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A smooth projective variety X satisfies Bott vanishing if

Hj(X,Ωi
X ⊗ L) = 0

for all j > 0, i ≥ 0, and all ample line bundles L. This is a strong property,
useful when it holds. Combined with Riemann-Roch, Bott vanishing gives complete
information about the sections of many natural vector bundles on X.

Bott proved Bott vanishing for projective space. An important generalization,
by Danilov and Steenbrink, is that every smooth projective toric variety satisfies
Bott vanishing; proofs can be found in [5, 12, 32, 18]. The first non-toric Fano variety
found to satisfy Bott vanishing is the quintic del Pezzo surface [37]. That paper
also analyzes Bott vanishing among some varieties that are not rationally connected,
such as K3 surfaces. Generalizing the quintic del Pezzo surface, Torres showed that
all GIT quotients of (P1)n by the action of PGL(2) satisfy Bott vanishing [36].
Torres’s examples include one new Fano variety (not just a product) in each even
dimension.

A Fano variety X that satisfies Bott vanishing is rigid, since H1(X,TX) =
H1(X,Ωn−1

X ⊗K∗X) = 0. As a result, there are only finitely many smooth complex
Fano varieties in each dimension (up to isomorphism) that satisfy Bott vanishing.
We can view them as a generalization of toric Fano varieties; they should have some
kind of combinatorial classification.

In this paper, we classify the smooth Fano 3-folds that satisfy Bott vanishing.
There are many more than expected.

Theorem 0.1. Bott vanishing holds for exactly 37 smooth complex Fano 3-folds, up
to isomorphism. These consist of the 18 toric Fano 3-folds and 19 others. In Mori-
Mukai’s numbering, the toric Fano 3-folds are (1.17), (2.33)–(2.36), (3.25)–(3.31),
(4.9)–(4.12), (5.2)–(5.3). The non-toric Fano 3-folds that satisfy Bott vanishing
are (2.26), (2.30), (3.15)–(3.16), (3.18)–(3.24), (4.3)–(4.8), (5.1), and (6.1).

Here (6.1) is P1 times the quintic del Pezzo surface, but the other 18 non-toric
examples are new. Bott vanishing fails for the quadric 3-fold, but, surprisingly, it
holds for the blow-up of the quadric at a point, (2.30). Likewise, Bott vanishing fails
for the flag manifold W = GL(3)/B, but it holds for several blow-ups of W such as
(3.16). In order to prove Bott vanishing in all cases of Theorem 0.1, we find that the
fastest approach is to reduce systematically to calculations on toric varieties. Many
of the calculations in characteristic zero were first made by Belmans, Fatighenti,
and Tanturri [7, 6], as explained in section 2.

We actually prove Theorem 0.1 in any characteristic not 2, using the recent clas-
sification of smooth Fano 3-folds in every characteristic by Tanaka [35, Theorem 1.1].
(Without using Tanaka’s result, we classify which of the known Fano 3-folds satisfy
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Bott vanishing.) We also find the 27 Fano 3-folds for which Bott vanishing persists
in characteristic 2. We give meaningful proofs for all the cohomology calculations,
although computers are useful for checking that nothing has gone wrong.

Our arguments suggested a conjecture on vanishing. For every projective bira-
tional morphism π : X → Y of smooth varieties, and every line bundle A on X that
is ample over Y , we conjectured that the higher direct image sheaf Rjπ∗(Ω

i
X ⊗ A)

should be zero for all j > 0 and i ≥ 0 (Conjecture 4.1). However, this was disproved
by Chuanhao Wei [38, section 3].

This work was supported by NSF grant DMS-2054553. Thanks to Pieter Bel-
mans, Sándor Kovács, Talon Stark, and the referee. In particular, Stark found all
the cases in which Bott vanishing fails (section 2), and Belmans gave a negative
answer to Question 2.1.
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1 Vanishing theorems

In this section, we recall the known Bott vanishing property for toric varieties, and
we prove a variant (Proposition 1.3). The basic result (attributed to Danilov and
Steenbrink) is that for a smooth projective toric variety X over a field, we have
Hj(X,Ωi

X(L)) = 0 for j > 0, i ≥ 0, and L an ample line bundle. Fujino proved
several generalizations, such as the following [19, Theorem 1.3].

Theorem 1.1. Let X be a smooth projective toric variety over a field. Let D be a
reduced toric divisor in X, and let E be a reduced divisor with 0 ≤ E ≤ D. Then

Hj(X,Ωi
X(logD)(A− E)) = 0

for j > 0, i ≥ 0, and A an ample line bundle.
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Remark 1.2. More generally, Fujino proves Theorem 1.1 even when the toric variety
X is singular, with the sheaf Ωi

X(logD)(A− E) replaced by its double dual. Even
more generally, the result holds with A the class of an ample Weil divisor rather
than an ample line bundle, by the proof of [18, Proposition 3.2].

Here is a related statement that may be new. It is helpful for some later argu-
ments. The case i = 0 is known [20, p. 68, p. 74].

Proposition 1.3. Let X be a smooth proper toric variety over a field. Let L be a
nef line bundle on X. Then Hj(X,Ωi

X ⊗ L) = 0 for j > i.

Unlike Theorem 1.1, Proposition 1.3 does not extend to singular toric varieties

using the sheaf of reflexive differentials, Ω
[i]
X := (Ωi

X)∗∗. For example, Danilov found

a complex projective toric variety X with H2(X,Ω
[1]
X ) 6= 0 [14, Example 12.12].

Proof. Use the resolution (which applies to any divisor with simple normal crossings
in a smooth variety):

0→ Ωi
X → Ωi

X(log ∂X)→ ⊕Ωi−1
Dj

(log ∂Dj)→ · · · → ⊕ODj1···ji
(log ∂Dj1···ji)→ 0.

Here each term but the first involves logarithmic differentials with respect to the
full toric boundary, and the sums are over all the torus-invariant subvarieties of a
given dimension in X. The vector bundles of logarithmic differentials on a toric
variety with respect to the full toric boundary are all trivial [20, p. 87]. Tensor this
exact sequence with a nef line bundle L. For each toric subvariety DJ of X, we have
Hj(DJ , L) = 0 for all j > 0 [20, p. 68, p. 74]. Applying that fact to this resolution
of Ωi

X ⊗ L, we conclude that Hj(X,Ωi
X ⊗ L) = 0 for all j > i.

Next, we state the Kodaira-Akizuki-Nakano (KAN) vanishing theorem [29, The-
orem 4.2.3], [15], [1, Theorem A.2]. (Petrov strengthened Theorem 1.4(2) to say
that a smooth projective globally F -split variety of any dimension satisfies KAN
vanishing [9, Corollary 2.7.6].)

Theorem 1.4. (1) Let X be a smooth projective variety over a field of characteristic
zero. Then

Hj(X,Ωi
X ⊗ L) = 0

for all ample line bundles L and all i+ j > dim(X).
(2) Let X be a smooth projective variety over a perfect field k of characteristic

p > 0. If X lifts to W2(k) and X has dimension ≤ p, then X satisfies KAN
vanishing (as in (1)). Also, if X is globally F -split and X has dimension ≤ p+ 1,
then X satisfies KAN vanishing.

To check Bott vanishing in positive characteristic for the new cases in this paper,
the following lemma is helpful.

Lemma 1.5. The 18 smooth Fano 3-folds studied in this paper satisfy KAN van-
ishing in every characteristic.

Proof. All the known smooth Fano 3-folds in characteristic p > 0 lift to W2, which
implies KAN vanishing for p > 2. Moreover, the 18 smooth Fano 3-folds studied in
this paper are globally F -split in every characteristic p > 0, and so they satisfy KAN
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vanishing even in characteristic 2. Indeed, Mehta and Ramanathan showed that a
smooth projective variety X in positive characteristic is globally F -split if there is
a section of −KX whose zero scheme has completion at some point isomorphic to
x1 · · ·xn = 0, where n = dim(X) [30, Proposition 7].

This condition is easy to check for all 18 of the Fano 3-folds studied in this
paper. Indeed, in all cases except (2.26), −KX can be written as a sum of three
basepoint-free line bundles L1 + L2 + L3. Then general sections of L1, L2, L3 are
smooth. (In characteristic p > 0, this is not automatic from Bertini’s theorem, but
one checks it easily in each case.) One also checks in each case that the resulting
three smooth divisors can be taken to meet transversely at some point. So X is
globally F -split. For the rigid Fano 3-fold of type (2.26) (section 7), −KX is the
sum of three effective line bundles (H − E) + H + H, with each one representable
by a smooth divisor in X. These three divisors can be taken to meet transversely
at some point. So again X is globally F -split.

By KAN vanishing, the 18 Fano 3-folds studied in this paper have Hj(X,TX) =
Hj(X,Ω2

X ⊗ K∗X) = 0 for j > 1. These 18 Fano 3-folds are also known (in every
characteristic not 2) to be rigid, meaning that H1(X,TX) = 0. These results
will be part of the proof that these 18 Fano 3-folds satisfy Bott vanishing in every
characteristic not 2.

2 Cases where Bott vanishing fails

In this section, we give Talon Stark’s proof that Bott vanishing fails for all smooth
Fano 3-folds other than the 37 in Theorem 0.1. This will appear in Stark’s Ph.D.
thesis. We also give the analogous results in positive characteristic. Finally, we
explain the related calculations by Belmans, Fatighenti, and Tanturri, and the neg-
ative answer by Belmans and Smirnov to a question I asked.

The smooth complex Fano 3-folds were classified into 105 deformation types
by Iskovskikh and Mori-Mukai [24, 25, 31]. A standard reference is [26, Tables
12.3-12.6]. The Big Table in [4, section 6] and the web site [6] are also convenient.

If a smooth Fano 3-fold satisfies Bott vanishing, then the vector bundle TX =
Ω2
X ⊗K∗X has zero cohomology in positive degrees. In particular, the Euler charac-

teristic χ(X,TX) must be nonnegative. By Riemann-Roch, this is a characteristic
number of X, namely

χ(X,TX) =
1

2
c31 −

19

24
c1c2 +

1

2
c3.

The invariants of Fano 3-folds tabulated in [26] are the degree (−KX)3, the Picard
number ρ (equal to the second Betti number b2), and the Hodge number h2,1. We
have c1c2 = 24 (since χ(X,O) = c1c2/24), c31 = (−KX)3, and c3 = χtop(X) =
2 + 2ρ− 2h2,1. Therefore, χ(X,TX) = 1

2(−KX)3 − 18 + b2 − h2,1. This is negative
for 57 of the 105 deformation classes of Fano 3-folds; so those do not satisfy Bott
vanishing. The 48 deformation classes of Fano 3-folds with χ(X,TX) ≥ 0 are:
(1.15)–(1.17), (2.26)–(2.36), (3.13)–(3.31), (4.3)–(4.12), (5.1)–(5.3), (6.1), and (7.1).

Next, some Fano 3-folds are not rigid even though χ(X,TX) ≥ 0. Bott vanishing
implies that H1(X,TX) = 0, and so it fails in such a case. Let V5 ⊂ P6 denote
the quintic del Pezzo 3-fold (which is rigid), a smooth codimension-3 linear section
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of the Grassmannian Gr(2, 5) ⊂ P9. First, (2.26) is the blow-up of V5 ⊂ P6 along
a line. The Hilbert scheme of lines on V5 is isomorphic to P2, and there are two
orbits of lines under Aut(V5). For special lines, the normal bundle is O(1)⊕O(−1),
while for general lines the normal bundle is O ⊕ O [28, Lemma 2.2.6]. Thus, the
special blow-up is not rigid and hence does not satisfy Bott vanishing. We will see
that the general blow-up, which is rigid, does satisfy Bott vanishing (section 7).

Next, (2.28) is the blow-up of P3 along a plane cubic curve; that is clearly not
rigid, because plane cubics have a 1-dimensional moduli space. Likewise, (3.14) is
the blow-up of P3 at a plane cubic and a disjoint point, and so it is not rigid. Next,
(3.13) is the intersection of three divisors in (P2)3 of degrees (1, 1, 0), (1, 0, 1), and
(0, 1, 1). There is a 1-dimensional moduli space of such 3-folds, described in [4,
Lemma 5.19.7], and so they are not rigid. Finally, (7.1) is P1 times a quartic del
Pezzo surface, which is not rigid.

Thus there are 44 rigid Fano 3-folds, up to isomorphism: (1.15)–(1.17), (2.26)–
(2.27), (2.29)–(2.36), (3.15)–(3.31), (4.3)–(4.12), (5.1)–(5.3), and (6.1). This infor-
mation can also be found in [4].

For seven of these, Bott vanishing fails, using an ample line bundle other than
−KX . The failure of Bott vanishing was known for the quadric 3-fold (1.16) [12,
section 4.1], the flag manifold W = GL(3)/B (2.32) [12, section 4.2], and the quintic
del Pezzo 3-fold V5 (1.15) ([2, Lemma 7.10] or [36, section 7]).

The earlier arguments can be simplified a bit: a Riemann-Roch calculation
suffices to disprove Bott vanishing. (The Macaulay2 package Schubert2 is convenient
for these calculations [21].) Namely, for the quadric 3-fold Q, we have −KX

∼= O(3)
and χ(X,Ω2(1)) = −1. For the flag manifold W , a divisor of degree (1, 1) in P2×P2,
we have −KW = 2A+ 2B (with A and B the pullbacks of O(1) from the two P2’s),
and χ(W,Ω2(A+B)) = −1. For the quintic del Pezzo 3-fold X = V5 ⊂ P6, we have
−KX = O(2) and χ(X,Ω2

X(1)) = −3.
Bott vanishing fails for four other rigid Fano 3-folds, as follows. (2.27) is the

blow-up X of P3 along a twisted cubic curve. Here −KX = 4H − E (where H is
the pullback of O(1) from P3 and E is the exceptional divisor). But the “smaller”
line bundle L = 3H − E is also ample, and χ(X,Ω2

X ⊗ L) = −2 < 0. (2.29) is
the blow-up of the quadric 3-fold Q along a conic. Here L = 2H − E is ample and
“smaller” than −KX = 3H − E, and χ(X,Ω2

X ⊗ L) = −2. (2.31) is the blow-up of
Q along a line. Here L = 2H−E is ample and “smaller” than −KX = 3H−E, and
χ(X,Ω2

X ⊗ L) = −1. Finally, (3.17) is a divisor of degree (1, 1, 1) in P1 ×P1 ×P2.
The line bundle L = A+B +C is ample and “smaller” than −KX = A+B + 2C,
and χ(X,Ω2

X ⊗ L) = −1.
We will show that the 37 other rigid Fano 3-folds satisfy Bott vanishing. We

know this for the 18 toric Fanos (listed in Theorem 0.1). We also know Bott van-
ishing for (6.1), the product of P1 with the quintic del Pezzo surface [37, Theorem
2.1, Lemma 2.3]. It remains to prove Bott vanishing for the 18 other Fano 3-folds
listed in Theorem 0.1.

We will prove the same results for the Fano 3-folds over an algebraically closed
field of any characteristic other than 2. Indeed, by Tanaka, the classification of
smooth Fano 3-folds takes essentially the same form in every characteristic [35,
Theorem 1.1], [34, Theorem 1.1].

In more detail, Tanaka classifies the Fano 3-folds in every characteristic into
105 classes, numbered as in Mori-Mukai’s list, and he gives a geometric description
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of all varieties in each class. For the 18 classes of Fano 3-folds which are toric
in characteristic zero, Tanaka shows that they have the same description in every
characteristic, and in particular they are toric in every characteristic [35, section
7]. Likewise, for the 19 classes of non-toric Fanos that satisfy Bott vanishing in
characteristic zero, Tanaka gives the same geometric description as in characteristic
zero. We will analyze Bott vanishing for these 19 classes in the main part of this
paper.

We also need to observe that the Fano 3-folds that do not satisfy Bott vanishing
in characteristic zero, as shown earlier in this section, do not satisfy Bott vanishing in
any characteristic p > 0. A priori, the cone of curves could be bigger in characteristic
p; then the ample cone would be smaller, and then it might happen that Bott
vanishing holds in characteristic p but not in characteristic zero. In fact, that does
not happen. First, in the cases where H1(X,TX) 6= 0 in characteristic zero, we also
have H1(X,TX) 6= 0 in characteristic p by semi-continuity, and so Bott vanishing
does not hold in characteristic p.

That leaves only the four rigid Fanos for which we disproved Bott vanishing
in characteristic zero: (2.27), (2.29), (2.31), and (3.17). In each of these cases,
Tanaka gives the same geometric description of X as above, and we read off that
the ample line bundle L we used to disprove Bott vanishing remains ample in any
characteristic. Then the Euler characteristic calculations above show that these
four varieties do not satisfy Bott vanishing in any characteristic.

In characteristic 2, some of the 37 Fano 3-folds that satisfy Bott vanishing in
characteristic not 2 have non-reduced automorphism group scheme, essentially be-
cause of the distinctive features of conics in characteristic 2. (In particular, the
subgroup scheme of PGL(3) that preserves a conic and a general point in P2 is not
reduced, in characteristic 2.) It follows that X is not rigid in such a case, meaning
that H1(X,TX) 6= 0. These cases are (2.26), (3.15), (3.18), (3.21), (4.3), (4.4),
(4.5), and (5.1). (They are still “set-theoretically rigid” in the sense that they are
isomorphic to nearby varieties over an algebraically closed field. This situation is
analyzed in [16, Theorem 0.2].) Two others are rigid but do not satisfy Bott van-
ishing in characteristic 2, (2.30) and (3.19). Our arguments give that the remaining
27 Fano 3-folds do satisfy Bott vanishing in characteristic 2.

The examples above suggest the following question (but see the discussion be-
low):

Question 2.1. Let X be a smooth Fano variety which is rigid, meaning that
H1(X,TX) = 0. Is Hj(X,Ωi

X ⊗ K∗X ⊗ L) = 0 for all j > 0, i ≥ 0, and nef
line bundles L?

Here rigidity is a necessary assumption, since H1(X,TX) = H1(X,Ωn−1
X ⊗K∗X).

Question 2.1 was suggested by the results in this paper. Namely, in each case (above)
where Bott vanishing fails for some rigid Fano 3-fold, it always involves an ample
line bundle which is “smaller” than −KX , in particular not of the form −KX + L
with L nef.

In view of the isomorphism ΛiTX ∼= Ωn−i
X ⊗K∗X , Question 2.1 can be rephrased

in terms of the groups Hj(X,ΛiTX ⊗ L) for L nef. The arguments in this paper
work by reducing this problem to the case where L is trivial, that is, computing the
cohomology groups of “polyvector fields”, Hj(X,ΛiTX). These groups are closely
related to the Hochschild cohomology of X. The cohomology of polyvector fields was
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computed for all smooth Fano 3-folds in characteristic zero by Belmans, Fatighenti,
and Tanturri [7, 6].

It turns out that Question 2.1 has a negative answer in general. Namely, Belmans
and Smirnov showed that many projective homogeneous varieties X = G/P in
characteristic zero have Hj(X,ΛiTX) 6= 0 for some j > 0 and i ≥ 0 [8, Proposition
D]. (All such varieties are rigid and Fano.) They say that such varieties are not
“Hochschild affine”. For example, the symplectic Grassmannian X = SGr(3, 2n)
with n ≥ 4, which has dimension 6(n − 2), has H1(X,Λ2TX) 6= 0. This is a more
extreme failure of Bott vanishing than what happens for the usual Grassmannians
Gr(a, b) (other than projective space) and for quadrics of dimension at least 3.
According to Belmans, there is even a homogeneous variety X with H1(X,ΛiTX ⊗
L) 6= 0 for a very ample line bundle L: X = F4/P2 (in Bourbaki’s numbering) which
has dimension 20, with i = 5 and L = OX(1).

3 Inductive approach to Bott vanishing

To prove Bott vanishing for a given variety X means proving the vanishing of higher
cohomology for the bundles Ωi

X tensored with all ample line bundles. Intuitively,
this should be hardest for the “smallest” ample line bundles on X. In this section,
we give a simple procedure for deducing Bott vanishing for “bigger” ample line
bundles from smaller ones. The method works well in all our examples.

Lemma 3.1. Let X be a smooth projective variety over a field. Let D be a smooth
divisor in X that satisfies Bott vanishing. (For example, D could be a toric variety.)
Let L be a line bundle on X such that L−D and L are ample. If X satisfies Bott
vanishing for L−D, then it satisfies Bott vanishing for L.

Proof. The assumption means that Hj(X,Ωi
X⊗L(−D)) = 0 for all j > 0 and i ≥ 0.

We have an exact sequence of coherent sheaves, 0 → OX(−D) → OX → OD → 0.
Tensoring with Ωi

X ⊗ L and taking cohomology, we get an exact sequence

Hj(X,Ωi
X ⊗ L(−D))→ Hj(X,Ωi

X ⊗ L)→ Hj(D,Ωi
X ⊗ L).

Let j > 0 and i ≥ 0; then we are given that the first group here is zero. In order to
show thatHj(X,Ωi

X⊗L) = 0 as we want, it suffices to show thatHj(D,Ωi
X⊗L) = 0.

We have an exact sequence 0 → OD(−D) → Ω1
X |D → Ω1

D → 0 of vector
bundles on D. Taking exterior powers, it follows that 0 → OD(−D) ⊗ Ωi−1

D →
Ωi
X |D → Ωi

D → 0. So the vanishing we want follows if Hj(D,Ωi−1
D ⊗ L(−D)) and

Hj(D,Ωi
D ⊗ L) are zero. Since L and L(−D) are ample, both groups vanish by

Bott vanishing on D.

Remark 3.2. Lemma 3.1 simplifies the proof of Bott vanishing for the quintic del
Pezzo surface [37, Theorem 2.1]. Namely, this induction reduces the problem to the
vanishing of H1(X,Ω1

X ⊗K∗X) = H1(X,TX), which holds because X is rigid (or by
a direct calculation). We will give more details of the analogous reduction for Fano
3-folds in the rest of the paper.
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4 Higher direct images of differential forms

Most Fano 3-folds arise as blow-ups of a simpler variety along a point or a curve.
In order to prove Bott vanishing in such a case, we need to analyze the cohomology
of bundles of differential forms twisted by a line bundle on a smooth blow-up.

I made the following vanishing conjecture, recently disproved (even in charac-
teristic zero) by Wei [38, section 3]. However, some cases are true and will be useful
in what follows, as discussed below.

Conjecture 4.1. Let π : X → Y be a projective birational morphism between
smooth varieties over a field, and let A be a line bundle on X that is ample over Y .
Then Rjπ∗(Ω

i
X ⊗A) = 0 for all j > 0 and i ≥ 0.

For i+ j > n = dim(X) (KAN-type vanishing), the conjecture holds in charac-
teristic zero with no assumptions on the singularities of Y [3, Corollary 2.1.2]. For
i = 1 and j = n − 1, the Steenbrink-type vanishing theorem of [22, Theorem 14.1]
is a similar statement.

The main evidence for Conjecture 4.1 was that it holds for toric morphisms,
by Fujino (Theorem 4.2). (Toric morphisms need not be birational, but our main
interest here is in the birational case.) Since Conjecture 4.1 can be checked after
completing the base at a point, the case of toric morphisms implies the conjecture
for the blow-up of any smooth subvariety along a smooth subvariety (Corollary 4.4).
Theorem 4.2 implies the conjecture for some iterated blow-ups as well. Such iterated
blow-ups occur in several examples where we check Bott vanishing, including the
hardest case, the Fano 3-fold (5.1) (section 11).

Theorem 4.2. (Fujino [18, Theorem 5.2]) Let π : X → Y be a projective toric
morphism over a field k, with X smooth over k. Let A be a line bundle on X that
is ample over Y . Then Rjπ∗(Ω

i
X ⊗A) = 0 for all j > 0 and i ≥ 0.

Remark 4.3. A further generalization is that Theorem 4.2 holds even when the
toric variety X is singular, with Ωi

X replaced by the sheaf of reflexive differentials.
Moreover, for X singular, we can allow A to be an ample Weil divisor, replacing
Ωi
X ⊗A in the statement by the reflexive sheaf (Ωi

X ⊗O(A))∗∗. For projective toric
varieties, Fujino proved Bott vanishing in this generality [18, Proposition 3.2].

Corollary 4.4. Let Y be a smooth variety over a field k, S a smooth subvariety of
Y , and π : X → Y the blow-up along S. Let E be the exceptional divisor in X, and
let m be a positive integer. Then the higher direct image sheaves Rjπ∗(Ω

i
X(−mE))

are zero for all j > 0, i ≥ 0, and m > 0.

Proof. It suffices to prove this after passing to the algebraic closure of k and com-
pleting Y at a point. So we can assume that S is a linear subspace of an affine space
Y . In that case, the blow-up X → Y is a toric morphism. Also, the line bundle
O(−E) on X is ample over Y . So Theorem 4.2 implies that Rjπ∗(Ω

i
X(−mE)) = 0

for all j > 0, i ≥ 0, and m > 0.

For applications, we also want to compute π∗(Ω
i
X(−E)). We first consider the

blow-up at a point. Proposition 6.1 will extend this to the blow-up along a higher-
dimensional smooth subvariety.
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Proposition 4.5. Let Y be a smooth variety of dimension n over a field k, p a
k-point of Y , and π : X → Y the blow-up at p. Let E be the exceptional divisor in
X. Then π∗(Ω

1
X(−E)) is the subsheaf Ω1

Y ⊗ Ip/Y of Ω1
Y . For i ≥ 2, π∗(Ω

i
X(−E)) is

equal to Ωi
Y .

It would be interesting to compute explicitly the filtration of each vector bundle
Ωi
Y by the subsheaves π∗(Ω

i
X(−mE)) for m ≥ 0. That is, filter the differential

forms on Y by their order of vanishing along E ⊂ X. We will need only a few cases,
Propositions 4.5 and 6.1.

Proof. (Proposition 4.5) We first show that π∗(Ω
1
X(−E)) is the subsheaf Ω1

Y ⊗
Ip/Y ⊂ Ω1

Y . In other words, we want to show that a 1-form on a neighborhood
of p in Y vanishes at p if and only if its pullback to X vanishes as a section of
Ω1
X on E. Clearly, if a 1-form vanishes at p, then its pullback vanishes along E.

For the converse, let x1, . . . , xn be regular functions near p that form a basis for
mp/m

2
p. On one affine chart of the blow-up X (which is enough to consider), the

morphism π : X → Y is given by (x1, u2, . . . , un) 7→ (x1, x1u2, . . . , x1un). So dx1
pulls back to dx1 and dxi for 2 ≤ i ≤ n pulls back to x1dui + uidx1. Restricting
to sections of Ω1

X on the exceptional divisor E = {x1 = 0}, these sections become
dx1, u2dx1, . . . , undx1. Since these are linearly independent over k, the 1-forms on
Y whose pullback vanishes along E are only those that vanish at p.

Next, for i ≥ 2, let us show that the subsheaf π∗(Ω
i
X(−E)) of Ωi

Y is equal to
Ωi
Y . That is, we want to show that the pullback of every i-form on Y vanishes as

a section of Ωi
X on E. This follows from the previous paragraph’s calculation: the

1-forms dx1, . . . , dxn pull back to dx1, u2dx1, . . . , undx1 as sections of Ω1
X on E, and

any wedge product of i ≥ 2 such 1-forms vanishes on E (since dx1 ∧ dx1 = 0).

5 The Fano 3-folds (2.30) and (3.19)

We now check Bott vanishing for the first new cases, (2.30) and (3.19). These are
the blow-up of the quadric 3-fold at one point, or at two non-collinear points. Part
of the argument involves reducing to properties of toric varieties, although other
parts are special to the quadric. Most of the later cases will reduce completely to
results on toric varieties.

The proof of Bott vanishing for (2.30) and (3.19) works in characteristic not 2.
Bott vanishing actually fails for these two varieties in characteristic 2.

For each smooth complex Fano 3-fold, Coates, Corti, Galkin, and Kasprzyk
determined the nef cone [13]. For the Fano 3-folds in this paper, we will compute the
nef cone again. One reason is to make sure that the proofs work in any characteristic.
Another reason is that it is convenient for our arguments to find explicit generators
for the cone of curves.

Consider case (2.30) first. Here X is the blow-up of the smooth quadric 3-fold
Q at a point p. (It is also the blow-up of P3 along a conic.) The Picard group of X
is Z{H,E}, where H denotes the pullback of O(1) from Q and E is the exceptional
divisor. We have −KX = 3H − 2E. Let C be a line in E ∼= P2. Let D be the strict
transform of a line on Q through p. We have the intersection numbers:

C D

H 0 1
E −1 1

9



So the dual basis to C,D is given by H−E,H. Here H−E and H are basepoint-
free, hence nef, giving contractions of X to P3 and Q. (Sections of the line bundle
H−E on X correspond to sections of H on Q that vanish at the point p. Basepoint-
freeness of H−E on X follows from the fact that p is cut out by sections of H, as a
subscheme of Q.) It follows that the closed cone of curves Curv(X) is R≥0{C,D},
and the nef cone is spanned by H − E and H. More strongly, the monoid of nef
classes in Pic(X) is generated by H and H − E.

Since (2H − E) · C = (2H − E) ·D = 1, the line bundle 2H − E is ample, and
every ample line bundle is 2H−E plus a nef divisor, hence 2H−E plus an N-linear
combination of H and H −E. A general divisor in the linear system |H| on X is a
quadric surface P1 ×P1, and a general divisor in |H −E| is also a quadric surface.
Since these are both toric, Lemma 3.1 reduces Bott vanishing to the single ample
line bundle 2H − E.

The vanishing of Hj(X,Ωi
X ⊗ L) is clear whenever X is a Fano 3-fold, j > 0, L

is ample, and i is 0 or 3. Indeed, the case i = 3 is Kodaira vanishing (part of KAN
vanishing, Lemma 1.5). The case i = 0 follows from Kodaira vanishing since −KX

is ample. So, throughout this paper, we only need to consider Bott vanishing with
i equal to 1 or 2.

For i = 2, Proposition 4.5 gives that

Hj(X,Ω2
X ⊗O(2H − E)) = Hj(Q, π∗(Ω

2
X(−E))⊗O(2))

= Hj(Q,Ω2
Q(2)).

For k of characteristic 2, Macaulay2 shows that h1(Q,Ω2
Q(2)) = 1, and so h1(X,Ω2

X⊗
O(2H − E)) = 1. It follows that Bott vanishing fails for (2.30) in characteristic 2.

Let us analyze the tangent bundle of the quadric Q ⊂ P4. Here Q is defined
by a quadratic form q on k5, which we can assume is x0x2 + x1x3 + x24. Since we
assume that the characteristic of the base field k is not 2, the associated bilinear
form on k5 is nondegenerate. Think of Q as the space of isotropic lines L in k5. By
the Euler sequence, the tangent bundle of P4 at a point [L] has TP4(−1) ∼= k5/L.
It follows that TQ(−1) at a point [L] in Q is L⊥/L. As a result, there is a canonical
nondegenerate symmetric bilinear form on TQ(−1), TQ(−1)⊗ TQ(−1)→ OQ. So
Ω1
Q
∼= TQ(−2). We also have TQ ∼= Ω2

Q ⊗K∗Q = Ω2
Q(3).

The vector bundle Ω2
Q(2) = TQ(−1) has zero cohomology in all degrees. To

check this by hand, first note that L := OQ(−1) has zero cohomology in all degrees,
by reducing to the known cohomology of line bundles on P4. Then observe that
L⊥ ⊂ O⊕5Q has zero cohomology in all degrees, using that O⊕5Q /L⊥ is isomorphic to

L∗ = OQ(1). So Ω2
Q(2) = TQ(−1) = L⊥/L has zero cohomology in all degrees, as

we want. We remark that h1(Q,Ω2
Q(1)) = 1, which checks again that Q itself does

not satisfy Bott vanishing.
For i = 1, Proposition 4.5 gives that

Hj(X,Ω1
X ⊗O(2H − E)) = Hj(Q, π∗(Ω

1
X(−E))⊗O(2)).

The Proposition also gives a short exact sequence

0→ π∗(Ω
1
X(−E))→ Ω1

Q → Ω1
Q|p → 0.

So Bott vanishing for i = 1 and the ample line bundle 2H − E on X follows if
Hj(Q,Ω1

Q(2)) = 0 for j > 0 and H0(Q,Ω1
Q(2)) maps onto its fiber at p. By the

10



isomorphism Ω1
Q
∼= TQ(−2) above, we can rephrase the problem in terms of the

tangent bundle, which seems easier to visualize. Namely, we want to show that
Hj(Q,TQ) = 0 for j > 0 and that TQ is spanned at p by its global sections.

The fact that Hj(Q,TQ) = 0 for j > 0 is immediate from Q being a rigid Fano
variety. Namely, rigidity means that H1(Q,TQ) = 0, and KAN vanishing implies
that Hj(Q,TQ) = 0 for j ≥ 2. (KAN vanishing holds for the quadric 3-fold Q in
any characteristic, by the same argument as in Lemma 1.5.) The fact that TQ is
spanned at p by global sections follows in characteristic zero from the homogeneity
of the quadric Q. In any characteristic, one can check by hand that the subspace
of the Lie algebra so(5) that fixes the point p in Q has codimension 3, which proves
that the map so(5) → H0(Q,TQ) maps onto the fiber of Q at p. Explicitly, for
the quadratic form q = x0x2 + x1x3 + x24 over any field, so(5) is the space of 5× 5
matrices X1 X2 b1

X3 X4 b2
a1 a2 0


with each Xi a 2× 2 matrix such that X4 = −Xt

1, X2 and X3 are skew-symmetric
with zeros on the diagonal, b1 = −2at2, and b2 = −2at1 [10, sections 23.4, 23.6].
We read off that the stabilizer of p = [1, 0, 0, 0, 0] in Q has codimension 3, in any
characteristic. That completes the proof (in characteristic not 2) of Bott vanishing
for (2.30), the blow-up of Q at a point.

We can also handle (3.19), the blow-up X of the quadric 3-fold Q at two non-
collinear points p1 and p2. Again, Bott vanishing fails for X in characteristic 2,
and so we assume that the base field k has characteristic not 2. Let E1 and E2 be
the exceptional divisors over p1 and p2. We have Pic(X) = Z{H,E1, E2}. Since
−KQ = 3H, we have −KW = 3H − 2E1 − 2E2.

Let C1 ⊂ E1
∼= P2 and C2 ⊂ E2

∼= P2 be lines. Let G1 be the strict transform
of a line in Q through p1, and G2 the strict transform of a line in Q through p2. We
have the intersection numbers:

C1 C2 G1 G2

H 0 0 1 1
E1 −1 0 1 0
E2 0 −1 0 1

It follows that the dual cone to R≥0{C1, C2, G1, G2} is spanned by H, H −E1,
H−E2, and H−E1−E2. (This calculation is immediate for Magma [11].) These four
divisors are basepoint-free, hence nef, giving contractions of X to Q, P3, P3, and
P2. It follows that Curv(X) = R≥0{C1, C2, G1, G2}, and the nef cone is spanned
by H, H − E1, H − E2, and H − E1 − E2. This is the first non-simplicial cone we
have encountered. Using Magma, we check that the nef monoid in Pic(X) is also
generated by those four divisors.

Let M = 2H − E1 − E2; then M has degree 1 on C1, C2, G1, and G2. So M
is ample, and every ample line bundle is M plus a nef divisor, hence M plus an
N-linear combination of H, H − E1, H − E2, and H − E1 − E2.

A general divisor in |H| is a quadric surface P1 ×P1, which is toric. A general
divisor in |H − E1| or |H − E2| is a quadric surface blown up at a point, which is
also toric. A general divisor in |H − E1 − E2| is a quadric surface blown up at 2
non-collinear points, which is also toric. By Lemma 3.1, this reduces Bott vanishing
on X to the ample line bundle M .
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That is, we want to show that Hj(X,Ω1
X ⊗M) and Hj(X,Ω2

X ⊗M) are zero for
j > 0. By Proposition 4.5, for Ω2

X , it is equivalent to show that Hj(Q,Ω2
Q(2)) = 0

for j > 0. We already showed this in characteristic not 2, in analyzing (2.30) above.
As mentioned there, h1(Q,Ω2

Q(2)) = 1 in characteristic 2, and so Bott vanishing
actually fails for (3.19) in characteristic 2.

For Ω1
X , Proposition 4.5 gives that Rπ∗(Ω

1
X ⊗M) ∼= Ω1

Q(2) ⊗ Ip1∪p2/Q. So we
have an exact sequence

H0(Q,Ω1
Q(2))→ Ω1

Q|p1 ⊕ Ω1
Q|p2 → H1(X,Ω1

X ⊗ L)→ H1(Q,Ω1
Q(2)).

So it suffices to show that Ω1
Q(2) has zero cohomology in positive degrees, and that

its global sections map onto the sum of its fibers at p1 and p2. As shown above,
Ω1
Q(2) is isomorphic to the tangent bundle of Q. Here Hj(Q,TQ) = 0 for j > 0

because Q is a rigid Fano, as discussed above. It remains to show that the global
sections of the tangent bundle of Q map onto the direct sum of its fibers at p1 and
p2.

In characteristic zero, this holds because the group O(5) over C, acting on the
quadric Q ⊂ P4, acts transitively on pairs of non-collinear points. Indeed, in terms
of the given quadratic form on C5, such a pair corresponds to a hyperbolic plane
in C5, and the Witt Extension Theorem gives that O(5) acts transitively on the
set of hyperbolic planes in C5 [17, Theorem 8.3]. In any characteristic, we can
assume that q = x0x2 + x1x3 + x24, p1 = [1, 0, 0, 0, 0], and p2 = [0, 0, 1, 0, 0]. By the
description of the Lie algebra so(5) above, the subspace that fixes p1 and p2 in Q has
codimension 3 + 3 = 6, in any characteristic. That is, the map so(5)→ H0(Q,TQ)
maps onto the direct sum of its fibers at p1 and p2. That completes the proof of
Bott vanishing (in characteristic not 2) for (3.19).

6 Higher direct images of differential forms, continued

We now compute the higher direct images of differential forms twisted by a line
bundle for a blow-up along a smooth subvariety (not just a point). We will use this
to check Bott vanishing for the remaining Fano 3-folds, since each of them is the
blow-up of a simpler variety along a curve.

Proposition 6.1. Let Y be a smooth variety over a field k, F a smooth subvariety of
Y , and π : X → Y the blow-up along F . Let E be the exceptional divisor in X, and
let m be a positive integer. Then the higher direct image sheaves Rjπ∗(Ω

i
X(−mE))

are zero for all j > 0 and i ≥ 0. For j = 0 and m = 1, π∗(Ω
i
X(−E)) is the

subsheaf of Ωi
Y whose sections restricted to Ωi

Y |F lie in the image of the product
map Ωi−2

Y |F ⊗OF
Λ2N∗F/Y → Ωi

Y |F .

To describe the subsheaf π∗(Ω
i
X(−E)) in more detail: the vector bundle Ωi

Y |F
is filtered with quotients Ωi

F (on top), then Ωi−1
F ⊗N∗F/Y , then Ωi−2

F ⊗Λ2N∗F/Y , and

so on. The quotient sheaf Ωi
Y /π∗(Ω

i
X(−E)) is a vector bundle on F , consisting of

the top two steps of the filtration. That is, it is an extension of Ωi
F by Ωi−1

F ⊗N∗F/Y .

Proof. The line bundle O(−E) on X is ample over Y . So Corollary 4.4 gives that
Rjπ∗(Ω

i
X(−mE)) is zero for all j > 0, i ≥ 0, and m > 0.
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Next, we want to describe the subsheaf π∗(Ω
i
X(−E)) of Ωi

Y . That is, which
i-forms on Y pull back to i-forms on X that vanish (as sections of Ωi

X) on E? We
want to show that the answer is the subsheaf of Ωi

Y of i-forms whose restriction
to Ωi

Y |F lies in the image of Ωi−2
Y |F ⊗ Λ2N∗F/Y → Ωi

Y |F . By replacing k by its
algebraic closure and completing in the neighborhood of a point, it suffices to check
this statement when F = Ab × {0} and X = Ab ×An−b, as above. Let x1, . . . , xn−b
be coordinates on An−b and y1, . . . , yb coordinates on F .

Clearly i-forms on Y that vanish in Ωi
Y |F pull back to i-forms that vanish in

Ωi
X |E . So it suffices to consider i-forms on Y that are OF -linear combinations of

wedge products of dxi’s and dyj ’s. To see whether such a form pulls back to one that
vanishes on E, we can work in a single affine chart of the blow-up of Y along F , as in
the proof of Proposition 4.5. The blow-up map π : X → Y is given in this chart by
(x1, u2, . . . , un−b, y1, . . . , yb) → (x1, x1u2, . . . , x1un−b, y1, . . . , yb). So, pulling back
and restricting to Ωi

X |E , dx1 maps to dx1, dxi maps to uidx1 for 1 ≤ i ≤ n− b, and
dyi pulls back to dyi. It follows that the i-forms that pull back to zero in Ωi

X |E are
spanned by those with at least two dxi factors. That is the statement we want.

Let us spell out what Proposition 6.1 says in the main case used in this paper,
the blow-up of a 3-fold along a curve.

Corollary 6.2. Let π : X → Y be the blow-up of a smooth 3-fold along a smooth
curve F over a field. Then Rjπ∗(Ω

i
X(−mE)) = 0 for j > 0, i ≥ 0, and m > 0.

Also, π∗(Ω
1
X(−E)) is the kernel of the surjection Ω1

Y → Ω1
Y |F , and π∗(Ω

2
X(−E)) is

the kernel of the surjection Ω2
Y → Ω1

F ⊗N∗F/Y .

To explain the last statement of Corollary 6.2: Proposition 6.1 says that π∗(Ω
2
X(−E))

is the subsheaf of Ω2
Y whose sections restricted to Ω2

Y |F lie in the image of Λ2N∗F/Y →
Ω2
Y |F . Equivalently, the quotient sheaf Ω2

Y /π∗(Ω
2
X(−E)) is an extension of Ω2

F by
Ω1
F ⊗N∗F/Y . Since F is a curve, Ω2

F is zero, which gives the statement in Corollary
6.2.

The following lemma works very efficiently to prove the base case of Bott van-
ishing in most of our examples.

Lemma 6.3. Let X be the blow-up of a smooth projective toric variety Y along a
smooth codimension-2 subvariety F that is a complete intersection S1 ∩ S2 in Y .
Let E be the exceptional divisor on X.

1. Suppose that −KY , −KY −S1, and −KY −S2 are ample, and −KY −S1−S2
is nef. Then Hj(X,Ω1

X(−KX)) = 0 for j > 0.

2. Let L be a line bundle on Y such that L, L− S1, and L− S2 are ample, and
L− S1 − S2 is nef. Then Hj(X,Ω1

X(π∗(L)− E)) = 0 for j > 0.

3. Let L be a line bundle on Y such that L and L− S1 are ample. Suppose that
S1 is a toric variety (not necessarily torically embedded in Y ), (L − S2)|S1

is ample, and (L − S1 − S2)|S1 is nef. Then Hj(X,Ω1
X(π∗(L) − E)) = 0 for

j > 0.

Proof. We have −KX = π∗(−KY ) − E, and so part 1 follows from part 2. Let us
prove part 2. By Corollary 6.2, it suffices to show that (1) Hj(Y,Ω1

Y (L)) = 0 for
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j > 0; (2) H0(Y,Ω1
Y (L)) → H0(F,Ω1

Y (L)) is surjective; and (3) Hj(F,Ω1
Y (L)) = 0

for j > 0.
First, we know (1) by Bott vanishing on the toric variety Y . Next, con-

sider the exact sequence Hj(Y,Ω1
Y (L))→ Hj(S1,Ω

1
Y (L))→ Hj+1(Y,Ω1

Y (L− S1)).
By Bott vanishing on Y , we know that Hj(Y,Ω1

Y (L)) = 0 and Hj(Y,Ω1
Y (L −

S1)) = 0 for j > 0. So Hj(S1,Ω
1
Y (L)) = 0 for j > 0 and H0(Y,Ω1

Y (L)) →
H0(S1,Ω

1
Y (L)) is surjective. Next, consider the exact sequence Hj(S1,Ω

1
Y (L)) →

Hj(F,Ω1
Y (L)) → Hj+1(S1,Ω

1
Y (L − S2)). Statements (2) and (3) follow if we can

show that Hj(S1,Ω
1
Y (L− S2)) = 0 for j > 0.

To do that, consider the exact sequence Hj(Y,Ω1
Y (L − S2)) → Hj(S1,Ω

1
Y (L −

S2))→ Hj+1(Y,Ω1
Y (L−S1−S2)). By Bott vanishing on Y , we know thatHj(Y,Ω1

Y (L−
S2)) = 0 for j > 0. Since L − S1 − S2 is nef on the toric variety Y , Propo-
sition 1.3 gives that Hj(Y,Ω1

Y (L − S1 − S2)) = 0 for j > 1. It follows that
Hj(S1,Ω

1
Y (L− S2)) = 0 for j > 0.

To prove part 3, we reduce as before to showing that Hj(S1,Ω
1
Y (L−S2)) = 0 for

j > 0. Consider the exact sequence 0→ OS1(−S1)→ Ω1
Y |S1 → Ω1

S1
→ 0. Tensoring

with L−S2 and taking cohomology, we have an exact sequence Hj(S1, L−S1−S2)→
Hj(S1,Ω

1
Y (L − S2)) → Hj(S1,Ω

1
S1

(L − S2)). Since S1 is a toric variety, the first
group is zero for j > 0 since (L−S1−S2)|S1 is nef (Proposition 1.3). The last group
is zero for j > 0 since (L− S2)|S1 is ample. It follows that Hj(S1,Ω

1
Y (L− S2)) = 0

for j > 0, which completes the proof.

7 First blow-up along a curve: (2.26)

Most Fano 3-folds are blow-ups of simpler varieties along a smooth curve. We now
prove Bott vanishing in one such case. Although part of the method will apply
to later examples, this case is relatively far from toric varieties and hence requires
individual handling.

In case (2.26), X is the blow-up of the quintic del Pezzo threefold Y := V5 ⊂ P6

along a general line. We will instead use another description, mentioned by Mori-
Mukai [31, Table 3]: X is the blow-up of the quadric 3-fold Q along a twisted cubic
curve F . (It is easier to work with Q than with V5.) We assume that F is general,
in the sense that the P3 it spans is transverse to Q ⊂ P4; otherwise, Bott vanishing
fails, as discussed in section 2. We work in characteristic not 2, since X is not rigid
(hence does not satisfy Bott vanishing) in characteristic 2.

We have Pic(X) = {H,E}, and −KX = 3H − E. Let C ∼= P1 be a fiber of the
exceptional divisor E → F . Let D be the strict transform of a line in Q that meets
F in two points. We have the intersection numbers:

C D

H 0 1
E −1 2

So the dual basis to C,D is given by 2H −E,H. The line bundles 2H −E and
H are basepoint-free, hence nef, corresponding to contractions of X to V5 ⊂ P6 and
to Q. It follows that Curv(X) = R≥0{C,D}, and the nef cone is spanned by H and
2H − E. More strongly, the nef monoid in Pic(X) is generated by H and 2H − E.
Since −KX · C = 1 and −KX ·D = 1, every ample line bundle on X is −KX plus
a nef divisor, hence −KX plus an N-linear combination of H and 2H − E.
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A general divisor in |H| on X is the blow-up of a quadric surface P1×P1 at three
points with no three collinear; so it is isomorphic to the quintic del Pezzo surface.
That is not toric, but it satisfies Bott vanishing. A general divisor in |2H − E|
is a quartic del Pezzo surface, which does not satisfy Bott vanishing. However,
|H − E| consists of one smooth quadric surface, which is toric and hence satisfies
Bott vanishing. Since 2H −E = H + (H −E), Lemma 3.1 along with the previous
paragraph reduces Bott vanishing to the single line bundle −KX .

It is easy to show that Hj(X,Ω2
X⊗K∗X) = Hj(X,TX) vanishes for j > 0. First,

this is zero for j ≥ 2 by Kodaira-Akizuki-Nakano (KAN) vanishing (Lemma 1.5).
That shows in general that deformations of smooth Fano varieties are unobstructed.
The fact that H1(X,TX) = 0 in this case amounts to the known rigidity of this
Fano 3-fold.

It remains to show that Hj(X,Ω1
X ⊗K∗X) = 0 for j > 0. Corollary 6.2 gives an

exact sequence

Hj−1(F,Ω1
Q(−KQ))→ Hj(X,Ω1

X(−KX))→ Hj(Q,Ω1
Q(−KQ))→ Hj(F,Ω1

Q(−KQ)).

So the desired vanishing would follow if (1) Hj(Q,Ω1
Q(−KQ)) = 0 for j > 0, (2)

H0(Q,Ω1
Q(−KQ))→ H0(F,Ω1

Q(−KQ)) is surjective, and (3) H1(F,Ω1
Q(−KQ)) = 0.

By section 5, Ω1
Q is isomorphic to TQ(−2) and −KQ is O(3); so we can restate (1)–

(3) in terms of the vector bundle TQ(1).
Let S be the intersection of Q ⊂ P4 with the P3 spanned by F ; so S is a smooth

quadric surface, isomorphic to P1 × P1. Write A and B for the two pullbacks of
O(1) to S. Then F is linearly equivalent to A + 2B or 2A + B on S; without loss
of generality, we can assume that F ∼ 2A+B on S. Although F is not a complete
intersection in Q, we can work with the chain F ⊂ S ⊂ Q, as follows.

First, we have an exact sequence 0→ TS → TQ|S → OS(A+B)→ 0 on S, and
TS ∼= O(2A)⊕O(2B) since S = P1 ×P1. Since O(1) restricted to S is O(A+B),
we read off that Hj(S, TQ(1)) = 0 for j > 0. Since Q is a rigid Fano variety, we
have Hj(Q,TQ) = 0 for j > 0. Then the exact sequence

Hj(Q,TQ)→ Hj(Q,TQ(1))→ Hj(S, TQ(1))→ Hj+1(Q,TQ)

implies thatHj(Q,TQ(1)) = 0 for j > 0, which is statement (1). SinceH1(Q,TQ) =
0, the sequence also gives that H0(Q,TQ(1))→ H0(S, TQ(1)) is surjective.

Next, since OS(1) ∼ A+B and F ∼ 2A+B on S, we have an exact sequence:

Hj(S, TQ(1))→ Hj(F, TQ(1))→ Hj+1(S, TQ|S(−A)). (*)

By the previous paragraph’s description of TQ|S , we have an exact sequence 0 →
O(A)⊕O(2B−A)→ TQ|S(−A)→ O(B)→ 0 on S. By Kodaira vanishing (or just
the Künneth formula) on S = P1 ×P1, we read off that Hj(S, TQ|S(−A)) = 0 for
j > 0. So the exact sequence (*) gives that H1(F, TQ(1)) = 0 (statement (3)) and
also that H0(S, TQ(1)) → H0(F, TQ(1)) is surjective. Together with the previous
paragraph, this proves (2). Thus we have shown that Hj(X,Ω1

X ⊗ K∗X) = 0 for
j > 0. This completes the proof of Bott vanishing for (2.26).

8 The Fano 3-fold (3.24)

We now prove Bott vanishing for the Fano 3-fold (3.24). Here X is the blow-up
of the flag manifold W , a smooth divisor of degree (1, 1) in P2 ×P2, along a fiber
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of the first projection. We will instead use a different description, mentioned by
Mori-Mukai [31, Table 3]. Namely, X is the blow-up of Y = P1 ×P2 along a curve
F of degree (1, 1). The advantage of this description is that it expresses X as the
blow-up of a toric variety. The proof works in any characteristic.

Writing f1 and f2 for the projections to P1 and P2, let A = f∗1O(1) and B =
f∗2O(1). Let E be the exceptional divisor in X. Then Pic(X) = Z{A,B,E} and
−KX = 2A+3B−E. Let C be a fiber of E → F . Let D1 be the strict transform of
a curve P1 × pt. that meets F . Let D2 be the strict transform of a curve pt.×line
that meets F . We have the intersection numbers:

C D1 D2

A 0 1 0
B 0 0 1
E −1 1 1

It follows that the dual basis to C,D1, D2 is given by A + B − E,A,B. These
three line bundles are basepoint-free, hence nef, giving contractions of X to P2, P1,
and P2. It follows that Curv(X) = R≥0{C,D1, D2}, and the nef cone is spanned by
A+B−E,A,B. More strongly, the nef monoid in Pic(X) is generated by A+B−E,
A, and B.

We have −KX = 2A + 3B − E. Let M = 2A + 2B − E; then M · C = 1,
M ·D1 = 1, and M ·D2 = 1. So M is ample, and every ample line bundle on X is
M plus a nef divisor, hence M plus an N-linear combination of A+B −E, A, and
B.

A general divisor in |A| or |A+B−E| is the blow-up of P2 at one point, which
is toric. A general divisor in |B| is the blow-up of P1 × P1 at one point, which is
also toric. By Lemma 3.1 plus the previous paragraph, this reduces Bott vanishing
on X to the single line bundle M .

For M and Ω1
X , we need to show that Hj(X,Ω1

X ⊗M) = 0 for j > 0, where
M = 2A + 2B − E. Let L be the line bundle 2A + 2B on Y = P1 × P2. The nef
cone of Y is spanned by A and B. The curve F is a complete intersection S1 ∩ S2
in Y , with S1 ∼ B and S2 ∼ A + B. By Lemma 6.3, it suffices to show that L,
L− S1, and L− S2 are ample, and that L− S1 − S2 is nef. By the nef cone of Y ,
these things are true, with L− S1 − S2 ∼ A.

It remains to prove Bott vanishing for the ample line bundle M and Ω2
X . Here

M = π∗(L) − E, and L = −KY − B. By Corollary 6.2, it suffices to show: (1)
Hj(Y,Ω2

Y ⊗ L) = 0 for j > 0, (2) H0(Y,Ω2
Y ⊗ K∗Y (−B)) → H0(F,Ω1

F ⊗ N∗F/Y ⊗
K∗Y (−B)) is surjective, and (3) H1(F,Ω1

F⊗N∗F/Y ⊗K
∗
Y (−B)) = 0. Use the canonical

isomorphism V ∗ ∼= Λr−1V ⊗ det(V )∗ for a vector bundle V of rank r, and the
isomorphism K∗Y |F ∼= K∗F ⊗ det(NF/Y ). So we can replace (2) and (3) by the
equivalent statements: (2) H0(Y, TY (−B))→ H0(F,NF/Y (−B)) is surjective, and
(3) H1(F,NF/Y (−B)) = 0.

Here (1) is immediate from Bott vanishing on the toric variety Y = P1 × P2.
Next, the tangent bundle of Y is f∗1 (TP1)⊕f∗2 (TP2), and so TY (−B) = f∗1 (TP1)⊗
O(−B)⊕ f∗2 (TP2(−1)).

By the chain of inclusions F ⊂ P1 × P1 ⊂ P1 × P2, the normal bundle NF/Y

is an extension 0 → O(2) → NF/Y → O(1) → 0, and so NF/Y
∼= O(2) ⊕ O(1).

It follows that NF/Y (−B) ∼= O(1) ⊕ O. This proves (3). For (2), we will just

use the second summand of TY ; that is, we will prove that H0(P2, TP2(−1)) =
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H0(Y, f∗2 (TP2(−1))) maps onto H0(F,NF/Y (−B)).

Here F embeds as a line in P2, so we can first use that H0(P2, TP2(−1))
maps onto H0(F, TP2(−1)), since H1(P2, TP2(−2)) = 0. Next, the composition
TP2|F ⊂ TY |F � NF/Y is an isomorphism, because the derivative of f1 : F → P1 is

nonzero at every point. SoH0(F, TP2(−1)) maps isomorphically toH0(F,NF/Y (−B)).
Thus (2) is proved. This completes the proof of Bott vanishing for the Fano 3-fold
(3.24).

9 The Fano 3-folds (3.15), (3.16), (3.18), (3.20), (3.21),
(3.22), (3.23)

In these seven cases with Picard number 3, we prove Bott vanishing efficiently by
relating each Fano variety to a toric variety. In each case except (3.20), the Fano
variety is the blow-up of a smooth toric variety along a smooth curve.

We first prove Bott vanishing for (3.15), the blow-up of the quadric 3-fold Q
along a disjoint line and conic. We will instead use a different description, mentioned
by Mori-Mukai [31, Table 3]. Namely, X is the blow-up of Y = P1 × P2 along a
smooth curve F of degree (2, 2). (The advantage of this description is that it
expresses X as the blow-up of a toric variety along a curve.) Here X is not rigid
in characteristic 2, and so we work over a field of characteristic not 2. We can
take F to be given by the equations y0y1 = y22, x0y1 = x1y0 = 0 in P1 × P2 =
{([x0, x1], [y0, y1, y2])}.

Here Pic(X) = Z{A,B,E} and −KX = 2A + 3B − E. Let C be a fiber of
E → F . Let D1 be the strict transform of a curve P1 × pt. that meets F in one
point. Let D2 be the strict transform of a curve pt.×line that meets F in two
points. We have the intersection numbers:

C D1 D2

A 0 1 0
B 0 0 1
E −1 1 2

It follows that the dual basis to C,D1, D2 is A+ 2B−E,A,B. The line bundles
A + 2B − E, A, and B are basepoint-free, hence nef. Namely, they contract X to
the quadric 3-fold Q, P1, and P2. It follows that Curv(X) = R≥0{C,D1, D2}, and
the nef cone is spanned by A+ 2B − E, A, and B. More strongly, the nef monoid
in Pic(X) is generated by these three divisors. Since −KX · C = −KX · D1 =
−KX ·D2 = 1, every ample line bundle is −KX plus a nef divisor, hence −KX plus
an N-linear combination of A+ 2B − E, A, and B.

A general divisor in |A| is P2 blown up at two points, which is toric. A general
divisor in |B| is a quadric surface P1 × P1 blown up at two non-collinear points,
which is toric. Finally, a general divisor in |A+ 2B−E| is P2 blown up at 4 points
with no two collinear. So it is the quintic del Pezzo surface (which is not toric). All
these surfaces satisfy Bott vanishing. By Lemma 3.1, this reduces Bott vanishing
on X to the ample line bundle −KX .

SinceX is rigid (in characteristic not 2), we haveHj(X,Ω2
X⊗K∗X) = Hj(X,TX) =

0 for j > 0. It remains to show that Hj(X,Ω1
X ⊗K∗X) = 0 for j > 0. Lemma 6.3

does exactly what we need. Namely, the curve F in Y = P1 × P2 was defined
(above) as a complete intersection S1 ∩ S2 with S1 ∼ A + B and S2 ∼ 2B on
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Y . Because −KY = 2A + 3B, the line bundles −KY , −KY − S1 = A + 2B, and
−KY − S2 = 2A+B are ample, and −KY − S1 − S2 = A is nef. By Lemma 6.3, it
follows that Hj(X,Ω1

X ⊗K∗X) = 0 for j > 0. That proves Bott vanishing for (3.15).
We now prove Bott vanishing for the Fano 3-fold (3.16). The proof works in

any characteristic. Namely, X is the blow-up of the toric variety Y = Blpt. P
3

along the strict transform F of a twisted cubic through the point p in P3. We
have Pic(Y ) = Z{H,E1}, where E1 is the exceptional divisor over p, and Pic(X) =
Z{H,E1, E2}, where E2 is the exceptional divisor over F . (We write E1 in X for the
strict transform of E1 in Y .) We have −KY = 4H−2E1 and −KX = 4H−2E1−E2.
Let C1 be the strict transform of a line in E1

∼= P2 ⊂ Y through the point E1 ∩ F .
Let C2 be a fiber of E2 → F . Let D be the strict transform of a line in P3 through
p that meets the twisted cubic in another point. We have the intersection numbers:

C1 C2 D

H 0 0 1
E1 −1 0 1
E2 1 −1 1

The dual basis to C1, C2, D is given by H − E1, 2H − E1 − E2, H. These three
divisors are basepoint-free, giving contractions of X to P2, P2, and P3. It follows
that Curv(X) = R≥0{C1, C2, D}, and the nef cone is spanned by H − E1, 2H −
E1 − E2, H. More strongly, the nef monoid in Pic(X) is generated by these three
divisors. Since −KX · C1 = 1, −KX · C2 = 1, and −KX ·D = 1, every ample line
bundle on X is −KX plus a nef divisor, hence −KX plus an N-linear combination
of H − E1, 2H − E1 − E2, H.

A general divisor in |H| or |H − E1| is isomorphic to P2 blown up at 3 non-
collinear points, which is toric. A general divisor in |2H − E1 − E2| is a quadric
surface P1×P1 blown up at one point, which is toric. By Lemma 3.1, this reduces
Bott vanishing on X to the ample line bundle −KX .

For −KX and Ω2
X , this is easy: since X is rigid, we have H1(X,Ω2

X ⊗K∗X) =
H1(X,TX) = 0, and KAN vanishing gives that Hj = 0 for j ≥ 2 (Lemma 1.5).
It remains to prove Bott vanishing for −KX and Ω1

X , meaning that Hj(X,Ω1
X ⊗

K∗X) = 0 for j > 0. By Corollary 6.2, this would follow if (1) Hj(Y,Ω1
Y (−KY )) =

0 for j > 0, (2) H0(Y,Ω1
Y (−KY )) → H0(F,Ω1

Y (−KY )) is surjective, and (1)
H1(F,Ω1

Y (−KY )) = 0.
We cannot apply Lemma 6.3, because the curve F is not a complete intersection

in Y (because the twisted cubic is not a complete intersection in P3). Instead, note
that the twisted cubic is a curve of bidegree (1, 2) on a smooth quadric surface
P1×P1 in P3. Let S be the strict transform of that surface in Y = Blp P3; then we
can work with the chain F ⊂ S ⊂ Y . The surface S is isomorphic to Blp(P

1 ×P1).
Statement (1) is immediate from Bott vanishing on the toric variety Y . Next,

consider the exact sequence

Hj(Y,Ω1
Y (−KY ))→ H0(S,Ω1

Y (−KY ))→ Hj+1(Y,Ω1
Y (−KY − S)).

Here Pic(Y ) = Z{H,E}, −KY = 4H − 2E, and S ∼ 2H − E on Y . The nef cone
of Y is spanned by H and H − E. So −KY − S = 2H − E is ample, and hence
Hj(Y,Ω1

Y (−KY − S)) = 0 for j > 0 by Bott vanishing on Y again. It follows that
Hj(S,Ω1

Y (−KY )) = 0 for j > 0, and that H0(Y,Ω1
Y (−KY ))→ H0(S,Ω1

Y (−KY )) is
surjective.
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Next, consider the exact sequence:

Hj(S,Ω1
Y (−KY ))→ Hj(F,Ω1

Y (−KY ))→ Hj+1(S,Ω1
Y |S(−KY − F )). (*)

Here Pic(S) ∼= Z{A,B,E}, F ∼ 2A + B − E on S, and −KY |S = 4A + 4B − 2E.
Also, Nef(S) = R≥0{A,B,A+B−E}. So −KY −F = 2A+ 3B−E is ample on S.

To analyze Ω1
Y restricted to S, use the exact sequence

0→ OS(−S)→ Ω1
Y |S → Ω1

S → 0, (**)

where OS(−S) = −2A − 2B + E. The surface S = Blp(P
1 × P1) is a toric

variety, although not torically embedded in Y . So Bott vanishing on S gives
that Hj(S,Ω1

S(−KY − F )) = 0. Also, −S|S − KY − F = B, which is nef. So
Hj(S,O(−S−KY −F )) = 0 for j > 0 by Proposition 1.3. By (**), we conclude that
Hj(S,Ω1

Y |S(−KY −F )) = 0 for j > 0. By (*), we deduce that H1(F,Ω1
Y (−KY )) = 0

(which is statement (3)) and that H0(S,Ω1
Y (−KY )) → H0(F,Ω1

Y (−KY )) is sur-
jective. That completes the proof of statement (2). Thus we have shown that
Hj(X,Ω1

X(−KX)) = 0 for j > 0. This completes the proof of Bott vanishing for
the Fano 3-fold (3.16).

We now prove Bott vanishing for (3.18). We work in characteristic not 2, since
X is not rigid in characteristic 2. Here X is the blow-up of P3 along a disjoint line
F1 and conic F2. We have Pic(X) = Z{H,E1, E2} and −KX = 4H −E1 −E2. Let
C1 be a fiber of E1 → F1 and C2 a fiber of E2 → F2. Let D be the strict transform
of a line meeting the line in one point and the conic in two points (which exists).
We have the following intersection numbers.

C1 C2 D

H 0 0 1
E1 −1 0 1
E2 0 −1 2

It follows that the dual basis to C1, C2, D is H − E1, 2H − E2, H. These three
divisors are basepoint-free, hence nef, giving contractions of X to P1, the quadric
3-fold Q, and P3. So Curv(X) = R≥0{C1, C2, D}, and the nef cone is spanned
by H − E1, 2H − E2, H. More strongly, the nef monoid in Pic(X) is generated by
these three divisors. Also, −KX has degree 1 on C1, C2, and D. So every ample
line bundle is −KX plus a nef divisor, hence −KX plus an N-linear combination of
H − E1, 2H − E2, H.

A general divisor in |H −E| is the blow-up of P2 at 2 points, which is toric. A
general divisor in |2H−E2| is the blow-up of a quadric surface P1×P1 at 2 points,
which is toric. A general divisor in |H| is the blow-up of P2 at 3 non-collinear
points, which is toric. By Lemma 3.1, Bott vanishing for X reduces to the single
line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) = 0 for j > 0.

It remains to show that Hj(X,Ω1
X ⊗K∗X) = 0 for j > 0. Let Y be the blow-up of

P3 along a line, so that X is the blow-up of Y along the disjoint conic F2. This
description has the advantage that Y is toric. Here −KY = 4H − E1, and F2 is a
complete intersection S1∩S2 in Y with S1 ∼ H and S2 ∼ 2H. So −KY , −KY −S1 =
3H − E1, and −KY − S2 = 2H − E1 are ample, and −KY − S1 − S2 = H − E1 is
nef. By Lemmas 6.3 and 1.3, it follows that Hj(X,Ω1

X ⊗K∗X) = 0 for j > 0. That
completes the proof of Bott vanishing for (3.18).
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We now prove Bott vanishing for (3.20). The proof works in any characteristic.
Here X is the blow-up of the quadric 3-fold Q along two disjoint lines, F1 and F2.
We have Pic(X) = Z{H,E1, E2} and −KX = 3H − E1 − E2. Let Ci be a fiber of
Ei → Fi, for i = 1, 2. Let D be the strict transform of a line in Q meeting F1 and
F2, which exists. We have the following intersection numbers.

C1 C2 D

H 0 0 1
E1 −1 0 1
E2 0 −1 1

It follows that the dual basis to C1, C2, D is H − E1, H − E2, H. These three
divisors are basepoint-free, hence nef, giving contractions of X to P2, P2, and Q.
So Curv(X) = R≥0{C1, C2, D}, and the nef cone is spanned by H −E1, H −E2, H.
More strongly, the nef monoid in Pic(X) is generated by these three divisors. Also,
−KX has degree 1 on C1, C2, and D. So every ample line bundle is −KX plus a
nef divisor, hence −KX plus an N-linear combination of H − E1, H − E2, H.

A general divisor in |H − E1| or |H − E2| is the blow-up of a quadric surface
P1 × P1 at one point, which is toric. A general divisor in |H| is the blow-up of a
quadric surface at two points, which is also toric. By Lemma 3.1, Bott vanishing
for X reduces to the single line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) = 0 for j > 0. It

remains to show that Hj(X,Ω1
X ⊗K∗X) = 0 for j > 0. We cannot apply our usual

method, since X is not the blow-up of a toric variety along a curve. Instead, we
will view X as a hypersurface in a toric variety Z: the blow-up of P4 along two
disjoint lines. We have Pic(Z) = Z{H,E1, E2}, with −KZ = 5H − 2E1 − 2E2, and
X is linearly equivalent to 2H − E1 − E1 on Z.

Let L = 3H − E1 − E2 on Z (so that L restricted to X is −KX). Consider
the exact sequence 0 → O(L −X)|X → Ω1

Z(L)|X → Ω1
X(L) → 0. The line bundle

O(L−X)|X = O(H)|X = O(KX+(4H−E1−E2)) has zero cohomology in degrees >
0 on X, by Kodaira vanishing. (In fact, this holds in any characteristic, by reducing
to Kodaira vanishing on the toric variety Z.) So the vanishing of cohomology
of degree > 0 for Ω1

X(L) would follow from the same statement for Ω1
Z(L)|X . Now

consider the exact sequence 0→ Ω1
Z(L−X)→ Ω1

Z(L)→ Ω1
Z(L)|X → 0. Here Ω1

Z(L)
has zero cohomology in degrees > 0 by Bott vanishing on the toric variety Z (since
L is ample), and Ω1

Z(L−X) has zero cohomology in degrees > 1 by Proposition 1.3
(since L−X = H is nef). It follows that Ω1

Z(L)|X has zero cohomology in degrees
> 0. That completes the proof of Bott vanishing for (3.20).

We now prove Bott vanishing for (3.21). We work in characteristic not 2, since
X is not rigid in characteristic 2. Here X is the blow-up of P1 × P2 along a
curve F of degree (2, 1). We can take F = {y2 = 0, x1y

2
0 = x0y

2
1} in P1 × P2 =

{([x0, x1], [y0, y1, y2])}. Thus F is contained in P1 × l, for a line l in P2, We have
Pic(X) = Z{A,B,E} and −KX = 2A+ 3B−E. Let C be a fiber of E → F . Let q
be a point on the line l, and let D1 be the strict transform of P1× q. Let D2 be the
strict transform of p× l, for some point p in P1. We have the intersection numbers:

C D1 D2

A 0 1 0
B 0 0 1
E −1 1 2

We compute that the dual basis to C,D1, D2 is A+ 2B −E,A,B. These three
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divisors are basepoint-free, hence nef, using the equation for F above. They give
contractions of X to the quintic del Pezzo 3-fold with one node in P6 [33, section
5.4.2], P1, and P2. It follows that Curv(X) = R≥0{C,D1, D2}, and the nef cone
is spanned by the three divisors mentioned. By the intersection numbers, the nef
monoid is also generated by those three divisors. The line bundle −KX = 2A +
3B − E has degree 1 on all three curves C,D1, D2. So every ample line bundle
is −KX plus a nef divisor, hence −KX plus an N-linear combination of the three
divisors mentioned.

A general divisor in |A| is P2 blown up at 2 points, which is toric. A general
divisor in |B| is the blow-up of P1 × P1 at one point, which is toric. A general
divisor in |A + 2B − E| is P2 blown up at 4 points with no 3 collinear, hence a
quintic del Pezzo surface. That is not toric, but it satisfies Bott vanishing. By
Lemma 3.1, that reduces Bott vanishing for (3.21) to the single line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) is zero for j > 0.

It remains to show that Hj(X,Ω1
X ⊗ K∗X) is zero for j > 0. The curve F is a

complete intersection S1 ∩ S2 in Y = P1 × P2, with S1 ∼ B and S2 ∼ A + 2B.
Since −KY = 2A+ 3B, we see that −KY , −KY −S1, and −KY −S2 are ample. By
Lemma 6.3, the desired vanishing would follow if Hj(Y,Ω1

Y (−KY − S1 − S2)) = 0
for j > 1. Here −KY −S1−S2 = A is nef, and so this follows from Proposition 1.3.
That completes the proof of Bott vanishing for (3.21).

We now prove Bott vanishing for (3.22). The proof works in any characteristic.
Here X is the blow-up of P1 × P2 along a conic F in p × P2, for a point p in P1.
We can take F = {x1 = 0, y0y1 = y22} in P1×P2 = {([x0, x1], [y0, y1, y2])}. We have
Pic(X) = Z{A,B,E} and −KX = 2A + 3B − E. Let C be a fiber of E → F . Let
D1 be the strict transform of a line in p × P2. Let D2 be the strict transform of
P1 × q, for a point q in the conic. We have the intersection numbers:

C D1 D2

A 0 0 1
B 0 1 0
E −1 2 1

We compute that the dual basis to C,D1, D2 is A+ 2B −E,B,A. These three
divisors are basepoint-free, hence nef, using the equation for F above. They give
contractions of X to the cone in P6 over the Veronese surface in P5, to P2, and
to P1. It follows that Curv(X) = R≥0{C,D1, D2}, and the nef cone is spanned by
the three divisors mentioned. By the intersection numbers, the nef monoid is also
generated by those three divisors. The line bundle −KX = 2A+ 3B−E has degree
1 on all three curves C,D1, D2. So every ample line bundle is −KX plus a nef
divisor, hence −KX plus an N-linear combination of the three divisors mentioned.

A general divisor in |A| is P2, which is toric. A general divisor in |B| is the
blow-up of the quadric surface P1 × P1 at two collinear points, which is toric. A
general divisor in |A+2B−E| is P2 blown up at 4 points with no 3 collinear, hence
a quintic del Pezzo surface. That is not toric, but it satisfies Bott vanishing. By
Lemma 3.1, this reduces Bott vanishing for (3.22) to the single line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) is zero for j > 0.

It remains to show that Hj(X,Ω1
X ⊗K∗X) is zero for j > 0. Let Y = P1 ×P2; then

−KY = 2A+ 3B. The curve F is a complete intersection S1 ∩S2 in Y with S1 ∼ A
and S2 = 2B. So −KY , −KY − S1, and −KY − S2 are ample. By Lemma 6.3, the
desired vanishing would follow if we have Hj(Y,Ω1

Y (−KY −S1−S2)) = 0 for j > 1.
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Here −KY − S1 − S2 = A + 2B is ample, and so this cohomology is actually zero
for j > 0 (Theorem 4.2). That completes the proof of Bott vanishing for (3.22).

We now prove Bott vanishing for (3.23). The proof works in any characteristic.
Here X is the blow-up of Y := V7 = Blp P3 along the strict transform F of a conic
through the point p ∈ P3. We can take p to be [1, 0, 0, 0] and the conic to be
{x3 = 0, x21 − x0x2 = 0}. We have Pic(Y ) = Z{H,E1} with −KY = 4H − 2E1,
and so Pic(X) = Z{H,E1, E2} and −KX = 4H − 2E1 − E2. Let C1 be the strict
transform in E1 ⊂ X of a line through the point E1∩F in Y . (I am using the same
name for the surface E1

∼= P2 in Y and its strict transform in X.) Let C2 be a fiber
of E2 → F . Let D be the strict transform of a line through p in P3 that meets the
conic at another point. We have the intersection numbers:

C1 C2 D

H 0 0 1
E1 −1 0 1
E2 1 −1 1

We compute that the dual basis to C1, C2, D is H−E1, 2H−E1−E2, H. These
three divisors are basepoint-free, hence nef, giving contractions of X to P2, the
quadric 3-fold Q, and P3. It follows that Curv(X) = R≥0{C1, C2, D}, and the
nef cone is spanned by the three divisors mentioned. By the intersection numbers,
the nef monoid is also generated by those three divisors. The line bundle −KX =
4H − 2E1 − E2 has degree 1 on all three curves C1, C2, D. So every ample line
bundle is −KX plus a nef divisor, hence −KX plus an N-linear combination of the
three divisors mentioned.

A general divisor in |H| or |H −E| is P2 blown up at two points, which is toric.
A general divisor in |2H − E1 − E2| is a quadric surface P1 ×P1 blown up at one
point, which is also toric. By Lemma 3.1, this reduces Bott vanishing for (3.23) to
the single line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) is zero for j > 0.

It remains to show that Hj(X,Ω1
X ⊗K∗X) is zero for j > 0. We have Y ∼= Blp P3

and −KY = 4H − 2E1. The curve F is a complete intersection S1 ∩ S2 in Y
with S1 ∼ H − E1 and S2 ∼ 2H − E1. So −KY , −KY − S1 = 3H − E1, and
−KY −S2 = 2H−E1 are ample. By Lemma 6.3, the desired vanishing would follow
if we have Hj(Y,Ω1

Y (−KY − S1 − S2)) = 0 for j > 1. Here −KY − S1 − S1 = H
is nef, and so that follows from Proposition 1.3. This completes the proof of Bott
vanishing for (3.23).

10 The Fano 3-folds (4.3), (4.4), (4.5), (4.6), (4.7), (4.8)

For these Fano 3-folds with Picard number 4, the proof of Bott vanishing is again
efficient by our methods. Each variety is the blow-up of a smooth toric variety along
a smooth curve.

Let us prove Bott vanishing for the Fano 3-fold (4.3). We work in characteristic
not 2, since X is not rigid in characteristic 2. Here X is the blow-up of (P1)3 along
a curve F of degree (1, 1, 2). We can take F = {x0y1 = x1y0, x

2
0z1 = x21z0} in

(P1)3 = {([x0, x1], [y0, y1], [z0, z1])}. We have Pic(X) = Z{A,B,C,E} and −KX =
2A+2B+2C−E. Let D4 be a fiber of E → F . Let D1, D2, D3 be strict transforms
of curves P1 × pt.×pt., pt.×P1 × pt., pt.×pt.×P1 that meet the curve F in one
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point each. We have the intersection numbers:
D1 D2 D3 D4

A 1 0 0 0
B 0 1 0 0
C 0 0 1 0
E 1 1 1 −1

We compute that the dual basis to D1, D2, D3, D4 is A,B,C,A + B + C − E.
These four divisors are basepoint-free, hence nef, using the equation for F above.
They give contractions of X to P1, P1, P1, and P2. It follows that Curv(X) =
R≥0{D1, D2, D3, D4}, and the nef cone is spanned by the four divisors mentioned.
By the intersection numbers, the nef monoid is also generated by those four divi-
sors. The line bundle −KX = 2A + 2B + 2C − E has degree 1 on all four curves
D1, D2, D3, D4. So every ample line bundle is −KX plus a nef divisor, hence −KX

plus an N-linear combination of the four divisors mentioned.
A general divisor in |A| or |B| is P1×P1 blown up at one point, which is toric.

A general divisor in |C| if P1 ×P1 blown up at 2 points, which is toric. A general
divisor in |A+B +C −E| is P2 blown up at 3 non-collinear points, which is toric.
By Lemma 3.1, this reduces Bott vanishing for (4.3) to the single line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) is zero for j > 0.

It remains to show that Hj(X,Ω1
X ⊗K∗X) is zero for j > 0. Let Y = (P1)3, which

has −KY = 2A+2B+2C. The curve F is a complete intersection S1∩S2 in Y , with
S1 ∼ A + B and S2 ∼ 2A + C. By Lemma 6.3, the desired vanishing would follow
if −KY and −KY − S1 are ample, the surface S1 is toric, (−KY − S2)|S1 is ample,
and (−KY − S1 − S2)|S1 is nef. Indeed, −KY and −KY − S1 = A + B + 2C are
ample, and S1 = {x0y1 = x1y0} ⊂ (P1)3 is isomorphic to (P1)2, which is toric. The
line bundles A and B become isomorphic on S1, and the nef cone of S1 is spanned
by A and C. So (−KY − S1)|S1 = 2A+ C is ample, and (−KY − S1 − S2)|S1 = C
is nef. That completes the proof of Bott vanishing for (4.3).

We first prove Bott vanishing for (4.4). We work in characteristic not 2, since X
is not rigid in characteristic 2. Here X is the blow-up of Blp2,p3 Q (with p2 and p3
non-collinear points on the quadric Q) along the strict transform of a conic through
p2 and p3. We will use a different description of this variety, mentioned by Mori-
Mukai [31, Table 3]. Namely, let Y1 be the blow-up of P3 along a line F1, and let
Y be the blow-up of Y1 along the inverse image F2 of a point p ∈ F1. Let F3 be
the inverse image in Y of a conic in P3 disjoint from the line F1. Then X is the
blow-up of Y along F3. This description has the advantage that Y is a toric variety.
We can take the point p in P3 to be [0, 0, 1, 0], the line F1 to be {x0 = x1 = 0}, and
the conic F3 to be {x2 = x3, x0x1 − x22 = 0}.

Let E1 → F1 be the exceptional divisor in Y1; we also write E1 for its strict
transform in Y or X. Let E2 → F2 be the exceptional divisor in Y , or its strict
transform in X. Let E3 → F3 be the exceptional divisor in X. Then Pic(X) =
Z{H,E1, E2, E3} and −KX = 4H−E1−2E2−E3. (To check the formula for −KX ,
note that the pullback of E1 ⊂ Y1 is E1 + E2 in X.) For i = 1, 2, 3, let Ci be a
general fiber of Ei → Fi. Let D1 be the strict transform of a line in P3 through
p and a point of the conic F3. Let q in P3 be the intersection of the line F1 with
the plane containing the conic F3. Let D2 be the strict transform of a line in P3

through q that meets the conic F3 in 2 points. We have the intersection numbers:
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C1 C2 C3 D1 D2

H 0 0 0 1 1
E1 −1 1 0 0 1
E2 0 −1 0 1 0
E3 0 0 −1 1 2

Using Magma, we compute that the dual cone to R≥0{C1, C2, C3, D1, D2} is
spanned by H,H − E2, H − E1 − E2, 2H − E3, 2H − E2 − E3. These five divisors
are basepoint-free, hence nef, giving contractions of X to P3, P2, P1, the quadric
3-fold Q, and P3. It follows that Curv(X) = R≥0{C1, C2, C3, D2, D3}, and the
nef cone is spanned by the five divisors mentioned. More strongly, Magma checks
that the nef monoid is generated by these five divisors. The line bundle −KX =
4H−E1−2E2−E3 has degree 1 on all five curves C1, C2, C3, D1, D2. So every ample
line bundle is −KX plus a nef divisor, hence −KX plus an N-linear combination of
the five divisors mentioned.

For all five divisors, a general divisor in the linear system is P2 blown up at 3
non-collinear points, which is toric. By Lemma 3.1, this reduces Bott vanishing for
(4.4) to the single line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) is zero for j > 0.

It remains to show that Hj(X,Ω1
X ⊗K∗X) is zero for j > 0. The curve F3 in Y is

a complete intersection F1 = S1 ∩ S2, where S1 ∼ H and S2 ∼ 2H. (Here, in P3,
S1 is the plane {x2 = x3} and S1 is the quadric cone {x0x1 − x23 = 0}, singular at
p. Since the point p is disjoint from the plane S1 in P3, we could also describe F3

in Y as a complete intersection of H and 2H −E1, or of H and 2H − 2E2. But we
choose the description mentioned.)

By Lemma 6.3, the desired vanishing would follow if −KY , −KY −S1 are ample,
S1 is a toric variety, (−KY − S2)|S1 is ample, and (−KY − S1 − S2)|S1 is nef. Here
−KY = 4H−E1−2E2, and the nef cone of Y is spanned by H,H−E2, H−E1−E2.
So −KY and −KY − S1 are ample. The surface S1 is P2 blown up at one point,
which is toric. Since E2 is disjoint from S1, −KY − S2 = 2H −E1 − 2E2 restricted
to S1 is numerically equivalent to (1/2)H+(1/2)(H−E2)+(H−E1−E2), which is
ample; and −KY −S1−S2 = H−E1−2E2 restricted to S1 is numerically equivalent
to H −E1−E2, which is nef. That completes the proof of Bott vanishing for (4.4).

Next, we prove Bott vanishing for (4.5). We work in characteristic not 2, since
X is not rigid in characteristic 2. Here X is the blow-up of Y := P1 × P2 along
two disjoint curves, F1 of degree (2, 1) and F2 of degree (1, 0). Thus F1 is contained
in P1 × l, for a line l in P2, and F2 is equal to P1 × p, for a point p 6∈ l. We
can take F1 = {y0 = 0, x1y

2
1 = x0y

2
2} and F2 = {y1 = 0, y2 = 0} in P1 × P2 =

{([x0, x1], [y0, y1, y2])}. We have Pic(X) = Z{A,B,E1, E2} and −KX = 2A+ 3B −
E1 − E2. Let Ci ⊂ Ei be a fiber of Ei → Fi, for i = 1, 2. Let D1 be the strict
transform of the curve P1 × q in Y , for a point q ∈ l. Let (s, t) be a point in F2,
and let l2 be the line through p and t in P2. Then let D2 be the strict transform
of the curve s × l2 ⊂ P1 ×P2. Finally, let D3 be the strict transform of the curve
s× l. We have the intersection numbers:

C1 C2 D1 D2 D3

A 0 0 1 0 0
B 0 0 0 1 1
E1 −1 0 1 1 2
E2 0 −1 0 1 0
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We compute that the dual cone to R≥0{C1, C2, D1, D2, D3} is spanned by the
five divisors A, B, B − E2, A + 2B − E1, and A + 2B − E1 − E2. These are
all basepoint-free, hence nef, using the equations for F1 and F2 above. They give
contractions of X to P1, P2, P1, the quintic del Pezzo 3-fold with one node in P6

[33, section 5.4.2], and the nodal quadric 3-fold in P4. It follows that Curv(X) =
R≥0{C1, C2, D1, D2, D3}, and the nef cone is spanned by the five divisors mentioned.
Using Magma, we also compute that the nef monoid is generated by those five
divisors. The line bundle −KX = 2A+ 3B−E1−E2 has degree 1 on all five curves
C1, C2, D1, D2, D3. So every ample line bundle is −KX plus a nef divisor, hence
−KX plus an N-linear combination of the five divisors mentioned.

A general divisor in |A| is P2 blown up at 3 non-collinear points, which is toric.
A general divisor in |B| or in |B − E2| is P1 ×P1 blown up at one point, which is
toric. A general divisor in |A+ 2B−E1−E2| is P2 blown up at 4 points with no 3
collinear, hence a quintic del Pezzo surface. That is not toric, but it satisfies Bott
vanishing. A general divisor in |A + 2B − E1| is the previous surface blown up at
one more point; that does not satisfy Bott vanishing. Instead, we can observe that
A+ 2B−E1 = (A+ 2B−E1−E2) +E2, where E2 is a P1-bundle over P1, which is
toric. By Lemma 3.1, that reduces Bott vanishing for (4.5) to the single line bundle
−KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) is zero for j > 0.

It remains to show that Hj(X,Ω1
X ⊗ K∗X) is zero for j > 0. Let Z be the blow-

up of Y = P1 × P2 along the curve F2 of degree (0, 1); then Z is a toric variety,
with Pic(Z) = Z{A,B,E2} and Nef(X) = R≥0{A,B,B − E2}. The curve F1 is a
complete intersection S1 ∩ S2 in Z, with S1 ∼ B and S2 ∼ A + 2B. By Lemma
6.3, the desired vanishing holds if −KZ and −KZ − S1 are ample, S1 is a toric
variety, (−KY − S2)S1 is ample, and (−KY − S1 − S2)S1 is nef. Indeed, −KZ =
2A+3B−E2 and −KZ−S1 = 2A+2B−E2 are ample. The surface S1 = {y0 = 0}
is isomorphic to P1 × P2, and the exceptional divisor E2 in Z is disjoint from S1.
So (−KY − S2)|S1 = A + B is ample on S1, and (KY − S1 − S2)|S1 = A is nef on
S1. That completes the proof of Bott vanishing for (4.5).

Next, we prove Bott vanishing for (4.6). The proof works in any characteristic.
Here X is the blow-up of P3 along three disjoint lines, F1, F2, F3. We have Pic(X) =
Z{H,E1, E2, E3} and −KX = 4H − E1 − E2 − E3. Let Ci be a fiber of Ei → Fi

for i = 1, 2, 3, and let D be the strict transform of a line in P3 meeting F1, F2, and
F3 (which exists). Then H · Ci = 0, H ·D = 1, Ei · Cj = −δij , and Ei ·D = 1, for
1 ≤ i, j ≤ 3. We have the intersection numbers:

C1 C2 C3 D

H 0 0 0 1
E1 −1 0 0 1
E2 0 −1 0 1
E3 0 0 −1 1

It follows that the dual basis to C1, C2, C3, D ∈ N1(X) is H −E1, H −E2, H −
E3, H. These four divisors are basepoint-free, hence nef, giving contractions of X
to P1, P1, P1, and P3. Therefore, Curv(X) = R≥0{C1, C2, C3, D} and the nef
cone is spanned by H − E1, H − E2, H − E3, H. By the intersection numbers,
the nef monoid in Pic(X) is spanned by those four divisors. Also, the line bundle
−KX = 4H−E1−E2−E3 has degree 1 on the four curves C1, C2, C3, D. It follows
that every ample line bundle on X is −KX plus a nef divisor, hence −KX plus an
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N-linear combination of H − E1, H − E2, H − E3, H.
For 1 ≤ i ≤ 3, a general divisor in |H − Ei| is the blow-up of P2 at 2 points,

which is toric. A general divisor in |H| is the blow-up of P2 at 3 non-collinear points,
which is also toric. Therefore, Lemma 3.1 reduces Bott vanishing for X to the single
line bundle −KX . Since X is rigid, we know that Hj(X,Ω2

X ⊗K∗X) = Hj(X,TX)
is zero for j > 0. It remains to show that Hj(X,Ω1

X ⊗ K∗X) = 0 for j > 0.
Let Y be the blow-up of P3 along the lines F1 and F2; then Y is a toric variety.
We have Pic(Y ) = Z{H,E1, E2} and Nef(Y ) = R≥0{H − E1, H − E2, H}. The
curve F3 in Y is a complete intersection S1 ∩ S2 with S1 ∼ H and S2 ∼ H. So
−KY = 4H −E1−E2, −KY −S1 = 3H −E1−E2, and −KY −S2 = 3H −E1−E2

are ample, and −KY − S1 − S2 = 2H − E1 − E2 is nef. By Lemma 6.3, it follows
that Hj(X,Ω1

X ⊗K∗X) = 0 for j > 0. That completes the proof of Bott vanishing
for (4.6).

We now prove Bott vanishing for (4.7). The proof works in any characteristic.
Here X is the blow-up of the flag manifold W ⊂ P2 × P2 along disjoint curves F1

of degree (0, 1) and F2 of degree (1, 0). We will instead use a different description,
mentioned by Mori-Mukai [31, Table 3]. Let S be the blow-up of P2 at a point p.
Embed F = P1 into Y := P1 × S by the identity map on P1 and the inclusion into
S as the strict transform of a line in P2 not containing p. Then X is the blow-up
of Y along F . (The advantage of this description, for hand calculation, is that it
expresses X as the blow-up of the toric variety Y along a single curve.) We can take
S to be P2 blown up at the point [0, 0, 1], with F defined by y2 = 0, x0y1 = x1y0 in
P1 ×P2 = {[x0, x1], [y0, y1, y2]}.

Let A be the pullback to X of O(1) on P1. Let B and H be the pullbacks of
O(1) by the contractions of S to P1 and P2. Then Pic(X) = Z{A,B,H,E} and
−KX = 2A+B + 2H −E. Let C be the strict transform in X of a curve P1 × pt.
that meets the curve F in one point. Let D be the strict transform of a point in P1

times the (−1)-curve in S. (The curve D is disjoint from G.) Let G be the strict
transform of a point in P1 times the strict transform in S of a line in P2 through
p such that G meets F in one point. Let K be a fiber of the exceptional divisor
E → F . We have the intersection numbers:

C D G K

A 1 0 0 0
B 0 1 0 0
H 0 0 1 0
E 1 0 1 −1

The dual basis to C,D,G,K is given by A,B,H,A+H−E. These line bundles
are basepoint-free, hence nef, giving contractions to P1 (twice) and P2 (twice).
(Using the equation for G above, a basis for the sections of A+H − E is given by
x0y1− x1y0, x0y2, x1y2; these equations define the curve G in Y as a scheme, which
proves the basepoint-freeness of A+H − E on X.)

It follows that Curv(X) = R≥0{C,D,G,K}, and the nef cone is spanned by
A,B,H,A+H −E. More strongly, the nef monoid in Pic(X) is generated by these
four divisors. Since −KX has degree 1 on C, D, G, and K, every ample line bundle
on X is −KX plus a nef divisor, hence −KX plus an N-linear combination of the
A,B,H,A+H − E.

A general divisor in |A|, |B|, |H|, or |A+H −E| is isomorphic to P2 blown up
at 2 points, which is toric. By Lemma 3.1, this reduces Bott vanishing on X to the
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ample line bundle −KX .
For −KX and Ω2

X , this is easy: since X is rigid, we have Hj(X,Ω2
X ⊗K∗X) =

Hj(X,TX) = 0 for j > 0. It remains to prove Bott vanishing for −KX and
Ω1
X , meaning that Hj(X,Ω1

X ⊗ K∗X) = 0 for j > 0. Since Y = P1 × S, we have
Nef(Y ) = R≥0{A,B,H}. We can view the curve F is a complete intersection
S1 ∩ S2 with S1 ∼ H and S2 ∼ A + B. By Lemma 6.3, the desired vanishing
holds if −KY , −KY − S1, and −KY − S2 are ample and −KY − S1 − S2 are nef.
Indeed, −KY = 2A + B + 2H is ample, −KY − S1 = 2A + B + H is ample,
−KY − S2 = A + B + H is ample, and −KY − S1 − S2 = A + B is nef. That
completes the proof of Bott vanishing for (4.7).

We now prove Bott vanishing for the Fano 3-fold (4.8). The proof works in any
characteristic. Here X is the blow-up of (P1)3 along a curve F of degree (0, 1, 1).
We can take F = {x1 = 0, y0z1 = y1z0} in (P1)3 = {([x0, x1], [y0, y1], [z0, z1])}. We
have Pic(X) = Z{A,B,C,E} and −KX = 2A+ 2B + 2C −E. Let D4 be a fiber of
E → F . Let D1, D2, D3 be strict transforms of curves P1× pt.×pt., pt.×P1× pt.,
pt.×pt.×P1 that meet the curve F in one point each. We have the intersection
numbers:

D1 D2 D3 D4

A 1 0 0 0
B 0 1 0 0
C 0 0 1 0
E 1 1 1 −1

We compute that the dual basis to D1, D2, D3, D4 is A,B,C,A + B + C − E.
These four divisors are basepoint-free, hence nef, using the equation for F above.
They give contractions of X to P1, P1, P1, and a nodal quadric 3-fold. It follows
that Curv(X) = R≥0{D1, D2, D3, D4}, and the nef cone is spanned by the four
divisors mentioned. More strongly, the nef monoid in Pic(X) is generated by those
four divisors. The line bundle −KX = 2A+ 2B + 2C − E has degree 1 on all four
curves D1, D2, D3, D4. So every ample line bundle is −KX plus a nef divisor, hence
−KX plus an N-linear combination of the four divisors mentioned.

A general divisor in |A| is isomorphic to P1 × P1, which is toric. A general
divisor in |B| or |C| is P1 × P1 blown up at one point, which is toric. A general
divisor in |A+B +C −E| is P2 blown up at 3 non-collinear points, which is toric.
By Lemma 3.1, this reduces Bott vanishing for (4.8) to the single line bundle −KX .

Since X is rigid, we know that Hj(X,Ω2
X ⊗K∗X) = Hj(X,TX) is zero for j > 0.

It remains to show that Hj(X,Ω1
X ⊗K∗X) is zero for j > 0. Let Y = (P1)3; then

−KY = 2A + 2B + 2C and Nef(Y ) = R≥0{A,B,C}. The curve F is a complete
intersection S1 ∩S2 in Y with S1 ∼ A and S2 ∼ B+C. By Lemma 6.3, the desired
vanishing holds if −KY , −KY − S1, and −KY − S2 are ample, and −KY − S1 − S2
is nef. In this case, all four line bundles are ample. That completes the proof of
Bott vanishing for (4.8).

11 The Fano 3-fold (5.1)

The Fano 3-fold (5.1) (with Picard number 5) turns out to be the hardest, for
proving Bott vanishing. Our technique of reducing to general properties of toric
varieties seems not to be strong enough in this case. Still, we give a meaningful
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proof using Hodge cohomology. We will prove Bott vanishing in characteristic not
2, since X is not rigid in characteristic 2.

One construction of (5.1) is similar to (4.4). Let J be a conic in Q. Then X is
the blow-up of BlJ Q along three fibers of the exceptional divisor. As suggested by
Coates-Corti-Galkin-Kasprzyk, we instead view X as a hypersurface in a smooth
toric 4-fold G [13, section 98]. Namely, G is obtained from P4 by blowing up along
a plane Π and then along the fibers over three non-collinear points p2, p3, p4 in
Π. Let H be the pullback of O(1) on P4, E1 the (irreducible) exceptional divisor
over Π, and E2, E3, E4 the exceptional divisors over the three points in Π. Then
Pic(G) = Z{H,E1, E2, E3, E4}, and the nef cone of G is spanned by H, H − E2,
H −E3, H −E4, H −E1−E2−E3−E4, and 2H −E2−E3−E4, by [13]. (In their
notation, A = H − E1 − E2 − E3 − E4, B = E1, C = E2, D = E3, and E = E4.)
These divisors are basepoint-free, giving contractions of G to P4, P3 (three times),
P1, and another toric 4-fold.

For completeness, let us list the intersection numbers between divisors and some
curves on G (which span the cone of curves). This could be used to compute the
nef cone of G, if we did not already know it. Namely, let C1, C2, C3, C4 be general
fibers of the exceptional divisors E1, E2, E3, E4 on G. Also, for 2 ≤ i ≤ 4, Di will
be a curve in X mapping to the line through pj and pk, where {i, j, k} = {2, 3, 4};
more precisely, let Di be the section of E1 → Π associated to a general plane in P2

containing that line. Then we have the intersection numbers:
C1 C2 C3 C4 D2 D3 D4

H 0 0 0 0 1 1 1
E1 −1 1 1 1 −1 −1 −1
E2 0 −1 0 0 0 1 1
E3 0 0 −1 0 1 0 1
E4 0 0 0 −1 1 1 0

The Fano 3-fold X is a general divisor in the linear system |2H−E2−E3−E4|;
that is, X is the strict transform in G of a quadric 3-fold Q containing p2, p3, p4.
So X is obtained from Q by blowing up along a conic F1 containing those 3 points,
and then along the fibers over those 3 points. Here Pic(X) = Z{H,E1, E2, E3, E4},
but (unfortunately) the nef cone of X turns out to be bigger than Nef(G). To list
some curves on X: we can view C1, C2, C3, C4 above as curves on X, namely fibers
in the four exceptional divisors. For i = 2, 3, 4, let Ki be the strict transform in X
of a line in Q through pi. Finally, let V be the section of E1 → F1 associated to
a hyperplane section of Q containing the conic F1. Then we have the intersection
numbers:

C1 C2 C3 C4 K2 K3 K4 V

H 0 0 0 0 1 1 1 2
E1 −1 1 1 1 0 0 0 −1
E2 0 −1 0 0 1 0 0 1
E3 0 0 −1 0 0 1 0 1
E4 0 0 0 −1 0 0 1 1

Using Magma, we compute that the dual cone to the cone spanned by these
eight curves is spanned by H, H −E2, H −E3, H −E4, H −E2−E3, H −E2−E4,
H −E3 −E4, and H −E1 −E2 −E3 −E4. These eight divisors are basepoint-free,
hence nef, giving contractions of X to the quadric 3-fold Q, P3 (three times), P2

(three times), and P1. It follows that the cone of curves of X is spanned by the eight
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curves above, and the nef cone is spanned by these eight divisors. More strongly,
Magma checks that the nef monoid in Pic(X) is generated by these eight divisors.
The line bundle −KX = 3H−E1−2E2−2E3−2E4 has degree 1 on all eight curves.
So every ample line bundle is −KX plus a nef divisor, hence −KX plus an N-linear
combination of the eight divisors mentioned.

For each of those divisors except H − E1 − E2 − E3 − E4, a general divisor in
the linear system is isomorphic to P2 blown up at three non-collinear points, which
is toric. A general divisor in |H −E1−E2−E3−E4| is P2 blown up at four points
with no three collinear; this is the quintic del Pezzo surface, which is not toric but
satisfies Bott vanishing. By Lemma 3.1, this reduces Bott vanishing for (5.1) to the
single line bundle −KX .

Since X is rigid in characteristic not 2, we know that Hj(X,Ω2
X(−KX)) =

Hj(X,TX) is zero for j > 0. It remains to show that Hj(X,Ω1
X(−KX)) = 0

for j > 0, which we will prove in any characteristic. This was shown by Belmans-
Fatighenti-Tanturri, in terms of the isomorphic vector bundle Λ2TX, when the base
field has characteristic zero [7, Appendix A].

To do this, recall that X is a hypersurface in the smooth toric 4-fold G. We have
−KG = 2(2H−E2−E3−E4)+(H−E1−E2−E3−E4) = 5H−E1−3E2−3E3−3E4,
which is nef and big but not ample. So −KX is the restriction of −KG − X =
3H − E1 − 2E2 − 2E3 − 2E4, which is also nef and big but not ample. Since G
is a toric variety, it follows that −KG − X is basepoint-free [20, p. 68]. Consider
the contraction π : G → F associated to the line bundle −KG −X; this is a small
contraction, and all contracted curves are disjoint from X. The singular set S of F
consists of three disjoint P1’s. (The curves D2, D3, D4 in G are contracted by π to
points in these three components of S.) Here X is still a smooth hypersurface in F ,
but now −KF and X = 2H −E2−E3−E4 (which pull back to −KG and X on G)
are ample line bundles on F . The description of the toric Fano 4-fold F by a fan
is given in Belmans-Fatighenti-Tanturri’s file about the Fano 3-fold (5.1) [7]. The
singularities of F are locally isomorphic to a smooth curve times the 3-fold node.
We will prove the desired cohomology vanishing by relating X to the singular toric
Fano 4-fold F , although the smooth toric 4-fold G also comes up in the argument.

We have the exact sequences of coherent sheaves 0 → OX(−X) → Ω
[1]
F |X →

Ω1
X → 0 on X and 0 → O(−X) → OF → OX → 0 on F . Tensoring the first

sequence with −KF − X, we have 0 → OX(−KF − 2X) → Ω
[1]
F (−KF − X)|X →

Ω1
X(−KX)→ 0. So the desired vanishing would follow if Ω

[1]
F (−KF −X)|X has zero

cohomology in positive degrees and OX(−KF −2X) has zero cohomology in degrees

> 1. From the second sequence above, it suffices to show that (1) Ω
[1]
F (−KF −X)

has zero cohomology (on F ) in positive degrees; (2) Ω
[1]
F (−KF − 2X) has zero

cohomology in degrees > 1; (3) −KF − 2X has zero cohomology (on F ) in degrees
> 1; and (4) −KF − 3X has zero cohomology in degrees > 2. Since −2KF − 2X
and −2KF −3X is ample, (3) and (4) are immediate from Kodaira vanishing on the
toric variety F (part of Theorem 1.1). Also, since −KF −X is ample, (1) follows
from Bott vanishing on F (Theorem 1.1). (This is the advantage of working with
F rather than G.)

Here A := −KF − 2X = H − E1 − E2 − E3 − E4 is nef, but F is singular, and
so (2) is not immediate from Proposition 1.3. On the other hand, we know that
Hj(G,Ω1

G(A)) = 0 for j > 0 by Proposition 1.3, and so it seems natural to compare

29



the singular variety F with its resolution G. Let S be the singular locus of F , which
is the disjoint union of three P1’s. Near S, the morphism π : G → F is locally a
smooth curve times one of the two small resolutions of the 3-fold node xy = zw
in A4. It follows, for example using the theorem on formal functions [23, Theorem

III.11.1], that the sheaf Rjπ∗Ω
1
G is isomorphic to Ω

[1]
F for j = 0, OS for j = 1, and

zero otherwise. Equivalently, we have an exact triangle Ω
[1]
F → Rπ∗Ω

1
G → OS [−1]

in the derived category of F . So we have a long exact sequence

H1(F,Ω
[1]
F )→ H1(G,Ω1

G)→ H0(S,OS)→ H2(F,Ω
[1]
F )→ · · · .

Here H0(S,OS) ∼= k3. I claim that the map from H1(G,Ω1
G) to H0(S,OS) is

surjective. It is equivalent to show that the image of H1(F,Ω
[1]
F )→ H1(G,Ω1

G) has
codimension at least 3. So it suffices to find a surjection H1(G,Ω1

G)→ k3 that is zero

on the image of H1(F,Ω
[1]
F ). In the notation above, the curves D2, D3, D4 in G map

to k-points in the three components of S. Then the restriction map from H1(G,Ω1
G)

to ⊕4
i=2H

1(Di,Ω
1
Di

) = k3 vanishes on H1(F,Ω
[1]
F ) (because the curves Di map to

points in F ). So it suffices to show that the composition Pic(G)→ H1(G,Ω1
G)→ k3

is surjective. This map gives the degrees of line bundles on G on the three curves

Di. The intersection numbers of H,E3, E4 with these three curves are

1 1 1
1 0 1
1 1 0

,

which has determinant 1. So, for k of any characteristic, we have shown that
H1(G,Ω1

G) → H0(S,OS) is surjective. (By the exact sequence above, it follows

that H2(F,Ω
[1]
F ) = 0.)

We want to compute the related groups Hj(F,Ω
[1]
F (A)). By the exact triangle

Ω
[1]
F (A)→ Rπ∗Ω

1
G(A)→ A|S [−1] in the derived category of F , we have a long exact

sequence

H1(F,Ω
[1]
F (A))→ H1(G,Ω1

G(A))→ H0(S,A)→ H2(F,Ω
[1]
F (A))→ · · · .

The line bundle A has degree 1 on each P1 component of S = S2
∐
S3

∐
S4, using

that each of these curves on F is the image of a curve numerically equivalent to
C1 on G. Since A is nef on the toric variety G, it is basepoint-free. It follows that
the restriction H0(G,A) → H0(Si, A) ∼= k2 is surjective for i = 2, 3, 4. Combin-
ing this with the previous paragraph, the composition H1(G,Ω1

G) ⊗k H
0(G,A) →

H1(G,Ω1
G(A)) → H0(S,A) is surjective. Also, Hj(G,A) = 0 for j > 0 and (by

Proposition 1.3) Hj(G,Ω1
G(A)) = 0 for j > 1. Therefore, the exact sequence above

shows that Hj(F,Ω
[1]
F (A)) = 0 for all j > 1. This is statement (2), above. That

completes the proof that Hj(X,Ω1
X(−KX)) = 0 for j > 0. Thus Bott vanishing

holds for the Fano 3-fold (5.1).
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[32] M. Mustaţă. Vanishing theorems on toric varieties. Tohoku Math. J. 54 (2002),
451–470. 1

[33] Y. Prokhorov. On G-Fano threefolds. Izv. Math. 79 (2015), 159–174. 21, 25

[34] H. Tanaka. Fano threefolds in positive characteristic II. arXiv:2308.08122 5

[35] H. Tanaka. Fano threefolds in positive characteristic IV. arXiv:2308.08127 1,
5, 6

[36] S. Torres. Bott vanishing using GIT and quantization. To appear in Michigan
Math. J. 1, 5

[37] B. Totaro. Bott vanishing for algebraic surfaces. Trans. Amer. Math. Soc. 373
(2020), 3609–3626. 1, 5, 7

[38] C. Wei. Bott vanishing via Hodge theory. arXiv:2310.17380 2, 8

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555
totaro@math.ucla.edu

32

http://www.math.uiuc.edu/Macaulay2/
arXiv:2302.11921
arXiv:2308.08122
arXiv:2308.08127
arXiv:2310.17380

	Vanishing theorems
	Cases where Bott vanishing fails
	Inductive approach to Bott vanishing
	Higher direct images of differential forms
	The Fano 3-folds (2.30) and (3.19)
	Higher direct images of differential forms, continued
	First blow-up along a curve: (2.26)
	The Fano 3-fold (3.24)
	The Fano 3-folds (3.15), (3.16), (3.18), (3.20), (3.21), (3.22), (3.23)
	The Fano 3-folds (4.3), (4.4), (4.5), (4.6), (4.7), (4.8)
	The Fano 3-fold (5.1)

