
Chern numbers for singular varieties

and elliptic homology

Burt Totaro

A fundamental goal of algebraic geometry is to do for singular varieties whatever
we can do for smooth ones. Intersection homology, for example, directly produces
groups associated to any variety which have almost all the properties of the usual
homology groups of a smooth variety. Minimal model theory suggests the possibility
of working more indirectly by relating any singular variety to a variety which is
smooth or nearly so.

Here we use ideas from minimal model theory to define some characteristic num-
bers for singular varieties, generalizing the Chern numbers of a smooth variety. This
was suggested by Goresky and MacPherson as a next natural problem after the def-
inition of intersection homology [11]. We find that only a subspace of the Chern
numbers can be defined for singular varieties. A convenient way to describe this
subspace is to say that a smooth variety has a fundamental class in complex bor-
dism, whereas a singular variety can at most have a fundamental class in a weaker
homology theory, elliptic homology. We use this idea to give an algebro-geometric
definition of elliptic homology: “complex bordism modulo flops equals elliptic ho-
mology.”

This paper was inspired by some questions asked by Jack Morava. The de-
scriptions of elliptic homology given by Gerald Höhn [13] were also an important
influence. Thanks to Dave Bayer, Mike Stillman, John Stembridge, Sheldon Katz,
and Stein Stromme for their computer algebra programs Macaulay, SF, and Schu-
bert, which helped in guessing the right answer.
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1 Statements

This paper presents two main results, which we will first state (using some new
terminology) and then explain over the course of this section. First (Theorem 4.1),
a rational linear combination of Chern numbers, viewed as an invariant of compact
complex manifolds, is unchanged under “classical flops” if and only if it is a linear
combination of the coefficients of the complex elliptic genus studied by Krichever
and Höhn [19], [13]. This elliptic genus can be viewed as a power series associated to
any compact complex manifold, the coefficients of the series being certain fixed lin-
ear combinations of the Chern numbers of the manifold. A more precise form of this
result determines a geometrically meaningful version of complex elliptic homology
over the ring Z[1/2] (Theorem 6.1, Remark 1). Second, we can ask when a given
rational linear combination of Chern numbers, viewed as an invariant of smooth
compact varieties, can be extended to an invariant of singular varieties, subject to
a natural condition (compatibility with “IH-small resolutions”). This compatibility
condition implies (as explained below) that the given linear combination of Chern
numbers is invariant under classical flops; so every such linear combination of Chern
numbers is a linear combination of the coefficients of the elliptic genus. We conjec-
ture that, conversely, the elliptic genus can be defined for arbitrary singular varieties
(compatibly with IH-small resolutions). The second main result of this paper is that
at least a certain weaker invariant, which Höhn called the twisted χy genus, can be
defined for arbitrary singular varieties (compatibly with IH-small resolutions): see
Theorems 8.1 and 8.2.

From now on, we call any homogeneous rational polynomial in variables c1, . . . , cn
of degree n a Chern number (for n-folds). Here the variable ci is given degree i. A
Chern number in this sense determines a function from compact complex manifolds
of complex dimension n to the rational numbers: replace c1, . . . , cn by the Chern
classes of the tangent bundle and integrate the resulting top-degree cohomology
class. Moreover, a polynomial in c1, . . . , cn is uniquely determined by its values on
compact complex manifolds, or even just on smooth complex projective varieties.
(The reason is that Chern numbers can be identified with linear functions MU2n ⊗
Q → Q, where MU2n is the bordism group of weakly complex 2n-manifolds (see
section 2), and the group MU2n is generated by smooth complex projective n-folds
[23].) For example, the Euler characteristic, the signature, and the Todd genus,
for smooth projective varieties of a given dimension, are Chern numbers, thanks to
Hirzebruch [12].

Let us define an IH-small resolution of a singular variety Y to be a resolution
of singularities f : X → Y such that for every i ≥ 1, the set of points y ∈ Y such
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that dim(f−1(y)) = i has codimension greater than 2i in Y . The interest of such
a resolution is that there is a natural identification of the intersection homology
of Y with the ordinary homology of X , by [10], p. 121. On the other hand, the
intersection homology of Y is a direct summand in the homology of any resolution
of singularities of Y ; so IH-small resolutions, when they exist, are the “smallest
possible” resolutions of a given variety. In fact, IH-small resolutions turn out to
be relative minimal models in the precise sense of Mori’s program (see section 8),
and this is crucial to our approach. We remark that most singular varieties have no
IH-small resolution.

The problem we are considering was formulated by Goresky and MacPherson
([11], Problem 10): Which Chern numbers α for n-folds can be defined for all
singular compact complex n-folds Y in such a way that, whenever f : X → Y is an
IH-small resolution, we have α(Y ) = α(X)? Notice that α(X) is already defined
since X is smooth. Also, the question makes sense either for X , Y compact complex
spaces or for X , Y projective varieties; we usually assume X and Y projective in
this paper, although we will say when something works more generally. (We expect
the same answer in both situations.)

When we say that a given Chern number “can be defined” for singular varieties,
we always mean that it can be defined compatibly with IH-small resolutions in the
above sense. The motivation for this problem is that, as Goresky and MacPherson
observed, intersection homology provides definitions of the Euler characteristic, the
signature, and the Todd genus for all singular varieties, and the resulting definitions
are compatible with IH-small resolutions in this sense.

To define more general Chern numbers, one might hope to lift the homology
Chern classes of a singular variety to intersection homology and then multiply some
of them. Indeed, as Goresky and MacPherson conjectured, all algebraic cycles, and
in particular the homology Chern classes, lift rationally to intersection homology,
by Barthel, Brasselet, Fieseler, Gabber, and Kaup [3]; but those lifts are not unique
(see the comments on this problem in [3], p. 158), and we will not use that approach.

Clearly, if a given Chern number can be defined for singular varieties in the above
sense, then it must take the same value on any two IH-small resolutions of a given
singular variety. Thus, in order to give an upper bound for the rational vector space
of degree-n polynomials in c1, . . . , cn which can be defined for singular varieties, we
need an explicit collection of singular varieties Y which have two different IH-small
resolutions. We will use those singular varieties Y of dimension n ≥ 3 which are
Zariski locally isomorphic, near each point of their singular set Z, to the product
of a 3-fold node with a smooth (n− 3)-fold (see section 4 for more details). Such a
variety has two different IH-small resolutions X1 and X2, and in this situation we
say that X1 and X2 are related by a classical flop. (The manifold X2 is obtained
from X1 by cutting out a P1-bundle over Z and replacing it by a possibly different
P1-bundle over Z.)

Now at last we can understand the first main result of this paper, Theorem 4.1:
the space of Chern numbers which do not change under classical flops is spanned by
the coefficients of the complex elliptic genus. This latter genus is a homomorphism
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of graded rings from the complex bordism ring

MU∗ ⊗Q = Q[CP1,CP2, . . . ]

onto
Ell∗ := Q[x1, x2, x3, x4],

where we put the bordism group MU2n in degree n for all n, and xn in degree n for
1 ≤ n ≤ 4 [19], [13]. (The more famous elliptic genus defined by Landweber, Stong,
Ochanine, and Witten [20] is the homomorphism fromMU∗⊗Q to Q[x2, x4] defined
by setting x1 and x3 to 0 in the complex elliptic genus; the resulting invariant is
then defined for oriented manifolds, not just complex manifolds.)

A reformulation of our first main result is that “complex bordism modulo classi-
cal flops equals elliptic homology,” at least rationally. In fact, a suitable formulation
of this statement is true over Z[1/2], by a more refined version, Theorem 6.1, of our
theorem.

In the complex elliptic genus, the coefficient of each monomial in x1, . . . , x4 of
degree n is a certain Chern number of degree n. (We repeat that in this paper
“Chern number” means a homogeneous rational polynomial in variables c1, c2, . . .
of degrees 1, 2, . . . . The coefficients of the complex elliptic genus in the sense just
stated are invariant under classical flops, but the individual Chern monomials which
occur in these coefficients are generally not invariant under classical flops.) It follows
from our first main result that the space of Chern numbers which can be defined for
all singular varieties is at most equal to those given by the complex elliptic genus.
The main problem left open by this paper is to show that this is an equality, that
is, to define the elliptic genus of an arbitrary singular variety.

One partial result in that direction follows immediately from earlier work. Thanks
to Morihiko Saito’s Hodge structure on intersection homology [32], [33], it was al-
ready known how to define Hodge numbers for a singular variety in a way which is
compatible with IH-small resolutions. This immediately defines a few Chern num-
bers for singular varieties, namely those corresponding to the Hirzebruch χy genus
[12]. We can view the Hirzebruch χy genus as a surjective homomorphism of graded
rings,

χy :MU∗ ⊗Q → Q[x1, x2].

The χy genus includes the Euler characteristic, the signature, and the Todd genus
as special cases.

The second main result of this paper is that the space of Chern numbers which
take the same value on any two IH-small resolutions of a given singular variety
is larger than just the χy genus (Theorem 8.1). Namely, Höhn defined a genus,
the twisted χy genus, which is intermediate between the χy genus and the complex
elliptic genus ([13], p. 65). For a smooth variety X , the twisted χy genus is defined as
the set of holomorphic Euler characteristics of the bundles Ωi

X ⊗K⊗j
X , for 0 ≤ i ≤ n

and j ∈ Z. As he remarks, all the “classical” genera such as the signature, Todd
genus, Euler characteristic, and the Â genus factor through the twisted χy genus. We
show that the twisted χy genus takes the same value on any two IH-small resolutions
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of a given singular variety. As Höhn states, the twisted χy genus can be viewed as
a surjective homomorphism

χyz :MU∗ ⊗Q → Q[x1, x2, x3, x4]/(∆(x2, x3, x4)),

where ∆ is the expression for the discriminant cusp form ∆ in the theory of modular
forms as a polynomial in certain explicit Jacobi forms: x2 is 24 times the Weierstrass
p-function, x3 is the derivative of the Weierstrass p-function, and x4 = 6p2 − g2/2
where g2 is the Eisenstein series of weight 4. See section 9 for details.

In section 8, we define an explicit extension of the twisted χy genus from smooth
varieties to all singular varieties which possess a relative canonical model. The
extension is compatible with IH-small resolutions when they exist. The minimal
model conjecture would imply that every singular variety has a relative canonical
model [17].

For example, for n ≤ 4 the twisted χy genus includes all Chern numbers for
n-folds. So we know that all Chern numbers for n-folds with n ≤ 4 take the same
value on any two IH-small resolutions of a singular variety. For all n ≤ 11, the
twisted χy genus and the complex elliptic genus are equal, so in these dimensions we
know exactly which Chern numbers can be defined for singular varieties compatibly
with IH-small resolutions. For example, the space of Chern numbers which can be
defined for singular 5-folds happens to be spanned by certain Chern monomials,
namely all of the Chern monomials except c3c2 (that is, c5, c4c1, c3c

2
1, c

2
2c1, c2c

3
1,

and c51). In fact, Goresky and MacPherson gave an example in [11], p. 222, of a
5-dimensional Schubert variety with two different IH-small resolutions, and I was
led to the results of this paper by computing that these two resolutions have the
same Chern numbers c5, c4c1, c3c

2
1, c

2
2c1, c2c

3
1, and c51 as each other, but different

c3c2’s.
We make some additional remarks. Any polynomial in the Chern classes of

degree n gives not only a Chern number for all smooth n-folds, but also a homology
class (in H2k(X,Q)) for all smooth (n + k)-folds, k ≥ 0, and we can ask which of
these classes can be defined as homology classes on all singular varieties in a way
compatible with IH-small resolutions. It appears that the answer should be exactly
the same as for Chern numbers. In particular, we can define homology classes
corresponding to the twisted χy genus. If we could do this for the complex elliptic
genus, we would have a natural fundamental class in rational elliptic homology
Ell2n(Y ), for any singular compact n-fold Y . (Since we are working rationally, we
can define elliptic homology here as a quotient of complex bordism: Ell∗(Y ) :=
MU∗(Y )⊗MU∗

Ell∗.) Notice that we should probably not expect to have well-defined
characteristic classes for singular varieties in intersection homology as opposed to
ordinary homology, since even the simplest Chern polynomials, namely the Chern
classes, can be different in two different IH-small resolutions of the same singular
variety, as Verdier found [5].

Also, there is a natural integral version of the question we have been considering
rationally. One could try to compute the quotient ring of the complex bordism
ring MU∗ by flops, but this ring seems not so natural integrally; for example, it is

5



not finitely generated, although after tensoring with Q it becomes the polynomial
ring Q[x1, x2, x3, x4]. The natural integral question seems to be to compute the
quotient ring of the SU -bordism ring MSU∗ by “SU -flops.” Away from the prime
2, this works beautifully: the quotient of MSU∗ ⊗ Z[1/2] by SU -flops is equal to
the image of MSU∗ ⊗ Z[1/2] under the complex elliptic genus, and this image is
a polynomial ring Z[1/2][x2, x3, x4] (Theorem 6.1). This analysis also determines a
natural version of complex elliptic homology over Z[1/2], which is defined for the
first time here. All this suggests the possibility of defining some version of elliptic
homology as bordism with respect to some natural class of singular spaces which
would include all Gorenstein complex varieties.

2 Weakly complex manifolds

We make some elementary remarks about weakly complex manifolds, the objects
used to define the complex bordism ringMU∗, for use in section 4. A weakly complex
manifold is defined to be a real (smooth) manifold with a complex structure on the
stable tangent bundle. More explicitly, given a real manifold X , its tangent bundle
determines a homotopy class of maps X → BO, and a weakly complex structure on
X is a homotopy class of lifts:

BU

��
X

==③③③③③③③③
// BO

In particular, a complex manifold is a weakly complex manifold in a natural way.
Likewise, an SU -manifold is defined to be a real manifold together with a homotopy
class of lifts of the tangent bundle to BSU .

Here we say that two lifts X → BU of the tangent bundle X → BO are homo-
topic if they are homotopic through lifts; it is not enough for them to be homotopic
just as maps X → BU . In particular, there are two different weakly complex struc-
tures on a point, corresponding to π0(O/U) = Z/2, one coming from the complex
structure on a point and the other not. In the bordism ring MU∗, the ring of closed
weakly complex manifolds modulo boundaries of compact weakly complex manifolds
[23], the first of these weakly complex structures on a point represents 1 and the
second represents −1.

As a result, for any weakly complex manifold X , we can form a new weakly
complex structure on the same real manifold which we call the negative weakly
complex manifold, or −X , by taking the product of X with the nontrivial weakly
complex structure on a point. If the manifold X is closed, then −X is indeed the
negative of X in the bordism ring MU∗. Even if X is a complex manifold, −X is
in general only a weakly complex manifold; the Chern classes of −X are the same
as those of X , but −X has the opposite orientation.

The following lemma, which we will use in the proof of Theorem 4.1, is probably
well known. It works for any version of bordism (unoriented, oriented, and so on).
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Lemma 2.1 Let A, B, C be compact weakly complex manifolds. Suppose we are
given diffeomorphisms of the boundaries of A, B, and C to the same weakly complex
manifold M . Then

A ∪M −B +B ∪M −C + C ∪M −A = 0

in the bordism group MU∗.

Proof. Let H denote a hexagon in R2 (thus H is homeomorphic to the disk).
Let W be the union of A × [0, 1], B × [0, 1], C × [0, 1], and M × H modulo the
identifications pictured here:

H

AA

B

B C

C

M

M

M M

M

M
1 0

0

1 0

1

Then W is a compact weakly complex manifold whose boundary is the disjoint
union of the closed weakly complex manifolds A∪M −B, B ∪M −C, and C ∪M −A.
QED

3 The complex elliptic genus

We define the complex elliptic genus

MU∗ → Q[x1, x2, x3, x4]

using one of the approaches in Höhn’s thesis (section 2.5) [13]. As it happens, the
definition will not be used explicitly in most of this paper; the important thing is
the rigidity property of this genus, which we will state in section 4.

For a complex vector bundle E, define

Λt(E) = ⊕ΛkE · tk

and
St(E) = ⊕SkE · tk

as the power series in t whose coefficients are the exterior or symmetric powers of E.
Clearly St(E + F ) = St(E)St(F ) and likewise for Λt. Also, these operations extend
to virtual bundles, with St(−E) = Λ−t(E).
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For complex numbers τ in the upper half-plane and z ∈ C, the Weierstrass sigma
function is defined by

σ(τ, z) = z
∏

ω∈Z+Zτω 6=0

(1− z/ω)ez/ω+(z/ω)2/2.

This is an entire function of z with zero set equal to the lattice Z+ Zτ ⊂ C. If we
modify the sigma function slightly by defining

Φ(τ, z) = 2πieηz
2/2−πizσ(τ, z),

we get a function which is periodic under τ 7→ τ + 1 as well as z 7→ z + 1 for a
unique function η(τ). So Φ(τ, z) admits an expansion in q := e2πiτ and y := e2πiz

([21], p. 247):

Φ(τ, z) =
∏

m≥1

(1− y−1qm−1)(1− yqm)

(1− qm)2
.

Our conventions are slightly different from Höhn’s here: the function he calls Φ(τ, z)
vanishes for z in the lattice 2πi(Z + Zτ), rather than the more traditional Z + Zτ
as here ([13], p. 59). Also, he writes y = −ez rather than our y = e2πiz, so the
definition below of the complex elliptic genus of a complex manifold differs from
Höhn’s by replacing y by −y.

We define the complex elliptic genus as the ring homomorphism

MU∗ → Q((y))[[q, k]]

associated, in the way recalled below, to the following Hirzebruch characteristic
power series Q(x) ∈ Q((y))[[q, k, x]] ([13], p. 59):

Q(x) = ekx
xΦ(τ, x/2πi− z)

Φ(τ, x/2πi)Φ(τ,−z)

= Φ(q, 1/y)−1 x

1− e−x
ekx

∏

m≥1

(1− yqm−1e−x)(1− y−1qmex)

(1− qmex)(1− qme−x)
.

As above, we write q = e2πiτ and y = e2πiz . Since the factor Φ(q, 1/y)−1 does not
involve x, it could be omitted without changing the important properties of the
genus.

In Hirzebruch’s general correspondence between power series and genera, we
think of the variable x as the first Chern class of a line bundle; then a series Q(x) ∈
R[[x]], for a Q-algebra R, gives a characteristic class for line bundles with values
in H∗(·, R). This extends uniquely to an exponential characteristic class ϕ(E) for
arbitrary vector bundles E, where “exponential” means that ϕ(E+F ) = ϕ(E)ϕ(F ).
Then we get a genus ϕ :MU∗ → R by associating, to a compact complex manifold
X , the element ϕ(X) :=

∫
X ϕ(TX) of R.

Let us work out what this means for the above series Q(x). If X is a compact
complex n-manifold, let x1, . . . , xn denote the Chern roots of the tangent bundle
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TX . (These are formal variables whose symmetric functions are the Chern classes
of TX .) Then

ϕ(X) =
∫

X
Q(x1) · · ·Q(xn)

=
∫
td(TX)ch(K⊗−k

X ⊗
∏

m≥1

(Λ−y−1qmT ⊗ Λ−yqm−1T ∗ ⊗ SqmT ⊗ SqmT
∗)),

where T = TX − n. Here the Todd genus td(TX) comes from the factor

n∏

i=1

xi/(1− e−xi)

in Q(x1) · · ·Q(xn), and the factor in brackets in Q(x) merely has the effect of replac-
ing TX by the rank-0 virtual bundle T in the above expression. By the Hirzebruch-
Riemann-Roch theorem, we deduce that the complex elliptic genus of a compact
complex manifold X is given by the holomorphic Euler characteristic

ϕ(X) = χ(X,K⊗−k
X ⊗

∏

m≥1

(Λ−y−1qmT ⊗ Λ−yqm−1T ∗ ⊗ SqmT ⊗ SqmT
∗))

in the ring Q((y))[[q, k]]. Because of our slightly different conventions, this series
differs by replacing y by −y from Höhn’s definition of the genus.

The complex elliptic genus has better properties if X is an SU -manifold, that is,
if the canonical line bundle KX = Λn(T ∗X) is trivial. For X an SU -manifold, the
series ϕ(X) clearly lies in Z((y))[[q]]. Moreover, for X an SU -manifold of complex
dimension n, ϕ(X) is in fact a Jacobi form of weight n, by Höhn [13]. Jacobi forms
are generalizations of modular forms defined by Eichler and Zagier [8], although we
use a slight variant of their definition as we will explain later in this section. Just as
modular forms (of level 1) are exactly sections of powers of a certain line bundle ψ1

on the compactified moduli stack M1,1 of elliptic curves, we define a Jacobi form of
weight n to be a section of n times a certain line bundle ψ1 on the universal elliptic
curve M1,2. In fact, this approach gives a definition of the ring of Jacobi forms with
coefficients in any given commutative ring R. Here M g,r is the Knudsen-Deligne-
Mumford moduli stack of r-pointed stable curves of genus g, which comes with r
line bundles ψ1, . . . , ψr representing the cotangent line of the curve at the r given
points [15]. The line bundle ψ1 on M 1,2 is not the pullback of the line bundle ψ1 on
M 1,1 by the projection π : M 1,2 → M 1,1, forgetting the second point; instead, we
have ψ1 = π∗ψ1+D0,1, where D0,1 is the divisor onM 1,2 where the two points lie on
the same genus-0 component, or equivalently it is the zero section of the universal
elliptic curve π : M 1,2 → M1,1 [15]. The Tate elliptic curve E ([21], pp. 197–198)
is a particular family of 1-pointed stable curves of genus 1 over Z[[q]], so there is a
map E → M 1,2. By pulling back, a Jacobi form over R restricts to a power series
in R((y))[[q]], using the natural coordinate y on E. This restriction map is clearly
injective. It is in this sense that the complex elliptic genus of an SU -manifold in
Z((y))[[q]] is a Jacobi form over the integers.
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The ring of (level 1) modular forms over any Z[1/6]-algebra R is the polynomial
ring R[g2, g3], where gi is the Eisenstein series of weight 2i, i ≥ 2. The ring is more
complicated in characteristics 2 and 3 [6]. By the methods of Deligne’s paper, one
can also compute the ring of Jacobi forms, in the above sense. For any Z[1/6]-algebra
R, one gets the polynomial ring R[x, y, g2], where x is the Weierstrass p-function
(which has weight 2), y is its derivative (of weight 3), and g2 is the Eisenstein
series of weight 4: this contains the ring R[g2, g3] of modular forms, thanks to the
Weierstrass equation ([6], p. 59):

y2 = 4x3 − g2x− g3.

The series expansions of these Jacobi forms are as follows, following Lang [21], except
that he puts an extra factor of (2πi)n in his definition of each Jacobi form of weight
n:

x(τ, z) =
1

12
+

y

(1− y)2
− 2

∑

m,n≥1

nqmn +
∑

m,n≥1

nqmn(yn + y−n)

y(τ, z) =
∑

m≥0

qmy(1 + qmy)

(1− qmy)3
−
∑

m≥1

qm/y(1 + qm/y)

(1− qm/y)3

g2(τ) =
1

12


1 + 240

∑

m≥1

m3qm

1− qm




g3(τ) =
1

63


−1 + 504

∑

m≥1

m5qm

1− qm




The Jacobi forms x and g2 are only defined over Z[1/6] (equivalently, the coefficients
of the corresponding power series have denominators), but if we let x2 = 24x, x3 = y,
and x4 = 6x2 − g2/2, then these Jacobi forms are defined over the integers. Using
the methods of Deligne’s paper [6], one finds that over any Z[1/2]-algebra R, the
ring of Jacobi forms is the polynomial ring R[x2, x3, x4].

Moreover, Höhn showed that the Jacobi forms x2, x3, x4 arise as the elliptic
genera of certain explicit SU -manifolds, of complex dimensions 2, 3, 4: the K3
surface, the almost complex 6-sphere, and a nonstandard weakly complex structure
on a quadric 4-fold [13], pp. 24–25. It follows that the ring homomorphism

MSU∗ → (Jacobi forms over Z)

becomes surjective after tensoring with Z[1/2]. Höhn pointed out that it is not
surjective integrally: the Jacobi form x2, 24 times the Weierstrass p-function, is the
elliptic genus of the K3 surface, which generates MSU2n for n = 2: but 12p, not
only 24p, is a Jacobi form with integer coefficients.

For clarity, let us explain the relation of this definition of Jacobi forms to Eichler
and Zagier’s slightly different analytic notion of Jacobi forms. In their terminol-
ogy, the series ϕ(X) associated to an SU -manifold of complex dimension n is a
meromorphic Jacobi form of weight n and index 0 which is holomorphic outside the

10



lattice z ∈ Z+Zτ . We now give an analytic definition of Jacobi forms in our sense
and explain the precise relation to Eichler and Zagier’s definitions below. Namely,
we call a power series ϕ(q, y) ∈ C((y))[[q]] a Jacobi form of weight n if it has the
following properties. It converges for y sufficiently close to 0 and not equal to 0,
and q sufficiently close to 0 depending on y. It extends to a meromorphic function
ϕ(q, y) on D × (C− 0), where D is the unit disk, which is holomorphic outside the
divisors y = qm, m ∈ Z. Changing variables by q = e2πiτ and y = e2πiz, we get a
meromorphic function ϕ(τ, z) on H ×C, where H is the upper half-plane, which is
holomorphic except for z in the lattice Z+ Zτ . It satisfies

ϕ(τ, z + ω) = ϕ(τ, z) for all ω ∈ Z+ Zτ ;

that is, ϕ(τ, ·) is an elliptic function with respect to the lattice Z+Zτ ⊂ C. And it
satisfies

ϕ(
aτ + b

cτ + d
,

z

cτ + d
)(cτ + d)−n = ϕ(τ, z)

for all (
a b
c d

)
∈ SL(2,Z).

We can check that the ring of Jacobi forms in the above sense coincides with the
algebraically defined ring

⊕nH
0((M 1,2)C, nψ1) = C[p, p′, g2]

by comparing with the results of Eichler and Zagier. A Jacobi form of weight k in
the above sense fails to be a “weak Jacobi form of weight k and index 0” in their
sense ([8], p. 104) only because of its possible poles for y = qm, m ∈ Z. But there
is a particular weak Jacobi form ϕ̃−2,1 of weight −2 and index 1 which vanishes
to order 2 for y = qm, m ∈ Z, and nowhere else on D × (C − 0) ([8], p. 108).
Up to simple factors, ϕ̃−2,1 is the square of the Weierstrass sigma function; more
precisely, in terms of the normalization Φ(q, y) of the sigma function used earlier in
this section, we have

ϕ̃−2,1(τ, z) = yΦ(q, y)2.

It follows that the ring of Jacobi forms in the above sense is the ring J̃∗,∗[ϕ̃
−1
−2,1]∗,0,

where J̃∗,∗ is the ring of weak Jacobi forms, bigraded by weight and index, and we
only look at the localized ring in index 0. Now Eichler and Zagier’s computation of
the ring J̃∗,∗ ([8], pp. 111–112) shows that the above localized ring is the polynomial
ring C[p, p′, g2] (where g2 is called E4 in Eichler and Zagier, up to a constant factor).
We deduce that the ring of Jacobi forms as defined in the previous paragraph is
exactly the polynomial ring C[p, p′, g2].

The following fact, at least over C, is implicit in Eichler and Zagier’s calculation.
We give a direct proof since we will need this later.

Lemma 3.1 Consider the universal elliptic curve M 1,2 as a smooth stack (or orb-
ifold) over a field k. Then any rational section of the line bundle aψ1, a ∈ Z, over
M 1,2 which is regular outside the zero section D0,1 is regular everywhere. (So it is a
Jacobi form over k.)
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Proof. It suffices to show that for all integers a and all b ≥ 1, every (regular)
section of the line bundle aψ1 + bD0,1 over the surface M 1,2 vanishes on the curve
D0,1. This follows if we can show that this line bundle has negative degree on D0,1,
which it does because ψ1 · D0,1 = 0 and D2

0,1 < 0. The first statement follows
from the more precise fact that the line bundle ψ1 has trivial restriction to D0,1:
if we think of ψ1 as the line bundle of 1-forms on a stable curve of genus 1 which
have at most a pole at the origin, then a trivialization along the zero section is
given by the residue. Since D0,1 maps isomorphically to M 1,1 under the projection
π :M 1,2 →M 1,1, and the line bundle called ψ1 on M 1,1 has positive degree (in fact,
degree 1/24; see below), the pullback line bundle π∗ψ1 on M 1,2 has positive degree
on D0,1. Since ψ1 = π∗ψ1 + D0,1 on M 1,2, it follows that D2

0,1 < 0. Essentially
the same calculation, together with some background on stacks, can be found in
Mumford [27], p. 326, where he shows that

∫

M1,1

ψ1 =
∫

M1,2

ψ2
1 = 1/24.

QED
We return to topology by describing the image of the complex elliptic genus on

arbitrary complex manifolds rather than on SU -manifolds. Namely, the bordism
ring MU∗ ⊗Q is a polynomial ring over MSU∗ ⊗Q generated by CP1, by Novikov
[29]. And it is easy to check that the series ϕ(CP1) ∈ Q((y))[[q, k]] is algebraically
independent of the image of MSU∗, because it nontrivially involves the variable k.
So the image of the complex elliptic genus

ϕ :MU∗ ⊗Q→ Q((y))[[q, k]]

is a graded polynomial ring Q[x1, x2, x3, x4], where x1 is the image of CP1 and
x2, x3, x4 are the images of any three generators of the polynomial ring

MSU∗ ⊗Q = Q[x2, x3, x4, x5, . . . ]

in complex dimensions 2, 3, 4, say those described earlier in this section.

4 Complex bordism modulo flops

Here is the first of the two main results of this paper.

Theorem 4.1 Let I be the ideal in the complex bordism ring MU∗ ⊗ Q which is
additively generated by differences X1−X2, where X1 and X2 are smooth projective
varieties related by a classical flop, as defined below. Then the complex elliptic genus,
viewed as a ring homomorphism

MU∗ ⊗Q → Q[x1, x2, x3, x4],

is surjective with kernel equal to I. Equivalently, the Chern numbers (linear maps
MU2n ⊗Q → Q) which are invariant under classical flops are exactly those which
factor through the complex elliptic genus.
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After some geometric preliminaries, this result can be seen as a stronger form of
one of Höhn’s characterizations of the elliptic genus, in terms of twisted projective
bundles [13], Satz 2.4.3.

Here two complex manifolds which are related by a classical flop, as defined
below, are in particular both IH-small resolutions of the same complex space Y . So
this theorem implies that the complex elliptic genus is an upper bound for the Chern
numbers which can be defined for singular varieties. (Recall that in defining Chern
numbers for singular varieties, we only allow definitions which are compatible with
IH-small resolutions in the sense of section 1.) We conjecture that this upper bound
is an equality. Since the complex elliptic genus takes values in a proper quotient of

MU∗ ⊗Q = Q[CP1,CP2, . . . ]

in complex dimensions ≥ 5, we see in particular that not every Chern number can
be defined for singular varieties in dimensions ≥ 5.

The simplest singularity with two different IH-small resolutions is the 3-fold
node Y given in affine coordinates by xy − zw = 0, or equivalently, the cone over a
smooth quadric surface P1 × P1 ⊂ P3. Atiyah discussed the two small resolutions
of this singularity [1]. Namely, blowing up the singular point of Y gives a resolution
X̃ which is not small; the inverse image of the singular point is a smooth divisor
P1 × P1 with normal bundle O(−1,−1) (the tensor product of the line bundles
O(−1) on the two copies of P1). One can blow down either of the two families of
P1’s on this divisor to give two resolutions of Y , X1 and X2, which are projective
over Y , and both of which have fiber over the singular point of Y equal to P1 with
normal bundle O(−1)⊕O(−1). Now, if Y is any projective 3-fold which is smooth
outside one point, and Y is Zariski locally isomorphic to the 3-fold node xy−zw = 0
near its singular point, then Y clearly has two projective IH-small resolutions X1

and X2. We say that the smooth projective 3-folds X1 and X2 are related by a
classical flop.

X̃

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

  ❆
❆❆

❆❆
❆❆

❆

X1

  ❇
❇❇

❇❇
❇❇

❇
X2

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

Y

If we assume only that Y is analytically locally isomorphic to xy − zw = 0,
which is the usual definition of a node singularity of Y , then Y still has two IH-
small resolutions, but they need not be projective over Y , by [17], p. 171. Our
results, which are essentially topological, apply perfectly well to 3-fold nodes in this
more general sense. The point of Theorem 4.1, however, is that even identifying
manifolds related by a very special kind of flop reduces the complex bordism ring
to the elliptic cohomology ring. It is to emphasize this point that we have defined
“classical flops” in such a narrow sense.
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To define classical flops in higher dimensions, let Y be a singular projective n-
fold which is Zariski locally isomorphic, near each point of its singular set Z, to the
product of the 3-fold node with a smooth (n − 3)-fold. Such a complex space Y
has two different IH-small resolutions X1 and X2 which are both smooth projective
varieties. In this situation, we say that X1 and X2 are related by a classical flop.
Geometrically, we are removing a P1-bundle over the smooth (n− 3)-fold Z inside
X1 and replacing it by a possibly different P1-bundle over Z.

Proof of Theorem 4.1. The first step is to show that the complex ellip-
tic genus, applied to smooth projective varieties, is invariant under classical flops.
This is a consequence of the crucial rigidity property of this genus, proved by both
Krichever and Höhn. We need to state this not just for complex manifolds, but for
weakly complex manifolds (those used in the definition of complex bordism). See
section 2 for the definitions of weakly complex manifolds and SU -manifolds.

Krichever-Höhn’s rigidity theorem states that for any action of a compact con-
nected Lie group G on an SU -manifold X , the equivariant elliptic genus of X is
constant [19], [13]. The theorem has a consequence which we can state without
mentioning equivariant genera. Namely, if F → E → B is a fiber bundle of closed
connected weakly complex manifolds, with structure group a compact connected Lie
group G, and if F is an SU -manifold, then the elliptic genus ϕ satisfies

ϕ(E) = ϕ(F )ϕ(B),

by [13], Korollar 2.5.5. (The condition on the structure group means that we start
with a principal G-bundle over a weakly complex manifold B, and an action of G
on an SU -manifold F which preserves the weakly complex structure, and then we
let E be the associated F -bundle over B.)

In fact, the elliptic genus ϕ, viewed as a surjection

ϕ :MU∗ ⊗Q → Q[x1, x2, x3, x4],

is the universal genus with the above multiplicativity property. Equivalently, the
quotient of the complex cobordism ring MU∗⊗Q by the relations E−F ·B = 0 for
all fiber bundles as above is the polynomial ring Q[x1, x2, x3, x4]. From this point
of view, the remarkable fact about the elliptic genus is that this quotient ring is so
big. If we divide out the complex cobordism ring by the relation E = F · B for
all fiber bundles as above but without the SU condition on F , then we get a much
smaller and less interesting quotient ring of MU∗ ⊗Q, the image of the Hirzebruch
χy genus. In other words, in some unexpected way, group actions on SU -manifolds
are more restricted than group actions on general weakly complex manifolds. (The
analogous statement which we get from the Landweber-Stong elliptic genus is that
group actions on spin manifolds are more restricted than group actions on general
oriented manifolds.)

We want to apply the multiplicativity property of the elliptic genus ϕ to prove
that ϕ(X1) = ϕ(X2) for smooth projective n-folds X1 and X2 related by a classical
flop, as defined above: X1 and X2 are the two IH-small resolutions of a singular
projective variety Y whose singular set Z is a smooth subvariety of codimension 3,
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such that Y is Zariski locally isomorphic near points of Z to the product of an open
subset of Z with the 3-fold node. Thus X1 and X2 are isomorphic except over the
inverse images of Z: the inverse image of Z in X1 is a P1-bundle P (A) over Z, and
the inverse image of Z in X2 is a P1-bundle P (B) over Z which may be different.

SinceX1−P (A) is isomorphic toX2−P (B), the differenceX1−X2 in the bordism
group MU2n is equal to the class of a certain manifold E which is fibered over Z.
Namely, E is the result of gluing a tubular neighborhood of P (A) ⊂ X1 to a tubular
neighborhood of P (B) ⊂ X2 along their (diffeomorphic) boundaries. The manifold
E is not a complex manifold, but it is a weakly complex manifold in a natural way,
with the given complex structure on the tubular neighborhood of P (A) and with the
negative weakly complex structure to the given one on the tubular neighborhood of
P (B). The negative of a weakly complex structure is discussed in section 2, and the
equality X1 −X2 = E in bordism follows from Lemma 2.1.

The manifold E is fibered over Z, with fiber a weakly complex 6-manifold F .
One can construct F as the difference of the two small resolutions of the 3-fold node,
meaning the union of a tubular neighborhood of the P1 in one small resolution with
a tubular neighborhood of the P1 in the other resolution along their common bound-
ary, with the given complex structure on the first neighborhood and the negative
weakly complex structure on the second one. This weakly complex 6-manifold F
was considered by Höhn [13], section 1.3; he called it the twisted projective space
C̃P2,2.

As a smooth manifold, F is just CP3. But the crucial point is that the weakly
complex structure defined here makes F an SU -manifold. Indeed, H2(F,Z) = Z
maps isomorphically to H2 of either of the two neighborhoods, so it is enough to
check that c1(F ) = 0 in one of those neighborhoods: but the first neighborhood is
isomorphic to the bundle O(−1)⊕ O(−1) over P1, which (as a 3-fold) has c1 = 0.

The fiber bundle F → E → Z has structure group U(2)×U(2). That is, there is
an action of U(2)×U(2) on F , preserving the weakly complex structure, such that
E is the F -bundle over Z associated to some U(2)×U(2)-bundle over Z. Explicitly,
given two rank-2 complex vector bundles A and B over Z, the weakly complex
manifold E is the “difference” between the bundle B ⊗ O(−1) over P (A) and the
bundle A⊗O(−1) over P (B). Indeed, this is the way E was constructed, since the
inverse image of Z in the smooth variety X1 is isomorphic to a P1-bundle P (A)
over Z, with normal bundle of the form B⊗O(−1), and analogously for X2. In the
notation of Höhn, section 1.3, E is the twisted projective bundle C̃P(A⊕ B).

Höhn describes the weakly complex structure on E, as follows. As a real mani-
fold, E is the CP3-bundle P (A⊕B∗) over Z. This manifold has a natural complex
structure on the tangent bundle, and the weakly complex manifold E will be defined
by modifying this natural complex structure. We first need to describe the natural
complex structure on the tangent bundle of P (A⊕B∗). Let O(−1) denote the nat-
ural line subbundle of the pulled back rank-4 vector bundle A⊕B∗ over P (A⊕B∗);
then the tangent bundle along the fibers of P (A ⊕ B∗) is the tensor product of
(A ⊕ B∗)/O(−1) with O(1), that is, the quotient of A ⊗ O(1) ⊕ B∗ ⊗ O(1) by a
trivial bundle. So, as a C∞ complex vector bundle, the direct sum of the tangent
bundle of P (A⊕ B∗) with a trivial bundle is A⊗O(1)⊕ B∗ ⊗O(1)⊕ TZ.
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Höhn defines the twisted projective bundle E = C̃P(A⊕B) to be the manifold
P (A⊕B∗), with the complex structure on its stable tangent bundle changed to

T C̃P(A⊕B) := A⊗ O(1)⊕B ⊗O(−1)⊕ TZ.

(We are using here that a complex vector bundle and its dual bundle can be identified
as real vector bundles by choosing a hermitian metric on the given bundle.) It is
elementary to identify this definition with the weakly complex structure on E which
comes from the above construction of E by gluing.

Now we are in a position to apply Krichever-Höhn’s rigidity theorem on the
elliptic genus ϕ. Since F → E → B is a fiber bundle of weakly complex manifolds
with compact connected structure group U(2)×U(2) and F is an SU -manifold, we
have

ϕ(E) = ϕ(F )ϕ(B).

Moreover, the manifold F is equal to 0 in the bordism group MU6. The point
is that for any 3-folds X1 and X2 related by a classical flop, we have X1 −X2 = F
in bordism. But flopping is a symmetric operation, so we also have X2 −X1 = F .
Thus 2F = 0 in bordism, and in fact F = 0 since the complex bordism ring is
torsion-free. (We really only need that F = 0 in MU6 ⊗Q for what follows.)

Since the elliptic genus is a homomorphism on the complex bordism ring, we
have ϕ(F ) = 0. Thus, by the above calculation, ϕ(E) = 0. Since we constructed E
as the difference in bordism between two complex n-folds X1 and X2 related by a
classical flop, we have proved that ϕ(X1) = ϕ(X2).

5 Complex bordism modulo flops, continued

We now finish the proof of Theorem 4.1.
In the previous section, we showed that the elliptic genus is invariant under

classical flops. It remains to show that the quotient of MU∗ ⊗ Q by differences
X1−X2, withX1 andX2 related by a classical flop, is no bigger thanQ[x1, x2, x3, x4].
There is a natural approach to proving this. Namely, in each complex dimension n
there is a Chern number sn such that an element x of MU2n ⊗Q is a polynomial
generator of the ring MU∗⊗Q if and only if sn(x) is not 0 [12]. Explicitly, sn is the
nth power sum polynomial in the Chern classes c1, . . . , cn; that is, as a polynomial
in the Chern roots x1, . . . , xn, sn is equal to xn1 + · · ·+ xnn. Our problem is solved if,
for every n ≥ 5, we can find complex n-folds X1 and X2 related by a classical flop
such that sn(X1) 6= sn(X2). Indeed, then the ideal of differences X1 −X2 contains
a polynomial generator of MU∗ ⊗Q = Q[x1, x2, . . . ] in every degree at least 5, so
the quotient by this ideal is at most Q[x1, x2, x3, x4], which is what we are trying to
prove.
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We repeat here that a classical flop is a diagram

X̃

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

  ❆
❆❆

❆❆
❆❆

❆

X1

  ❇
❇❇

❇❇
❇❇

❇
X2

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

Y

Here Y is a singular projective n-fold which is Zariski locally isomorphic to the 3-fold
node xy − zw = 0 times a smooth (n− 3)-fold, near each point of its singular locus
Z. We let X̃ be the blow-up of Y along Z; X̃ is a smooth variety. The exceptional
divisor E ⊂ X̃ is a P1×P1-bundle over the smooth (n− 3)-fold Z. Finally, X1 and
X2 are smooth varieties defined by contracting either of the two families of P1’s in
E ⊂ X̃. In this situation, there are rank-2 vector bundles A and B on Z such that
the inverse image of Z in X1 is the P

1-bundle P (A) with normal bundle B⊗O(−1),
and the inverse image of Z in X2 is P (B) with normal bundle A⊗O(−1).

To compute the Chern number sn(X1 − X2), we could use Porteous’s formula
to relate the Chern numbers of X1 and X2 to those of their common blow-up X̃
[30]. It is more efficient, however, to use section 4’s observation that X1 − X2 is
bordant to the twisted projective bundle C̃P(A⊕B) over Z. Notice that, for every
smooth projective (n−3)-fold Z with rank-2 algebraic vector bundles A and B over
Z, there is a classical flop of n-folds in which Z, A, and B play the roles explained
above. That is, there is a singular projective n-fold Y with singular set Z such that
Y is Zariski locally on Z isomorphic to the 3-fold node xy − zw = 0 times an open
subset of Z, and such that the blow-up X̃ of Y along Z has exceptional divisor
E = P (A) ×Z P (B) with normal bundle O(−1,−1) := OP (A)(−1) ⊗ OP (B)(−1).

Given Z, A, B, we can find such varieties Y , X̃ , X1, and X2 as follows. First
define a variety E to be P (A) ×Z P (B), and then define X̃ to be the P1-bundle
P (O⊕O(−1,−1)) over E; then E is embedded in X̃ in a natural way with normal
bundle O(−1,−1). We can then define X1 and X2 by contracting either of the
two families of P1’s on E ⊂ X̃ , and we can define Y by contracting the family of
P1 ×P1’s in E ⊂ X̃.

Thus Theorem 4.1 will be proved if we can find, for every n ≥ 5, a smooth
projective (n − 3)-fold Z with rank-2 algebraic vector bundles A and B such that
sn(C̃P(A⊕B)) 6= 0.

We can compute sn(C̃P(A⊕ B)) in slightly greater generality. For any weakly
complex manifold Z of real dimension 2(n − 3) with C∞ rank-2 complex vector
bundles A and B, the definition of the twisted projective bundle C̃P(A ⊕ B) in
section 4 makes sense (as a weakly complex manifold). We will compute the Chern
number sn of E := C̃P(A⊕B).

The Chern character of the tangent bundle of E is

ch(TE) = ch(A⊗ O(1)⊕ B ⊗ O(−1)⊕ TZ)

= euch(A) + e−uch(B) + ch(TZ),
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where u denotes c1O(1) ∈ H2(E). If we write x1, x2 for the Chern roots of A and
x3, x4 for the Chern roots of B (so, formally, A has total Chern class (1+x1)(1+x2)
and B has total Chern class (1 + x3)(1 + x4)), then the Chern character of TE is

ch(TE) = eu(ex1 + ex2) + e−u(ex3 + ex4) + ch(TZ)

= ex1+u + ex2+u + ex3−u + ex4−u + ch(TZ).

Since sn(TE) = n! chn(TE), it follows that

sn(TE) = (x1 + u)n + (x2 + u)n + (x3 − u)n + (x4 − u)n + sn(TZ).

Here sn(TZ) = 0 since the bundle TZ on E is pulled back from Z, which has real
dimension 2(n− 3). So in fact

sn(TE) = (x1 + u)n + (x2 + u)n + (x3 − u)n + (x4 − u)n.

To compute snE :=
∫
E sn(TE), we rewrite this integral as an integral over Z, by

the equality

snE =
∫

Z
π∗sn(TE),

where π : E → Z is the projection and π∗ : H iE → H i−6Z is the corresponding
pushforward map. Here E is identified with the CP3-bundle P (A ⊕ B∗) as a real
manifold, and one checks that this identification preserves orientation, so it is enough
to describe the pushforward map for complex projective bundles. Namely, H∗E is a
free module over H∗Z with basis 1, u, u2, u3, and the pushforward map π∗ is a map
of H∗Z-modules, so it is enough to describe π∗ on the basis elements, which is easy:
π∗(u

i) = 0 for 0 ≤ i ≤ 2 and π∗(u
3) =

∫
CP3 u3 = 1. In fact, to apply π∗ to snTE as

computed above, it is convenient to have a formula for π∗(u
i) for any i ≥ 0. These

are given by Segré classes, that is, inverse Chern classes.

Lemma 5.1 For any space X with a complex vector bundle V of rank r over X, let
π : P (V ) → X be the projective bundle of lines in V and let u = c1O(1) ∈ H2P (V ).
Then

π∗(u
i) = ci−(r−1)(−V )

for all i ≥ 0.

A reference for the lemma is Fulton’s book [9], p. 47. Thus, for the bundle
π : E → Z, we have

π∗(u
i) = ci−3(−(A⊕B∗)).

In terms of the Chern roots x1, x2 of A and x3, x4 of B, we have

π∗(u
i) =

∑

i1+i2+i3+i4=i−3
ij≥0

(−x1)
i1(−x2)

i2xi33 x
i4
4

=
∑

i1+i2+i3+i4=i−3
ij≥0

(−1)i1+i2xi11 x
i2
2 x

i3
3 x

i4
4 .
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So we get the following expression for the Chern number sn of E:

snE =
∫

Z
π∗snTE

=
∫

Z
π∗
[
(x1 + u)n + (x2 + u)n + (x3 − u)n + (x4 − u)n

]

=
∫

Z

n∑

i=3

(
n

i

)[
xn−i
1 + xn−i

2 + (−1)ixn−i
3 + (−1)ixn−i

4

]
π∗u

i.

(The sum is written only over i ≥ 3 because π∗(u
i) = 0 for i ≤ 2.) When we plug

in the formula for π∗(u
i) and use the identity

∑i
j=0(−1)j

(
n
j

)
= (−1)i

(
n−1
i

)
, we get

the definitive formula for snE:

snE =
∫

Z

∑

i1+i2+i3+i4=n−3
ir≥0

xi11 x
i2
2 x

i3
3 x

i4
4

[
(−1)i2

(
n− 1

i1

)
+ (−1)i1

(
n− 1

i2

)

+ (−1)i4+1

(
n− 1

i3

)
+ (−1)i3+1

(
n− 1

i4

)]

Using this formula, it is easy to find, for every n ≥ 5, a smooth projective (n−3)-
fold Z with rank-2 algebraic vector bundles A and B such that the associated twisted
projective bundle E has sn(E) 6= 0. As explained earlier in this section, this will
complete the proof of Theorem 4.1. Let Z = CPn−3, with A = O(1) +O and B =
O⊕2. Then, in the above notation, x1 = c1O(1) on CPn−3 and x2 = x3 = x4 = 0,
and so

snE =
∫

Z
xn−3
1

[(
n− 1

n− 3

)
+ (−1)n−3

(
n− 1

0

)
−

(
n− 1

0

)
−

(
n− 1

0

)]

= (n2 − 3n+ 2(−1)n+1 − 2)/2

=




n(n− 3)/2 if n is odd

(n + 1)(n− 4)/2 if n is even.

Thus snE is 0 for n = 3 and n = 4, but nonzero for all n ≥ 5, as we want. QED
(Theorem 4.1)

6 SU-bordism modulo flops

In this section, we give a geometric description of the kernel of the complex elliptic
genus restricted to MSU∗ ⊗ Z[1/2]. Namely, this kernel is equal to the ideal I in
MSU∗ ⊗ Z[1/2] generated by twisted projective bundles C̃P(A ⊕ B) over weakly
complex manifolds Z such that the complex vector bundles A and B over Z have
rank 2 and c1Z + c1A+ c1B = 0; in this case, the total space is an SU -manifold. In
view of section 4, it is reasonable to call I the ideal of SU -flops: some elements of I
will arise geometrically from birational equivalences between compact complex man-
ifolds with trivial canonical bundle. At the same time, we find thatMSU∗⊗Z[1/2]/I
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is a polynomial ring of the form Z[1/2][x2, x3, x4]. These results are analogous to the
results of Kreck and Stolz, describing the kernel of the Ochanine genus on MSpin∗

in terms of HP2-bundles, except that for now we work away from the prime 2 [18].
Remarks. (1) For integral questions such as this, it seems more natural to

work with the ring MSU∗ rather than MU∗, for example because the image ofMU∗

under the complex elliptic genus is not finitely generated, although after tensoring
with Q it becomes the polynomial ring Q[x1, x2, x3, x4]. In fact, even the image of
the χy genus on MU∗ is not finitely generated.

The image of MSU∗, on the other hand, is quite simple, as explained above.
In particular, given the results above, the Sullivan-Baas method of bordism with
singularities produces a multiplicative cohomology theory which is a module over
MSU ⊗ Z[1/2] and which has coefficient ring Z[1/2][x2, x3, x4] [2], [24]. (The
Sullivan-Baas method gives a cohomology theory with the coefficient ring we want
because the ideal I is defined by a regular sequence in the ring

MSU∗ ⊗ Z[1/2] = Z[1/2][x2, x3, x4, . . . ],

as follows from the above results.) This is a natural integral version of complex
elliptic cohomology theory (at least over Z[1/2]), defined here for the first time.

(2) One might define an ideal I ⊂ MSU∗ of “SU -flops” in several other ways.
In particular, it would be closer to Kreck and Stolz’s description of the kernel of
the Ochanine genus via HP2-bundles to consider only twisted projective bundles
whose base as well as whose total space is an SU -manifold [18]. This seems to be
definitely the wrong definition at the prime 2, so we have preferred the more general
definition of SU -flops above, which at least has a chance of giving the “right” ideal
in MSU∗ as well as in MSU∗ ⊗Z[1/2]. At the prime 2, it may also be necessary to
consider twisted projective bundles with structure group (U(2)×U(2))/U(1) rather
than U(2)× U(2).

We now turn to the proof of this section’s theorem:

Theorem 6.1 The kernel of the complex elliptic genus on MSU∗ ⊗ Z[1/2] is equal
to the ideal I of SU-flops, as defined above. Also, the quotient ring is a polynomial
ring:

MSU∗ ⊗ Z[1/2]/I ∼= Z[1/2][x2, x3, x4].

Proof. We use Novikov’s description of the ring MSU∗ ⊗ Z[1/2] [29]. It is a
graded polynomial ring

MSU∗ ⊗ Z[1/2] = Z[1/2][x2, x3, x4, . . . ],

xn ∈ MSU2n. An SU -manifold X of real dimension 2n, n ≥ 2, is a polynomial
generator of MSU∗ ⊗ Z[1/2] if and only if

snX =





±p(a power of 2) if n is a power of an odd prime p,

±p(a power of 2) if n + 1 is a power of an odd prime p,

±(a power of 2) otherwise.
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We will show that for every n ≥ 5, the greatest common divisor of the integers
snX for SU -flops X of real dimension 2n is as above. This will imply the theorem,
as follows. The statement means that the ideal I ⊂ MSU∗ ⊗ Z[1/2] contains a
polynomial generator of MSU∗ ⊗ Z[1/2] in real dimension 2n for all n ≥ 5. So
MSU∗⊗Z[1/2]/I is a quotient of the ring Z[1/2][x2, x3, x4]. But the complex elliptic
genus gives a homomorphism of graded rings

MSU∗ ⊗ Z[1/2]/I → Q[x2, x3, x4],

where we know that I maps to 0 since this genus is 0 on all flops, by Theo-
rem 4.1. Moreover, this homomorphism is surjective after tensoring with Q [13].
Since MSU∗⊗Q/I is a quotient of Q[x2, x3, x4], considering dimensions shows that
MSU∗ ⊗ Q/I is actually equal to Q[x2, x3, x4]. Since MSU∗ ⊗ Z[1/2]/I is a quo-
tient of the torsion-free ring Z[1/2][x2, x3, x4], any relation would show up rationally,
and so MSU∗ ⊗ Z[1/2]/I is equal to Z[1/2][x2, x3, x4]. Finally, because this ring is
torsion-free, the complex elliptic genus

MSU∗ ⊗ Z[1/2]/I → Q[x2, x3, x4]

is injective, since this is true rationally. That is, I is exactly the kernel of the
complex elliptic genus on MSU∗ ⊗ Z[1/2].

Thus the theorem will be proved if we can show that the greatest common
divisor of the integers snX for SU -flops X is as promised above. Our tool will be
the following lemma.

Lemma 6.2 For a weakly complex manifold Z of real dimension 2n with complex
line bundles L1, L2, L3 on Z, we can consider the set of integers ci11 L1c

i2
1 L2c

i3
1 L3c

i4
1 Z,

for all natural numbers i1, . . . , i4 with i1+i2+i3+i4 = n. This gives a homomorphism
f : MU2n(BU(1)

3) → ZN , where N is the number of partitions i1 + · · · + i4 = n.
Then f becomes surjective after tensoring with Z[1/2].

Proof of Lemma 6.2. The point is that for every n ≥ 0, there is a weakly
complex manifold F of real dimension 2n with cn1 (F ) a unit in Z[1/2]. (We cannot
always make cn1 (F ) a unit in Z; for example, c1 of every complex curve is even.) For
n ≥ 1, we can take F to be a suitable Z-linear combination of Pn and P1 × Pn−1,
since

cn1 (P
n) = (n+ 1)n

and
cn1 (P

1 ×Pn−1) = 2nn.

Also, we use that for every n ≥ 0, the map MU2n(BU(1)
3) → H2n(BU(1)

3,Z)
is surjective, as is true for any space with torsion-free cohomology in place of
BU(1)3. (This follows from inspection of the Atiyah-Hirzebruch spectral sequence
for bordism.) Equivalently, for each n ≥ 0, there are weakly complex manifolds
M of real dimension 2n with complex line bundles L1, L2, L3 such that the integers
ci11 L1c

i2
1 L2c

i3
1 L3, i1 + i2 + i3 = n, are whatever we like.
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The lemma follows from combining these two observations. For 0 ≤ k ≤ n,
consider weakly complex manifolds of the form X = F ×M , where F is a fixed
manifold of real dimension 2k such that ck1(F ) is a unit in Z[1/2], and M has real
dimension 2(n − k) and has three complex line bundles L1, L2, L3 on it. We can
view L1, L2, L3 as line bundles on the product manifold X . The Chern numbers
in c1X, c1L1, c1L2, c1L3 of degree < k in c1X are 0, and those of degree k in c1X
are equal to ck1(F ) times the Chern numbers in c1L1, c1L2, c1L3 on M . By taking
a suitable Z[1/2]-linear combination of these manifolds X over 0 ≤ k ≤ n, we can
make the Chern numbers in c1X, c1L1, c1L2, c1L3 anything we like over Z[1/2]. QED

Using Lemma 6.2, we proceed to prove Theorem 6.1. For any weakly complex
manifold Z of real dimension 2(n−3) with complex line bundles L1, L2, L3 on Z, we
define rank-2 bundles A andB on Z by A = L1⊕L2 and B = L3⊕(KZ⊗L

∗
1⊗L

∗
2⊗L

∗
3).

These are chosen so that c1Z + c1A + c1B = 0, which is the condition needed to
ensure that the twisted projective bundle E := C̃P(A⊕B) is an SU -manifold, that
is, by our definition, an SU -flop.

By section 5, the Chern number snE is a certain explicit linear combination of
the integers

ci11 L1c
i2
1 L2c

i3
1 L3c

i4
1 Z.

By Lemma 6.2, the greatest common divisor of the integers snE obtained this way,
in the ring Z[1/2], is simply the greatest common divisor of the coefficients of the
integers ci11 L1c

i2
1 L2c

i3
1 L3c

i4
1 Z in the formula for snE. By inspection of that formula,

this greatest common divisor is equal to the greatest common divisor of the integers

(−1)i2
(
n− 1

i1

)
+ (−1)i1

(
n− 1

i2

)
+ (−1)i4+1

(
n− 1

i3

)
+ (−1)i3+1

(
n− 1

i4

)

over all partitions i1+ · · ·+ i4 = n−3. Thus Theorem 6.1 will follow if we can show,
for n ≥ 5, that if an odd prime number p divides all these integers, then either n or
n+ 1 is a power of p, and in those cases one of these integers is not divisible by p2.

We will only use a few of these integers, the ones with i2 = i4 = 0. Write i for
i1, so that 0 ≤ i ≤ n− 3 and i3 = n− 3− i. Then the above integer is

=

(
n− 1

i

)
+ (−1)i −

(
n− 1

n− 3− i

)
+ (−1)n−3−i+1

=

(
n

i+ 1

)
−

(
n

i+ 2

)
+ (−1)i[1 + (−1)n],

using the identity
(
n
i

)
=
(
n−1
i

)
+
(
n−1
i−1

)
. Thus, if n is odd, the above integer is(

n
i+1

)
−
(

n
i+2

)
, for 0 ≤ i ≤ n− 3. If n is even, since we are interested in the greatest

common divisor of these numbers, we can take the sum of the above number for i and
the above number for i− 1: this gives the integers

(
n+1
i+1

)
−
(
n+1
i+2

)
, for 1 ≤ i ≤ n− 3,

and (still for n even) we can also remember the above number for i = 0, which is

2
(
n+1
1

)
−
(
n+1
2

)
.

Suppose first that n is odd (and, as always, n ≥ 5). We will show that if

an odd prime number p divides
(

n
i+1

)
−
(

n
i+2

)
for all 0 ≤ i ≤ n − 3, then n is a
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power of p, and one of these numbers is not divisible by p2; this will prove what we
want for n odd. Since n ≥ 5, our assumption implies in particular that p divides(
n
2

)
−
(
n
1

)
= n(n− 3)/2 and

(
n
3

)
−
(
n
2

)
= n(n− 1)(n− 5)/6. If p does not divide n,

then n ≡ 3 (mod p) and n ≡ 1 or 5 (mod p), a contradiction. So p does divide n.

Equivalently, p divides
(
n
1

)
; so our assumption tells us that p divides

(
n
i

)
for all

1 ≤ i ≤ n − 1. It is elementary that this implies that n is a power of p. Also, it is
then elementary that the greatest common divisor of the integers

(
n
i

)
is exactly p.

It remains to show that one of the differences
(

n
i+1

)
−
(

n
i+2

)
is not divisible by

p2, 0 ≤ i ≤ n− 3. If they are all zero modulo p2, then since one of the integers
(
n
i

)
,

1 ≤ i ≤ n− 1, is nonzero modulo p2, they are all nonzero modulo p2. In particular
this applies to

(
n
1

)
= n, which is a power of p; so n = p. In this case, we have

p(p − 3)/2 =
(
n
2

)
−
(
n
1

)
≡ 0 (mod p2), and so n = p = 3. This contradicts our

assumption that n ≥ 5. So one of the differences
(

n
i+1

)
−
(

n
i+2

)
is not divisible by p2,

and our proof is complete for n odd.
It remains to consider n even (with, as always, n ≥ 5). We will show that if

an odd prime number p divides
(
n+1
i+1

)
−
(
n+1
i+2

)
for all 1 ≤ i ≤ n − 3 as well as

2
(
n+1
1

)
−
(
n+1
2

)
, then n+1 is a power of p, and one of the integers mentioned is not

divisible by p2. This will complete the proof of Theorem 6.1.
Since p divides 2

(
n+1
1

)
−
(
n+2
2

)
= −(n + 1)(n− 4)/2, n + 1 is congruent to 0 or

5 modulo p. Suppose that n + 1 is not a multiple of p, so that n + 1 ≡ 5 (mod p).
Since n ≥ 5, n+1 is at least p+5 in this case. Our assumptions imply, in this case,
that the numbers

(
n+1
i

)
for 2 ≤ i ≤ n− 1 are all equal and nonzero modulo p. But

(
n+ 1

p+ 1

)
=

(
n+ 1

p

)
n+ 1− p

p+ 1
,

so the fraction on the right must equal 1 (mod p), which says that n + 1 ≡ 1
(mod p), contradicting our assumption that n+ 1 ≡ 5 (mod p). So in fact n + 1 is

a multiple of p. By our assumptions, then, the numbers
(
n+1
i

)
for 1 ≤ i ≤ n are all

0 (mod p). It follows that n+ 1 is a power of p.

Then the greatest common divisor of the integers
(
n+1
i

)
, 1 ≤ i ≤ n, is p. We

have to show that one of the differences
(
n+1
i+1

)
−
(
n+1
i+2

)
, 1 ≤ i ≤ n − 3, or else the

number 2
(
n+1
1

)
−
(
n+1
2

)
, is not divisible by p2. If these numbers are all 0 modulo p2,

then all the numbers
(
n+1
i

)
, 1 ≤ i ≤ n, are nonzero modulo p2 since one of them is.

In particular this applies to n+1, which is a power of p, and so n+1 = p. But then
p2 divides 2

(
n+1
1

)
−
(
n+1
2

)
= −p(p− 5)/2, so that n + 1 = p = 5, contradicting our

assumption that n ≥ 5. So we have proved that one of the numbers
(
n+1
i+1

)
−
(
n+1
i+2

)
,

1 ≤ i ≤ n − 3, or else the number 2
(
n+1
1

)
−
(
n+1
2

)
, is not divisible by p2. This

completes the proof of Theorem 6.1. QED
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7 Saito’s homology classes χn−ki

In this section we explain how Morihiko Saito’s definition of a pure Hodge structure
on intersection homology [32], [33] implicitly includes a definition of certain natural
homology classes χn−k

i on a singular algebraic variety. We will use these classes to
define some new Chern numbers for singular varieties in section 8.

Saito showed that for any complex algebraic varietyX , the intersection homology
complex ICX in the derived category ofCX-modules has a natural “Hodge” filtration
F in the derived category such that the associated graded objects GrFp ICX live
naturally in the derived category Db

coh(OX) of bounded complexes of OX-modules
with cohomology sheaves which are coherent OX-modules [33], p. 273. If X is
smooth, so that ICX = CX ∈ D(CX), ICX is quasi-isomorphic to the de Rham
complex

0 → Ω0
X → Ω1

X → · · · ,

and the filtration F is the obvious filtration so that GrFp ICX = Ωp
X [p]. Thus, for a

general variety X , the object GrFp ICX ∈ Db
coh(OX) is a generalization of the sheaf

of p-forms on a smooth variety. (A different generalization of the sheaf of p-forms
on a smooth variety to an object in the derived category was found earlier by du
Bois [7], related to ordinary cohomology rather than intersection cohomology. Saito
was partly inspired by du Bois’s work.)

The filtration F is preserved under proper pushforward in a precise sense [33],
p. 273. In particular, if f : X → Y is an IH-small resolution, then f∗ICX = ICY ∈
D(CX) compatibly with the filtrations F on ICX and ICY , and in particular we
have f∗GrFp ICX = GrFp ICY ∈ Db

coh(OY ). Here f∗ means Rf∗, as is natural in talking
about derived categories.

In particular, the alternating sum

χp :=
∑

i

(−1)i+pHiGrFp ICX

is an element of the Grothendieck group G0X of coherent sheaves on any variety X .
It is equal to the class of Ωp

X for X smooth, and it satisfies f∗χp(X) = χp(Y ) for an
IH-small resolution f : X → Y .

Finally, we can apply Baum-Fulton-MacPherson’s natural homomorphism [4]
from the Grothendieck group G0X of coherent sheaves to topological K-homology
Ktop

0 X , followed by the homological version of the Chern character hh : Ktop
0 X →

H∗(X,Q) (also described in [4]), to χp(X) ∈ G0X . Let χr
p(X) be the part of

hh(χp(X)) in H2(n−r)(X,Q), where n = dim X . Then χn−k
p is a homology class

naturally associated to any complex algebraic variety X (it lives in Borel-Moore
homology if X is noncompact). If X is smooth, it is the degree n − k part of the
cohomology class td(TX)ch(Ω

p
X), since the homology Chern character hh takes a

vector bundle E to the Chern character of E times the Todd class of X . Finally,
the homology Chern character is a natural transformation on the category of proper
algebraic maps, so if f : X → Y is an IH-small resolution, then f∗χ

n−k
p (X) =

χn−k
p (Y ).
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8 The Chern numbers ck1χ
n−k
i

Our positive results about the Chern numbers ck1χ
n−k
i for n-folds come in two slightly

different forms, both to be proved in this section. (We describe these Chern numbers
in terms of a certain genus, the χyz genus, in section 9.) First, we have:

Theorem 8.1 For any singular projective variety Y with two projective IH-small
resolutions X1 and X2, we have

ck1χ
n−k
i (X1) = ck1χ

n−k
i (X2)

for all 0 ≤ k ≤ n, 0 ≤ i ≤ n− k.

The projectivity assumptions can be weakened, as follows: it suffices to let Y
be a compact complex space with two IH-small resolutions Xi → Y , i = 1, 2, which
are projective over an analytic neighborhood of each point of Y . In fact, even this
weaker projectivity assumption should be irrelevant.

An equivalent statement is that there exists some extension of the Chern number
ck1χ

n−k
i to singular n-folds which agrees with the corresponding number for any

projective IH-small resolution. Of course, it would be more satisfying to define
explicitly at least one extension of the Chern number ck1χ

n−k
i to singular n-folds,

and we can do this for those varieties which have a relative canonical model; again,
the minimal model conjecture (Conjecture 0-4-4 in [14]) would imply that every
variety has a relative canonical model (Theorem 3-3-1 in [14]).

We recall some of the relevant definitions. A relative canonical model for a
variety Y is defined, starting from any resolution of singularities f : X → Y , as
the variety X0 := Proj(⊕n≥0f∗K

⊗n
X ) → Y , assuming that the sheaf of OY -algebras

⊕n≥0f∗K
⊗n
X on Y is locally finitely generated [14], p. 301. The sheaf of algebras

⊕n≥0f∗K
⊗n
X on Y is independent of the resolution X of Y ; this is the classical fact

that sections of pluricanonical bundles on smooth varieties are birationally invariant.
So every variety has at most one relative canonical model. This makes it a useful
tool for defining invariants of singular varieties whenever it can be shown to exist.
It exists for varieties of dimension at most 3 [26], Theorem 0.3.12, and for varieties
with toroidal singularities. (Reid [31], Theorem 0.2, proves that it exists for global
toric varieties, and the definition of the relative canonical model is analytically local
on Y .)

A crucial property of relative canonical models is that, as Reid found, their
singularities are not too bad. In particular, if X0 is the relative canonical model of
any variety Y , thenX0 has canonical singularities (see [17], p. 121, for the definition),
and in particular X0 isQ-Gorenstein, which means that some power of the canonical
class KX0

is a line bundle on X0. In particular, we have a well-defined cohomology
class c1(X0) := −KX0

∈ H2(X0,Q).
Now we can state the second version of our positive result on the Chern numbers

ck1χ
n−k
i .
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Definition. Let Y be a singular projective variety which has a relative canonical
model X0. Then we define

ck1χ
n−k
i (Y ) := ck1χ

n−k
i (X0) ∈ Q.

The formula on the canonical model X0 makes sense because χn−k
i can be de-

fined as a homology class on arbitrary varieties by section 7, and c1 = −KX0
is a

cohomology class in H2(X0,Q) since the canonical model X0 is Q-Gorenstein. The
formula gives a well-defined rational number associated to Y because the canonical
model is unique. However, we also want to know that this definition is compatible
with IH-small resolutions in the sense we require, and that turns out to be true:

Theorem 8.2 Let Y be a singular projective variety which has a projective IH-small
resolution X → Y . Then Y also has a relative canonical model X0, which factors
X → X0 → Y , and we have

ck1χ
n−k
i (X) = ck1χ

n−k
i (X0).

This theorem will be deduced from the fact, of interest in its own right, that
projective IH-small resolutions are relative minimal models in the sense of Mori’s
theory, as we will explain. This fact is a restatement of a theorem of Wisniewski’s
[34].

Now we turn to the proofs.
Proof of Theorem 8.1. This will follow from Theorem 8.2. Indeed, if X1 and

X2 are projective IH-small resolutions of Y , then by Theorem 8.2, Y has a relative
canonical model X0, lying under both X1 and X2,

X1

!!❇
❇❇

❇❇
❇❇

❇
X2

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

X0

��
Y,

and ck1χ
n−k
i (X1) = ck1χ

n−k
i (X0) = ck1χ

n−k
i (X2). QED

Proof of Theorem 8.2. As mentioned above, the main point is the following
proposition, a restatement of a theorem of Wisniewski’s.

Proposition 8.3 An IH-small resolution f : X → Y such that X is projective over
Y is a relative minimal model.

Proof of Proposition 8.3. By definition, a relative minimal model of a variety
Y is a variety X with Q-factorial terminal singularities together with a projective
birational morphism f : X → Y such that the canonical class KX is f -nef, that is,
KX ·C ≥ 0 for all curves C in X which map to a point in Y . Again, some references
are [31], Theorem 0.2, for the toric case, [17], p. 121, for the definition of terminal
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singularities, and [14] for the most detailed development of the theory. Kollár [16]
gives a good introductory survey, and his more recent survey [17] is also very useful.

If X is a projective IH-small resolution of a variety Y , then X is smooth and
hence has Q-factorial terminal singularities. So to show that X is a relative minimal
model we only have to show that KX is f -nef. Suppose that KX is not f -nef. Let
N(X/Y ) be the real vector space spanned by the curves on X which map to a
point in Y modulo numerical equivalence, that is, modulo the relation that a linear
combination of curves is 0 if it has 0 intersection number with every line bundle
on X . Define NE(X/Y ), the cone of curves in X over Y , to be the closed cone in
N(X/Y ) generated by curves in X which map to a point in Y . In these terms, since
KX is not f -nef, the cone NE(X/Y ) ∩ {z ∈ N(X/Y ) : KX · z < 0} is nonempty.
By Mori [25], Theorem 1.4, later generalized by several people (see [14], Chapter
4), this intersection is locally a rational polyhedral cone, so in particular, given that
it is nonempty, it has an extremal ray R; let us pick one. By Mori, Kawamata,
Benveniste, Reid, Ando, and Shokurov (see [14], Chapter 3), we can contract the
extremal ray R. This means that there is a normal variety X ′ with surjective
morphisms X → X ′ → Y such that X ′ is projective over Y , and such that a curve
C in X which maps to a point in Y also maps to a point in X ′ if and only if the
class of C in N(X/Y ) lies on the ray R. The variety X ′ is uniquely defined by these
properties. Since the map X → Y is IH-small, so is the contraction map X → X ′.
We will derive a contradiction from the existence of such an IH-small contraction,
thus proving that X was in fact a relative minimal model of Y .

Define the length of the extremal ray R to be

l(R) := min {−KX · C : [C] ∈ R− {0}, C a rational curve};

thus l(R) is a positive integer, given that X is smooth so that −KX · C is always
an integer. Now we can state Wisniewski’s theorem [34], Theorem 1.1.

Theorem 8.4 Let R be an extremal ray in a smooth variety X, giving a contraction
f : X → Y . Let E ⊂ X be the exceptional set. Let F be any irreducible component
of a fiber f−1(f(x)) for x ∈ E. Then

dim F + dim E ≥ dim X + l(R)− 1.

This is not at all true for contractions of extremal rays on singular varieties.
In particular, Wisniewski’s theorem implies that

dim F + dim E ≥ dim X,

which is all we need. I claim that this implies that the contraction f : X →
Y is not IH-small. Indeed, it says that every irreducible component of a fiber
of f : E → f(E) has dimension at least dim X − dim E, so that dim f(E) ≤
dim E − (dim X − dim E), which translated in terms of codimension says that
codim E ≤ 1

2
codim f(E). That is, f is not IH-small. QED (Proposition 8.3)

Now, by Kawamata, if a variety Y has a relative minimal model f : X → Y ,
then Y also has a relative canonical model X0 → Y [14], Theorem 3-3-1. The map f
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factors X → X0 → Y , and we have KX = f ∗(KX0
) in Pic X⊗Q by the construction

of X0 (KX is basepoint-free, locally over Y ).
Thus, if f : X → Y is a IH-small resolution such that X is projective over Y ,

then X is a relative minimal model of Y by Proposition 8.3, so Y also has a relative
canonical model X0, and we have a factorization X → X0 → Y with KX = f ∗KX0

.
This proves most of Theorem 8.2.

In Theorem 8.2, Y is compact, so X and X0 are also compact. Clearly the map
g : X → X0 is an IH-small resolution, so the last sentence of section 7 implies that

g∗(χ
n−k
i (X)) = χn−k

i (X0) ∈ H2k(X0,Q)

for all 0 ≤ k ≤ n, 0 ≤ i ≤ n − k. Since KX = f ∗KX0
∈ Pic X ⊗ Q, we also have

c1(X) = f ∗c1(X0) ∈ H2(X,Q), and it follows that

ck1χ
n−k
i (X) = ck1χ

n−k
i (X0) ∈ Q.

QED (Theorem 8.2)

9 The twisted χy genus

By section 8, the Chern numbers ck1χ
n−k
i can be defined for singular varieties. These

Chern numbers can easily be combined into a genus which Höhn called the twisted χy

genus: its image is a quotient ring of the elliptic genus quotient ring Q[x1, x2, x3, x4]
of the bordism ring MU∗ ⊗Q. The last paragraph of Höhn’s thesis [13] identifies
the quotient ring of MU∗ ⊗Q corresponding to the twisted χy genus as

Q[x1, x2, x3, x4]/(∆(x2, x3, x4)).

Here we think of the ring Q[x2, x3, x4] as the ring of Jacobi forms, and ∆ as the dis-
criminant modular form in this ring, which has degree 12 (so that ∆ ∈ Q[x2, x3, x4]
is the elliptic genus of some linear combination of SU -manifolds of complex dimen-
sion 12). The proof of this identification of the quotient ring is easy but not quite
explicit in Höhn’s thesis, so we prove it in this section. The interest of this result
from the point of view of this paper is that section 8 gives an element of this quo-
tient ring associated to any singular variety, assuming the existence of a relative
canonical model.

Let χy be Hirzebruch’s χy genus [12], which maps a compact complex n-manifold
X to the polynomial

χy(X) = χn
0 (X) + χn

1 (X)y + · · ·+ χn
n(X)yn,

where we recall that χn
i (X) is the holomorphic Euler characteristic χ(X,Ωi) =∑

j(−1)jdim Hj(X,Ωi). It is easy to check that χy is a ring homomorphismMU∗ →
Z[y]. To get a homomorphism of graded rings, we redefine χy(X) to be tn times
the above polynomial in y for X of dimension n; then χy becomes a homomorphism
MU∗ → Z[t, y] of graded rings, with t in degree 2 and y in degree 0.
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As in section 3, we write Λy(E) =
∑

i y
iΛiE for a vector bundle E; then the χy

genus in Z[t, y] of a compact complex n-manifold can be written as the holomorphic
Euler characteristic

χy(X) = tnχ(X,Λy(T
∗X)).

We define the twisted χy genus in Q[t, y, z] as

χyz(X) = tnχ(X,K−z
X ⊗ Λy(T

∗X)).

Here z need not be an integer, but the expression still makes sense as a polynomial
with rational coefficients by the Hirzebruch-Riemann-Roch theorem. Knowing the
twisted χy genus of a manifold is equivalent to knowing all the Chern numbers
considered in section 8.

The twisted χy genus MU∗ ⊗Q → Q[t, y, z] is a homomorphism of graded rings
with t in degree 1 (corresponding to manifolds of complex dimension 1) and y and
z in degree 0. The homomorphism MU∗ ⊗Q → Q[t, y, z] is not surjective, but it
factors through the complex elliptic genus

MU∗ ⊗Q → Q[x1, x2, x3, x4],

which is surjective. So we get a well-defined homomorphism:

χyz : Q[x1, x2, x3, x4] → Q[t, y, z].

We will show that the kernel of this homomorphism is the ideal generated by the
discriminant cusp form ∆ in the ring Q[x2, x3, x4] of Jacobi forms. Thus we can
view the twisted χy genus as a surjective homomorphism

MU∗ ⊗Q → Q[x1, x2, x3, x4]/(∆(x2, x3, x4)),

as promised.
To begin with, let X be an SU -manifold of complex dimension n. Then the

elliptic genus ϕ(X) is defined as the power series (see section 3)

ϕ(X) = χ(X,
∏

m≥1

(Λ−y−1qmT ⊗ Λ−yqm−1T ∗ ⊗ SqmT ⊗ SqmT
∗)).

Here T denotes the virtual bundle TX − n of rank 0. If we define

α(X) = χ(X,
∏

m≥1

(Λ−y−1qmTX ⊗ Λ−yqm−1T ∗X ⊗ SqmTX ⊗ SqmT
∗X)),

this “unscaled elliptic genus” is related to the usual one by

α(X) = Φ(q, y−1)nϕ(X),

where Φ(q, y) is the normalization of the Weierstrass sigma function defined in sec-
tion 3. The point of introducing the unscaled elliptic genus α(X)(q, y) is that it is
evidently related to the χy genus by

χy(X) = α(X)(0,−y)

= (1 + y)n · ϕ(X)(0,−y).
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Thus, from Höhn’s calculation that there are SU -manifolds of complex dimension
2, 3, 4 with elliptic genera x2 = 24p, x3 = p′, and x4 = 6p2 − g2/2, we read off from
the power series expansions of these Jacobi forms in section 3 that

χy(x2) = t2(2− 20y + 2y2),

χy(x3) = t3(−y + y2),

χy(x4) = t4(−y + 4y2 − y3).

Thus the kernel of the χy homomorphism

χy : Q[x2, x3, x4] → Q[t, y]

is the ideal of “cusp forms” in the ring of Jacobi forms, those which vanish for
q = 0. If we think of Jacobi forms as sections of powers of the line bundle ψ1 over
the universal elliptic curve M 1,2, as in section 3, a Jacobi cusp form is one which
vanishes on the curve D0 (the nodal cubic) in M 1,2, the fiber of π : M1,2 → M 1,1

over the “cusp” in the modular curve M 1,1. Since the discriminant cusp form ∆ is
a section of 12ψ1 over M 1,1 with a single zero at the cusp and no other zeros, it
pulls back to a section over M 1,2 of 12ψ1 = 12(π∗ψ1 +D0,1) whose divisor of zeros
is exactly D0 + 12D0,1.

As a result, if we divide a Jacobi form which vanishes on the nodal cubic D0

by ∆, we get a meromorphic Jacobi form which is holomorphic outside D0,1. By
Lemma 3.1, such a meromorphic Jacobi form is actually holomorphic. Thus every
Jacobi form which vanishes on D0 is a multiple of ∆. Equivalently, the kernel of the
χy homomorphism

χy : Q[x2, x3, x4] → Q[t, y]

is the ideal generated by ∆. Yet another way to put this is that the image of the
χy genus

χy :MSU∗ ⊗Q → Q[t, y]

is isomorphic to Q[x2, x3, x4]/(∆), where the SU -manifolds x2, x3, x4 have χy genus
as computed above.

It is now easy to determine the image of the χyz genus on MU∗ ⊗Q. The point
is that MU∗ ⊗Q and MSU∗ ⊗Q are both polynomial rings,

MU∗ ⊗Q = Q[x1, x2, x3, . . . ],

MSU∗ ⊗Q = Q[x2, x3, x4, . . . ],

and a generator for MSU∗ ⊗Q in any complex dimension n ≥ 2 is also a generator
for MU∗ ⊗ Q in the same dimension. (Novikov [29] proved this as well as more
precise integral information.) Thus we can say that MU∗ ⊗ Q is generated as a
Q-algebra by CP1 together with the image of MSU∗.

For a complex manifold with trivial canonical bundle, the χyz genus is equal
to the χy genus (that is, it is a polynomial only in y, not involving z). So, by the
previous section, we know that the image of the χyz genus on the image ofMSU∗⊗Q
in MU∗ ⊗Q is the ring

Q[x2, x3, x4]/(∆(x2, x3, x4)).
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On the other hand, the χyz genus of CP1 is 1− y + 2z. Since this involves z, it
does not satisfy any relations with x2, x3, and x4. Thus the image of the χyz genus
on MU∗ ⊗Q is the ring

Q[x1, x2, x3, x4]/(∆(x2, x3, x4)),

where x1 = t(1 − y + 2z) and x2, x3, x4 are as above. Explicitly, we can expand
the discriminant cusp form ∆ in terms of the Jacobi forms x2 = 24p, x3 = p′, and
x4 = 6p2 − g2/2 defined in section 3 by

∆ = g32 − 27g23
= g32 − 27(4p3 − g2p− (p′)2)2

= −
1

32
x32x

2
3 +

1

16
x22x

2
4 +

9

2
x2x

2
3x4 − 27x43 − 8x24.

Theorems 8.1 and 8.2 assert the possibility of defining an element of the above ring
associated to any singular variety, assuming the existence of the relative canonical
model.

There is a different way to describe this calculation of the image of the χy genus
on SU -manifolds, rationally: the only linear relations satisfied by the χy genus of
an SU -manifold are those coming from Serre duality together with the one other
relation found by Libgober and Wood [22]. From Serre duality, the χy genus of an
SU -manifold of complex dimension n is a polynomial χ(y) of degree n such that
χ(1/y) = (−1/y)nχ(y). Also by Serre duality, if n is odd, the Todd genus χ(0) is 0.
Libgober and Wood’s relation, which involves the Euler characteristic χ(−1), says
that

χ′′(−1)−
n(3n− 5)

12
χ(−1) = 0.

The fact that there are no other rational linear relations satisfied by the χy genus of
an SU -manifold is proved by computing the dimension of the ring χy(MSU∗)⊗Q =
Q[x2, x3, x4]/(∆) in each degree.
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Math. France 109 (1981), 41–81.

[8] M. Eichler and D. Zagier. The Theory of Jacobi Forms. Birkhäuser, Boston
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(1984).

[12] F. Hirzebruch. Topological Methods in Algebraic Geometry. 3rd ed., Springer-
Verlag, New York (1966).
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