Due on Monday, June 2.

In the following problems, varieties are over an algebraically closed field \(k \), unless stated otherwise. A “curve of genus \(g \)” is usually understood to be smooth and projective over \(k \).

(1) Let \(k \) be an algebraically closed field of characteristic \(p > 0 \). Show that the morphism \(f : \mathbb{A}^1_k \rightarrow \mathbb{A}^1_k \) defined by \(x \mapsto x^p \) is a bijective morphism but not an isomorphism. Where is the derivative of \(f \) zero? Is \(f : \mathbb{A}^1 \rightarrow \mathbb{A}^1 \) birational?

(2) Show that any curve of genus zero is isomorphic to \(\mathbb{P}^1 \).

(3) Show that any curve \(X \) of genus 1 can be written as a degree-2 ramified covering of \(\mathbb{P}^1 \) (meaning that there is a morphism \(X \rightarrow \mathbb{P}^1 \) of degree 2). Curves of genus 1 are called elliptic curves. Show that an elliptic curve is not rational (that is, it is not birational to \(\mathbb{P}^1 \)).

(4) For an effective divisor \(D \) on a curve \(X \) of genus \(g \), show that \(h^0(X, O(D)) \leq \deg(D) + 1 \). Show that equality holds if and only if \(D = 0 \) or \(g = 0 \).

(5) Let \(X \) be a smooth projective curve, \(p \) a point in \(X \). Show that there is a nonconstant rational function on \(X \) which is regular outside \(p \).

(6) A curve \(X \) is called hyperelliptic if it has genus \(g \geq 2 \) and there is a morphism \(X \rightarrow \mathbb{P}^1 \) of degree 2.

 (a) If \(X \) is a curve of genus 2, show that the canonical bundle \(K_X \) defines a morphism \(X \rightarrow \mathbb{P}^1 \) of degree 2. Thus every curve of genus 2 is hyperelliptic.

 (b) For \(g(X) \geq 2 \), show that the canonical bundle \(K_X \) defines a morphism \(X \rightarrow \mathbb{P}^{g-1} \). (The main point here is to check that \(K_X \) is basepoint-free.) If \(X \) is not hyperelliptic, show that the canonical bundle defines an embedding of \(X \) in \(\mathbb{P}^{g-1} \), the canonical embedding.

 (c) Compute the genus of a smooth plane quartic curve \(X \) (“quartic” means degree 4), by describing the canonical bundle of \(X \). Show that \(X \) is not hyperelliptic. (You may use that if a curve \(X \) of any genus \(g \geq 2 \) is hyperelliptic, then the canonical map \(X \rightarrow \mathbb{P}^{g-1} \) is a double cover of its image, which is a rational normal curve.)

(7) Show that any elliptic curve \(X \) can be embedded as a smooth curve of degree \(d \) in \(\mathbb{P}^{d-1} \) for any \(d \geq 3 \). Show that a transverse intersection of two smooth quadrics in \(\mathbb{P}^3 \) is indeed an elliptic curve of degree 4. But show that an elliptic curve of degree \(d \) in \(\mathbb{P}^{d-1} \) is not a complete intersection for \(d \geq 5 \). (Hint: from Homework 2, you know the canonical bundle of any smooth complete intersection curve in any \(\mathbb{P}^n \).)