Math 115AH Linear Algebra. Homework 5

Burt Totaro

Due Friday, October 30.
Problems from Hoffman-Kunze:
Section 3.3: 3, 7.
Section 3.4: 2, $3,4,8,10,11,12$. (Hint: 8 is really an eigenvalue problem.)
(1) (an old exam problem) Suppose that $T: V \rightarrow W$ is linear, $S: W \rightarrow V$ is linear, and $\operatorname{dim} V>\operatorname{dim} W$. Let $1_{W}: W \rightarrow W$ be the identity on $W: 1_{W}(w)=w$ for all $w \in W$.
(a) Can $T S=1_{W}$? Proof or counterexample.
(b) Can $S T=1_{V}$? Proof or counterexample.
(2) (another exam problem)

Suppose that $T: V \rightarrow V$ is linear, and that $T^{3}=0$.
(a) What can you say about the relation of $\operatorname{ker}(T)$ and $\operatorname{im}\left(T^{2}\right)$? Prove your answer.
(b) What can you say about the relation of $\operatorname{ker}\left(T^{2}\right)$ and $\operatorname{im}(T)$? Prove your answer.

