Math 115AH Linear Algebra. Homework 8

Burt Totaro

Due Monday, November 23.
Problems from Hoffman-Kunze:
Section 8.2: 2, 5, 11, 14, 16.
Section 8.3: 2, 4, 6, 9, 12. (Note: problem 9 may be an unpleasant calculation. Just set the computation up; you don't have to carry it out.)
(1) Let V be the space of all bounded functions f from $[0,2 \pi]$ to the complex numbers such that f has derivatives of all orders except at finitely many points. (Thus f may be discontinuous at finitely many points; we don't care about the value of f at those points.) Define an inner product on V by

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f(x) \overline{g(x)} d x
$$

You can assume that this definition is OK.
(a) For an integer n, let $f_{n}(x)=e^{i n x}$. Show that the functions f_{n} are orthogonal, that is, that $\left\langle f_{m}, f_{n}\right\rangle=0$ if $m \neq n$.
(b) Let W_{N} be the subspace of V spanned by

$$
f_{-N}, f_{-N+1}, \ldots, f_{0}, \ldots, f_{N}
$$

For $0<\alpha<2 \pi$, let $F(x)$ be 1 on the interval $(0, \alpha)$ and zero otherwise. Let F_{N} be the orthogonal projection of F to W_{N}. What is

$$
\left\|F_{N}\right\|^{2} ?
$$

The answer will be a sum of $2 N+1$ terms. You should be able to combine terms to get a sum of $N+1$ real terms.
(c) Show that

$$
\pi^{2} / 6 \geq \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Hint: Let $G(x)=x$. Calculate the orthogonal projection of G to W_{N}, use Bessel's inequality, and take a limit.
(d) It's a theorem that if $f \in V$ and f_{N} denotes the orthogonal projection of f to W_{N}, then

$$
\left\|f-f_{N}\right\| \rightarrow 0
$$

as $N \rightarrow \infty$. Deduce that

$$
\pi^{2} / 6=\sum_{n=1}^{\infty} \frac{1}{n^{2}} .
$$

(e) What infinite sum can you evaluate by taking the orthogonal projections of $H(x)=x(2 \pi-x)$?
(2) Let V be a real inner product space. For $x \in V$, define a linear functional $L_{v} \in V^{*}$ by

$$
L_{x}(y)=\langle x, y\rangle \in \mathbf{R}
$$

for $y \in V$. Define a function $\Phi: V \rightarrow V^{*}$ by $\Phi(x)=L_{x}$.
If V has finite dimension, show that Φ is an isomorphism. What goes wrong if V is a complex inner product space and you try to define an isomorphism $V \rightarrow V^{*}$ by the same method?

