Lecture 2: Introduction to Fractals

Diversity in Mathematics, 2019

Tongou Yang
The University of British Columbia, Vancouver toyang@math.ubc.ca
July 2019

Cantor Set

The most classical nontrivial example of a fractal is the Cantor set. \longrightarrow
\qquad
\qquad $\underline{\square}$ - - - -

Cantor Set: Construction

Level 0	0							
Level 1	0		$1 / 3$		2/3		$3 / 3$	
Level 2	0	1/9	2/9	3/9	6/9	7/9	8/9	9/9
Level 3					-	-		-
Level 4			=		=		-	-

Base 3 Expansions

Restrict ourselves to $[0,1]$. Observation:

- All numbers between 0 and $1 / 3$
\approx All numbers such that the first digit is 0 in base 3 expansion
- All numbers between $1 / 3$ and $2 / 3$
\approx All numbers such that the first digit is 1 in base 3 expansion
- All numbers between $2 / 3$ and 1
\approx All numbers such that the first digit is 2 in base 3 expansion

Base 3 Expansions

Restrict ourselves to $[0,1]$. Observation:

- All numbers between 0 and $1 / 3$
\approx All numbers such that the first digit is 0 in base 3 expansion
- All numbers between $1 / 3$ and $2 / 3$
\approx All numbers such that the first digit is 1 in base 3 expansion
- All numbers between $2 / 3$ and 1
\approx All numbers such that the first digit is 2 in base 3 expansion
Question: Why " \approx "?

Base 3 Expansions

Restrict ourselves to $[0,1]$. Observation:

- All numbers between 0 and $1 / 3$
\approx All numbers such that the first digit is 0 in base 3 expansion
- All numbers between $1 / 3$ and $2 / 3$
\approx All numbers such that the first digit is 1 in base 3 expansion
- All numbers between $2 / 3$ and 1
\approx All numbers such that the first digit is 2 in base 3 expansion
Question: Why " \approx "?
Ans: some numbers have 2 different digit expansions. For example, $0.99999 \cdots=1$!

Solution to the glitch

Using long division from last time, we have

$$
1 / 3=0.1_{(3)}, \quad 2 / 3=0.2_{(3)} .
$$

Solution to the glitch

Using long division from last time, we have

$$
1 / 3=0.1_{(3)}, \quad 2 / 3=0.2_{(3)} .
$$

But it is also true that (exercise!)

$$
2 / 3=0.1111 \cdots{ }_{(3)}
$$

Solution to the glitch

Using long division from last time, we have

$$
1 / 3=0.1_{(3)}, \quad 2 / 3=0.2_{(3)}
$$

But it is also true that (exercise!)

$$
2 / 3=0.1111 \cdots{ }_{(3)}
$$

To make the process more "symmetric", we would like to remove both $1 / 3$ and $2 / 3$ from the first step.

Solution to the glitch

Using long division from last time, we have

$$
1 / 3=0.1_{(3)}, \quad 2 / 3=0.2_{(3)}
$$

But it is also true that (exercise!)

$$
2 / 3=0.1111 \cdots(3)
$$

To make the process more "symmetric", we would like to remove both $1 / 3$ and $2 / 3$ from the first step.
Convention: In general, if a number has 2 different digit expansions in base 3 , such that either one has no " 1 " among the digits, include that number in the Cantor set.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

- Step 0: Start with the interval $[0,1]$. Call this interval C_{0}.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

- Step 0: Start with the interval $[0,1]$. Call this interval C_{0}.
- Step 1: Remove all numbers from C_{0} with a " 1 " on its 1 st digit in base 3 expansion. Call the resulting set C_{1}.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

- Step 0: Start with the interval $[0,1]$. Call this interval C_{0}.
- Step 1: Remove all numbers from C_{0} with a " 1 " on its 1 st digit in base 3 expansion. Call the resulting set C_{1}.
- Step 2: Remove all numbers from C_{1} with a " 1 " on its 2 nd digit in base 3 expansion. Call the resulting set C_{2}.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

- Step 0: Start with the interval $[0,1]$. Call this interval C_{0}.
- Step 1: Remove all numbers from C_{0} with a " 1 " on its 1 st digit in base 3 expansion. Call the resulting set C_{1}.
- Step 2: Remove all numbers from C_{1} with a " 1 " on its 2 nd digit in base 3 expansion. Call the resulting set C_{2}.
- Step 3: Remove all numbers from C_{2} with a " 1 " on its 3 rd digit in base 3 expansion. Call the resulting set C_{3}.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

- Step 0: Start with the interval $[0,1]$. Call this interval C_{0}.
- Step 1: Remove all numbers from C_{0} with a " 1 " on its 1 st digit in base 3 expansion. Call the resulting set C_{1}.
- Step 2: Remove all numbers from C_{1} with a " 1 " on its 2 nd digit in base 3 expansion. Call the resulting set C_{2}.
- Step 3: Remove all numbers from C_{2} with a " 1 " on its 3 rd digit in base 3 expansion. Call the resulting set C_{3}.
- Continue the process for infinitely many times.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

- Step 0: Start with the interval $[0,1]$. Call this interval C_{0}.
- Step 1: Remove all numbers from C_{0} with a " 1 " on its 1 st digit in base 3 expansion. Call the resulting set C_{1}.
- Step 2: Remove all numbers from C_{1} with a " 1 " on its 2 nd digit in base 3 expansion. Call the resulting set C_{2}.
- Step 3: Remove all numbers from C_{2} with a " 1 " on its 3 rd digit in base 3 expansion. Call the resulting set C_{3}.
- Continue the process for infinitely many times.

The Cantor set C is defined by the symbol $\cap_{n=0}^{\infty} C_{n}$.

Base 3 Expansions

Here is a "mathematical" description of how the Cantor set is formed.

- Step 0: Start with the interval $[0,1]$. Call this interval C_{0}.
- Step 1: Remove all numbers from C_{0} with a " 1 " on its 1 st digit in base 3 expansion. Call the resulting set C_{1}.
- Step 2: Remove all numbers from C_{1} with a " 1 " on its 2 nd digit in base 3 expansion. Call the resulting set C_{2}.
- Step 3: Remove all numbers from C_{2} with a " 1 " on its 3 rd digit in base 3 expansion. Call the resulting set C_{3}.
- Continue the process for infinitely many times.

The Cantor set C is defined by the symbol $\cap_{n=0}^{\infty} C_{n}$.
Exercise: Express C_{1}, C_{2}, C_{3} using interval notations and logic symbols in set theory.

Cantor Set

Theorem

The Cantor set consists of exactly (with the convention above) all numbers in $[0,1]$ such that the digit " 1 " never appears in their base 3 expansions.

Exercise

Are the following numbers in the Cantor set?

- $1 / 2$
- $4 / 5$
- $2 / 9$
- $1 / 4$
- $\pi / 10 \approx 0.314159265 \cdots$

Self-similarity of Cantor Set

Explain why the Cantor set is self-similar.

Self-similarity of Cantor Set

Explain why the Cantor set is self-similar.

- By drawing pictures;

Self-similarity of Cantor Set

Explain why the Cantor set is self-similar.

- By drawing pictures;
- By computation:

$$
3 C=C \cup(C+2) .
$$

Self-similarity of Cantor Set

Explain why the Cantor set is self-similar.

- By drawing pictures;
- By computation:

$$
3 C=C \cup(C+2)
$$

Fun fact: if you pick 2 numbers from the Cantor set and consider their sum, and if you put all such sums into a collection of numbers, the collection is exactly the interval $[0,2]$!

How Large is the Cantor Set?

Here, by largeness we mean "length".

Method 1: Computing the total length of intervals removed at each step. (Exercise using infinite summation!)

How Large is the Cantor Set?

Here, by largeness we mean "length".

Method 1: Computing the total length of intervals removed at each step. (Exercise using infinite summation!)
The answer is:

$$
1 \times \frac{1}{3}+2 \times \frac{1}{9}+4 \times \frac{1}{3^{3}}+2^{3} \times \frac{1}{3^{4}}+\cdots=1
$$

How Large is the Cantor Set?

Method 2: A probabilistic view

How Large is the Cantor Set?

Method 2: A probabilistic view

- Observe: if I is a subinterval of $[0,1]$, probability of choosing a number from I is equal to the length of I.

How Large is the Cantor Set?

Method 2: A probabilistic view

- Observe: if I is a subinterval of $[0,1]$, probability of choosing a number from I is equal to the length of I.
- Suppose you choose a number from $0,1,2$ randomly with equal probability. What is the probability that you do NOT get 1 ?

How Large is the Cantor Set?

Method 2: A probabilistic view

- Observe: if I is a subinterval of $[0,1]$, probability of choosing a number from I is equal to the length of I.
- Suppose you choose a number from $0,1,2$ randomly with equal probability. What is the probability that you do NOT get 1 ?
- Probability of not getting 1 in each step is $2 / 3$. After infinitely many times, the probability of getting a number in the Cantor set equals

$$
\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \cdots=0
$$

Dimension of a Fractal: Intuition

Consider \mathbb{R}^{3}, our 3D world.

- If a rectangular prism has side length a, b, c, respectively, what is its volume? What do you think is its dimension?

Dimension of a Fractal: Intuition

Consider \mathbb{R}^{3}, our 3D world.

- If a rectangular prism has side length a, b, c, respectively, what is its volume? What do you think is its dimension?
- If we let a decrease to 0 , this becomes a rectangle on a plane. What is the (3D) volume of the rectangle and what is its dimension?

Dimension of a Fractal: Intuition

Consider \mathbb{R}^{3}, our 3D world.

- If a rectangular prism has side length a, b, c, respectively, what is its volume? What do you think is its dimension?
- If we let a decrease to 0 , this becomes a rectangle on a plane. What is the (3D) volume of the rectangle and what is its dimension?
- If we further let b decrease to 0 , this becomes a line segment. Volume? Dimension?

Dimension of a Fractal: Intuition

Consider \mathbb{R}^{3}, our 3D world.

- If a rectangular prism has side length a, b, c, respectively, what is its volume? What do you think is its dimension?
- If we let a decrease to 0 , this becomes a rectangle on a plane. What is the (3D) volume of the rectangle and what is its dimension?
- If we further let b decrease to 0 , this becomes a line segment. Volume? Dimension?
From 3D perspective, both a rectangle and a line segment have 0 volume, but rectangle $>$ line segment significantly.

Fractal Dimension: Intuition

- What is the dimension of a sphere in 3D?

Fractal Dimension: Intuition

- What is the dimension of a sphere in 3D?
- What is the dimension of a coil (helical) spring in 3D (ignoring thickness)?
- What is the dimension of a parabola in 2D?

Dimension of a Fractal

Various ways; the easiest is the Minkowski dimension. In this lecture, dimension=Minkowski dimension.

Figure: German Mathematician: Hermann Minkowski

Dimension of a Fractal

Note: for easy explanation, the definition in this lecture is different from the standard one, but with the same underlying philosophy.

Dimension of a Fractal

Note: for easy explanation, the definition in this lecture is different from the standard one, but with the same underlying philosophy.

Definition (Covering Number)

Let $\delta>0$ be a small positive number (like 1, 0.1, 0.01, etc.) For $d=1,2,3$, we cover the whole real line, plane, space, respectively, by d-dimensional grids of side length δ. If S is any geometric figure, we define
$N_{\delta}(S)=$ The number of grids which contain some part of S.
We call $N_{\delta}(S)$ the covering number of S by grids of side length δ.

Covering by grids

Covering by grids

Question 1: if $S=$ Tom and $\delta=1$, what is $N_{\delta}(S)$?

Covering by grids

Question 1: if $S=$ Tom and $\delta=1$, what is $N_{\delta}(S)$?
Question 2: what if $S=$ boundary of Tom?

Covering by grids: 2D Example

Question 1: if $S=$ Tom and $\delta=1$, what is $N_{\delta}(S)$? 46
Question 2: what if $S=$ boundary of Tom? $46-11=35$

Dimension of a Fractal

- With $N_{\delta}(S)$ defined above, the dimension of S is defined by

$$
\operatorname{dim}(S)=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(S)}{\log \left(\delta^{-1}\right)}
$$

Dimension of a Fractal

- With $N_{\delta}(S)$ defined above, the dimension of S is defined by

$$
\operatorname{dim}(S)=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(S)}{\log \left(\delta^{-1}\right)}
$$

Roughly speaking, to compute the dimension, we need to pick a suitable integer k, let $\delta=k^{-n}$, and let n (the number of steps in the construction) go to infinity.

- This definition applies to $d=1,2,3$ (and even larger dimensions!)

Dimension of Cantor Set C

- Identify the underlying dimension: $d=1$.
- Fix n so we are considering the n-th step.

Dimension of Cantor Set C

- Identify the underlying dimension: $d=1$.
- Fix n so we are considering the n-th step.
- Since we trisect the intervals, let us take $\delta=3^{-n}$.

Dimension of Cantor Set C

- Identify the underlying dimension: $d=1$.
- Fix n so we are considering the n-th step.
- Since we trisect the intervals, let us take $\delta=3^{-n}$.
- Then $N_{\delta}(S)=2^{n}$.
- The answer is

$$
\operatorname{dim}(C)=\frac{\log \left(2^{n}\right)}{\log \left(3^{n}\right)}=\frac{\log 2}{\log 3} \approx 0.63
$$

- $3=$ Total number of intervals in each step; $2=$ Number of intervals remaining in each step.

Dimension of Regular Shapes

Let $d=3$. Find the dimensions of the following figures:

- A (solid) cube.
- A sphere.
- An arbitrary smooth curve (like a helix).
- A collection of 100 scattered points.
- The surface of the earth, along with all aircraft (regarded as points) in flight at some moment.

Dimension of Regular Shapes

Let $d=3$. Find the dimensions of the following figures:

- A (solid) cube.
- A sphere.
- An arbitrary smooth curve (like a helix).
- A collection of 100 scattered points.
- The surface of the earth, along with all aircraft (regarded as points) in flight at some moment.
If there are finitely many objects, the dimension of the union is equal to the largest among the individual dimensions.

Dimension of Regular Shapes

Let $d=3$. Find the dimensions of the following figures:

- A (solid) cube. dim $=3$
- A sphere. dim $=2$
- An arbitrary smooth curve (like a helix). $\operatorname{dim}=1$
- A collection of 100 scattered points. $\operatorname{dim}=0$
- The surface of the earth, along with all aircraft (regarded as points) in flight. $\operatorname{dim}=2$

Generalisation of Cantor Set

Question: How can you generalise the definition of the Cantor set?

The End

