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1 Introduction

This note serves as an expository to a few technical remarks in decoupling theory. For
simplicity of notation we only consider decoupling for the unit parabola on the plane, but
many of the results in this note can be extended naturally to other good curves/surfaces
and higher dimensions.

Definition 1 (19(L?)-decoupling, extension operator version). For g € L'([0,1]) we define
the extension operator

1
Eg(xq,x2) :/ g(s)e(z1s + 195%)ds,
0

where e(z) := exp(2miz). For 0 < p,q < oo and § € N2, define D, ,(5) to be the best
constant such that for all g € L*([0,1]) and all square B C R? of side length 6, we have

1861105y < Doa®)|I1 B850 2o,

where g; = gly,, I; = [(j — 1)6Y%,j6"?], 1 < j < 672 and wp = wpp is a weight
function adapted to B (with centre (xp,yp) and E > 100):
-

wp(z,y) = (1+0 "(lz —zpl + |y — y5l))

We will take for granted the well-known [?( L?)-decoupling inequality for the unit parabola
for 2 < p < 6. Here and henceforth, < means < with possibly an e-loss: that is,
A(d) £ B(9) if for every € > 0 there is some C; > 0 such that A(5) < C.07°B(9) for every
0 < § < 1. Similar for the notation £ and ~.

Theorem 2 (Bourgain-Demeter, [1,2]). For 2 < p <6 we have D,5(0) S 1.

A self-contained proof can be found in [2]. Based on this fact, we will prove the following
sharp [7(L?)-decoupling inequality:

Theorem 3 (Sharp [%(LP)-decoupling). For 2 < p < oo, 2 < ¢ < 00, we have

5 it if2<p<6
D, q(6) = 1.3 ,1 f =P= .
0 tmta f6<p<oo



By taking ¢ = 2 and ¢ = p, respectively, we arrive at the following sharp (*(L?)- and
[P(LP)-decoupling for the unit parabola:

Corollary 4. For p > 2, we have

1 if2<p<6
Dpal0) {5—i+5p if6<p<oo

and )

D5 §7itm if2<p<6
po(0) &) <1 F6p< o0

2 An interpolation theorem for mixed normed spaces

In this section, we aim to prove decoupling for exponents p > 6.

Theorem 5 (Bourgain-Demeter, [1]). For 6 < p < oo we have D,5(0) 5 5T,

We can use the following interpolation theorem to prove the above theorem.

Theorem 6. Let X, Y, M, N be o-finite measure spaces. Let 1 < p;, q; 15,8 < 00,1 =0,1.
Let 0 < 6 < 1 and (with the convention that 1/oo =0)
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Assume in addition that either p,r < oo or p =1 = 0.

Assume T is a linear operator from LPi(X, L™ (M)) to L%(Y, L*(N)) with operator norms
A;, i =0,1. Then T maps LP(X,L"(M)) to LYY, L*(N)), with operator norm bounded
above by Ay AY.

Remark 1. There is still a tiny gap when r < p = oo or p < r = 0o, which we fail to prove

due to technicality. But this case is rarely used in applications, so we leave it open.

Remark 2. The theorem actually holds for exponents below 1. This will not be used for
our purpose now, but it will be useful in some multilinear inequalities where the Lebesgue
exponents could go below 1. An idea of the proof can be found in Question 10 of [0].

2.1 Proof of the interpolation theorem

Proof. We first assume p,r < oo. The proof will be given in the following steps.

Step 1. Applying duality. We will be using the following easy consequence of the duality
of L” norms:

Lemma 7 (Duality for mixed LP-norms). Let X,Y be o-finite measure spaces, and let
1 <p,qg<oo. Then

iy =500 { | ] 76 miate e Vol iy =1}



If, furthermore, p,q > 1, then

||f||Lp(X,Lq(Y)) = Sup {‘// f(@,y)g(z,y)dydz| : g simple, ||9||Lp’(X,Lq’(Y)) = 1} :

Here, a simple function is of the form 25:1 aply,, where a, € C and A, ’s are disjoint
measurable sets in X XY of finite measure.

Proof of lemma. For the first equality, the (>) side is by applying Hoélder’s inequality
twice. The (<) side follows by applying the duality for a single norm twice. (Note that
in any case, the absolute value on the right hand side can be placed inside or outside
the integral without changing the equality. Note also that the inner test function can be
taken to be a measurable function of both z and y, as can be seen from the proof of the
duality of a single norm.)

The second equality follows from the density of simple functions in mixed norms, since X
and Y are o-finite. O

Using the lemma, it suffices to show that for all f, g simple with ||g|[,q(y fs(ny) = 1, we
have

AgflAIQ

Tf(n,y)g(n, y)dndy| < || fllpox.oroan)- (1)

Step 2. Introducing a complex parameter. Let S denote the open strip Re(z) € (0,1). For
z € S, we define p,,r, € (0,00] such that
I 1-=z z 1 1—2 =z

Pz Po D1 T To T

Note that pg = p and r, = r.
Define f.(m,z) = 0if f(m,z) =0, and for f,(m,z) # 0, define

f(m,x) |f(m:17)|L Hf( )H
| f(m, )| 1£C.2)|15

"(M)
11l 2o, (v
M)

fo(m,x) =

so that
HfZHLPi(X,LTi(M)) = HfHLp(X,U(M)) (2)
whenever Re(z) =14,7=0,1, and fy = f.

Since f is simple and T is linear, we may write

J
= 2w

where A; is a measurable set in M x X and a;, € C is analytic and has order of growth
linzes.

Similarly, define ¢, s, € (0, co] such that
1 1—2 =z 1 1—2 =z
= - -

q: qo0 q1 Sz So S1




Note that ¢ = g and sy = s.

Define g,(n,y) = 0 if g(n,y) = 0, and for g.(n,y) # 0, define (with the convention
o0/o0o =1)

9
gn,y) g(n )= 190l
gz(n7y) = ’g(n y)‘ é qi ||g||Lq(Y,LS(N))’
Hlg(+y) Ls(N) HgHLZQ(Y,LS(N))
so that
||gz||qu'(Y,L’"i(N)) = ||9||Lq(y,Lr(N)) (3)

whenever Re(z) =14,7=0,1, and gy = g.

Since ¢ is simple, we may similarly write

K
9= = Z bk,leka
k=1

where By, is a measurable set in N x Y and b, . € C is analytic and has order of growth
linzeS.

Step 3. Applying maximum modulus principle. With the notation above, for each € > 0,
we can define the following nonnegative function which is analytic in S, continuous up to
the boundary, and decays to 0 as |Im(z)| — oc:

Fu(z) = 7 41 A // TF.(n,y)g.(n, y)dndy.

Here, we have used the order of growth of the constants A3, A7 a;j., and by .

Take K = K () such that for all [Im(z)| > K, we have |F(2)] < [|fl1o(x 1. By the
maximum modulus principle for analytic functions and our choice of K, it suffices to show
F(z) is bounded by (1 + O(e))[[f |l 1o (x,1-(ary for all Re(z) =4, i =0,1.

We have not used the operator norms of T' yet, and now is the time to use it. Using
Holder’s inequality, for Re(z) = 0, we have

|F€(Z)| S A61||sz||Lq0(Y,LSO(N))||gZ||Lq6(Y7LS6(N))
= AalHTfZHqu(Y,Lso(N))ngnqu(sto(N))

< I fall w0 (X,L7o(M)) 192 £ao (Y,L*0(N))
= HfHLP(X,L’“(M))HgHLq(Y,LS(N))
= ||f||Lp(X,Lr(M))a

where in the second to last line we have used (2) and (3).

Similarly, for Re(z) = 1, we have
[F(2)] < €l f o, rany-

Thus, letting ¢ — 0, we have for any z € S that

A5 A

// T£.(n,9)9: (0, 9)dndy| < 11w inny



which is (1) if we let z = 6.

The case of infinite exponents. We finally consider the special case p = r = oco. In
particular, this means that pg = p; = p and rg = r; = r. In this case, we use log-
convexity and Hoélder’s inequality:

I Flagyeaon < |17 Gt IS ) o |
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= A(l) GA?HfHLp(X,LT(M))'

where in the second line we have used the relation 1/¢ = (1 —0)/q0 + 0/q1.

La(Y)

2.2 Application in decoupling theory

Now we can use Theorem 6 proved above to prove Theorem 5. For technical reasons,
we consider another version of decoupling, which can be shown to be equivalent to the
decoupling constant defined in Definition 1 (see [1], Section 2.)

Definition 8. Let € N2, Forr > 0 and 1 < j < 672, we define N;(r) to be the
r-neighbourhood of the graph of (s,s%) over s € [(j — 1)6%/2, j5'/?].

For 0 < p < oo, let D, (6) be the best constant such that for any sequence of functions
fi € LP(R?), 1 < j < &' each with Fourier support in N;(8), we have

[SIE

§—1/2 §—1/2

2
> f; < Do) | Y il oy | - (4)
=1 LP(R2) =1

Proposition 9. For 2 < p < oo, we have Dj,,(8) ~, Dp2(9).

Proof of Theorem 5. Using the proposition above, it suffices to prove D) ,(d) < 5_%+%,
that is,

o=

§—1/2 §—1/2

_1,3
Z fj é it Z HfJHLP (R2) . (5)
= e

By Theorem 2 we have D, 5(0) 5 1 for 2 < p < 6. We also know that Dy 2(0) < §i by
the trivial triangle inequality and Cauchy-Schwarz. All we have to do is interpolate.

The interpolation theorem cannot be applied directly since we have to define a linear
operator first. To do this, we first deal with the Fourier restriction condition. For each
J, define the multiplier operator 7j such that 7} f Y f , where ¢; € C(N;(26)) and
equals 1 in NV;(9) .



Then (5) is true (up to a constant depending on p only) if and only if for arbitrary
g; € LP(R?) we have

N

§—1/2 §—1/2

1,3 2
> Tyg S | Y gl |- (6)
=1 LP(R2) =1

Indeed, for the “if” side, given f;, we may just take g; = f; and note that T} f; = f; by
the Fourier support condition of f;. For the “only if” side, given arbitrary g;, we take

f; = T;g; and note that f; is supported on N;(26), which is slightly larger than N;(0),
but we still have (5) up to a constant using a simple tiling argument. Lastly we bound
the right hand side |[T;9;[| ;» 2y < 195l o(rz) by Young’s inequality.

Hence, it suffices to prove 6 instead. Define the linear operator 7' that acts on sequences
{gj}?:l/z by the relation T{g;} = >_; Tjg;-

With this, the assumptions in Theorem 6 are satisfied, with the following choices. (To
avoid ambiguity, we change the exponent p of the decoupling inequality to t.) X =
{1,2,...,67/2}, M = N = R? and no Y involved. The objective exponents are p = 2,
s =1 =1t < oo (so we are not in the unsolved special case) and no ¢ involved. The
boundary exponents are given by po = p1 = 2, sg = rg = 6, s34 = r; = oo. Thus
6 =1 — 6/t and we have the desired interpolation theorem. O

3 Sharpness of decoupling
In this section, we shall prove Theorem 3. A proof of this theorem in the case p > 6 can

be found in Theorem 12.22 of [3], but our proof also works for 2 < p < 6 and does not
rely directly on an application of the restriction estimate.

3.1 A lemma on exponential sums

Lemma 10. For § € N2 we define the function on T? as

§—1/2
flo,y) = e(jz+i%y).
j=1
Then for all 2 < p < oo, we have

Wl = {0 h,,  125PE0
LI =67 if6<p<oo

Proof. We first prove the upper bound by testing

§—1/2

9(5) = D D).



where A, is the delta-mass at a. (A more rigorous argument is to take an approximation
to the identity at each of the delta masses.) Then we have

§—1/2

Eg(z.y) = Y _ e (jo"z + j26y) = (6", 6y).

i=1

Also, for each j we have (we may choose the aforesaid approximation to the identity
slightly to the left at each delta mass)

Egj(xz,y) = e (j6"?x + j°0y) .

Thus ||Eg; )~ 57%, and so

||Lp(wB

~STiSTE
12(4)

11295110
But by periodicity, we have

_2
1EGll Loy = 07 1l Locr2)-
Combining with (2) and (5), we get the desired upper bound.

Now we come to the lower bound. The case p = oo is trivial, taking x = y = 0. The
case 6 < p < oo follows by considering (z,y) near the origin; the detail can be found
in Theorem 2.2 of [5] (with s = p/2, and the proof there is easily seen to work for all
real numbers s > 0.) The case p = 2 and p = 4 follows from the first (trivial) bound of
Theorem 2.3 of [5].

Thus, the only case remaining is the case when 2 < p < 6 and p # 4. Assume 2 < p < 4
first. Then 4 € (p,6) and using the log-convexity of LP-norms, we have

1-6 0
11l acry < Il zogre) 11 2o r2);

where 1779 + ¢ = 1. But since 1 pecrzy ~ 6~/ and £l zocrzy ~ 5714, we also have

1Nl 2oer2y 2 614 The case 4 < p < 6 is similar. O

3.2 Proof of Theorem 3

Now we are ready to prove Theorem 3.

Proof. The upper bound is an easy consequence of Holder’s inequality and Theorems 2
and 5. So it suffices to prove the lower bound.

We use the same test function ¢ in the proof of Lemma 10 above:

§—1/2

g == Z A]61/2
7j=1

We also have
~§T208 T

19(4)

H ||E9j||Lp(wB)



On the left hand side, we have again

Eg(z,y) = f(6'%z,y),

so by periodicity and Lemma 10 we have

: 5% if2<p<6
1Bl o) ~ | g-2-348 6 < p <0

FitE i ita<p<s
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