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1 Introduction

This note serves as an expository to a few technical remarks in decoupling theory. For
simplicity of notation we only consider decoupling for the unit parabola on the plane, but
many of the results in this note can be extended naturally to other good curves/surfaces
and higher dimensions.

Definition 1 (lq(Lp)-decoupling, extension operator version). For g ∈ L1([0, 1]) we define
the extension operator

Eg(x1, x2) =

ˆ 1

0

g(s)e(x1s+ x2s
2)ds,

where e(z) := exp(2πiz). For 0 < p, q ≤ ∞ and δ ∈ N−2, define Dp,q(δ) to be the best
constant such that for all g ∈ L1([0, 1]) and all square B ⊆ R2 of side length δ−1, we have

‖Eg‖Lp(B) ≤ Dp,q(δ)
∥∥∥‖Egj‖Lp(wB)

∥∥∥
lq(j)

,

where gj = g1Ij , Ij := [(j − 1)δ1/2, jδ1/2], 1 ≤ j ≤ δ−1/2 and wB = wB,E is a weight
function adapted to B (with centre (xB, yB) and E ≥ 100):

wB(x, y) :=
(
1 + δ−1(|x− xB|+ |y − yB|)

)−E
.

We will take for granted the well-known l2(Lp)-decoupling inequality for the unit parabola
for 2 ≤ p ≤ 6. Here and henceforth, / means . with possibly an ε-loss: that is,
A(δ) / B(δ) if for every ε > 0 there is some Cε > 0 such that A(δ) ≤ Cεδ

−εB(δ) for every
0 < δ ≤ 1. Similar for the notation ' and ≈.

Theorem 2 (Bourgain-Demeter, [1, 2]). For 2 ≤ p ≤ 6 we have Dp,2(δ) / 1.

A self-contained proof can be found in [2]. Based on this fact, we will prove the following
sharp lq(Lp)-decoupling inequality:

Theorem 3 (Sharp lq(Lp)-decoupling). For 2 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, we have

Dp,q(δ) ≈

{
δ−

1
4
+ 1

2q if 2 ≤ p ≤ 6

δ−
1
2
+ 3

2p
+ 1

2q if 6 ≤ p ≤ ∞
.

1
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By taking q = 2 and q = p, respectively, we arrive at the following sharp l2(Lp)- and
lp(Lp)-decoupling for the unit parabola:

Corollary 4. For p ≥ 2, we have

Dp,2(δ) ≈

{
1 if 2 ≤ p ≤ 6

δ−
1
4
+ 3

2p if 6 ≤ p ≤ ∞
.

and

Dp,p(δ) ≈

{
δ−

1
4
+ 1

2p if 2 ≤ p ≤ 6

δ−
1
2
+ 2

p if 6 ≤ p ≤ ∞
.

2 An interpolation theorem for mixed normed spaces

In this section, we aim to prove decoupling for exponents p > 6.

Theorem 5 (Bourgain-Demeter, [1]). For 6 ≤ p ≤ ∞ we have Dp,2(δ) / δ−
1
4
+ 3

2p .

We can use the following interpolation theorem to prove the above theorem.

Theorem 6. Let X, Y,M,N be σ-finite measure spaces. Let 1 ≤ pi, qi, ri, si ≤ ∞, i = 0, 1.
Let 0 < θ < 1 and (with the convention that 1/∞ = 0)

1− θ
p0

+
θ

p1
=

1

p
,

1− θ
q0

+
θ

q1
=

1

q
,

1− θ
r0

+
θ

r1
=

1

r
,

1− θ
s0

+
θ

s1
=

1

s
.

Assume in addition that either p, r <∞ or p = r =∞.

Assume T is a linear operator from Lpi(X,Lri(M)) to Lqi(Y, Lsi(N)) with operator norms
Ai, i = 0, 1. Then T maps Lp(X,Lr(M)) to Lq(Y, Ls(N)), with operator norm bounded
above by A1−θ

0 Aθ1.

Remark 1. There is still a tiny gap when r < p =∞ or p < r =∞, which we fail to prove
due to technicality. But this case is rarely used in applications, so we leave it open.

Remark 2. The theorem actually holds for exponents below 1. This will not be used for
our purpose now, but it will be useful in some multilinear inequalities where the Lebesgue
exponents could go below 1. An idea of the proof can be found in Question 10 of [6].

2.1 Proof of the interpolation theorem

Proof. We first assume p, r <∞. The proof will be given in the following steps.

Step 1. Applying duality. We will be using the following easy consequence of the duality
of Lp norms:

Lemma 7 (Duality for mixed Lp-norms). Let X, Y be σ-finite measure spaces, and let
1 ≤ p, q ≤ ∞. Then

‖f‖Lp(X,Lq(Y )) = sup

{∣∣∣∣¨ f(x, y)g(x, y)dydx

∣∣∣∣ : ‖g‖Lp′ (X,Lq′ (Y )) = 1

}
.
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If, furthermore, p, q > 1, then

‖f‖Lp(X,Lq(Y )) = sup

{∣∣∣∣¨ f(x, y)g(x, y)dydx

∣∣∣∣ : g simple, ‖g‖Lp′ (X,Lq′ (Y )) = 1

}
.

Here, a simple function is of the form
∑N

n=1 an1An, where an ∈ C and An’s are disjoint
measurable sets in X × Y of finite measure.

Proof of lemma. For the first equality, the (≥) side is by applying Hölder’s inequality
twice. The (≤) side follows by applying the duality for a single norm twice. (Note that
in any case, the absolute value on the right hand side can be placed inside or outside
the integral without changing the equality. Note also that the inner test function can be
taken to be a measurable function of both x and y, as can be seen from the proof of the
duality of a single norm.)

The second equality follows from the density of simple functions in mixed norms, since X
and Y are σ-finite.

Using the lemma, it suffices to show that for all f, g simple with ‖g‖Lq(Y,Ls(N)) = 1, we
have

Aθ−10 A−θ1

∣∣∣∣¨ Tf(n, y)g(n, y)dndy

∣∣∣∣ ≤ ‖f‖Lp(X,Lr(M)). (1)

Step 2. Introducing a complex parameter. Let S denote the open strip Re(z) ∈ (0, 1). For
z ∈ S, we define pz, rz ∈ (0,∞] such that

1

pz
=

1− z
p0

+
z

p1
,

1

rz
=

1− z
r0

+
z

r1

Note that pθ = p and rz = r.

Define fz(m,x) = 0 if f(m,x) = 0, and for fz(m,x) 6= 0, define

fz(m,x) =
f(m,x)

|f(m,x)|
|f(m,x)|

r
rz

‖f(·, x)‖
r
rz

Lr(M)

‖f(·, x)‖
p
pz

Lr(M)

‖f‖
p
pz

Lp(X,Lr(M))

‖f‖Lp(X,Lr(M)),

so that
‖fz‖Lpi (X,Lri (M)) = ‖f‖Lp(X,Lr(M)) (2)

whenever Re(z) = i, i = 0, 1, and fθ = f .

Since f is simple and T is linear, we may write

Tfz =
J∑
j=1

aj,zT (1Aj
),

where Aj is a measurable set in M ×X and aj,z ∈ C is analytic and has order of growth
1 in z ∈ S.

Similarly, define qz, sz ∈ (0,∞] such that

1

qz
=

1− z
q0

+
z

q1

1

sz
=

1− z
s0

+
z

s1
,
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Note that qθ = q and sθ = s.

Define gz(n, y) = 0 if g(n, y) = 0, and for gz(n, y) 6= 0, define (with the convention
∞/∞ = 1)

gz(n, y) =
g(n, y)

|g(n, y)|
|g(n, y)|

s
sz

‖g(·, y)‖
s
sz

Ls(N)

‖g(·, y)‖
q
qz

Ls(N)

‖g‖
q
qz

Lq(Y,Ls(N))

‖g‖Lq(Y,Ls(N)),

so that
‖gz‖Lqi (Y,Lri (N)) = ‖g‖Lq(Y,Lr(N)) (3)

whenever Re(z) = i, i = 0, 1, and gθ = g.

Since g is simple, we may similarly write

gz =
K∑
k=1

bk,z1Bk
,

where Bk is a measurable set in N × Y and bk,z ∈ C is analytic and has order of growth
1 in z ∈ S.

Step 3. Applying maximum modulus principle. With the notation above, for each ε > 0,
we can define the following nonnegative function which is analytic in S, continuous up to
the boundary, and decays to 0 as |Im(z)| → ∞:

Fε(z) = eεz
2

Az−10 A−z1

¨
Tfz(n, y)gz(n, y)dndy.

Here, we have used the order of growth of the constants Az−10 , A−11 , aj,z, and bk,z.

Take K = K(ε) such that for all |Im(z)| ≥ K, we have |Fε(z)| < ‖f‖Lp(X,Lr(M)). By the
maximum modulus principle for analytic functions and our choice of K, it suffices to show
Fε(z) is bounded by (1 +O(ε))‖f‖Lp(X,Lr(M)) for all Re(z) = i, i = 0, 1.

We have not used the operator norms of T yet, and now is the time to use it. Using
Hölder’s inequality, for Re(z) = 0, we have

|Fε(z)| ≤ A−10 ‖Tfz‖Lq0 (Y,Ls0 (N))‖gz‖Lq′0 (Y,Ls′0 (N))

= A−10 ‖Tfz‖Lq0 (Y,Ls0 (N))‖gz‖Lq0 (Y,Ls0 (N))

≤ ‖fz‖Lp0 (X,Lr0 (M))‖gz‖Lq0 (Y,Ls0 (N))

= ‖f‖Lp(X,Lr(M))‖g‖Lq(Y,Ls(N))

= ‖f‖Lp(X,Lr(M)),

where in the second to last line we have used (2) and (3).

Similarly, for Re(z) = 1, we have

|Fε(z)| ≤ eε‖f‖Lp(X,Lr(M)).

Thus, letting ε→ 0, we have for any z ∈ S that

|Az−10 A−z1 |
∣∣∣∣¨ Tfz(n, y)gz(n, y)dndy

∣∣∣∣ ≤ ‖f‖Lp(X,Lr(M)),
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which is (1) if we let z = θ.

The case of infinite exponents. We finally consider the special case p = r = ∞. In
particular, this means that p0 = p1 = p and r0 = r1 = r. In this case, we use log-
convexity and Hölder’s inequality:

‖Tf‖Lq(Y,Ls(N)) ≤
∥∥∥‖Tf(·, y)‖1−θLs0 (N)‖Tf(·, y)‖θLs1 (N)

∥∥∥
Lq(Y )

≤ ‖Tf‖1−θLq0 (Y,Ls0 (N))‖Tf‖
θ
Lq1 (Y,Ls1 (N))

≤ A1−θ
0 ‖f‖

1−θ
Lp(X,Lr(M))A

θ
1‖f‖

θ
Lp(X,Lr(M))

= A1−θ
0 Aθ1‖f‖Lp(X,Lr(M)).

where in the second line we have used the relation 1/q = (1− θ)/q0 + θ/q1.

2.2 Application in decoupling theory

Now we can use Theorem 6 proved above to prove Theorem 5. For technical reasons,
we consider another version of decoupling, which can be shown to be equivalent to the
decoupling constant defined in Definition 1 (see [4], Section 2.)

Definition 8. Let δ ∈ N−2. For r > 0 and 1 ≤ j ≤ δ−1/2, we define Nj(r) to be the
r-neighbourhood of the graph of (s, s2) over s ∈ [(j − 1)δ1/2, jδ1/2].

For 0 < p ≤ ∞, let D′p(δ) be the best constant such that for any sequence of functions
fj ∈ Lp(R2), 1 ≤ j ≤ δ−1 each with Fourier support in Nj(δ), we have∥∥∥∥∥∥

δ−1/2∑
j=1

fj

∥∥∥∥∥∥
Lp(R2)

≤ D′p,2(δ)

δ−1/2∑
j=1

‖fj‖2Lp(R2)

 1
2

. (4)

Proposition 9. For 2 ≤ p ≤ ∞, we have D′p,2(δ) ∼p Dp,2(δ).

Proof of Theorem 5. Using the proposition above, it suffices to prove D′p,2(δ) / δ−
1
4
+ 3

2p ,
that is, ∥∥∥∥∥∥

δ−1/2∑
j=1

fj

∥∥∥∥∥∥
Lp(R2)

/ δ−
1
4
+ 3

2p

δ−1/2∑
j=1

‖fj‖2Lp(R2)

 1
2

. (5)

By Theorem 2 we have Dp,2(δ) / 1 for 2 ≤ p ≤ 6. We also know that D∞,2(δ) ≤ δ−
1
4 by

the trivial triangle inequality and Cauchy-Schwarz. All we have to do is interpolate.

The interpolation theorem cannot be applied directly since we have to define a linear
operator first. To do this, we first deal with the Fourier restriction condition. For each
j, define the multiplier operator Tj such that T̂jf = ψj f̂ , where ψj ∈ C∞c (Nj(2δ)) and
equals 1 in Nj(δ) .
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Then (5) is true (up to a constant depending on p only) if and only if for arbitrary
gj ∈ Lp(R2) we have ∥∥∥∥∥∥

δ−1/2∑
j=1

Tjgj

∥∥∥∥∥∥
Lp(R2)

/ δ−
1
4
+ 3

2p

δ−1/2∑
j=1

‖gj‖2Lp(R2)

 1
2

. (6)

Indeed, for the “if” side, given fj, we may just take gj = fj and note that Tjfj = fj by
the Fourier support condition of fj. For the “only if” side, given arbitrary gj, we take

fj = Tjgj and note that f̂j is supported on Nj(2δ), which is slightly larger than Nj(δ),
but we still have (5) up to a constant using a simple tiling argument. Lastly we bound
the right hand side ‖Tjgj‖Lp(R2) . ‖gj‖Lp(R2) by Young’s inequality.

Hence, it suffices to prove 6 instead. Define the linear operator T that acts on sequences
{gj}δ

−1/2

j=1 by the relation T{gj} =
∑

j Tjgj.

With this, the assumptions in Theorem 6 are satisfied, with the following choices. (To
avoid ambiguity, we change the exponent p of the decoupling inequality to t.) X =
{1, 2, . . . , δ−1/2}, M = N = R2 and no Y involved. The objective exponents are p = 2,
s = r = t < ∞ (so we are not in the unsolved special case) and no q involved. The
boundary exponents are given by p0 = p1 = 2, s0 = r0 = 6, s1 = r1 = ∞. Thus
θ = 1− 6/t and we have the desired interpolation theorem.

3 Sharpness of decoupling

In this section, we shall prove Theorem 3. A proof of this theorem in the case p > 6 can
be found in Theorem 12.22 of [3], but our proof also works for 2 ≤ p ≤ 6 and does not
rely directly on an application of the restriction estimate.

3.1 A lemma on exponential sums

Lemma 10. For δ ∈ N−2 we define the function on T2 as

f(x, y) =
δ−1/2∑
j=1

e
(
jx+ j2y

)
.

Then for all 2 ≤ p ≤ ∞, we have

‖f‖Lp(T2) ≈

{
δ−

1
4 if 2 ≤ p ≤ 6

δ−
1
2
+ 3

2p if 6 ≤ p ≤ ∞
.

Proof. We first prove the upper bound by testing

g(s) =
δ−1/2∑
j=1

∆jδ1/2(s),
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where ∆a is the delta-mass at a. (A more rigorous argument is to take an approximation
to the identity at each of the delta masses.) Then we have

Eg(x, y) =
δ−1/2∑
j=1

e
(
jδ1/2x+ j2δy

)
= f(δ1/2x, δy).

Also, for each j we have (we may choose the aforesaid approximation to the identity
slightly to the left at each delta mass)

Egj(x, y) = e
(
jδ1/2x+ j2δy

)
.

Thus ‖Egj‖Lp(wB) ∼ δ−
2
p , and so∥∥∥‖Egj‖Lp(wB)

∥∥∥
l2(j)
∼ δ−

1
4 δ−

2
p .

But by periodicity, we have

‖Eg‖Lp(B) = δ−
2
p‖f‖Lp(T2).

Combining with (2) and (5), we get the desired upper bound.

Now we come to the lower bound. The case p = ∞ is trivial, taking x = y = 0. The
case 6 ≤ p < ∞ follows by considering (x, y) near the origin; the detail can be found
in Theorem 2.2 of [5] (with s = p/2, and the proof there is easily seen to work for all
real numbers s > 0.) The case p = 2 and p = 4 follows from the first (trivial) bound of
Theorem 2.3 of [5].

Thus, the only case remaining is the case when 2 < p < 6 and p 6= 4. Assume 2 < p < 4
first. Then 4 ∈ (p, 6) and using the log-convexity of Lp-norms, we have

‖f‖L4(T2) ≤ ‖f‖
1−θ
Lp(T2)‖f‖

θ
L6(T2),

where 1−θ
p

+ θ
6

= 1
4
. But since ‖f‖L4(T2) ∼ δ−1/4 and ‖f‖L6(T2) ∼ δ−1/4, we also have

‖f‖Lp(T2) & δ−1/4. The case 4 < p < 6 is similar.

3.2 Proof of Theorem 3

Now we are ready to prove Theorem 3.

Proof. The upper bound is an easy consequence of Hölder’s inequality and Theorems 2
and 5. So it suffices to prove the lower bound.

We use the same test function g in the proof of Lemma 10 above:

g =
δ−1/2∑
j=1

∆jδ1/2 .

We also have ∥∥∥‖Egj‖Lp(wB)

∥∥∥
lq(j)
∼ δ−

1
2q δ−

2
p .
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On the left hand side, we have again

Eg(x, y) = f(δ1/2x, δy),

so by periodicity and Lemma 10 we have

‖Eg‖Lp(B) ∼

{
δ−

2
p
− 1

4 if 2 ≤ p ≤ 6

δ−
2
p
− 1

2
+ 3

2p if 6 ≤ p <∞
.

Hence by comparing with the right hand side, we have

Dp,q(δ) &

{
δ−

2
p
− 1

4
+ 1

2q
+ 2

p = δ−
1
4
+ 1

2q if 2 ≤ p ≤ 6

δ−
2
p
− 1

2
+ 3

2p
+ 1

2q
+ 2

p = δ−
1
2
+ 3

2p
+ 1

2q if 6 ≤ p ≤ ∞
.

Acknowledgement. I thank Jianhui Li for useful discussions on the case of non-integral
p’s in Lemma 10 .
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