_k , this homology group is spanned by $x = \prod_{j \in J} Q^j (g^{-1}Qg)$; for $B\beta_{2k}$ it is spanned by $y = \prod_{j \in J} Q^{j+1}g$. The idea is to consider the sets $S(x) = \{r \geq 0 : \psi(x)|_{H_r \otimes H_{2k-|J|-r}} \neq 0\}$, and the set S(y) defined the same way for y. If $S(x) \neq S(y)$, then the cohomology rings H^*Rat_k and $H^*B\beta_{2k}$ are not isomorphic.

If k+1 is not a power of 2, then there exists an integer $j \geq 1$ such that $j \in J$ but $j-1 \notin J$; let j be the smallest such integer. (Recall that J is the set of nonzero digits in the binary expansion of k.)

Then one can check that $\psi(x)$ is nonzero in $H_{2^j-1}\otimes H_{\dim(x)-(2^j-1)}$, as follows. One has $\psi(x)=\prod_{l\in J}\psi(Q^l(g^{-1}Qg))$, and we can use the formulas above for $\psi Q^l(g^{-1}Qg)$ to express $\psi(x)$ as a sum of various products of monomials. In this sum there is only one term in $H_{2^j-1}\otimes H_{\dim(x)-(2^j-1)}$, namely

$$(Q^jg)\prod_{\substack{l\in\mathcal{I}\\l\neq j}}g^{2^l}\otimes(g^{-1}Qg)^{2^j}\prod_{\substack{l\in\mathcal{I}\\l\neq j}}Q^l(g^{-1}Qg)$$

And this is not zero, given the description of $H_*\Omega^2S^2$ as a polynomial ring. Since $j-1 \notin J$, there is no other term in this dimension when $\psi(x)$ is expanded. So $\psi(x)$ is not zero in $H_{2^j-1} \otimes H_{\dim(x)-(2^j-1)}$.

Now $\psi(y)$ is easier to write out, and one sees that since $j \geq 1$ and $j-1 \notin J$, $\psi(y)$ is 0 in $H_{2^{j}-1} \otimes H_{\dim(x)-(2^{j}-1)}$. Therefore the cohomology rings H^*Rat_k and $H^*B\beta_{2k} \cong H^*C_k$ are not isomorphic, provided that k+1 is not a power of 2.

5 Homology of $\Omega^2 S^2$ with ${\bf Z}/p$ coefficients, $p \geq 3$

The reference for this section is [2]. Throughout this section we consider homology with \mathbb{Z}/p coefficients, $p \geq 3$.

For C_2 -spaces X, in particular 2-fold loop spaces, there is a function $Q: H_qX \to H_{pq+p-1}X$ defined for q odd, as well as a Pontrjagin product which makes H_*X a graded-commutative ring. In addition, Browder defined an operation

$$[,]: H_iX \otimes H_jX \rightarrow H_{i+j+1}X$$

which makes H^{*-1} a graded Lie algebra. The signs are such that [x,x]=0 for x odd-dimensional, but not necessarily for x even-dimensional. For $X=\Omega^2S^2$, Q and the Browder operation map as follows:

$$\begin{split} Q: H_q\Omega_k^2S^2 {\to} H_{pq+p-1}\Omega_{pk}^2S^2 \\ [\ ,\]: H_i\Omega_k^2S^2 \otimes H_j\Omega_l^2S^2 {\to} H_{i+j+1}\Omega_{k+l}^2S^2 \end{split}$$

F. Cohen computed $H_*(\coprod B\beta_q)$ and $H_*\Omega^2S^2$ as algebras. The result is as follows. Let g be the generator of $H_0\Omega_1^2S^2$. Let $\lambda=[g,g]\in H_1\Omega_2^2S^2$. The Lie algebra generated by g is spanned by g and λ , since $[\lambda,\lambda]=0$ by anticommutativity and $[g,\lambda]=0$ by the Jacobi identity. (For p=3, the Jacobi identity doesn't prove this, but Cohen states explicitly, p. 216, that [x,[x,x]]=0 even when p=3.) Then we have:

$$\begin{array}{lcl} H_*(\coprod B\beta_q) & = & \mathbf{Z}/p[g] & \otimes E[\lambda,Q\lambda,Q^2\lambda,\ldots] \otimes \mathbf{Z}/p[\beta Q\lambda,\beta Q^2\lambda,\ldots] \\ H_*\Omega^2S^2 & = & \mathbf{Z}/p[g,g^{-1}] & \otimes E[\lambda,Q\lambda,Q^2\lambda,\ldots] \otimes \mathbf{Z}/p[\beta Q\lambda,\beta Q^2\lambda,\ldots] \end{array}$$

Here E denotes the exterior algebra on the given generators and $\mathbf{Z}/p[\ldots]$ represents a polynomial ring. Here g has dimension 0 and weight 1, $Q^i\lambda$, $i\geq 0$ has dimension $2p^i-1$ and weight $2p^i$, and $\beta Q^i\lambda$, $i\geq 1$ has dimension $2p^i-2$ and weight $2p^i$. Finally, β denotes the Bockstein operation $\beta: H_iX \to H_{i-1}X$.

Using the fact that the Browder operation on $H_*\Omega^2S^2$ is 2-step nilpotent, F. Cohen shows ([2], p. 372) that the Dyer-Lashof operation $Q:H_q\Omega^2S^2\to H_{2q+1}\Omega^2S^2$ is linear, and that the Cartan formula $Q(xy)=x^pQy$ holds with no error terms. (Here x is even-dimensional and y is odd-dimensional.) This indicates that Ω^2S^2 is easier to understand than a general 2-fold loop space.

6 Rat_k , $B\beta_{2k}$, and C_k have isomorphic \mathbf{Z}/p -cohomology rings, $p \geq 3$

Let $p \geq 3$. In this section we use the Cartan formula in $H_*\Omega^2S^2$ to compute the precise image of H_*Rat_k in $H_*\Omega_k^2S^2$, and to describe the coalgebra structure on H_*Rat_k . In particular, we will see that Rat_k , $B\beta_{2k}$, and C_k have isomorphic \mathbb{Z}/p -cohomology rings, unlike what happens for p=2.

The Cartan formula for Q in $H_*\Omega^2S^2$ says that $Q(xy)=x^pQy$ for x even-dimensional, y odd-dimensional. In particular (and this is the only case we need),

$$Q^{j}(g^{-1}\lambda) = g^{-p^{j}}Q^{j}\lambda$$
$$\beta Q^{j}(g^{-1}\lambda) = g^{-p^{j}}\beta Q^{j}\lambda$$

Now the image of the map $H_0Rat_1 \rightarrow H_0\Omega_1^2S^2$ obviously contains g. Also, the map $H_1Rat_1 \rightarrow H_1\Omega_1^2S^2$ is not 0, so the image contains the generator of $H_1\Omega_1^2S^2 \cong \mathbf{Z}/p$, namely $g^{-1}\lambda$. Since $\coprod_k Rat_k \rightarrow \Omega^2S^2$ is a map of C_2 -spaces [1], the image of $H_*(\coprod_k Rat_k) \rightarrow H_*\Omega^2S^2$ contains the subring A of $H_*\Omega^2S^2$ generated by g, $Q^i(g^{-1}\lambda)$ for $i \geq 0$, and $\beta Q^i(g^{-1}\lambda)$ for $i \geq 1$. By the previous paragraph, A can also be described as the ring generated by g, $g^{-p^i}Q^i\lambda$, and $g^{-p^i}\beta Q^i\lambda$ for $i \geq 1$.

It is now easy to check that the isomorphism $g^k: H_*\Omega_k^2 S^2 \xrightarrow{\cong} H_*\Omega_{2k}^2 S^2$ maps $A_k^* \subset H_*\Omega_k^2 S^2$ onto $H_*B\beta_{2k} \subset H_*\Omega_{2k}^2 S^2$. We have dim $H_*B\beta_{2k} = \dim H_*Rat_k$ by [3]. So

$$\dim H_*B\beta_{2k}=\dim H_*Rat_k\geq \dim A_k^*=\dim H_*B\beta_{2k},$$

so dim $H_*Rat_k = \dim A_k^*$. This implies that the map $H_*(\coprod_k Rat_k) \to H_*\Omega^2 S^2$ is injective and that the image is exactly the ring

$$A = \mathbf{Z}/p[g] \otimes E[g^{-p^j}\lambda : j \ge 0] \otimes \mathbf{Z}/p[g^{-p^j}\beta Q^j\lambda : j \ge 1].$$

The isomorphism $g^k: H_*\Omega_k^2 S^2 \xrightarrow{\cong} H_*\Omega_{2k}^2 S^2$ maps $H_*Rat_k \subset H_*\Omega_k^2 S^2$ onto $H_*B\beta_{2k} \subset H_*\Omega_{2k}^2 S^2$. Since g^k is induced by a map of spaces $g^k: \Omega_k^2 S^2 \to \Omega_{2k}^2 S^2$, it preserves the coalgebra structure on homology. So the coalgebra $H_*(Rat_k, \mathbf{Z}/p)$ is isomorphic to the coalgebra $H_*(B\beta_{2k}, \mathbf{Z}/p)$ for $p \geq 3$, as desired.

References

- C. P. Boyer and B. M. Mann. Monopoles, non-linear σ-models, and two-fold loop spaces. Comm. Math. Phys. 115 (1988), 571-594.
- [2] F. R. Cohen. The homology of C^{n+1} -spaces, $n \geq 0$. In: The Homology of Iterated Loop Spaces, Springer Lecture Notes **533** (1976), 207-352.
- [3] F. R. Cohen, R. L. Cohen, B. M. Mann, and R. J. Milgram. The topology of rational functions and divisors of surfaces. Preprint.
- [4] F. R. Cohen, R. L. Cohen, B. M. Mann, and R. J. Milgram. The homotopy type of rational functions. Preprint.
- [5] F. R. Cohen, D. M. Davis, P. G. Goerss, and M. E. Mahowald. Integral Brown-Gitler spectra. Proc. AMS 103 (1988), 1299-1304.
- [6] R. L. Cohen. The geometry of $\Omega^2 S^3$ and braid orienations. *Inventiones Mathematicae* 54 (1979), 53-67.
- [7] R. L. Cohen and D. H. Shimamoto. Rational functions, labeled configurations, and Hilbert schemes. MSRI preprint (1990).
- [8] G. Segal. The topology of spaces of rational functions. Acta. Math. 143 (1979), 39-72.

Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720