Kakeya and Restriction Problems in Harmonic

Analysis

YANG, Tongou

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of
Master of Philosophy
in

Mathematics

The Chinese University of Hong Kong
July 2017



Thesis Assessment Committee

Professor FENG, Dejun (Chair)
Professor YUNG, Po Lam (Thesis Supervisor)
Professor CHOU, Kai Seng (Committee Member)
Professor BEZ, Neal (External Examiner)



Abstract

In this master thesis we study restriction and Kakeya conjectures. We present some posi-
tive results obtained by mathematicians throughout the last few decades and some known
implications between these conjectures. We will also explain the main harmonic analy-
sis techniques used in the proofs, starting from some basic real, complex and functional

analytic tools covered in a typical first year graduate curriculum.
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Chapter 1

Preliminaries and Notations

1.1 Introduction to the Restriction Conjecture

Let R™ be the n-dimensional Euclidean space with the usual topology and Lebesgue
measure. Let f : R” — C be a measurable function. If f is in L'(R"), we define its

Fourier transform by:
F€) = fla)eEda
]Rn

We know that this integral converges absolutely and that f is uniformly continuous. Thus

it can be restricted to any subset S < R".

For f e LP(R"), 1 < p < 2, the classical way to define f is to use the bounded linear
extension theorem (2) and the Hausdorff Young inequality. For more general f € L (R")
with slow growth at infinity, say f(z) = O(|z|") for large |z|, another way to define its
Fourier transform is via distribution theory. Since f is locally integrable and grows slowly
at infinity, we may view it as a tempered distribution, g — § fg for any g € S(R"), where
S(R™) denotes the space of Schwartz functions. We define f to be the Fourier transform

of this tempered distribution, which is another tempered distribution. If 1 < p < 2, then

such f becomes a function. Note that if p > 1, then f is only defined almost everywhere



in R™, and it is not meaningful to directly restrict f to S.

The Fourier restriction problem is to deal with the restriction of f to a subset S € R", in
particular a hypersurface (a smooth n—1 dimensional manifold). Such S can be shown to
have zero n-dimensional Lebesgue measure. It carries a positive induced surface measure

which we denote by do.

For f e L'(R™) it is trivially done. For f € LP(R"), 1 < p < 2, in order to define such

restriction, we may hope to prove an inequality of the form:
||f||Lq(do—) < C||f|lrrny, where C(S,n,p,q) is some constant, (1.1)

valid for all f € L'(R") n LP(R"). Hence by approximation by L' functions, we can
meaningfully restrict f to S, uniquely up to a set N < S with o(N) =0, when f e LP(R").
Unfortunately it is clear that (1.1) cannot hold for any exponent ¢ when p = 2. Indeed,
the Plancherel formula shows that the Fourier transform is an isometry on L?(R"), thus

one can never make sense of the restriction of an L2-function to a set of measure zero.

Thus f cannot be well-defined on S when f e L2(R™).

However, an interesting story began to unfold with the observation by Elias M. Stein
that if p is close to 1, and if S is a compact (and hence bounded in R™) hypersurface
with non-vanishing Gaussian curvature, then (1.1) holds, for some exponent ¢. By saying

non-vanishing Gaussian curvature we mean the following:

Definition 1. Let S € R" be an n — 1 dimensional smooth manifold, which means that
for each P € S, there exists a neighbourhood of P on S such that it is locally represented

as a graph (after relabeling the coordinates) of a smooth function ¢ : U < R"! — R:

Q= (&, &1,0(&,...,& 1)), near P

We will denote & = (&1,...,&—1). Thus we have Q = (§,¢(&)) near P. In this case,

we say S has non-vanishing Gaussian curvature if for each such P € S, ¢ has nonzero



Hessian determinant in U.

We finally state the restriction conjecture:

Conjecture 1 (Restriction Conjecture). (1.1) holds if S is a compact hypersurface with

S A : : 2n n—1,7
non-vanishing Gaussian curvature, with 1 <p <=4 and 1 < q < =p’.

The case n = 2 has been completely verified in the 1970s. Zygmund [16] established (1.1)

whenn =2, 1<p< % and 1 < ¢ < %p’ in 1974. The same result when 1 < ¢ < %p’ is

due to Fefferman and Stein [1] in 1970.

In higher dimensions n > 3, Stein and Tomas (See [9] and [13]) proved the following

partial result:

Theorem 1. (1.1) holds if S is a compact hypersurface with non-vanishing Gaussian

curvature, 1 < p < 2(77—:31) and 1 < ¢ < 2.

2Antl) - 2 e > 9

Notice that P ]

The origin of these endpoints on exponents will be clarified in Chapter 4.

A typical case of compact hypersurface with non-vanishing Gaussian curvature is a com-
pact piece of the paraboloid: x, := |2/|*,|x;] < 1,1 < i < n — 1. Another example is
the unit sphere S*~!. For simplicity sometimes we will consider only specific cases. For
our purposes the specific choice of S is usually irrelevant as long as S has non-vanishing

Gaussian curvature.



1.2 Introduction to the Kakeya Conjecture

The Kakeya Conjecture was first posed by the Japanese mathematician Soichi Kakeya
in 1917. At first sight this seems to be a totally unrelated question from the restriction
problem, but we will see some deep connection later on. Consider a needle in R? with
length 1, and we would like to translate and rotate the needle (with respect to any centre
in the plane) so that its direction will be reversed. In this process the trajectory of the
needle forms a set in the plane; this is called a Kakeya needle set. Formally we have a

definition:

Definition 2. (Kakeya needle set) Let S < R? be a set. We say S is a Kakeya needle set
if there exists a unit line segment | < S that can be rotated continuously by 180 degrees

so that any part of it never leaves the set S.

A trivial example is the unit closed ball in R?. Mathematicians are concerned with
Kakeya needle sets with minimum area, and some positive results were obtained. In
1928, Besicovitch showed that for any £ > 0, there exists a Kakeya needle set in R? that
has Lebesgue measure less than €. This result was rather striking. On the other hand, it
was shown that such set cannot be too small, either: any Kakeya needle set must have

positive Lebesgue measure. This solved the Kakeya needle problem to some extent.

Later mathematicians thought that the condition “continuously rotated” was too strong;
they removed this condition and hoped to find a better answer for this. This is the so

called Kakeya set, which has a natural generalisation to n-dimensions:

Definition 3. (Kakeya Set) Let S < R™ be a compact set. We say S is a Kakeya set if

it contains a unit line segment in every direction.

In 1919, even before his work on the Kakeya needle sets, Besicovitch constructed a compact
set with zero Lebesgue measure, using the sprouting method. This is quite astonishing
compared with the Kakeya needle problem, and in contrast, mathematicians later thought

a Kakeya set must be large in some sense. Indeed, a Borel set with zero Lebesgue measure

10



could have positive and even full Hausdorff dimension. This motivates the following well-

known conjecture:

Conjecture 2. (Kakeya Conjecture) Let S < R™ be a Kakeya set. Then S has Hausdorff

dimension n.

The restriction conjecture and the Kakeya conjecture seems not related at all at the
beginning; but only after we go deeply into the details their relevance would become

apparent.

1.3 Remarks and Conventions

1. We will use the conventional notation |A(z)| <y B(x), A(z) = Oyn(B(x)) to mean
that there is a constant 0 < C' < o dependent on N such that for each x in the
domain we are concerned (say, for large x — o0 or x close to some point z;), we have
|A(x)| < CB(z). We will often drop the dependence on N if it is not important or

it is clear from the context.

2. A typical feature of our analysis is the “loss of epsilon” in the local estimates. More
precisely, in many cases we can only prove slightly weaker results in the following

form:

IEf[Lasr) S BN llLees)

Here E' is the extension operator which is the adjoint operator to the Fourier re-
striction operator, and S is the hypersurface specified as above. The equation
means that for arbitrarily small € > 0, there exists a constant C(e,p,q) > 0 such
that ||Ef|lasn < C(e,p,q)R?|| flir(s) for any R > 0 large, and any f € LP(S),
where By is a ball in R™ whose centre often does not matter. If ¢ can be taken
to be 0, then we obtain our original stronger estimate; otherwise we will have

lim, o+ C(e,p,q) — 0. Such & may change from line to line, but they must be

11



arbitrarily close to 0 simultaneously. Note that sometimes we get slightly stronger

estimates with R® for any ¢ > 0 replaced by log(R).

. Below is a simple fact which is used repeatedly. Suppose some quantity Q(z), z € R"

has rapid decay, in the sense that

1Q(2)| < Cylz|™, forany N =0,1,2,..., (1.2)

Then it also satisfies the following decay estimate:

1Q(2)| < Ch(1 + |z|)7", forany N =0,1,2,...,

The elementary proof is omitted.

12



Chapter 2

Rudiments of Harmonic analysis

In this chapter we state without proof some of the basic theorems in real, complex,
functional and harmonic analysis from which many estimates and results in this thesis

are obtained. This theorems are standard, and many can be found in [10].

2.1 Results in Functional Analysis

Theorem 2. (Bounded Linear Extension) Let E, F be Banach spaces and D < E be a
dense linear subspace. Let T : D — F be linear. Suppose T is bounded on D, that is,

there exists C' > 0 such that for any x € D,
1T ()|l r < Cllzlz

Then there exists a unique extension T : E — F such that T is linear, T]D =T, and that
IT@)]F < Cllzls

Theorem 3. (I'T* Theorem for LP-Spaces) Let (X, ), (Y,v) be sigma-finite measure
spaces and let T™* be a linear operator mapping a dense class of test functions f: X — C

to measurable functions T*f :Y — C. Let 1 < p< o0, 0 < A < . Then the followings

13



are equivalent:

1. ||T*fHL2(X) < AHfHLp(y), for any f e LP(Y).
2. 1Tl vy < Allgllz2x), for any g € L*(X).

3 NTT* fllpw vy < A2 oy, for any f e LP(Y).

2.2 Interpolation Theorems

Theorem 4. (Riesz-Thorin Interpolation Theorem) Let (X, u), (Y, v) be sigma-finite mea-
sure spaces and let T' be a linear operator mapping the family of simple functions with
finite measure support f : X — C to measurable functions Tf :' Y — C, such that the

integral

L(Tf)g dv

1s absolutely convergent for any simple functions f, g with finite measure support.

Suppose 1 < po, p1,qo, q1 < 0 and for i = 0,1, we have:

1T f

qi < AZ”f

pi»

for some Agy, Ay > 0, for any simple function f with finite measure support.

Then || T fllqp < Aol fllp,, for any simple function f with finite measure support, where:

1 1 - 1 1—
= 9+ f = 9+£ Ag = APAY 0<0< 1.

) N )

Do Po b1 de 4o q1

We remark that if py < o0, then the bounded linear extension theorem shows that we can

extend 7" to be defined on all of LP? with the same bound.

Next is a remarkable discovery by Elias M. Stein, a generalisation to the above interpo-

lation theorem:

14



Theorem 5. (Stein Interpolation Theorem) Let (X, u),(Y,v) be sigma-finite measure
spaces and Let {T,}, be a family of linear operators mapping the family of simple functions
with finite measure support f : X — C to measurable functions T,f :' Y — C, such that

whenever f, g are simple functions with finite measure support,

2o | @pgar

is absolutely convergent, continuous on the strip z € {0 < Re(z) < 1} and analytic in its

interior, with order of growth < 1.

Suppose 1 < po, p1,qo0, 1 < 0 and for Re(z) =i, i = 0,1, we have:

IT-f

Qi < Al”f

Dbi»

for some Ag, Ay > 0, for any simple function f with finite measure support.

Then || Ty flqy < Aol fllpy, for any simple function f with finite measure support, where:

1 1—-06 0 1 1-46 0
= +—, —:= +—, Ap:= Aé‘gAﬁ, 0<d<1.
Do bo y41 de qo q1

The Schur’s test is also very useful.
Theorem 6 (Schur’s test). Let T'f(y) := § K(z,y)f(x)dz be an integral operator with

kernel K : X xY — C. Suppose we have the following two estimates:

SUPJ |K (2, y)|dy < A
Y

reX

and

sup [ [K(e.g)lde < B
X

yeY

Then T is bounded from LP(X) to LP(Y), with norm bounded by A%Bﬁ, I<p<ow. In

15



particular, T is bounded from L*(X) to L*(Y) with norm bounded by ~/ AB.

Lastly, we state some standard results in Lorentz spaces. We only list what we will use.

The interested reader should investigate the whole theory of Lorentz spaces.

Definition 4. Let (X, pu) be a sigma-finite measure space. For 1 < p,q < o0, the (p,q)-

Lorentz quasi-norms are defined to be

i tu{z e X |f(2)] >t}

' < o0
panr ity ifp:q

A

11l oo amy = Ht,u{x e X i |f(z)| > )7

, if p <00, =00
poety’ PSP

| fllzoe(x,dpy, of p=q = c0.

In particular, if (X, p) = (Z", c) where c is the counting measure, we denote
[1bl]ip.a = [|b]| Lr.a(zn,dc) -

We have the following fact.

Proposition 1 (Dyadic Decomposition). If 1 < p < o0,q =1, then

[ fllzra ~p ZQZM {:Jc e X :|f(x)| > 21}% )

leZ

The following theorem for dual space will be used.

Proposition 2. Let 1 < p < w0,1 < g < w. Then the dual space of LP? is LP"9 | in the
sense that a linear operator T : E — L7 is bounded if and only if T* : LP? — E* is

bounded, where E is any normed space.

We can state the following special case of the real interpolation theorem.

Theorem 7. (Marcinkiewicz Interpolation Theorem) Let (X, ), (Y,v) be sigma-finite
measure spaces and let T be a sublinear operator mapping the family of simple functions

with finite measure support f : X — C to measurable functions Tf:Y — C .

16



Suppose 1 < po, p1,qo, 1 < 0, po < p1,qgo > q1 and for i = 0,1, we have:

1T fllai 0 < Al fllps

for some Agy, Ay > 0, for any simple function f with finite measure support.

Note that || T f

g S | Tfllgs hence the about weak type bound is indeed weaker than

strong type (LP — L9) bounds.

Then ||Tf|lq9 < CAgl| fllpy, for any simple function f with finite measure support, where

C depends on pg, qo, p1,q1 only, and
1 1—-60 40 1 1—-0 0

— + =, = + =, Ay=AAY 0<6<1.
Do Po b1 de qo q1

under an additional assumption that pg < qg.

2.3 Theory of Stationary Phase

This is a list of results in the theory of stationary phase, which may be found in Chapter
VIII of [9] or Chapter 6 of [11].

Theorem 8. (Stationary Phase) Consider the following oscillatory integral:

I(\) = Jn e P@) () da,

where ® : R™ — R is smooth, 1 € CP(R"™), A > 0.

Then:
1. Assume that |V®| = ¢ > 0 on the support of 1. Then we have: for each N > 0,

TN < (NN, for large \.

17



2. Assume that V® vanishes at some point on the support of 1 but

det

1<i,j<n

[ 0*P

o 6a:j](x) =>c",  near £=0

Then

II(N)| < (eN)™2, for large \.

3. In the case n = 1, we have a more general result. Assume that ®, 0", ... &%) 4l
vanishes at some point xo but [PV (z0)| = ¢, where k = 1. Also assume that the

function 1 vanishes to some order 1 = 0 at xy. Then

[T(N)] S (cA)~#

Using the stationary phase we can obtain the following well known decay estimate of the

Fourier transform of a surface measure.

Theorem 9. Let S € R" be a smooth compact manifold of dimension n—1 with nonzero

Gaussian curvature. Then there is ¢ # 0 such that for large |z|,

£m%=L5m”dm=awf+om|ﬂ

18



Chapter 3

The Tomas-Stein Theorem

As discussed in the introduction, the Tomas-Stein Theorem is a partial result for the
restriction conjecture. We present here the version of Hormander, which is applicable

to a more general family of oscillatory integrals and has the advantage that it proves

2(n+1)
n+3

the endpoint case p = without any e-loss. It also has a disadvantage, however.

Bourgain [1] showed that if we only assume the below Hérmander’s condition, we cannot

go beyond the exponent p = 2(:—;;1) The first section is devoted to the formulation of the

theorem.

3.1 Introduction to the Key Estimate

Consider the following family of oscillatory integral operators:

T = | MO (o) B.)

where x € R", A > 0,® : R" x R"! — R is smooth, and ¢ € CX(R" x R"™1).

Assume without loss of generality that ¢ is supported in a neighbourhood of (0,0). Con-

19



sider the following mixed Hessian non-square matrix

0*® ]
M := .
laxl ag] nx(n—1)

We require that rank(M) = n — 1. Then there exists a unique nonzero (up to a constant
multiple) vector u € R" satisfying uM = 0. Define ((§) := u-V,®(x, 5)‘120, and consider
the following Hessian. We also require that:

0%
1<z’%’2tn—1 l 0& afj

}(5)#0, near &=0

Note that the above was actually a condition on a third-order derivative. Also, by conti-

nuity we only need to assume the above Hessian is nonzero at £ = 0.

The previous two assumptions on the phase function ® are referred to as Hormander’s

conditions.
With the above, we can state Hormander’s restriction estimate:

Theorem 10 (Hérmander’s Restriction Estimate). Consider the operator T defined as in
(3.1). Suppose ® satisfies Hormander’s conditions near (0,0). Then we have the following

estimate:

NTX fllLagny < A7 || f]l o my (3.2)

for all f € S(R™) and all large X\ > 0, where 1 < p < 2?:31), 1 <g¢g< Z—:p’ and the

implicit constant does not depend on f, .

This leads to the following restriction estimate:

1 llzo(ao) S 1 l|zocen, (3.3)

2(n+1)

for any f e S(R"), where 1 <p < =3

and 1 < ¢ < =1y

Indeed, in the following we are going to show that (3.2) indeed implies (3.3).

20



Write € := (&,...,&,-1) as before. Since the surface is compact, there are finitely many

points on the surface each having a neighbourhood, whose union covers the surface.

By a partition of unity we only need to consider a single neighbourhood, with a mapping
¢:£elU R — R and we assume 0 € U. By translation and rotation we may assume
that ¢(0) = 0, D¢(0) = 0, that is, the neighbourhood is a graph of a smooth function ¢
whose normal at the origin is e,. Since S has non-vanishing Gaussian curvature, we have:

¢
1<z’%g€nq L?& 0;

}(E)#O, near £=0

Hence the restriction estimate is equivalent to the following:

HJn 6f2wi(m’-£+wn-¢>(£))b(g)f@)dx‘

: < 1l r ey (3.4)

La(Rn—1

where b € C*(R"!) is a bump function that equals to 4/1 + |D¢(€)]? on U.

The reason why we put the adjoint and the complex conjugation sign is that we would

like to define the extension operator T by:

Tgle)i= | MO0 gl (35)

thus it agrees with the standard notation 7T7™-method.

Write ®(z,€) := 2n(z' - £ + z,, - 9(£)), and set (z, ) := a(x)b(§), where b is the bump
function specified as above, and a is any bump function that equals to 1 at 0. We may

assume they are real-valued.

Apply the key estimate (3.2) to the scaled function fy(z) := f(Ax), and obtain:

175 fallLagn—1y S A% || fall e ey,

21



By scaling, we have

|75 fallLan—1y = A"

f e Da(x)b(E) f(x)dx(

La (Rnfl)

On the other hand, we have:

A P Aallze@ey = AP AT fllio@ny = AT f Il o wey

Combining these equations we get

< ..
Loy /1] o ey

HJ § e—icb(x,é)a()\—lm)b@)f(x)dx‘

Lastly, we let A — oo, and by dominated convergence theorem, we have:

|| e

< n
La(Rn=1) ~ HfHLP(R )5

since we chose a(0) = 1 at the beginning. Thus we have established (3.4).

3.2 The T'T* method

We see above that the main ingredient was the key estimate (3.2), which we will state

and prove here.

Before we come to the proof of this estimate, we first note that if we take ®(z,§) =

2n(2" - € + xy, - #(€)), a simple calculation shows that

M =27 [ b ]
[

99 0% 99
06 06 T 0&n—
29 @ 2 : 2
Thus we may take u := (a—g,%,...,%,— ). In this case, {(§) = 277(51% + -
fn—l% — ¢(§)). A straightforward calculation then shows that the Hessian of ( is

22



exactly 27 times the Hessian of ¢ at £ = 0. Since the latter is nonzero, we see that ®

indeed satisfies the Hormander’s condition.

To prove the key estimate, we are going to use the TT* method, which we formulated in

Theorem 3 in Chapter 2.

First we notice that by a simple Lemma 1 (See first part of Chapter 4) it suffices to prove

2(n+1)

the case p = =

and ¢ = 2. So it suffices to show

n(n—1)
* <\t
| TNT f”L%(Rn) S A @D HfHL2<T7++31> &)

Written this into an integral operator, we have

LI f(z) = | Ki\(z,y)f(y)dy,

Rn

where the kernel is given by:

Ki(z,y) = f eMPEO=2WE Y (1 E)h(y, €) dE

Rn—1

Write U := T)\TY.

We remark that the change of order of integration was valid since we can assume a priori
that f is a smooth function with compact support and hence Fubini’s theorem may be

applied; we omit further these kind of arguments.

3.3 Analytic Family of Operators

In this subsection we will appreciate the powerful Stein’s interpolation theorem (Theorem

5), which deals with the interpolation of an analytic family of linear operators. More

23



precisely, we will construct a complex analytic family of linear operators {U*} for I_T” <

Re(s) < 1, so that

1U* fllz2@ny € A fllz2@ny,  if - Re(s) =1
) U fllzo®ny < [ f o2 @), if  Re(s) = I—T"

U=U

The choice of endpoints may seem rather surprising at first, but it will be clear in the end
that both endpoints are chosen so that the operator norms are easy to bound, indeed 1_7”

is related to the decay of the Fourier Transform of the surface measure do.

Suppose such family could be constructed, and assume it has limited growth in the pa-
rameter z as stated in Theorem 5. Then by simple translation and scaling mapping the

endpoints I_T” and 1 to be 0 and 1, respectively, we have:

U=U": P — [P,

where pie =1+ %and b= (%)/("—“) = =2 € (0, 1). Solving this gives

1 2 n+

n(n

_n(n=1)
||U0f||L2(7:lj-1) (&) < )\ et ||f||L2(s:1)

(R™)

By Theorem 3, the above is equivalent to the restriction estimate when q = 2.

Next we start our construction of the analytic family. The advantage is then we can
use the previously known theory of oscillatory integrals, in particular, Theorem 11 to be

stated in the next section.

e We extend the phase function ® : R” x R" — R by setting

&)(xvé) = Q)($’€) + €n®0($)7

24



where & := (&,&,) and ®q is chosen so that the n x n Hessian of ® is nonvanishing;
however, by the Hormander’s condition stated in Section 1, it suffices to choose any

®g so that
(u-Vz)Po(z) #0, mnear z=0.

Note that ®g(z) := exp(uyzy + - -+ + uyx,) would suffice.

We would like to embed the one dimensional d-function to an analytic family of
distributions with compact support. To do this we fix any z € C° with z(y) = 1 for
ly| <1, 2(y) = 0 for |y| = 2 and consider the family {as} of distributions on R that
arises by analytic continuation to all s € C of the family {«;} of functions, initially

given when Re(s) > 0 by:

a(y) ==

The bump function is introduced to make the distribution compactly supported.
The gamma function is introduced from integration by parts. Indeed, let f be any

smooth function. We will do a typical step of this analytic continuation:

0

| v = | wrw o)

0

_ ! fooy%zfy(y)dy, i Re(s) > 0

S Jo

The good news is that the integral on the last line is now well defined for Re(s) > —1.

652

T'(s)
noting that lim,_,o s['(s) = 0, the integral in the last displayed equation is equal to

In particular, multiplying the factor in the above expression, letting s = 0 and

2(0)f(0) = f(0), which is the J-function acting on f.

More generally, for each N > 0, we can define {c;} for —N < Re(s) < —N + 1 by

25



iterated integration by parts:

2

alf) = (Ve ¢ N0 dy

§2

= —F(Se e LOO YN )M (y) dy.

With {as} legitimately defined, we can finally state our definition of the analytic family

of operators:

Usf(z):= | K°x,y)f(y)dy,

R

where

Ko(og)im o[ M0l 67,6 (36)

The integral on the right hand side is a function of &,, and the expression on the right

hand side is «a; acting on this function of &,. If Re(s) > 0, then

n

K*(z,y) = f eNP@O= 2Oy (2 Yy, E)ag(En)dE

_ f K, (:c, y)ei/\y[%(z)f%(y)]as (fn)dén
R

3.4 The Interpolation Argument

A first observation is that for any smooth u : R — C, {as(u)} is bounded on any strip
{a < Re(s) < b}, mainly thanks to the factor e** which has a rapid decay as |Im(s)| — 0.
This shows that the analytic family satisfies the order of growth condition in Stein’s

interpolation theorem.

The nontrivial part are the two endpoint bounds.
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3.4.1 Bound at Re(s) =1

In this case the initial definition of «y is applicable. Let Z be a bump function which

equals 1 on the support of z, so that ¥(y,£)Z(&,) € CP(R™ x R™).

Write U® = S5 0 57, where

SU€) = | e P OTTEE(6) F)dy

Sag(o) = [ PHI0( et fs ol

2
68

- ei)ﬁf(z,g) 7 €)s o1 o gE
T(s) f [¢ (2, §)z(&)N[E 9(€)]dE

Here we must invoke another theorem of Hormander, which is similar but easier than the

Hormander’s restriction estimate:

Theorem 11. (Hiormander’s Oscillatory integral Estimate) Let ® : R™ x R® — R be

smooth near a neighbourhood of (0,0), and suppose its mized Hessian is nonvanishing:

P2
det l( ~](0,0);«&0.

1<ij<n | ox; O

Consider a family of operators defined by:

S,\f(f) = Jn e“é(x’@w'(m,é)f(x)da;, where 1)’ € C’go(x,f)

Then for large A > 0, we have:

|Sxfllz2@ny < Ai%”fHLQ(Rn); (3.7)

We are going to apply this theorem first. For Sy, apply ¢’ = v - and by the boundedness
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of Z, we have

151 £l z2@ey < A2 Fll2grny-

For Sy, apply ¢/ =1 - 2z, g(&) := ¢g(£)&57! and by the boundedness of % in the strip, we

have
1929l 12mny < A2 |Gl r2gn) < A72 |9 L2qn)-

The last inequality is why we consider the endpoint Re(s) = 1.

Combining the above two estimates, we obtain the bound at Re(s) = 1.

3.4.2 Bound at Re(s) = (1 —n)/2

By Minkowski’s inequality, it suffices to show that

|K*(x,y)| < 1.

Referring to 3.6, we rewrite the above as:

K3 (z,y) = Kx\(2,y)as(A[Po(z) — Po(y)]),
where &, is the Fourier transform of as.

e Estimate of K :

Recall that

Ka(og) = [ 0200y 0, €506 de
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Write ¥ (z,y, &) := ®(x,&) — ®(y,£). By Taylor expansion, for each multi-index £,

0 B
(8—5) (W2, ) — Vab(w.6) (& — )] = Oplle — yP), asy — a.

By a standard partition of unity argument we may assume that ¢/ has small support

so that the Taylor expansion is valid. Then we have two cases:

Case 1.

Case 2.

The unit vector in the direction z — y or y — x is close to the critical direction
u.
In this case, we will need the non-vanishing third order derivative of the

Hormander’s condition. With  running through all second derivatives in &,

we have:

det 0>
(§]

“(O) >z -y near ¢=0.

By the stationary phase estimate in Theorem 8, we have

1-n

1—n
[Ka(z,y)| s 2 |z —y[ 2.

Here is where the endpoint an emerged.

The unit vector in the direction x —y or y —x is away from the critical direction

u.

In this case we use again the stationary phase estimate and get

|K\(z,y)| <y ANz —y|7, for any real N > 0.

Taking N = ”T’l, we obtain the same estimate as in the other case.
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Finally, we will need the Fourier decay estimate of aj:

las(u)| < Ap(1 + |u|™9),s : =0+ it,o < 1.

The exponents could be canceled exactly if we choose Re(s) = 0 := < I

n—1
2

65(A[@o() = Bo(m)])] < C{1 + [A[@o(x) — Do(y)] |

Since our choice of @ is locally Lipschitz, combining with the previous estimate,

we finally obtain:

K (x,y)] < 1.

3.5 Remaining Estimates

In this subsection we are going to complete our verification of the previous assertions.

3.5.1 Proof of Hormander’s Oscillatory Integral Estimate

We now give the proof of Theorem 11. The key idea is to use Taylor’s expansion and

integration by parts. The whole proof is adapted from Page 378, 379 of [9].

For simplicity we drop all tildes and primes in the notations, but we keep in mind that they

are different from those in the settings of our final theorem. Using again T'T™*-method, it

suffices to show that

1SXSS fllL2@ny < A" fll 22 @nys
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The kernel of 5,55 is given by

Kala,y) i || P00 200y (0, 75,8 de.

n

Let M(z,§) be the mixed Hessian matrix and for any a € R", we use V¢ denote differen-

tiation in the direction a. Fix (z,y) first, and write

Az, y,€) = Vi (z, ) — D(y, 6)].

By Taylor expansion, we have A = (z — y)"Ma(¢) + O(|x — y|?). Since M is invertible

by assumption, we may choose

a:=M1<x_y>
lz—yl)’

which gives (z —y)TMa(€) = |x — y|. Again by partition of unity we may take suppw to

be sufficiently small so that near the support of K, we have
Az, y,8) = clz —y|

Note that A, a, M are all smooth.

We set Dy := [MA]—lvg@ to be the modified differential operator so that

DY (eNPEO-2wa) _ AR(6) -2 o)

Using definition of inner products repeatedly gives

K(z,y) = f PO DY) ((, ) (y,€) ) de,

Rn

where (Dg')" denotes the Hilbert space adjoint of D'
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But notice that (Dév )t is essentially a differential operator which satisfies

(D) (¥, 99(.9)) de| < M=y ™ N =0,1.2,....

But recall the fact (1.2) and using the condition that ¢ has compact support in both

variables, we have
1Ky (z,y)] <y L+ Az —y) ™, N=0,1,2,....
If we take, say, N =n + 1, then

sup f Ex(z,y)ldy <w A,

zeR™

The same is true with x and y interchanged.

Lastly, recall that

S\SYf= | Ki(zy)f(y)dy,

R

we have, by Schur’s test (6), that SyS} is bounded from L?*(R"™) to L*(R") with operator
norm bounded by CvVA=2" = CA\™".

This finishes the proof of (3.7).

3.5.2 Proof of the Fourier Decay Estimate

We are going to prove:
[I(w)] :=|as(u)] < Ap(1+ |u|™7),s : =0 +it,o0 < 1. (3.8)

This is similar to the standard Paley-Wiener theorem. However, it cannot be applied

directly as it offers no information on the dependence on the parameter s.

32



We first prove the case 0 < ¢ < 1. In this case ay is the original function, which is in

L'(R). Hence the bound (3.8) is trivial for small |u].

For large |u|, consider I = I} + I, where

rlul =t '
Li(u) == as(y)edy
Jo
o0 .
Iy(u) := as(y)e dy
Jul 1

52 . . .
For I, since % is bounded on 0 < ¢ < 1, we have, after changing variables:

1
RG] =0 [ Jul ol dy ~ ful 7
0
For I, integration by parts shows that

Q0
1l %o | [ el ey
1

(" (e

[ 15— D220l Y) + v/l )l ] ey

J1

1

o0 2|l
<o |u|™ J y° 2dy —i—J y“_l\u|_1dy] , recall z vanishes if |u|!y| = 2
1

<o 71+ Jul7™]

< |u|79, for large u, since o < 1.

This finishes the proof for the base case. For —-N <o < —N + 1, N > 0, we have:

52 o0
) e .
Qg YY) = (—1 N J s+N—-1 ety (N) d
@) = (D s D e D ) v e @y
e’ *
_ s+N—-1 uy\(N) d
T ), v ) dy
The factor ﬁ is bounded on any vertical strip. For u small, again the inequality
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holds trivially. For u large, splitting the integral into two parts as above, using repeated

integration by parts and the Leibniz formula, we have |I(u)| <, |u|™°.
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Chapter 4

The Fourier Restriction Conjecture

Recall the statement of the Fourier restriction conjecture from Chapter 1.1:

Conjecture 3. Let S < R" be a compact n — 1-dimensional hypersurface with non-

R : 2n n—1,7/
vanishing Gaussian curvature, and 1 < p < =% and 1 < ¢ < 7—p". Then for any

f e CPR"), we have:
1 fllzocs) < €. g, S) fllrcen)-

In this chapter, we begin by discussing an example due to Knapp, showing the above
range of exponents is best possible. We then discuss a local restriction estimate, and

prove an e-removal lemma.

4.1 Necessary Conditions for the Restriction Conjec-

ture

In this section we discuss the necessary conditions for the restriction conjecture.

We first show that it suffices to push down the exponents p,q. We have:

Lemma 1. Suppose the restriction estimate holds for some pg,qo = 1, and let 1 < p <
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Po, 1 < q < qo. Then it holds for p,q also.

Proof. We fix ¢ first. By the trivial L' — L* bound and LP° — L% bound and the
Riesz-Thorin interpolation theorem 4, we get the L? — L% bound where § > ¢qo. Next we
fix p and note that the hypersurface is compact and hence having finite surface measure.

By Holder’s inequality, we get the L” — L9 bound, since ¢ < qy < q. O]

4.1.1 Necessity of Nonvanishing Gaussian Curvature

Let p > 1, otherwise the restriction conjecture holds trivially. Then the condition of
non-vanishing Gaussian curvature is necessary, as the following example (see [I1]) shows.

Let ©(xa, ..., x,) be a nonzero bump function and define

fru(xi, o, oo my) = U(xa, ..., Ty )ug(Ty)

where uy(x) := ﬁx{‘mgk} and u(z) := ﬁxll Consider the restriction of fj, onto the

hypersurface {£; = 0}. By definition we have

N

fk(o, §2a s 7571) = 1&(5% <o >§n)||uk||L1(R)

Then for p > 1,

/500, Mza@n—1y  [¥llLan—1y  ugllzrw)

= . — o, ask — oo,
| fxll e ey ¥l ze@n-1y  llurll o)

since ||ug|| 1y — 0 but ||ug||Lr@) = ||u]|Le@) < 0.

4.1.2 Necessity of the Upper Bound for p:

We will consider the extension operator:

Eg(z) = f 9(€)e = do(n)
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Then the restriction estimate is equivalent to:
1€9N v @y < 119 Lo (a0 (4.1)

Now we let g := 1. Then we see right hand side is a constant. By the decay of Fourier

transform (9), we see that the left hand side is finite only if p’ - %51 > n. Solving this

: 2n
gives p < PR

4.1.3 Necessity of the Upper Bound of ¢:

The following construction is called Knapp’s example. The key idea it utilizes is the so

called uncertainty principle.

Consider a tiny cap on S, and without loss of generality, assume that it is given by the
graph of the function ¢ : [—4,d]"! — R by ¢(€) := |£|®. Let xx denote the characteristic
function of that small cap K. Notice that the whole cap is contained in some rectangle
T with dimensions 6 x --- x § x 62 with its shortest side normal to the plane &, = 0. We

claim that

|(xxdo)™(z)| = U e2miz-(&1E%) | /1 4 AE2de| = 6",
[76,§]n—1

for any z in the “dual rectangle T*” given by |z1|, |z2|, ..., |Tn 1] < 071, |2n] < 672 with

the same orientation as T' for some unimportant constant ¢ dependent on n only.

Proof. If © = 0, then (yxdo) (z) = o(K) ~ 6"'. We know that if z € T*, then
|z - (&, |€]?)] < nc. By continuity, if ¢ > 0 were chosen sufficiently small, then if |z -

(& [€*)] < ne, we have | cos(2mz - (&, [€]*))] + [ sin(2ma - (&, [§]*))] > 3, thus

. 1
’f[ . 6271’13:'(57|§|2)‘ /1 + 4]§|2df > ZU(K)’
_515 n—

whence |(xxdo)”(z)] Z 6" yr=. O
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With this result, the extension estimate (4.1) is true only if

1 n+1 n—1
/

ST < o(K)7, de. 67716 <67 .

. n—1
For this to hold as 6 — 0%, we need ¢ < 2.

4.2 The Local Restriction Conjecture

In this section we deal with the local restriction estimate and an equivalent form with

thickening of the surface. We first state the local restriction conjecute:

Conjecture 4 (Localised Extension).

1(9do) | 2w (5 <e B9l Lo 4oy (4.2)

n—1 : :
where 1 <p < 7 and 1 < ¢ < n—Hp’, and g is a smooth function supported on S.

It can be shown that Conjecture 4 is equivalent to Conjecture 1.
Conjecture 4 has an equivalent formulation, which we present here:

Let Ng denote the C R™! neighbourhood of S (a thickening of the surface); Ng := {n €
R" : d(n,S) < CR™'}. We also denote Ny as the C R~ neighbourhood of S in the normal
direction: Ng:= {(6 +tR™'): &€ S, |t| < C}. Note then Np < Np.

We endow Ngi with the usual n-dimensional Lebesgue measure, which is often easier to

deal with than surface measures.
This conjecture is formulated as follows:

Conjecture 5 (Localised Extension with Thickening).

- _1
|G ”LP'(BR) <- R°R qHG“Lq’(NR)a (4.3)
where 1 < p < nQ—fl and 1 < ¢ < Z—ﬂp’, Bpr is centred at O and G is a smooth function
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supported on Ng.

Notice that we allow p = f—fl here; the loss is at the exponent R° for arbitrarily small
e > 0. Also, the blurring gives us with a power R4 on the right hand side, which is

compatible with the uncertainty principle.

Actually we have the following:

Lemma 2 (The Thickening Lemma). Conjectures / and 5 are equivalent.
Proof. The proof is mainly from [0].

e (4.2) = (4.3) This part is easier to handle. Let R > 1 be large and by partition
of unity, assume that G is supported near 0, so that G is supported in Ng also. By

Fubini’s theorem and change of variables,

G(x) = J J G(¢, ’5’2 + t)62ﬂi(x’~€+rn(\£l2+t))dgdt
[t|<CR-! Jge[—1,1]n L

= J (G|s,doy)” (z)dt,
[t|<CR-!

where oy is the natural surface measure on S; := S + (0,0, ...,1).

By (4.2) applied to each slice of the translates of S (this estimate is obviously

translation invariant), we obtain the following:

H<G|Std0t)v”Lp’(BR) < B HG|St||L¢1/(St) )
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for all |t| < CR™'. Since p > 1, we compute:

||G||LP'(BR)

(By Minkowski) < J |Gls,doe™ | g dt
[t|<CR-1

= Rafl CR-1 1G5l s, dt
t|< -

»Q\‘H

(By Holder) < R" U
|

q/
t|<CR—1 HG‘StHLq'(St) dt)

e 1
=R q”GHLq'(NR)'

e (4.3) = (4.2) Let R > 1 be large. Fix ¢ € C*(R) with support in B(0, 1) such
that |¢(2)] = 1 for all |2| < 1. Define G := 1 * (gdo) where ¥g(€) := R™p(RE).
Then

1(9d0) | 1t () < 9d0) Dl 1oy = Gl 1o 5y
Since G is supported in Ng, we may apply (4.3) to deduce
19d0) W oy Se B m * (900) | o
Thus it remains to show
lr = (9d0) 0 ey < B9l (44)

This estimate is trivial in the case ¢ = 1 by the Fubini’s theorem. It suffices to

show that (4.4) holds in the case ¢' = co. This is in turn reduced to showing

sup f Wr(€ —n)ldo(n) < R. (4.5)
S

EeRn

Heuristically, the above is true because the support of ¢ g intersects S on at most
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an ~ (R71)""! cap and the height of 1 is bounded above by ~ R", leading to the
bound R~V x R™ = R. To prove it more rigourously, we can pose this problem

into the following lemma:

Lemma 3. Let ¢ € S(R"), S < R™ be a compact hypersurface (without any curva-

ture conditions). Then we have:

sup f Wr(€ —n)ldo(n) < R.
S

EeRn”
If this lemma is true, then we have proved that (4.4) holds.

Proof of the Lemma. This lemma is purely technical. By rapid decay of 1, we may bound

it by the integral

n 1
1©) = & f T+ R

Form a dyadic decomposition based on the size of R|{ — n|: more precisely, fix £ € R™ and

denote

AL ={neR": RI{¢—n| <1}

and for £ > 0,

Ap(€) = {neR": 2" < Rl¢ — | < 2"}
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Let Sg(§) := Ax(§) n'S. Then we can bound

& 1
I < R" d
©) ,;Jm T raered)
& 1
SR ) o(Sk) g
k=-—1
o kE+1
<SR ) o(B(§, =) n Sz
k=—1
R i (2k+1)n_12 F
$ n —RKn
k=-—1 R
~ R.

The second last line holds by a simple geometric observation: for small R the sur-

face measure is bounded essentially by 1; for large R, the surface is locally flat, hence

2k+1

o(B(&, *5) n S) is roughly a cap with radius at most % on S"7!. This gives the

estimate. 0

O
The thickening lemma 2 has an immediate corollary:
Corollary 1. The following localised extension estimate holds:
- 1
1(9do) N2 (r) < B9 L2(a0) (4.6)

for every g € L*(do).

Thus we see that although the extension estimate is trivially false at p = 2, the localised

version is true with a loss of factor of Rz.

Proof. By the thickening lemma 2, (4.6) is equivalent to the following;:
- 11
1G22y < B2 R72 |Gl 2(ve) = Gl L2 (vm):
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for any smooth G supported in Ngr. By the Plancherel identity, the about trivially holds:

1G7 [ e28r) < NG 2@y = G2 ()

Hence we have (4.6). O

4.3 The Epsilon Removal Theorem

In the last section we prove the e-removal theorem, which is a useful tool that allows us to

recover the global restriction estimates from local ones. This is first proved by Tao [12].

Notation: for 1 < p < 2, € > 0 be small, we denote R(p,¢) to be the localised restriction

estimate:

£ o) e BENF N Le(sio,r)s (4.7)

for any f with support in B(0, R) and all R > 0. Here o denotes the surface measure on

S = Sn 1

The theorem is precisely stated as follows:

Theorem 12 (e-removal theorem). There exists a large A > 0 and small 0 < gy < 1,

such that R(p,e) implies R(q,0) whenever 0 < e < &y and

A
T

1
> -+
p  log:

1
q

The constants A and ¢y depend on the dimension only. Note that ¢ is slightly smaller
than p. In this give and take, our gain is a global restriction estimate without any epsilon

loss, but our loss is in the exponent p (q is slightly smaller than p is € is slightly positive).

This theorem has the following consequence:

Corollary 2. The followings are equivalent:
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1. We have the restriction estimate near the endpoint: for any 1 < p < n+1’
111z @o) < CILf |l oy (4.8)

2. We have the following localised restriction estimate at the conjectured endpoint:

Se /oIS 2 (4.9)

171, 2 .

for any smooth function f supported on Bg, all R > 0 and all € > 0.

We show the forward direction first. By duality, (4.8) is equivalent to the following

extension estimate:

||(9dU)V”Lp’(Rn) < CHgHLl’/(dJ)7 (4.10)

for all g € L” (do) and all =L < p' < 0. Let € > 0 be given, and let p’ so that z% = "2—;1—5.

By interpolation between the two endpoints (p', p’) and (1, 00) due to the trivial estimate

1(9do)™ || Lo@n) < ||9]| 22 (do), We obtain the estimate

1Cgdo) " prse @y < Cellgll 2o )

for all g € L1 (do), where ¢ = O(e).

Lastly, by Holder’s inequality, we have the following:

(gdo)|| CR|[(9do) || ey < C-R 9]

2n X 2n ;
L7 (Bg) L7 (do)

where €” = O(e). This is equivalent to (4.9).

For the other direction, let 1 < p < 2" be arbitrary, and £ < ¢y be such that >

—L 4+ A Then Theorem 12 shows that we have R(p,0).
2n_ log L

n+1 €

We remark here that the equivalence theorem is slightly imperfect: if the local estimate
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(4.7) is true, by interpolating the above LP-LP estimate (4.8) with the trivial L'-L®

2n n—1_7/

estimate, we can only prove the restriction estimates when 1 < p < .=

This is best seen from the interpolation diagram.

The following materials are devoted to the proof of Theorem 12.

4.3.1 The Sparse Support Lemma

We start with a lemma which bootstraps local estimates to global estimates.

Definition 5. Let R > 1. A collection {B(x;, R)}Y., of R-balls in R™ is said to be

C-sparse if there exists a large C > 1 so that for any i # j, we have |v; — z;| = RENC.

Lemma 4. Suppose R(p,e) holds. Then for any f supported on | J, B(x;, R) which is

100-sparse, we have:
1 F1lo(doy Se BENS Il zony. (4.11)

We will denote C' := 100 from the remaining part of this section.

Proof. By the thickening lemma 2 we see that R(p, ) is equivalent to

» _1
e vy < BN £ ll o e (4.12)

for all f supported on B(0, R). By translational invariance we see that the above remains

true with the same constant if we replace B(0, R) by B(z;, R).

Fix ¢ to be a Schwartz function such that ¢ > 1 on the unit ball and its Fourier transform

is supported on the unit ball. Write ¢; := ¢(*5%), so that q@,(g ) = R”e“’i%(Rf ) and hence
it is supported on B(0, R™'). Also, decompose f =Y., fi¢; where we set f; := (% on each

disjoint ball.
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It suffices to show the following estimate

(znmrm . )

Lp(do)
= fz which

(4.13)

whenever F; are bump functions supported on Ng. If this is true, denote F;
is supported on Ngi. With the observation that f ‘ =>. ﬁ * ggz , we have:
5

1oy = |, i * s

= Z F; « ¢Ez
LP(do)

< Ry <Z||FHLP(N ) ,by (4.13)

= R <2||fz||m NR)>

1 1
< R <Z RERT2 | fill o 8.

i

LP(do)

RSAL

) by a translated version of (4.12)

< B\ fll 2oy

Proof of (4.13): When p = 1, we have:

<[, [, msteviirts

Li(Sn—1)
< Z J EW) sup L“ |0i(z — y)|do(x)dy
Lnl |le($ —y)|do(z).

= ZHF || L1 () SUP
yeR™

Hence it suffices to prove sup,cgn {51 ¢i(z — y)|do(z) < R. But this is just Lemma 3
. is

By interpolation it suffices to show the case p = 2. By Plancherel’s theorem, (4.13)
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equivalent to the following:

(5)

whenever g; are Schwartz functions whose Fourier transforms are supported on Ng. Then

2

1
< Rz (2”9@'“%2(]1{@) ) (4.14)

L2(do)

(4.13) follows by taking g; := F;™.

Now we will denote R to be the restriction operator on S. By squaring both sides it is

equivalent to:
<R(Z 9i%i), R(Z 9;94)) < RZ”Q@‘”%%R")'
i J i

For simplicity, in the following we will just denote [|-||z2(n) as ||-||.

Using Cauchy-Schwarz inequality twice:

(RO 9:6:). R, 9050 = 2, ) 90 R R(9564))

< ZZII%II [0:R*R(g;05)

< <Z||gi||2) 2 (ZII@R*R(%@)I!)

)

Hence it suffice to show:

(2

27 2 i
2 <Z\I¢ﬂ€*7€<gj¢j)\l> <R (ZH%HZ) -
j i
It further suffices to show: for each i, j,

|6:R* Rl 2@y —r2ey S RTINTH, if i #
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Thus we have, by Cauchy-Schwarz inequality,

[NIES

> Bllgill® + R‘2N2‘2Z||gj|!2]

J

2. (ZH@R*R(%)H) <
SR <ZngH2> ;

since 1 <1,5 < V.
Hence it remains to show the above two estimates. The first inequality follows by applying

the following inequality twice:

1
|(Roif)|lz2doy < B2 @i fllz2@ny S |1l 2mny,

which in turn follows from the thickening lemma 2, with almost the same proof as that

of (4.6).

To prove the second estimate, we will recall the Schur’s test (Theorem 6). Fix i # j.

Write T':= ¢;R*R¢;, T f(z) := §5. K(x,y)dy. Then we can calculate
K(z,y) = ¢i(x)(do)"(z — y)o;(y),
By Schur’s test and symmetry in x and y it suffices to show that

sup | K(z,yldy < RN

T

Indeed, for |z — z;] < R2N, if |y — ;] < R*N, we have |y — z| = LRENY, by the sparse

assumption. By the decay of the Fourier transform (Theorem 9), we have
| K. y)ldy < (RN)(RN)O'S" < (RN) ™,
ly—zj|<R:N
where we require that 2n + C' 1_7“ < —1. This is always true since C' = 100 and n > 2.
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On the other hand, by the rapid decay of ¢;, and the fact that ¢;(z) = O(1), (do)” (z—y) =
O(1), we have

f K (z,9)|dy < (RN) " 'R" < RN,
ly—z;|>R2N
Hence for |z — ;| < R%N, we have
| 1y < roN
If |z — x;] > R?N, then we use the rapid decay of ¢;. We have:
[ 18Iy < RN o) 64 3 < (RI) "R < RN
To conclude, we have shown that

Supj |K(2,y)|ldy < RT'N™.

T

This finishes the proof of the sparse support lemma. n

4.3.2 Decomposition of Cubes

This lemma gives rise to the sparse collections of cubes.

Lemma 5. Let E be the union of finitely many unit cubes of the form [k, k1 + 1] x
o X kn, kn + 1],k; € Z. For any C > 1 and any N > 1, there exist O(N\EW) C-
sparse collections of balls that cover E, such that the balls in each collection have radius

O(|E|2°™). The implicit constants here depend on n only.

Proof. Define the radii Ry, for 0 < k < N by Ry := 1, Rpy1 = |E|°R{. In this way

Ry < |B|CTHC 40" | E|2C" for each k since trivially |E| > 1. Starting with k& = 1, we
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set Ej to be the set of all z € E\ Uf;ll E; such that

k

|E N Bz, Ry)| < |E|~.

Thus for 1 < k < N, x € E}, we have

1

|E A B(z, Re_1)| > ¢|E|'~.

(For k =1, we have |E'n B(z,1)| > ‘f—j' if z € E.) Then for x € Ej, the set E n B(x, Ry)
can be covered by O(|E|¥) Ry_;-balls.

Fix k temporarily. Cover Ej by Ri-balls B;. We allow them to overlap finitely many
times, that is, there is C'(n) so that for each x € Ej, x can belong to at most C'(n) such
balls B;, but we want the B;’s to be “as disjoint as possible”. Note that trivially the
number of balls B; is O(|E|). Now for each j, cover E, n B; by O(|E|~) Ry_y-balls
{B;i}1, ie. #1 = O(|E|~). By a simple combinatorics argument, we obtain O(|E|~)
collections (essentially each collection is chosen to be {B;,;};, but we should further split
into, say, in one dimensional case, {Bj;}; odd, {Bj}; even) such that each of them consists
of Ry-separated Rj_i-balls, and that each collection has cardinality O(|E|). Thus each

collection is C-sparse by the relation Ry := |E|“RY .

Lastly, note that | J, Ex = E. For each k we obtain O(|E|~) collections of C-sparse Rj,_1-
balls, such that each collection has cardinality O(|E|). Taking unions in 1 < k < N, we
obtain O(N|E|~) collections of C-sparse balls, such that the balls in cach collection have

radii O(Ry) = O(|E|*°™).

4.3.3 A Discretization Argument

In this theorem we prove another lemma which is used in the proof of the e-removal

lemma.
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Theorem 13. Let p,q € [1,0), and let S := S"~ ! with surface measure do. Let R be the

restriction operator:
RF(E) = | fla)e > dx, €€ 8. (4.15)
Rn

Suppose we have the following estimate:

T b2

Jez™

S HijmJ@n) . (416)
Lp(S,do)

Then the restriction estimate is true:
HRfHLP(S,da) S Hf‘|Lq71(Rn) : (417>

If this is true, then in order to show (4.17), it suffices to assume that f is constant on

I-cubes. For, let f(z) := b; when |z —j||, < 3, j € Z", then f is defined a.e. and

1
2

constant on 1-cubes. Substitution gives (4.16):

i

jezr LP(S,do)
=R Z bj6j> where ¢; is the dirac delta function at j
jez" LP(S,do)
<|R| D06 ) X Q=11 b
A 7 ’ 272
jezr LP(S,do)
=R | >, b;0; = XQ)
JeLn LP(S,do)
= (IRl zv(5.d0)

Here actually we need () to be small such that xo = 1 on S. For simplicity we just assume

Q = [ L 1]” suffices.
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Our proof needs a lemma in measure theory:

Lemma 6. Let A € B be bounded open sets in R™ such that 0A < B, from which it

follows that d(0A,0B) > 0. Then for N large enough, we have the following:
k _
#{keZ”:NeA}N"<\BI, (4.18)

where | - | denotes the n-dimensional Lebesque measure.

Proof of the Lemma. Take N so large that % < dg%ﬁig). This guarantees that for any

1

~, if it intersects A, then it must be strictly

dyadic cube in a grid with size less than
contained in B. Now if + € A, the cube in which £ lies is strictly contained in B. (More

precisely, we can take such cubes to be of the form [a,b;) x -+ x [a,, b,)). Thus

k
#{keZ“:NeA}N_”<|B|, (4.19)
since the n-dimensional Lebesgue measure for such a cube is N7". O]

Proof of the theorem. We need a fact that C.(R") is dense in L%!(R™), which the reader
can refer to texts about Lorentz spaces. Now let f € C.(R"). Then the Riemann sum of
the integral in (4.15) converges to the integral pointwisely for any £ € S:
lim df K\ emike _ g f(é) (4.20)
N . .

N—ow [V
—o N kezn

This is actually a finite sum for each N since f has compact support. By Fatou’s Lemma,

we have the following:

%1 ()

o]
IRf 115,407 < limint =2
keZ™

Lp(S,do)

The trick is to utilize the translational invariance in the summation. More specifically,
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we have:

B (v)eme

keZm

LP(S,do)

c€{0,1,2,...,N—1}n jeZn

2 Z f (jNN+ c) o2 ¢)

ce{0,1,2,...,. N—1}" [ jeZ™ Lp(S,do)

Cn |y

ce{0,1,2,...,N—1}" [ jeZ™

Lp(S,do)

N

LP(S,do)

Now by (4.16) and Proposition 1, with (X, u) = (Z", ¢) where ¢ is the counting measure,

we have
P )erd <l g) (el Gl
— < + — ~ >y 2 : + = >2
j;nf( _ )e P+ ) oy ~ 22 e G+ 5
Lp(S,do)

By Holder’s inequality applied to summation in c€ {0,1,2,..., N — 1}", we have:

Z f (jNN+ C) =2

jezr

2

c{0,1,2,....N—1}"

Lp(S,do)

S Sfienil(e g2

ce{0,1,2,....N—1}" l€Z

Q=

<2 3 #{jeZ“:‘f(j+%>‘>21} (N")a

lez c{0,1,2,...,.N—1}n

pe(efem b)) o

Now with A := {x : f(z) > 2!}, B := {x : f(x) > 27!} noting that f € C.(R"), we may

use Lemma 6 to obtain:

()

> 2’} <[z eR™:|f(x)] > 27"} N™
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Finally we put everything together to get:

N |
HRfHLP(S7dO-) < lb{fnjo%f Nr

()

kezm

<2 |{we R [f(x) > 21}

leZ

LP(S,do)

~ A o gy »

by Proposition 1 again.

]

Remark: This theorem holds as long as 1 < p,q < o0; however it highly relies on the

power 1 on the Lorentz exponent L%!. The following simple theorem provides a little

insight into this specific Lorentz space:

Theorem 14. Let p,q € [1,00), T be a sublinear operator. Then |Tf|, < |fl,, if and

only if the same holds for characteristic functions.

Proof. By dyadic decompostion, given a test function f, there exists a pointwise bound:

f@)] < Y2 (@),

leZ

where By := {z : |f(z)| > 2'}, such that [ f] , ~ >, 2'u(Er)s.

Then |Tf(2)] < Yes 2T () ()], hence

ITfl, < X2 1T(xz)l,

leZ

< 2.2 Ixaly,

leZ

= 2 ()

leZ

~ [l

o4

(4.21)



where the second inequality holds because we assumed || T'xg|l, < ||x&llq1 for any mea-

surable set E. O

4.3.4 Proof of the Epsilon Removal Theorem

We finally come to the proof of the epsilon removal theorem. Recall our goal is to show
that there exists a large A > 1 and a small 0 < ¢y < 1 such that for any 0 < ¢ < gy and

1 <p<2, R(p,e) implies

HRfHLq(S,dU) S HfHLq(]R") )

where

A
log

1 1
~ >+
q p

First we can reduce the problem to proving the Lorentz space estimate:

IR o (s,0) < 1| Laor gy » (4.22)
1 _ 1 A
where =5 + Toa (13

Indeed, if (4.22) is true, writing it into an extension estimate and use Proposition 2, we

have
1900 gy < 191120
together with the trivial bound:
[(9do) || Loy < 91l 21 (o)

By the Marcinkeiwicz interpolation theorem (7), since ¢ < ¢’ < o0, p’ > 1, we have the
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bound

[(9do) ™| Lo @ny < W91l oy, 1 <P <P <y <4 <.

Lastly, Holder inequality gives the bound:

1(9do)"] Lo @ny = 91l Lo’ (o)

which is equivalent to the restriction estimate R(q,0).
Hence we are going to prove (4.22), assuming R(p, €).

Since we have R(p,¢€), by the sparse support lemma, our assumption can be strengthened

to:

IR ooy Se B 1oy - (4.23)

for any f supported on a sparse collection of balls.

On the other hand, the discretization argument (See Theorem 13 and the remark after
it) reduces the problem to the case that f is constant on 1-cubes. By the argument in
the proof of Theorem 14, in proving (4.22), we can do a further reduction by assuming
f = xg where E is a finite union of cubes of the form [ky, ky + 1] % - - X [kp, by + 1], k; € Z.
By Lemma 5, there are O(N|E|~) C-sparse collections of balls that cover E (to be more
precise, we will use the collections that cover Ej separately since the radii of the balls
corresponding to different k are different), such that the balls in each collection have

radius O(|E[2°"). By triangle inequality twice and (4.23) we have

N

P | Nyg 1t

IRX el Lo < Y MeRE|E|N|E|p < M.(|E[*°")*N|E|~|E]?.
k=0

A

. 1 1A
We would like to have M.(|EP)*)eN|E|¥|E|7 < |E|w = |E|” =, where C' = 100,

0 <e<egand gy, N, A are all to be determined.
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1
85

For this purpose we may take ¢y > 0 so that Tios 0

log £ log £
may take N such that 4?5;0 <N < zfg%- Then we may compute

B
log ()’

1 1y logC 1
20N = 2eN1080 « 96108(2) 2100 — 222 <

for some universal constant B, since 0 < € < gg < 1. Then we have:

Nig 1 1
M.(|EPC7)°N|E|~|E|»

]-Og(%) 4log C

< g gl B 1B Bl
1 o
el || g1
2log

Ll 1
< C.|E|=D|E|?,

> 1. Then given any 0 < € < gq, we

where we have set C. := M, log() A := 4log C + B. This shows that R(p,e) implies

2log C

(4.22), and the completes the proof of the e-removal theorem.
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Chapter 5

The Kakeya Conjecture

In this chapter we discuss the Kakeya conjecture in more detail. Recall our ultimate goal

is to show that each Kakeya set in R™ has Hausdorff dimension n.

It is more natural to handle an estimation for the analysts than to handle a purely geomet-
ric proposition. Here we introduce various versions of the Kakeya maximal conjectures,
which will be shown to imply our desired Kakeya conjecture at the end of this chapter.

One way to formulate the Kakeya maximal conjecture is the following:

Conjecture 6. (Kakeya Mazimal Conjecture, 1) Suppose 0 < § << 1. Let T be a family

of tubes of size 6" 1 x 1 in R™, whose directions form a d-separated set on S"~1. For each

_n_

—o < q < 0, we have

ZXT

TeT

< C(q)o" <2 6“) ,
TeT

La(R")
where p is such that 1 < p’ < (n— 1)q, and C(q) is a constant independent of § and T.

Note that the particular shape of the tubes is not important; it could be either cylindrical
or rectangular, and its ends could be either rough or enclosed by a tiny cap, like a rod.

Also, since > 0" < 1, if this is true at p’ = (n—1)q, then it is also true for p’ < (n—1)q.

Another remark is that since the equation holds trivially at ¢ = oo, by interpolating with

o8



the trivial bound p = 1, ¢ = oo, it suffices to prove the case ¢ = 5.

The following formulation is also used frequently.

Conjecture 7. (Kakeya Mazimal Conjecture, II) Suppose 0 < 6 << 1. Let T be a family

of tubes of size 6"~ x 1 in R™, whose directions form a §-separated set on S*~*. For each

—5 < ¢ < 0, we have

ZXT

TeT

< C(qe)d v ° (Z 5”_1) :

TeT

La(R")

where p is such that p' < (n —1)q, and C(q,¢) is a constant independent of 6 and T.

Compared with Conjecture 6, we note the main difference here is that we allow g = "+,
but we lose an ¢ on the power of §. The implication from Conjecture 6 to Conjecture
7 follows from Holder’s inequality in the same manner as in the proof of the forward
direction of Corollary 2. We omit the proof. For the reverse direction, it is a consequence
of the Pisier Factorisation theorem, which we cannot cover here, but the interested readers

could refer to Bourgain [2], Pisier [3], or an exposition in Mattila [7] or Yung [15].

5.1 Necessary Conditions of Maximal Kakeya Con-

jecture

As before, we will show how the endpoint exponents emerged.

5.1.1 Necessity of Bounds for 3, ¢

Let 8 € R, we are to find necessary conditions on (3, ¢ such that the following holds:

< 677,
La(R")

ZXT

TeT
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for all family T of §-separated 6"~! x 1 tubes and all § > 0.

1. Necessarily 8 > 0, since the tubes T may be all disjoint, in which case || 7p 6" | Lan)

could be as large as 1.

2. Necessarily § > —1 + 3. To see this, let #7 ~ 6'™", which is the maximum
number of tubes due to the condition that they are d-separated. Assume the tubes
are identical, centred at the origin and their directions are uniformly separated.
(Imagine the shape of a sea urchin). Then there is a small ball of radius ¢ centred

at the origin that is contained in all 51~ tubes. This gives

»a\‘ 3

2 ooy =6
La(Rn)

Z 571—1

TeT

3. If further ¢ > 1, then necessarily 5 > 0. Indeed, by the construction of Besicovitch
sets (see Chapter X of [9]), for any € > 0, there exists § > 0 and a family T of
d-separated 6" ! x 1 tubes such that T has ~ §'~" tubes, and | J,.r T has Lebesgue

measure < €.

Then

1
Py

1
1: geq/

ZXT

TeT

< ZXT

TeT

ZXT

TeT

Jr

TeT

L' (") La(Rn) La(Rn)

Since € can be arbitrarily small, this is incompatible with 5 = 0.
In particular, this suggests us to study whether

1-%—¢
Sed 7,

ZXT

TeT

La(R™)

for all family T of d-separated 6"~ ! x 1 tubes in R”, all § > 0 and all — < ¢ < .
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5.1.2 Necessity of Bounds for p

More generally, given 1 < p < o0, we ask whether

S (Z 5"—1> E :

TeT

ZXT

TeT

La(R")
for all T as above, all 6 > 0 and all "= < ¢ < .

For this to hold we must have p’ < (n — 1)g. Indeed, if T has only one tube, then

-1
e
La(Rm)

ZXT

TeT

n—1

while 8177 (Xyep 671)7 = 04755

So for the inequality to hold for all € > 0, we need

n—1 n n-—1
21——,+ ,
q q p

that is, p’ < (n — 1)q.

Therefore, we arrive at one form of the Kakeya conjectures as in Conjecture 7.

5.2 A Dual Formulation of the Maximal Kakeya Con-

jecture

In this section we introduce Bourgain’s Kakeya maximal functions and the Kakeya max-
imal function conjecture, basically following Wolft’s notes [11]. We then prove an equiva-
lence theorem relating the Kakeya maximal conjecture and the Kakeya maximal function

conjecture.

For any a € R", e e S"7 1, § > 0, let T?(a) be the "1 x 1 tube centred at a. Define the
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Kakeya maximal function f# :S"! — R by:

1
f5(e) := sup
’ aerr | T2 (a)] TS (a)

|f|7

This gives rise to a sublinear operator mapping functions f € L{ (R") to functions defined

on S*1.

The Kakeya maximal function conjecture states the following:

Conjecture 8 (Kakeya Maximal Function Conjecture).
1£3 11 ensn—1) e %[ f1lLn ey,

for any f € L™(R"™) and any 0 > 0, for any € > 0. We will see below that this corresponds

to exactly the case p' = ¢’ = n.

Theorem 15. (Equivalence Theorem) Fiz f € R,1 < p,q < 0. Then the followings are

equivalent.

1. Let 0 > 0. For any family of tubes T given as in Conjecture 7, we have

ZXT

TeT

S 670 (Z 5) g (5.1)

TeT

La(R")

for any € > 0.

2. Let 0 > 0. For any family of tubes T given as in Conjecture 7 and any non-negative
sequence {yr}rer indexed by T, we have the following weighted Kakeya mazimal

inequality:

Z YrXrT

TeT

< 077 <2 y§5"1> : (5.2)

TeT

La(R")

for any € > 0.
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3. We have the bound:

150 o sy e 67 F Il o oy (5.3)

for any f e LY (R") and § > 0, for all ¢ > 0.

Proof.

“(1) = (2)” Let T and {yr}rer be as given, and fix ¢, p and ¢ as in (5.2). Fix C. to be the

implicit constant in (5.1), corresponding to .

First we may normalize {y7}rer so that

Dkt =1, (5.4)

TeT

soyr <0~ U/P forall T e T.

Next we classify the tubes 7" in T according to the size of the coefficients yr. More

precisely, by the triangle inequality,

2 YyrXr

TeT Lq(Rn)
<| D urxr + > D, e
_£ -1 Y

TeT: yr<é™ 2 La(R") keN: 5*%<2k$5*nT TeT: yr~2 La(R")

_t k
UM DS I D DS

- n—1 . ~92k
TeT:yr<d~ 2 |lpamn) keN:s S<2hgs 7 |TETiyr~2 La(R")

Each of the terms can be estimated using (5.1): indeed

0E D <0200 (Z 5"—1> p

_£
TeT: yr<dé 2 La(Rm) Tet

<C.07PF
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since T, being a d-separated family of tubes, contain at most C6~~1 tubes. Also,

3=

2D xr <C2 s Y
TeT: yp~2k La(Rn) TeT: yp~2Fk
1
<C.573 (2 Yo" 1)
TeT
= C.67773,

the last equality following from our normalization of {yr}rer in (5.4). This shows
that we can estimate each term in the sum over k uniformly by C.6~%~%, which is

independent of k. Since there are ~ C'log(6~') terms in the sum over k, we get

<C6PF 4 C.6P 2 1og(07h)
La(R™)

< 20.67°7=.

Z yrXr

TeT

which gives the desired bound (5.2) in view of our normalization (5.4).

“(2) = (3)” If (2) is true, we can in particular fix a maximal d-separated subset of S indexed
by k, in which case there is a constant C(n) such that | J, Bos(wg) 2 S™!, where

Bs(wy,) denotes the §-neighbourhood of wy on the surface S"!.

We claim that for |e — €/| < d, f#(e) < Cff(¢'). For, given any T°(a), there are at
most C(n) tubes T5(a;), 1 < j < C(n) such that U, T5(a;) 2 T (a). Therefore

I3 e <, S o)

Bs (wr)

< >, 0 (Bs(wi)) f5 (wr)”

~ 6T f () (5.5)
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Now by the duality of I7, I, there is a sequence y;, = 0 with 1 Y = 1 such that

D) = (Z ykf?@k))

For each k, by definition of the Kakeya maximal function, there is a tube T}, centred

somewhere with orientation wy such that

f wk
’ |Tk| Tk

Hence we have:

163l < 67 Dngas |1
k Tk
-5 Zykf £
k Tk
=5 | IS (Z ykka)
R™ k

_n-1
<07 |Ifll e @y

La(R™)
1
< 07 I f @& 077° (Zypdn 1) , by (5.2)

- 5—B—E||f||Lq/(Rn), by our choice of y; .

Therefore if (5.1) is true, (5.2) is true.

“(3) = (1)” Let T be given. By the duality of L and L7, showing (5.1) is equivalent to showing

that for any f e LY (R") with | fll o ny = 1, we have:

(Z XT) ) < (2 5"1>;.
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For each T', (.. | fxr| dz < 0" f3(wr), where wr is the orientation of T'. Thus:

fn f (TZGTXT) dz

<X [ Irvrlas

TeT

<8 fiwr)

TeT

~ZJ (w), by (5.

TeT

5)-

Cﬂ

- JU fH(w)do(w), where U := U Bs(wr)

< (] moraas) ([ o)

S 0777 fll o ey < 5" 1) (5.3) and d-separation
TeT

_ 5—,8—5 (Z s l)
TeT

This proves the equivalence theorem.

RS

5.3 Kakeya Maximal Inequalities and the Hausdorff

Dimension

In this section we prove a theorem that relates Kakeya maximal inequalities to the Haus-
dorff dimensions of a Kakeya set. In particular, we show that the maximal Kakeya

inequality in the full range implies the Kakeya conjecture.

For completeness, let us recall the definitions of Hausdorff dimensions:
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Let 6 >0, s > 0. For each A € R", we denote
H3(A) = inf() ] (diam(D;)) : | ] D; 2 A, diam(D;) < d}.
J J

Then we see that as 0 N\, 0, Hj(A) is increasing, and we denote H*(A) := lims o+ H3(A).

Without loss of generality, we can assume that all D; are open balls in R", and that
diam(D,) can be arbitrarily small. Note that as s \, 0, H*(A) is increasing. Moreover,
one can show that for any A < R", there exists a unique 0 < d < n with the property
that H*(A) = o for all s < d and H*(A) = 0 for all s > d, which suggests that we define
the Hausdorff dimension of such set A to be inf{s : H*(A) = 0} = sup{s : H*(A) = wo}.

We will denote such critical d by dimy (A).

Now our goal is to show that d := dimy(E) > n for any Kakeya set E. In fact, we
will prove a more general theorem, which gives worse lower bounds on the Hausdorff

dimensions in case of weaker maximal Kakeya function estimates:

Theorem 16 (Kakeya Maximal Inequality and the Hausdorff Dimension). Suppose we

have the following estimate:
o{ee S £ (xp)(e) > A} <. 8PN B|, (5.6)

for some [ € R, some pair of exponents 1 < p,q < o with p < q, ¢ < o and for all
e > 0 small. Equivalently, this is to say that the restricted weak type version of (5.3)

holds. Then the Hausdorff dimension of a Kakeya set must be at least n — B¢ .

Proof. Since p < ¢, p’ = ¢'. Since LP>*(S*!) embeds continuously into L¢"*(S"!), our

assumption implies
o{eeS" ™ fi(xp)(e) > A} <. 67PN (5.7)
We consider the definition d := dimy(A) := sup{s : H*(A) = w}. Let ¢ > 0 be any
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positive number, and ¢’ < o as given in (5.7). We claim that H"#7~27¢(E) > 1. If this
is true, then we see that n — 8¢’ — 2¢’e < d for any € > 0. Thus n — ¢ < d if we let

e —0.

To do this we show that with § = Hy™ pa=2d °(F) z 1. Given a covering of F by open

100 ’

balls D; = B, (z;), rj < Partition the balls according to their sizes:

100
Jei={j: 27" <r; <28

Now since F is a Kakeya set, for any e € S*!, E contains a unit line segment I, parallel
to e. Similarly, we will do another partition of the directions according to their lengths

covered by balls in the family k:

1
= nol. 1, D;|>——
Sk {eeS m(emU j) 100k2}’
JjeJk

where m is the one-dimensional Lebesgue measure. Then I, = | J, <[e n U, e D; > and
thus >, m (Ie N Ujes, Dj) > m(I.) = 1. On the other hand, since Y, 1oz < 1, it
follows that | J,_, Sk = S" 1.

Let f := xp,, where F}, := Ujejk Bior,(z;). Then for each e € Sy, denoting a. to be the

midpoint of ., we have

fix(e) = ka—’FkﬂT (ae)
~ ; 1 2—k(n—1)
2—k(n=1) 100k2
~ k2.

1
Hence || £l paro(gn-1y = k20 (Sk) 7.

On the other hand, by (5.7),

1
7

| forll Lo gn-1y < 2MEHD) (g Jy)27 )

68



Combining them we have o(Sy) <. (#J)) (k2 28084 =n)) < (4 J, )2~ k(n=Fd'=2d's)
Therefore

PN 2qa>22 KB (1) 2 ) 0 (Sk) 2 1

J k
This shows that the Hausdorff dimension of a Kakeya set is > n— 3¢’. In particular, if the
maximal Kakeya inequality in Conjecture 7 holds, then by the Equivalence Theorem 15,

we have (5.6) holds with p’ = ¢’ = n and 8 = 0. Thus a Kakeya set in R" has Hausdorff

dimension n.
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Chapter 6

Relation Between Restriction and

Kakeya Conjectures

In this chapter we will explain why the restriction and Kakeya conjectures are related.
We will see that surprisingly, restriction theorem in the full range will implies the Kakeya
conjecture in the full range. We will also talk about how a partial range of restriction

theorem implies a partial result of the Kakeya conjecture.

6.1 Restriction Conjecture Implies Maximal Kakeya

Conjecture

For this section, we reformulate the Maximal Kakeya Conjecture again:

Conjecture 9. (Kakeya Mazimal Conjecture, 111)

Suppose 0 < § << 1. Let T be a family of tubes of size ((5*1)71_l x 0~2 in R™, whose

directions form a §-separated set on S"1. We have

ZXT

TeT

2
7
< 51—71—2#—8 5n—1 !
, ~E P Y

(R™) TeT

N

L
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2(n—1)

2 .
n+1—p

where 1 <p < 2% and 1 < q <

n+1

This is different form Conjecture 7 in the following ways. First, we enlarged the tubes by
a factor of 72, so that each of them is essentially the dual rectangle of some §"~'-Knapp
cap on the surface of the sphere. Second, the exponents are changed so that the p,¢’s
corresponds exactly to those in the restriction conjecture. In other words, if we denote
PR, 4R, PK, x to be the exponents in the restriction and Kakeya conjectures, respectively,

we have the correspondence p?/R = qk, q% = —. The restrictions on the endpoints follows
R

PK

exactly from 1 < pjy < (n — 1)gx and "5 < g < o0. The range of exponents (p, q) in

Conjecture 9 is strictly contained in the range of exponents (p, ¢) in Conjecture 3 (except

2n

<n_ 2(n—1) n—1_v 2n
n+1

=2 < el whenever 1 < p < =%. As before, to

), since ol

at the endpoint p =

n+1—% n+l”

prove Conjecture 9, it suffices to prove it in the case when p = nz—fl and q =

6.1.1 Proof of the Implication

Now we hope to prove Conjecture 9 assuming that the following holds.

1(9do) ™| L By <e BoN9N Lo (o) (6.1)
Wherelépénz—&andléqénz—&.
Unfortunately, we need more work to prove the global estimate; instead we will prove a

slightly weaker localised version of the Kakeya maximal inequality:

ZXT

TeT

Sg 51—71—1—7—5 <Z 571—1) 7 (62)

TeT

/
L% (Bg)

where p = nz—fl and ¢ = f—fl, and By denotes a ball in R” centred at 0 with radius R ~ §~2.

The technique in the proof is mainly by randomisation. Let T be the scaled family of

(671)"~1 x §~2-tubes as given, and denote {z7} to be their centres.

Without loss of generality, assume that the surface in the restriction conjecture is a piece
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of a paraboloid. We consider the collection of “Knapp caps” kr on the surface, which is
essentially the intersection of the surface with some n-dimensional ball in R™. (See also
4.1.3) where the normal of each cap kr is parallel to the tube T'. The caps can be taken

to be disjoint, each having surface measure ~ 5" 1.

We consider a randomised sum as follows:

= 3 Er (@) (),

TeT

where {Er}rer is a family of i.i.d. random variables with distributions P(Er = +1) = =

Then taking inverse Fourier transform,

(gda Z ST XHT x - Z‘T)

TeT

Applying (6.1), we get

HZ Er(w)(Xnpdo)™(x — IT)H , <e R6||g||Lq/(da) (6.3)

TeT LP (Bg)

To estimate both sides, we invoke Khinchin’s inequality, whose proof can be found in

many textbooks of probability theory:

Theorem 17. (Khinchin’s inequality) Let {E} be i.i.d. random variables with distribu-
tions P(E, = +1) = 1. Let {ay} = C. Then for 0 <p < o, N € N, we have:

E ( ) ~p (Z |ak|2> (6.4)

Z Ekak
Using this theorem, we estimate the p/-th power of the left hand side of (6.3) in the
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following way (the case p = 1 is trivial, so assume p > 1, thus p’ < o0):

p/

Z ST XNTdO- (27 - xT)

TeT e (Br)

=E J ZST (Xupdo) (x —zr)| dx
Br

TeT

= J E Z Er(w)(Xupdo) (z —xp)| |dx
Br

TeT

- (2 (o) (z —xTW) da

Recall the Knapp’s example introduced in 4.1.3, and we have:

|(Xepdo)™(z — 1)| 2 6" xr(2),

where each T is essentially the tubes given in the assumptions.

Applying this observation to the above, we get

/
D
2

| (Z (up o) - xT>|2> ds

/
P

oL o)

/
D

— g L (2 xm;)) da
ZXT

2
= §n=1p
TeT

.
2

L2 (Br)

Next we estimate the p’-th power of the right hand side of (6.3). By disjointness, we can
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compute easily that

p/

v .
E ((REHQHLQI(CIU)> ) = Rap/E ‘ Z (C/'T<(JJ)€27M:L‘T'7IXKT<77)

TeT

L7 (do)

/

~ RPY'E Z (5"_1) ‘1

TeT

“ﬁ

/
D
q

-~ Rsp/ (Z 577,—1)
TeT
Combining both sides, and recalling that R ~ 62, we have

2

q/
Z Xr <. 52(1771)75 (2 6111) :
L%/(BR) TeT

TeT

2n 2n

In particular, suppose the restriction conjecture is true. Then with p = =%, ¢ = =%, we
have:
n—1
Z Xr <. 52(17n)7€ (Z 5n1> :
TeT L%(BR) TeT
which is exactly the localised maximal Kakeya inequality (6.2) in the case p = f—fl,
_ 2
9=y

6.1.2 Partial Results and Hausdorff Dimensions

In this section we are going to investigate the partial results we can get by known re-
striction estimates. More precisely, suppose (6.1) does not hold for all, but just for some
exponents p’, ¢" in the feasible region. What is the implication for a lower bound for the

Hausdorff dimension of Kakeya sets in R"? We argue as follows.

If we rescale the sizes of the tubes back to our original case (6"~! x 1), we obtain a family
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of weaker Kakeya maximal inequalities:

ZXT

TeT

<, g (Z 5”—1> : (6.5)

TeT

7
L% (Rn)

With % = ¢k, q% = 1%’ (6.5) is equivalent to the following:
R

1
21— )— PK
2 XT <e 0 A (Z 5"_1> |
TeT LK (R™) TeT
. n / / 2pR
In this case, § = —2(1 — 2+), whence n — B¢y = 2q) —n = -n
K 2—pr

Recall that by Theorem 16, if (5.1) is true for some px < gk, ¢} < o and some [ € R,
then we have a lower bound n — ¢j for the Hausdorff dimensions for any Kakeya set in
R". Now in the case of exponents pgr,qr coming from the restriction estimates, we have

Pr < 2, hence ¢j < 0. Also, px < gk is equivalent to the condition pr < ¢g.

The problem is that pg < gr may not always hold. Thus one needs the results of the Pisier
factorisation theorem again; more precisely, this theorem tells us that if we can prove an
extension estimate of the form E : L*(S*~!) — LPz(R"), then it automatically holds that
E: L*(S*') — L*(R") for all s > p’,. Replacing pj, by s and applying Theorem 16, we

/
—n for the Hausdorff dimensions of a Kakeya set in R”. Lastly,

have a lower bound 5 -

-5
letting s — p’r, we obtain our desired conclusion. The interested reader may see Mattila

[7] or Yung [15] for more details.

Therefore we have the following results:

1. Suppose the restriction conjecture is true. Then (5.1) holds for pgr = f—fl, and hence

any Kakeya set in R™ has Hausdorff dimension n.

2. Let pg := 1 be the trivial endpoint. Then any Kakeya set in R" has Hausdorft

dimension at least 2 — n. This provides no information.

3. Let pr := 2(7:‘—;;1) be the Tomas-Stein exponent, and hence any Kakeya set in R™ has
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Hausdorfl dimension at least 1. This is also useless.

4. Let pl := 14—3 be the exponent obtained by Guth [5], which is the best up to now
in n = 3. Then any Kakeya set in R® has Hausdorff dimension at least 2.2. Still,
this estimate is worse than the easier bound given by Wolff’s hairbrush (For details

n+2

please refer to [7]), namely, 3= = 2.5.

Hence we see that this estimate is very rough, the main technical reason being the loss
at the exponent by doubling the power of ¢ in Khinchin’s inequality. In particular, the

partial result given by Tomas-Stein estimate provides no information.

6.2 From Maximal Kakeya Conjecture to Restriction

Conjecture

We saw that the restriction conjecture implies Maximal Kakeya Conjecture definitely.
Naturally, people may ask whether the converse holds. The answer is not known. Never-
theless, if we assume the following additional square function estimate, then the implica-

tion holds.

6.2.1 The Square Function Estimate

We will introduce the useful wave packet decomposition technique and the square function

estimate in this subsection. We formulate the problem as follows:

Let S be a hypersurface in R® with non-vanishing Gaussian curvature. Let R > 1 be
large, 6 = R_%, and consider the R~!-neighbourhood Ny of the hyper-surface S: Ny :=
{z € R" : d(x,S8) < R™'}. This thickening of the surface was introduced in Chapter 4.
Then we decompose Np into d-separated slabs © := {Sp} in the sense that the normal
vectors at the centres of the slabs are d-separated. To illustrate this, a typical example

when S is the parabola on [—1,1]""! is as follows.
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Cover [—1,1]""! with cubes {Qy} satisfying:

o diam(Qy) ~ 0.
e If a,b are centres of different cubes, then d(a,b) = 9.

e The cubes cover [—1,1]""! and have bounded overlap: 1 < Y., xq,(&) < C(n).

Then the slabs are defined by:
So:=1{(&,n+[€?) : €€ Qp, In| S R}, where ¢ is the centre of Q.

Notice that each slab Sy is contained in some (R’%)"_1 x R7! rectangle Ty with the
shortest side parallel to the normal direction of the slab. (The normal of each slab is
defined by the normal to the hyper-surface at its centre.) In general, the partition of the
coordinate plane may not consist of squares, but they should satisfy the properties listed

above.

With the above settings, for each Schwartz function f : R" — C whose Fourier transform is
supported on Ng, we define f@ = f Xo, Where xg := xg,. In view of the finite overlapping,
one expects that Y, fy would be similar to f. This suggests the following square function

estimate:

Conjecture 10 (Square Function Estimate for Slabs). Let f be a Schwartz function with

f supported on Ng. Then for 2 < p < 22 we have:
f

n—1’

[ fllzeny <e RE (Z !fa!z) (6.6)
)

Lr(R™)

This conjecture is also called the Reverse Littlewood-Paley inequality for slabs. Actually,
this conjecture is so strong that it can imply the Kakeya conjecture itself; See [3]. Thus

it implies the restriction conjecture as well, by the proof we are going to present.
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For p = 2 the conjecture is trivially true with no e-loss, due to the Plancherel identity:

2

> fo

0

2
s
0 L2(R™)
= ZZf €)x0, (€)1 (€)X, (€)d€

01 02

1O o (©)xm (©)de

v 01 02

[ .
~ | IF(E)PdE = || flIZ2@m

L2(R™)

(-

by the finite overlapping assumption.

6.2.2 The Wave Packet Decomposition

The wave packet decomposition is an important technique. Recall that we have decom-
posed f with its frequency localised to each slab. In this section we are going to further
decompose each slab into further sub-regions. We begin the technical part:

11

Fix ¢ € S(R™) whose Fourier transform is supported on (—5, 5)” and equals to 1 on

[_}19 ﬂn For each rectangle T, denote ar : [—}l, i]" — T be the natural invertible affine
transformation. More precisely, write ar(z) = p(D(z)) + xr, where zr is the centre

of T, p, D are the rotations and (non-uniform) dilations, respectively. Next we define
¢r: T — C by ¢r = ¢ oaz', and note that |T| ~ |D| := |det(D)|.

We will consider the (R_%)"*1 x R~ rectangle Tj discussed as above, and denote wy as
the normal to the slab Sy. With such fixed Tp, we wish to construct T(6) to be a collection
of finitely overlapping rectangles of sizes (R%)”_l x R with their longest sides parallel to
wy, and such that their union covers R"™. More precisely, these rectangles are essentially

the translates of the dual rectangle of Ty, and by abuse of notations we write each dual

rectangle in T(6) as T" also. We define the wave packet adapted to 7" € T () as

vr(z) = [T e "6 (),
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where &y denotes the centre of Sy.

With all the backgrounds introduced, we state the following estimate:

Theorem 18. Let f be a Schwartz function whose Fourier transform is supported on Ng,

and fix a slab Sp. Then there exists a collection T(6) as above, and a decomposition

folw) == ). ertor(x),

TGTQ

where cp are constants satisfying

2

P
>, lerl | =D foll2csy)-

TeT(H)
The proof is based on multivariable Fourier series.

Proof. Let Ty be the rectangle in T(#) centred at the origin, and let ay, = p o D for
some rotation p and some diagonal matrix D, whose entries are given by D; = R%,

1<i<n-—1,and D,, = R. Consider

~

96(&) == fo(D™'p(&) + &).

With suitable choice of constants, g can be made to be supported on (—}l, i)". In such

case, we may view gy as a smooth function defined on the torus [—%, %]" Thus it admits

a Fourier series expansion:

(€)= Y ugeS

keZ™

where, by Parsevel identity, the wu;’s satisty:

1
2
<Z |“k|2> = llgoll 21,11

kezm
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However, by definition of gy, we also have:

l A
901l L2(-1,19m) = D2 | foll2(s0)

Thus it remains to observe that this decomposition of gy yields the desired decomposition

of fy. Letting & := pD~1(€) + &, we have:

fo(&) = go(DpH (€ = &))

= T e E0)
keZ™

= > upe?™ P CDG(Dp (€ - &),

kezn

the last equality following from the definition of ¢ and the support of f .

Taking inverse Fourier transform,

f@(x) _ Z uk|D|—162m’x~§e¢(k + D_l,o_lx) _ Z uk|D|—162ﬂiJI~€9¢Tk($)’

kez™ keZm™

n—1

where T},’s are rectangles centred at p(D(k)) with equal dimensions ~ (R2)"~! x R, parallel
to wy, such that it covers R™. Now we can define our collection T(0) := {T} : k € Z"}, and
notice that in this special case we can make the rectangles uniformly distributed so that

they touch but are non-overlapping (having disjoint interiors). Hence if for each T' € T(0),

we set ¢p 1= uy, whenever T' = T}, for some k € Z", we have such decomposition, with

Lo
>, lerl | =D ollacsy)-

TeT(0)
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6.2.3 The Square Function Estimate Implies the Restriction
Conjecture
Having assumed the square function estimate, we will show that the maximal Kakeya

conjecture implies the restriction conjecture with the aid of the wave packet decomposi-

tion.

We will show the following extension estimate:

M. <. R°® n
1) N s g,y B N o

for all g € L%(da) and all € > 0.

By the consequences of the Pisier factorisation theorem (See e.g. Mattila [7] or Yung

[15]), it suffices to show the following:

[(g9do)7]|  2n Se R|gll o (doy

HLm(BR) ~
for all g € L*(do) and all € > 0.

This is in turn, by the thickening lemma 2, equivalent to the following:

11, ) e B I i

for all Schwartz function f whose Fourier transform is supported on Ny, where Ni denotes

the R~'-neighbourhood in R” of the surface (S, do). We can further normalise || f|.o = 1.

We claim that

<Z f9’2) $a Ra_l (6'7>
0

2n
LA—T (Rn)

Then using the conjectured square function estimate (6.6), we are done.

81



To prove (6.7), the technical problem is that ¢ is not compactly supported. For each
cap 0 and each T € T(), where T(0) is defined as in the wave packet decomposition of

Theorem 18, we decompose

¢r(z) = > or(@) - xru(x),

lez™

where y7, is the characteristic function of the rectangle ar([—1,1]" + L), so that {xr, :

[ € Z"} forms a partition of R" (a.e.). By rapid decay of ¢, we have, say, for N = n + 1,

[fr (@) xra(@) < (1+ 1) xra()

Hence

[r(@)] < TI7 X (14 1) M xra(e)

lez™

Fix a slab Sy. Decompose fy = ZTGT((,) crpr as in the wave packet decomposition in

Theorem 18, with

2

l ~
2 lerl | ~ T foll 2gsy)-

TeT(0)
Then
2 2
S oervr] < | lerllTI™ S+l N xrala)
T€eT(0) T€eT(0) lezm

2

2, A+l si(x)

lez™

Y

where S)(z) := ZTeT(G) ler|| T xra ().
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Thus

[

1
2 2

MUY e | < [ DDA+ IV Si()

0 |TeT(9) 0 |lezm

(By Minkowski) < Z (Z(l + |l|)_2N|Sl(x)|2>

[NIE

= 2 (i) (Z !Sz(w)l2>

We consider the term Y, |.S;(x)|*:

2 IS@)F =351 X lerllT| ™ xqu(e Z Y lerPITI xrale),

0 0 |TeT(9) 0 TeT(9)

by disjointness of the supports of x7;’s as [ varies.

Therefore we have:

2 crdr

= @+

ler |||~ xra (=)

213
0 |TeT(0) ] om
LT (R")
1
2
< Z(HNDN< \Sz(:v)!2>
leZ™ 6 L%(R")
1
2
< Y @+ < \Sz(x)!2>
leZ™ 6 L%(R”)
23
0

lezm TeT(0) LT (R
2
= 2 A+ D0 2 lerPITI xra(a)
lezn 0 TeT(6) Lﬁ(R")

1

2

~RTE AN Z ler[Pxra(a . (6.8)
0 TeT(

leZ™ 0) L% (&™)
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Our main technique is again randomisation. Note that ZTGT(G) ler|? < |T|||f6||L2 (Se) S

T']|Se| < 1. By scaling, there is a nonnegative sequence {dr} with X}y, dr = 1 so that

DU lerPxra(z) £ ) drxra(e

TeT(0) TeT(6)

We endow the space [ [, T(6) with a probability measure P such that

P((T)o) = [T dn.
0

Fix z € R". Consider a random variable F,: [[,T(f) — R, that sends a point (7p)g to

the number )}, x7,,:(z). The expectation of F is >, ZTG’]I‘(O) drxri(x), so

SN lerlanile (2)@, )

9 TeT(6)

By Minkowski’s inequality,

I

> Z ler|*xri(x <E|> xu()

0 TeT(6 LH%T(R") L7—T (Rn)
and for each choice (Tj)g, we have
< R¢ Rn—l
Ln%f(Rn)

by Conjecture 9.

Continuing the estimate in (6.8), we have:

N

Z Z lerxra(z <. R°R"7.

0 _n_
TeT(0 LA~ (Rn)
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Thus to conclude

=

1

@fﬁ)Q <>y cTwT2

2n_ 0 |TeT(6 n
Ln=T(R™) ©) L%(R")

1

< RRTE Y (1+ i) VR

lez™

~ R_1+6.

Hence we have proved that the maximal Kakeya conjecture, combined with the square
function estimate, will imply the local version of the restriction conjecture with endpoints

in the whole range.
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