Math 115AH Linear Algebra. Homework 3

Burt Totaro

Due Friday, October 16.
Problems from Hoffman-Kunze:
Section 2.3: 14.
Section 2.4: 1, 2, 4, 6, 7 .
Hint on one of the problems: A complex number c is defined to be algebraic if there is a positive integer n and rational numbers a_{0}, \ldots, a_{n-1} such that

$$
c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0}=0
$$

A complex number which is not algebraic is called transcendental. For this homework, you can use the fact that there are real numbers which are transcendental. (A famous example: Lindemann showed in 1882 that the number $\pi=3.14159 \ldots$., the area of a circle of radius 1 , is transcendental.)
(1) Let V be a vector space. Let S be a subset of V such that

$$
S=S_{1} \cup S_{2}
$$

and

$$
S_{1} \cap S_{2}=\emptyset
$$

Suppose that the set S is linearly independent in V. Prove:

$$
\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)=\{0\}
$$

You can assume that S is finite.
(2) Let V be the vector space of functions $f: \mathbf{R} \rightarrow \mathbf{R}$. Let

$$
S=\left\{\ldots, e^{-2 x}, e^{-x}, 1, e^{x}, e^{2 x}, \ldots\right\}=\left\{e^{n x}: x \in \mathbf{Z}\right\}
$$

Show that the set S is linearly independent.
To see how to attack a problem like this, you could start by trying a few cases, such as $\left\{1, e^{x}, e^{2 x}\right\}$ or $\left\{1, e^{x}, e^{2 x}, e^{3 x}\right\}$. Try differentiating the supposed linear dependence relation.

