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INTRODUCTION

The minimal model conjecture asserts that every algebraic variety X not covered

by rational curves is birational to a projective variety Y which is negatively curved in

the sense that the first Chern class c1(Y ) has degree ≤ 0 on all curves in Y , called a

minimal model. The problem is fundamental to all kinds of classification problems in

algebraic geometry. The minimal model conjecture is known for all varieties of general

type [BCHM] and for all varieties of dimension at most 4, but the full conjecture

remains wide open. (Although the minimal model conjecture should be true in any

characteristic, the results mentioned work over a field of characteristic zero. For these

problems, we lose nothing by working over the complex numbers. Birkar [Birkarexist]

summarizes the known results on the minimal model conjecture in dimensions up to 5.)

Shokurov showed that the minimal model conjecture would follow from the ascending

chain condition for a certain invariant of singularities, the minimal log discrepancy

(mld), together with a semicontinuity property for minimal log discrepancies

[Shokurovmld]. The minimal log discrepancy is a rational number associated to a given

singularity, with bigger numbers corresponding to milder singularities. Shokurov’s

ACC conjecture says that the set of minimal log discrepancies of all singularities of a

given dimension is a subset of the real line that contains no infinite increasing sequence.

Let us say vaguely why this would imply the minimal model conjecture. Starting from

any projective variety, after contracting finitely many divisors, we can make it closer

and closer to a minimal model by a sequence of birational maps called flips. We get a

minimal model if we can show that no infinite sequence of flips is possible. But each

flip improves the singularities as measured by minimal log discrepancies, and so the

ACC conjecture would imply that the sequence of flips terminates.

Shokurov also conjectured the ACC property for another invariant of singularities,

the log canonical threshold (lct). This conjecture should be a natural preliminary to

the ACC conjecture for minimal log discrepancies, since log canonical thresholds are

simpler than minimal log discrepancies and have been studied for a long time in singu-

larity theory. In particular, ACC for log canonical thresholds is known in dimension at

most 3 while ACC for minimal log discrepancies is known only in dimension at most 2,
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by Alexeev [Alexeev1, Alexeev2]; moreover, ACC for minimal log discrepancies in di-

mension 3 would imply ACC for log canonical thresholds in dimension 4 [SB, Corollary

1.10]. Log canonical thresholds have an elementary analytic definition: for an analytic

function f on Cn, the log canonical threshold of the hypersurface f = 0 at a point p

is the supremum of the real numbers s such that |f |−s is L2 near p. Estimates of log

canonical thresholds have a variety of applications in algebraic geometry, including the

construction of Kähler-Einstein metrics on many Fano varieties [DK] and the proof of

non-rationality for many Fano varieties [DEMrigid].

The ACC conjecture for log canonical thresholds has some implication for the minimal

model conjecture, albeit a limited one. By Birkar, the minimal model conjecture in

dimension n − 1 (for pairs (X,B) with KX + B pseudo-effective) implies the minimal

model conjecture for pairs (X,B) of dimension n with KX +B effective [Birkarexist2].

If we also know ACC for log canonical thresholds on singular varieties of dimension n,

then we can deduce termination of flips for pairs (X,B) of dimension n with KX + B

effective [BirkarACC]. Termination is a stronger statement than existence of minimal

models (because it says that any sequence of flips will lead to a minimal model).

A recent advance is the proof of ACC for log canonical thresholds on smooth varieties

of any dimension by de Fernex, Ein, and Mustaţă [DEM]. Their method covers many

singular varieties as well, including quotient singularities and local complete inter-

sections. In dimension 3, every terminal singularity is a quotient of a hypersurface

singularity by a finite group, and so de Fernex-Ein-Mustaţă’s methods reprove the gen-

eral ACC conjecture for log canonical thresholds in dimension 3. In dimensions at

least 4, there seems to be no hope of a comparably explicit description of terminal sin-

gularities. Nonetheless, de Fernex-Ein-Mustaţă’s work provides striking new evidence

for the ACC conjectures, suggesting that they form a plausible approach toward the

minimal model conjecture. The final version of de Fernex-Ein-Mustaţă’s argument,

incorporating contributions by Kollár, is short and simple.

This exposition owes a lot to Kollár’s excellent survey of the ACC conjecture for log

canonical thresholds [KACC]. Thanks to Ofer Gabber for suggesting Corollary 1.7.

1. INTRODUCTION TO LOG CANONICAL THRESHOLDS

Definition 1.1. — Let f be a holomorphic function in a neighborhood of a point

p ∈ Cn. The log canonical threshold of f at p is the number c = lctp(f) such that

— |f |−s is L2 in a neighborhood of p for s < c, and

— |f |−s is not L2 in a neighborhood of p for s > c.

Thus lctp(f) =∞ if f(p) 6= 0, and by convention lctp(0) = 0.

The log canonical threshold is a natural measure of the complexity of the zero set

of f near p. It was considered by Atiyah [Atiyah] and Bernstein [Bernstein], and further

explored by Arnold, Gusein-Zade and Varchenko [AGZV, v. 2, section 13.1.5] and Kollár
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[Ksing]. The main textbook treatment of log canonical thresholds is in Lazarsfeld’s book

[Lazarsfeld, section 9.3].

Shokurov had the idea that the set of all possible values of log canonical thresholds

in a given dimension should have special properties [Shokurovprob].

Definition 1.2. — Let HT n be the set of log canonical thresholds of all possible holo-

morphic functions of n variables vanishing at 0. That is,

HT n = {lct0(f) : f ∈ O0,Cn , f(0) = 0} ⊂ R.

The name HT n indicates that these are “hypersurface thresholds”. Indeed, it is easy

to see that lct0(gf) = lct0(f) for g(0) 6= 0, which says that lct0(f) only depends on the

hypersurface {f = 0} near 0 ∈ Cn (considered with multiplicities). We get the same

set HT n if we allow f to run through all polynomials or all formal power series over

any algebraically closed field of characteristic zero, using the algebraic definition of the

log canonical threshold in section 3 [KACC, section 5].

The function |z|−s is L2 on a neighborhood of the origin if and only if s < 1. It

follows that, for a holomorphic function f of one variable,

lctp(f) =
1

multp(f)
.

As a result,

HT 1 =

{
1,

1

2
,
1

3
, . . . , 0

}
.

There is also a complete description of the set HT 2, by Varchenko [Varchenko], [KSC,

Theorem 6.40], [KACC, equation (15.5)]:

HT 2 =

{
c1 + c2

c1c2 + a1c2 + a2c1
: a1, a2, c1, c2 ∈ N, c1 + c2 ≥ 1,

a1 + c1 ≥ max{2, a2}, a2 + c2 ≥ max{2, a1}
}
∪ {0}.

The sets HT n are not known for n ≥ 3, and it may be unreasonable to expect an

explicit description. Nonetheless, they have remarkable properties. First, Atiyah used

resolution of singularities to prove:

Lemma 1.3. — All log canonical thresholds are rational and lie between 0 and 1. That

is, HT n ⊂ Q ∩ [0, 1].

We will discuss de Fernex, Ein, and Mustaţă’s theorem:

Theorem 1.4 (ACC conjecture, smooth case). — For any n, there is no infinite

increasing sequence in HT n.
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By contrast, every rational number between 0 and 1 is the log canonical threshold of

a holomorphic function in some number of variables. Also, there are many decreasing

sequences of log canonical thresholds in a given dimension, as we see from the example

[AGZV, v. 2, section 13.3.5], [Ksing, Proposition 8.21]:

Lemma 1.5. —

lct0(z
a1
1 + · · ·+ zann ) = min

{
1,

1

a1
+ · · ·+ 1

an

}
.

Kollár described all limits of decreasing sequences of log canonical thresholds on

smooth varieties of dimension n:

Theorem 1.6 (Accumulation conjecture, smooth case). — The set of accumulation

points of HT n is HT n−1 − {1}.

In particular, HT n is a closed subset of the unit interval, although it is contained in

the rational numbers.

The ACC theorem implies that there is some εn > 0 such that no log canonical

threshold on a smooth n-dimensional variety is in (1 − εn, 1) (the smooth case of the

Gap conjecture). The proofs are nonconstructive, and so there is no explicit lower

bound for εn in general. There is a conjecture for the optimal value of εn. Consider the

sequence defined by cn+1 = c1 . . . cn + 1 starting with c1 = 2. It is called Euclid’s or

Sylvester’s sequence, and starts as:

2, 3, 7, 43, 1807, 3263443, 10650056950807, · · ·

The definition of ci implies that∑ 1

ci
= 1− 1

cn+1 − 1
= 1− 1

c1 . . . cn
.

In particular, by Lemma 1.5,

lct0(z
c1
1 + · · ·+ zcnn ) = 1− 1

cn+1 − 1
.

Kollár conjectured that this is the extreme case [KACC]. That is, the conjecture is that

no log canonical threshold in dimension n lies in the interval(
1− 1

cn+1 − 1
, 1

)
.

This optimal Gap conjecture is known in dimension 3 (ε3 = 1/42) by Kollár [Ksing].

The set HT 3 is not known, but Kuwata determined HT 3∩ [5/6, 1] [Kuwata]. The ACC

conjecture for functions on singular 3-folds, which we have not formulated yet, was

proved by Alexeev [Alexeev1] and the Accumulation conjecture on singular 3-folds by

McKernan-Prokhorov [MP]

Finally, we can rephrase the ACC theorem, Theorem 1.4, as saying that the set

HT n turned upside down is well-ordered. Gabber pointed out that the Accumulation

theorem, Theorem 1.6, determines the order type of HT n by a simple induction:
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Corollary 1.7. — For each positive integer n, the set HT n turned upside down has

order type ωn + 1.

2. FORMULA FOR THE LOG CANONICAL THRESHOLD

In this section, we give Atiyah’s formula for the log canonical threshold in terms of

an embedded resolution of the hypersurface {f = 0}.

Lemma 2.1. — If f(p) 6= 0, then lctp(f) =∞. If f(p) = 0, then 0 ≤ lctp(f) ≤ 1.

Proof. The first claim is clear. So assume that f(p) = 0. As we said, for a one-variable

holomorphic function f(z), we have lctp(f(z)) = 1/multp(f). In several variables, pick

a smooth point q near p on the hypersurface {f = 0}. We can choose local coordinates

near q such that f = (unit)zm1 for some m. If a function is L2 on some neighborhood

of p, then it is L2 near some such point q, and so lctp(f) ≤ lctq(f) = 1/m.

In several variables, the multiplicity at 0 of a holomorphic function f means the

smallest degree of a nonzero term in the power series expansion of f at 0. In any

dimension, the log canonical threshold differs by a bounded factor from the multiplicity:

1

multp(f)
≤ lctp(f(z1, . . . , zn)) ≤ n

multp(f)

[KACC, (11.5), (20.1)]. The ACC property is trivially true for the invariant 1/multp(f)

of functions f , as that only takes the values {1, 1/2, 1/3, . . .} ∪ {0}, but the ACC

property for log canonical thresholds is a deeper problem.

Let ω = dz1 ∧ · · · ∧ dzn. Then |f |−s is locally L2 if and only if on any compact set

K ⊂ U , the integral ∫
K

(ff)−sω ∧ ω

is finite. Let π : X → U be a proper bimeromorphic morphism. We can rewrite this

integral as

(∗)
∫
K

(ff)−sω ∧ ω =

∫
π−1(K)

((f ◦ π)(f ◦ π))−sπ∗ω ∧ π∗ω.

Since X → U is proper, it suffices to show that the integral on the right is finite near

any given point of X.

By Hironaka, we can choose π : X → U to be an embedded resolution of the hyper-

surface f = 0. That means that X is smooth and the zero set of f ◦ π together with

the exceptional set of f form a normal crossing divisor. That is, at any point q ∈ X,

we can choose local coordinates x1, . . . , xn such that

f ◦ π = (unit)
∏
i

x
ai(q)
i
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and

π∗ω = (unit)
∏
i

x
ei(q)
i dx1 ∧ · · · ∧ dxn,

where ai(q) = multxi=0(f◦π) and ei(q) = multxi=0Jac(π). Here Jac denotes the complex

Jacobian

Jac(π) = det

(
∂zi
∂xj

)
.

Then the integral (?) is finite near a point q ∈ X if and only if∫ ∏
i

(xixi)
ei(q)−sai(q)dV = (const)

∏
i

∫
(xixi)

ei(q)−sai(q)dxi ∧ dxi

is finite. This holds if and only if ei(q) − sai(q) > −1 for every i, that is, when

s < (ei(q) + 1)/ai(q). This gives the formula for the log canonical threshold:

lctp(f) = min

{
1 + multEJac(π)

multE(f ◦ π)
: for those E such that p ∈ π(E)

}
.

It follows in particular that the log canonical threshold of any holomorphic function f

is a rational number. We can rewrite the formula in the language of divisors. Let D be

the divisor of a holomorphic function f , meaning the linear combination with integer

coefficients of the irreducible components of the hypersurface f = 0, D =
∑
diDi

where di is the multiplicity of f along Di. We can interpret the Jacobian of a resolution

π : X → U as describing the difference between the canonical divisors of X and U :

KX = π∗(KU) +
∑
i

eiEi.

Also, π∗(D) means the divisor of the function f ◦ π, π∗(D) =
∑
aiEi. In this notation,

lct0(D) = min

{
ei + 1

ai
: ai > 0

}
.

Equivalently, in the terminology of minimal model theory, the log canonical threshold

of a divisor D on a variety X is the maximum real number c such that the pair (X, cD)

is log canonical [Lazarsfeld, Definition 9.3.9]. This definition makes sense on singular

varieties X as well, and the ACC conjecture and related conjectures make sense in that

generality.

3. THE LOG CANONICAL THRESHOLD OF AN IDEAL OF

FUNCTIONS

The definition of the log canonical threshold of a function was generalized to ideals

of functions by de Fernex, Ein, and Mustaţă [DEM]. They prove the ACC property in

the greater generality of ideals (on a smooth variety). This stronger statement turns

out to be easier to prove, because working with ideals makes it easier to concentrate on

the behavior of a function at a single point.
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Let a be a sheaf of ideals on an excellent noetherian scheme X over Q. (The main

example in this paper is the spectrum of a power series ring over a field of characteristic

zero.) By Hironaka, extended by Temkin [Hironaka, Kres, Temkin], there is a log

resolution Y → X of the ideal a. That is, Y → X is a proper birational morphism, Y

is regular, the union of the exceptional locus of Y → X with the inverse image of the

zero set of a is a divisor ∪Ei with simple normal crossings, and the ideal a · OY is a

principal ideal, of the form a ·OY = OY (−
∑
aiEi) for some natural numbers ai. That

is, a ·OY is the ideal of regular functions on Y which vanish to order at least ai on the

divisor Ei for each i. The image in X of a divisor Ei is also called the center of Ei on

X.

Throughout this paper, let k be an algebraically closed field of characteristic zero.

Definition 3.1. — Let a be an ideal contained in the maximal ideal mk of a power

series ring R = k[[x1, . . . , xn]]. Let π : Y → X = SpecR be a log resolution of a, and

write a ·OY = OY (−
∑
aiEi) and KY/X = KY ⊗π∗(KX)∗ equal to OY (

∑
i eiEi). Define

the log canonical threshold of the ideal a at the origin in X to be

lct0(a) = min

{
ei + 1

ai

}
.

The log canonical threshold of an ideal is independent of the choice of log resolution,

by Theorem 9.2.18 in Lazarsfeld [Lazarsfeld].

For analytic functions f1, . . . , fr which vanish at the origin in Cn, the log canonical

threshold of the ideal (f1, . . . , fr) is equal to the supremum of the numbers s such

that (max{‖f1|, . . . , |fr|})−s is L2 near the origin, by the same argument as for a single

function in Section 2.

For example, the ideal (x1, . . . , xn) in Cn has log canonical threshold at the origin

equal to n. (It suffices to blow Cn up at the origin; the exceptional divisor E1 has

e1 = n− 1.) More examples are given by the following version of the Thom-Sebastiani

lemma:

Lemma 3.2. — Let a ⊂ k[[x1, . . . , xm]] and b ⊂ k[[y1, . . . , yn]] be ideals in disjoint sets

of variables. Then the ideal c = (a, b) ⊂ k[[x1, . . . , xm, y1, . . . , yn]] has

lct0(c) = lct(a) + lct(b).

This follows by the same argument as for a single function [Ksing, Proposition 8.21].

For example, Lemma 3.2 gives the calculation

lct0(x
a1
1 , . . . , x

an
n ) =

1

a1
+ · · ·+ 1

an
.

For any ideal a in a power series ring k[[x1, . . . , xn]], it is immediate from the definition

that lct(am) = lct(a)/m. Therefore it makes sense to define lct(aq) for any positive real

number q, as lct(aq) = lct(a)/q. This agrees with the definition of the log canonical

threshold if we think of the pullback of the object aq to Y as the R-divisor −
∑
qaiEi.
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Using pullbacks in this way, we can more generally define the log canonical threshold

of aq · br for any ideals a and b and any positive real numbers q and r.

Definition 3.3. — For a natural number n, let T sm
n be the set of all log canonical

thresholds of ideals a contained in the maximal ideal of k[[x1, . . . , xn]].

The set T sm
n is independent of the choice of algebraically closed field k of characteristic

zero [DM, Proposition 3.3]. It contains the set HT n of log canonical thresholds of

functions on a smooth n-fold, and so the ACC property for T sm
n will imply it for HT n.

The definition of log canonical thresholds shows that T sm
n is a subset of the rationals

contained in the interval [0, n].

4. APPROXIMATION OF THE LOG CANONICAL THRESHOLD

In this section we state a crucial lemma, Lemma 4.1, due to Kollár (in the main case of

principal ideals) [KACC, Proposition]. The lemma says that under certain conditions,

the log canonical threshold of an ideal is not changed if we change the ideal by adding

terms of high degree.

Lemma 4.1. — Let a be an ideal in R = k[[x1, . . . , xn]] which is contained in the maxi-

mal ideal mk. Suppose that the log canonical threshold of a is computed by some divisor

E on a log resolution of X = SpecR whose image in X is the origin. If b is an ideal

such that a + q = b + q, where q = {h ∈ k[[x1, . . . , xn]] : ordE(h) > ordE(a)}, then

lct(b) = lct(a).

The proof as simplified by de Fernex, Ein, and Mustaţă [DEM, Corollary 3.5]. uses

only the Connectedness theorem of Shokurov and Kollár [Ksing, Theorem 7.4]. Here is

the case we need.

Theorem 4.2. — [Connectedness theorem, smooth case] Let g be a complex analytic

function on a neighborhood X of the origin in Cn. Let π : Y → X be a log resolution of

g. Write g ·OY = OY (−
∑
aiEi) and KY/X = OY (

∑
i eiEi). Let c be a positive rational

number. Then the union of the divisors Ei such that (ei + 1)/cai ≤ 1 is connected in a

neighborhood of π−1(0).

The Connectedness theorem itself is an ingenious but quick consequence of the

Kawamata-Viehweg vanishing theorem, hence ultimately of the Kodaira vanishing the-

orem. It is striking that the only deep ingredients of the proof of ACC for smooth

varieties are resolution of singularities and the Connectedness theorem, both of which

were available by 1992.
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5. GENERIC LIMITS OF IDEALS

We define in this section a “weak limit” of an arbitrary sequence of ideals in a power

series ring, called the generic limit. The generic limit was first defined by de Fernex and

Mustaţă using ultraproducts [DM]. The construction was then simplified by Kollár to

use only elementary algebraic geometry [KACC]; we follow the exposition by de Fernex,

Ein, and Mustaţă [DEM]. The generic limit shows that the limit of a sequence of log

canonical thresholds, arising from an arbitrary sequence of ideals, must be equal to the

log canonical threshold of some other ideal.

Let R = k[[x1, . . . , xn]] be the ring of formal power series over an algebraically closed

field k, and let mk be its maximal ideal (x1, . . . , xn). For a field extension k ⊂ K, define

RK to mean K[[x1, . . . , xn]] and mK = m ·RK .

For each natural number d, we can identify ideals in R/md with ideals in R that

contain md. Let Hd be the Hilbert scheme of ideals in R/md, which is a closed sub-

scheme of a finite union of Grassmannians (the Grassmannian of linear subspaces of

codimension j, for each 0 ≤ j ≤ dimk(R/m
d)). Mapping an ideal in R/md to its im-

age in R/md−1 gives a surjection td : Hd(k) → Hd−1(k), which is not a morphism of

schemes. But it is a morphism on the subset of Hd(k) corresponding to ideals in R/md

whose image in R/md−1 has a given codimension. Therefore, for each closed subvariety

Z of Hd (note that we understand a subvariety to be irreducible), td induces a rational

map Z 99K Hd−1.

Let a0, a1, . . . be a sequence of ideals in R. I claim that we can choose a sequence of

closed subvarieties Zd ⊂ Hd such that: (1) td induces a dominant rational map from

Zd to Zd−1 for each d ≥ 0, and (2) for each d there are infinitely many i such that the

ideal ai +md corresponds to a point in Zd, and Zd is minimal among subvarieties of Hd

with this property.

Indeed, suppose inductively that we have constructed Z0 . . . , Zd−1 with properties

(1) and (2). In particular, there is an infinite set S of natural numbers i such that the

ideal ai+md−1 corresponds to a point in Zd−1. For i in S, the ideal ai+md corresponds

to a point in t−1d (Zd−1), and so there is a closed subvariety Y of Hd (say, the closure of an

irreducible component of this inverse image) which contains the point corresponding to

ai +md for infinitely many i in S. Let Zd be a subvariety of Y which is minimal among

closed subvarieties that contain the point ai+md for infinitely many i in S; of course this

exists, since a descending chain of subvarieties of Hd has length at most the dimension

of Hd. In particular, these points ai + md are Zariski dense in Zd by this minimality.

By construction, td maps a dense open subset of Zd into Zd−1, and this rational map is

dominant by the minimality property of Zd−1. Thus we have constructed Z0, Z1, Z2, . . .

satisfying (1) and (2) by induction.

The dominant rational maps · · · 99K Z1 99K Z0 induce inclusions of function fields

k(Z0) ⊂ k(Z1) ⊂ · · · . Let K be the union of this sequence of fields. For each d ≥ 0,

the morphism Spec(K) → Zd ⊂ Hd corresponds to an ideal a′d in RK containing md
K .
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The compatibility between these morphisms implies that there is an ideal a, which is

unique, such that a′d = a + md
K for all d.

Definition 5.1. — An ideal a in K[[x1, . . . , xn]] as above is called a generic limit of

the sequence of ideals ai in k[[x1, . . . , xn]].

The following lemma shows how log canonical thresholds behave under the generic

limit construction. We refer to [DEM, Proposition 4.4] for the proof, which is elemen-

tary. The main point is that for a family of ideals parametrized for a variety Z, the log

canonical threshold is constant on some nonempty Zariski open subset of Z, and so it

takes that same value at the generic point of Z. This is immediate from the definition

of the log canonical threshold in terms of a log resolution.

Lemma 5.2. — Let a in RK = K[[x1, . . . , xn]] be a generic limit of the sequence ai of

ideals in k[[x1, . . . , xn]]. Assume that ai is contained in the maximal ideal mk for all i.

Let q be a rational number such that lct(a · mq
K) is computed by some divisor E whose

center in SpecRK is the origin. Let d0 be a natural number.

Then there is an integer d ≥ d0 and an infinite subset S of the natural numbers with

the following properties. First,

lct((a + md
K) ·mq

K) = lct((ai + md
k) ·m

q
k)

for every i ∈ S. Furthermore, for every i ∈ S, lct((ai + md
k) · m

q
k) is computed by a

divisor Ei whose center in SpecR is the origin, and

ordE(a + md
K) = ordEi

(ai + md
k).

We deduce the following simple statement about the behavior of log canonical

thresholds under generic limits.

Corollary 5.3. — Let q be a nonnegative rational number. Then there is a strictly

increasing sequence i0, i1, . . . of natural numbers such that lct(a ·mq
K) = limj lct(aij ·m

q
k).

In particular, if the sequence lct(ai ·mq
k) is convergent, then it converges to lct(a ·mq

K).

Proof. We use a basic estimate for log canonical thresholds: for ideals c and c′ in

R = k[[x1, . . . , xn]] with c + md
k = c′ + md

k, we have

|lct(c)− lct(c′)| ≤ n

d

[DM, Corollary 2.10]. Suppose inductively that we have chosen i0 < i1 < · · · < ij−1.

By Lemma 5.2, there is an integer ij > ij−1 and an integer d ≥ j such that lct((a +
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md
K) ·mq

K) = lct((aij + md
k) ·m

q
k). Therefore,

|lct(a ·mq
K)− lct(aid ·m

q
k)| ≤ |lct(a ·mq

K)− lct((a + md
K) ·mq

K)|
+ |lct((aid + md

k) ·m
q
k)− lct(aid ·m

q
k)|

≤ 2n

d

≤ 2n

j
.

The statement on limits follows immediately.

6. ACC FOR LOG CANONICAL THRESHOLDS ON SMOOTH

VARIETIES

In this section, we present the proof by de Fernex, Ein, and Mustaţă of the ACC

property for log canonical thresholds on smooth varieties [DEM]. We also prove the

smooth case of Kollár’s Accumulation Conjecture, proved by Kollár [KACC].

Theorem 6.1. — For each n ≥ 0, the set T sm
n ⊂ Q ∩ [0, n] satisfies the ascending

chain condition, and its set of accumulation points is T sm
n−1.

A first easy step is to replace an ideal by another ideal with the same log canonical

threshold, such that this log canonical threshold is computed by a divisor with a zero-

dimensional center, as follows (Lemma 5.2 in [DEM]).

Lemma 6.2. — Let a be an ideal contained in the maximal ideal mK of K[[x1, . . . , xn]].

Let q = max{t ≥ 0 : lct(a ·mt
K) = lct(a)}.

(i) The nonnegative number q is rational.

(ii) We have lct(a · mq
K) = lct(a), and this log canonical threshold is computed by a

divisor with center on X = SpecK[[x1, . . . , xn]] equal to the origin.

(iii) The number q is zero if and only if lct(a) is computed by a divisor with center

on X equal to the origin.

Proof. Let π : Y → X be a log resolution of a ·mK , and write a ·OY = OY (−
∑
aiEi),

mK ·OY = OY (−
∑
biEi), and KY/X = KY ⊗ π∗(KX)∗ equal to OY (

∑
i eiEi). Let I be

the set of those i such that Ei has center equal to the origin, that is, such that bi > 0.

Let c = lct(a). The log canonical threshold decreases (that is, the singularity gets

worse) as we increase a subscheme ofX, and so lct(a·mt
K) ≤ c for all t ≥ 0. Furthermore,

lct(a ·mt
K) ≥ c if and only if

ei + 1 ≥ c(ai + tbi)

for all i. If i is not in I, then bi = 0 and this inequality holds for all t. We conclude

that

q = min

{
ei + 1− cai

cbi
: i ∈ I

}
.
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Thus q is rational. Moreover, there is an i ∈ I such that this minimum is achieved; then

Ei computes lct(a ·mq
K), and Ei has center on X equal to the origin. The statement in

(iii) is clear.

Proof of Theorem 6.1. Let ci be a strictly increasing or strictly decreasing sequence

in T sm
n . We will get a contradiction if the sequence is strictly increasing, while we will

show that the limit of the sequence is in T sm
n−1 if the sequence is strictly decreasing.

Conversely, every number in T sm
n−1 is the limit of a strictly decreasing sequence in T sm

n .

Indeed, for an ideal a ⊂ k[[x1, . . . , xn−1]], we have lct0((a, x
d
n)) = lct0(a)+1/d by Lemma

3.2.

Let c = limi ci; the limit is finite, since T sm
n is contained in [0, n]. For each i, there is

an ideal ai in R = k[[x1, . . . , xn]] with log canonical threshold at the origin equal to ci.

Let a be a generic limit of the sequence ai (Definition 5.1), with a ⊂ K[[x1, . . . , xn]]. By

construction of the generic limit, a is contained in the maximal ideal mK . By Corollary

5.3, the limiting ideal a has log canonical threshold equal to c. If c = 0, then the

sequence ci must be strictly decreasing rather than strictly increasing. We must have

n > 0 (as T sm
0 = {0}), and so 0 is in T sm

n−1 as we want. Thus we can assume that c > 0.

In particular, the ideal a is not zero.

Let q be the rational number attached to a by Lemma 6.2. We have

lct(a ·mq
K) = lct(a).

We also have the trivial inequality

lct(ai ·mq
k) ≤ lct(ai)

for all i. In particular, when ci is a strictly increasing sequence, we have lct(ai ·mq
k) <

lct(a ·mq
K) for all i.

By the choice of q, lct(a ·mq
K) is computed by a divisor E which lies over the origin

in X = SpecK[[x1, . . . , xn]]. For any d > ordE(a ·mq
K), the continuity lemma (Lemma

4.1) gives that

lct(a ·mq
K) = lct((a + md

K) ·mq),

and E computes both log canonical thresholds.

By Lemma 5.2, there is an integer d > ordE(a ·mq
K) and an infinite set S ⊂ N such

that for every i ∈ S, we have lct((a + md
K) ·mq

K) = lct((ai + md
k) ·m

q
k). The lemma also

gives a divisor Ei over Spec k[[x1, . . . , xn]] which computes lct((ai +md
k) ·m

q
k) and which

has

ordEi
((ai + md

k) ·m
q
k) = ordE((a + md

K) ·mq
K) = ordE(a ·mq

K).

By our inequality on d,

ordEi
(md

k) ≥ d > ordE(a ·mq
K) = ordEi

((ai + md
k) ·m

q
k).

By the continuity lemma (Lemma 4.1), for each i in the infinite set S, we have

lct(ai ·mq
k) = lct((ai + md

k) ·m
q
k) = lct((a + md

K) ·mq
K) = lct(a ·mq

K).
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If ci is a strictly increasing sequence, this equality contradicts the strict inequality

found earlier. Thus we have proved the ACC property for log canonical thresholds on

smooth varieties.

Finally, suppose that ci = lct(ai) is a strictly decreasing sequence. We have shown

that the sequence lct(ai ·mq
k) has infinitely many terms that are equal, and so q is not

zero. Equivalently, by Lemma 6.2, lct(a) is not computed by any divisor whose center

in X is the origin.Therefore, if F is a divisor over SpecK[[x1, . . . , xn]] that computes

the log canonical threshold of a, then the center of F in SpecK[[x1, . . . , xn]] has positive

dimension. After localizing at the generic point of this center, we deduce that lct(a) is

in T sm
n−1. (We use here that the completed local ring of a regular scheme containing a

field at a codimension r integral subscheme W is isomorphic to the power series ring

L[[x1, . . . , xr]], where L is the function field of W .) Since the numbers lct(ai) converge

to lct(a), we have shown that all accumulation points of T sm
n lie in T sm

n−1.
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[KSC] J. KOLLÁR, K. SMITH, A. CORTI – Rational and nearly rational

varieties. Cambridge (2004).

[Kuwata] T. KUWATA – On log canonical thresholds of surfaces in C3. Tokyo

J. Math. 22 (1999), 245–251.

[Lazarsfeld] R. LAZARSFELD – Positivity in algebraic geometry, v. 2. Springer

(2004).

[MP] J. McKERNAN, Y. PROKHOROV – Threefold thresholds. Manu.

Math. 114 (2004), 281–304.

[Shokurovprob] V. SHOKUROV – Problems about Fano varieties. Birational geometry

of algebraic varieties, Open Problems, 30–32 (1988).

[Shokurovmld] V. SHOKUROV – Letters of a bi-rationalist. V. Minimal log discrep-

ancies and termination of log flips. Tr. Mat. Inst. Steklova 246 (2004),

328–351; translation in Proc. Steklov Inst. Math. 2004, no. 3 (246),

315–336.

[Temkin] M. TEMKIN – Desingularization of quasi-excellent schemes in charac-

teristic zero. Adv. Math. 219 (2008), 488–522.

[Varchenko] A. VARCHENKO – Newton polyhedra and estimates of oscillatory

integrals. Funkts. Anal. Pril. 10 (1976), 13–38; translation in Funct.

Anal. Appl. 18 (1976), 175–196.



1025–15

Burt TOTARO

DPMMS
Cambridge University
Wilberforce Road
CAMBRIDGE CB3 0WB
United Kingdom
E-mail : b.totaro@dpmms.cam.ac.uk


