Lecture 1: Introduction to Fractals

Diversity in Mathematics, 2019

Tongou Yang
The University of British Columbia, Vancouver toyang@math.ubc.ca
July, 2019

Does it Stop?

$$
\text { K< }<\triangle \triangle \ggg \rightarrow+
$$

More Examples

More Examples

More Regular Shapes

Length of Coastlines

Trivia: Which country has the longest coastline in the world? Which is the runner-up?
List of countries by length of coastline

Length of Coastlines

Trivia: Which country has the longest coastline in the world? Which is the runner-up?
List of countries by length of coastline

(a) Map of Canada

Length of Coastlines

Trivia: Which country has the longest coastline in the world? Which is the runner-up?
List of countries by length of coastline

(a) Map of Canada

(b) Map of Nunavut

Length of Coastlines

Figure: Map of Russia

Length of Coastlines

Norwegian: Fjord

Figure: Map of Norway (South Part)

Crystal Structure

(a) Crystal of Sodium Chloride

Crystal Structure

(a) Crystal of Sodium Chloride

Figure 7.16: Crystal structure of NaCl
(b) Lattice Structure of Sodium Chloride

Crystal Structure

(a) Crystal of Emerald

Crystal Structure

(a) Crystal of Emerald

(b) Lattice Structure of Emerald

Fractal Geometry

Fractal Geometry is the study of geometric objects possessing self-similarity or approximate self-similarity.

Self-similarity

Some terminology:

Self-similarity

Some terminology:

- Two geometric figures A and B are said to be congruent if one could be turned into the other using the following transformations: translations, rotations, and mirror reflections.

Self-similarity

Some terminology:

- Two geometric figures A and B are said to be congruent if one could be turned into the other using the following transformations: translations, rotations, and mirror reflections.
- A and B are said to be similar if one could be turned into the other using the following transformations: translations, rotations, mirror reflections, and dilations.

Self-similarity

Some terminology:

- Two geometric figures A and B are said to be congruent if one could be turned into the other using the following transformations: translations, rotations, and mirror reflections.
- A and B are said to be similar if one could be turned into the other using the following transformations: translations, rotations, mirror reflections, and dilations.
- If A is a geometric figure, we say it is self-similar if some part of A is similar to the whole of A.

Are These Self-similar?

- A solid disk on the plane

Are These Self-similar?

- A solid disk on the plane
- A solid irregular triangle

Are These Self-similar?

- A solid disk on the plane
- A solid irregular triangle
- The boundary of a solid square

Are These Self-similar?

- A solid disk on the plane
- A solid irregular triangle
- The boundary of a solid square
- A union of two intervals

Are These Self-similar?

- A solid disk on the plane
- A solid irregular triangle
- The boundary of a solid square
- A union of two intervals
- A sphere (not a ball)

Are These Self-similar?

- A solid disk on the plane
- A solid irregular triangle
- The boundary of a solid square
- A union of two intervals
- A sphere (not a ball)

Every (bounded) shape which contains "a solid part" is self-similar; some shape without "a solid part" is not self-similar.

Sierpiński Triangle: A Non-Solid Example

Wacław Sierpiński: Polish Mathematician

va-tswaf share-pin-ski (English approximation)

Sierpiński Triangle: Construction

Step 0: Start with a solid triangle (with its boundary).

Sierpiński Triangle: Construction

Step 1: Find the midpoint of each side. Remove the inner triangle formed (keeping all boundaries). Get 3 solid triangles.

Question: What does the boundary of the shape look like? Is it self-similar?

Sierpiński Triangle: Construction

Step 2: Do the same for the 3 solid sub-triangles formed by the last step. Get $9=3^{2}$ triangles.

Sierpiński Triangle: Construction

Step 3: Do the same for the 3^{2} solid sub-triangles formed by the last step. Get 3^{3} triangles.

Sierpiński Triangle: Construction

Step 4: Do the same for the 3^{3} solid sub-triangles formed by the last step. Get 3^{4} triangles.

Sierpiński Triangle: Construction

Step 5: Do the same for the 3^{4} solid sub-triangles formed by the last step. Get 3^{5} triangles.

Sierpiński Triangle: Construction

Step 6: Do the same for the 3^{5} solid sub-triangles formed by the last step. Get 3^{6} triangles.

Question: Is the boundary of the shape self-similar?

Sierpiński Triangle: Construction

Step ∞ : Do this for infinitely many times.

- Is there any solid part remaining?
- What is its boundary? Is it self-similar?
- What is the "area" of the remaining figure?

Mystery Figure: Is There Something or Nothing?

We will need the following formula for an infinite sum of geometric sequence:

$$
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}, \text { if } 0<r<1
$$

Mystery Figure: Is There Something or Nothing?

We will need the following formula for an infinite sum of geometric sequence:

$$
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}, \text { if } 0<r<1 .
$$

Assume the original triangle has area 1.

- The area deleted at Step n is (why?):

$$
3^{n-1} \times\left(\frac{1}{4}\right)^{n}=\frac{1}{4} \times\left(\frac{3}{4}\right)^{n-1} .
$$

Mystery Figure: Is There Something or Nothing?

We will need the following formula for an infinite sum of geometric sequence:

$$
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}, \text { if } 0<r<1
$$

Assume the original triangle has area 1.

- The area deleted at Step n is (why?):

$$
\begin{gathered}
3^{n-1} \times\left(\frac{1}{4}\right)^{n}=\frac{1}{4} \times\left(\frac{3}{4}\right)^{n-1} \\
\frac{1}{4} \times\left[1+\frac{3}{4}+\left(\frac{3}{4}\right)^{2}+\cdots\right]=\frac{1}{4} \times \frac{1}{1-3 / 4}=1
\end{gathered}
$$

Mystery Figure: Is There Something or Nothing?

We will need the following formula for an infinite sum of geometric sequence:

$$
1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r}, \text { if } 0<r<1
$$

Assume the original triangle has area 1.

- The area deleted at Step n is (why?):

$$
\begin{gathered}
3^{n-1} \times\left(\frac{1}{4}\right)^{n}=\frac{1}{4} \times\left(\frac{3}{4}\right)^{n-1} \\
\frac{1}{4} \times\left[1+\frac{3}{4}+\left(\frac{3}{4}\right)^{2}+\cdots\right]=\frac{1}{4} \times \frac{1}{1-3 / 4}=1
\end{gathered}
$$

Nothing left? But at least the 3 sides of the original triangle are still there! (Recall we have kept all boundaries)

Preliminaries for the Lectures

(1) Sum of geometric sequences
(2) Intervals on the real line
(3) Logarithmic functions
(4) Basic set theory
(5) Base n Digit expansions

1. Sum of Geometric Sequences: Derivation

We will first prove the partial sum formula

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

1. Sum of Geometric Sequences: Derivation

We will first prove the partial sum formula

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

It suffices to verify that

$$
(1-r)\left(1+r+r^{2}+r^{3}+\cdots+r^{n}\right)=1-r^{n+1}
$$

1. Sum of Geometric Sequences: Derivation

We will first prove the partial sum formula

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

It suffices to verify that

$$
(1-r)\left(1+r+r^{2}+r^{3}+\cdots+r^{n}\right)=1-r^{n+1}
$$

As n goes to infinity, the term r^{n+1} in the partial sum becomes negligible since $0<r<1$.

Exercise

(1) Find

$$
S_{1}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

Exercise

(1) Find

$$
S_{1}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

(2) Find

$$
S_{2}=\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\frac{8}{81}+\cdots
$$

Exercise

(1) Find

$$
S_{1}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

(2) Find

$$
S_{2}=\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\frac{8}{81}+\cdots
$$

A Good Picture

2. Logarithmic Functions: A Quick Review

- Let $a, b>0, a \neq 1$. The notation $c=\log _{a} b$ means $a^{c}=b$.

2. Logarithmic Functions: A Quick Review

- Let $a, b>0, a \neq 1$. The notation $c=\log _{a} b$ means $a^{c}=b$.
- For example,

$$
\log _{2} 32=5 \Longleftrightarrow 2^{5}=32
$$

2. Logarithmic Functions: A Quick Review

- Let $a, b>0, a \neq 1$. The notation $c=\log _{a} b$ means $a^{c}=b$.
- For example,

$$
\log _{2} 32=5 \Longleftrightarrow 2^{5}=32
$$

- We use $\ln b$ to denote $\log _{e} b$ where $e \approx 2.718$ is the base of the natural logarithm. (Remark: the choice of base is unimportant in this lecture)

2. Logarithmic Functions: A Quick Review

- Let $a, b>0, a \neq 1$. The notation $c=\log _{a} b$ means $a^{c}=b$.
- For example,

$$
\log _{2} 32=5 \Longleftrightarrow 2^{5}=32
$$

- We use $\ln b$ to denote $\log _{e} b$ where $e \approx 2.718$ is the base of the natural logarithm. (Remark: the choice of base is unimportant in this lecture)
- We have the following formulas (where $x, y>0, n$ is an integer):

$$
\ln (x y)=\ln x+\ln y, \quad \ln \left(x^{n}\right)=n \ln x, \quad \ln \left(x^{-1}\right)=-\ln x .
$$

2. Logarithmic Functions: A Quick Review

We have:

$$
\ln x=\left\{\begin{array}{l}
\text { is not defined, if } x<0 \\
<0, \text { if } 0<x<1 \\
=0, \text { if } x=1 \\
>0, \text { if } x>1
\end{array}\right.
$$

Exercise

(1) Simplify
$\frac{\ln 2}{\ln 8}$.

Exercise

(1) Simplify

$$
\frac{\ln 2}{\ln 8}
$$

(2) Simplify

$$
\frac{\ln \left(2^{n}\right)+\ln \left(2 \times 3^{n}\right)}{\ln \left(6^{n}\right)}
$$

where n is a natural number.

3. Intervals on the Real Line: A Quick Review

Let \mathbb{R} denote the set of all real numbers (the real line). Let $a<b$ be real numbers. Then

3. Intervals on the Real Line: A Quick Review

Let \mathbb{R} denote the set of all real numbers (the real line). Let $a<b$ be real numbers. Then

- The interval (a, b) is equal to the set of all real numbers c satisfying $a<c<b$. Both parentheses: open intervals.

3. Intervals on the Real Line: A Quick Review

Let \mathbb{R} denote the set of all real numbers (the real line). Let $a<b$ be real numbers. Then

- The interval (a, b) is equal to the set of all real numbers c satisfying $a<c<b$. Both parentheses: open intervals.
- The interval $[a, b]$ is equal to the set of all real numbers c satisfying $a \leq c \leq b$. Both square brackets: closed intervals.

3. Intervals on the Real Line: A Quick Review

Let \mathbb{R} denote the set of all real numbers (the real line). Let $a<b$ be real numbers. Then

- The interval (a, b) is equal to the set of all real numbers c satisfying $a<c<b$. Both parentheses: open intervals.
- The interval $[a, b]$ is equal to the set of all real numbers c satisfying $a \leq c \leq b$. Both square brackets: closed intervals.
- Similar definitions apply to $[a, b),(a, b]$. We call them half-open-half-closed intervals.
The above are called bounded intervals.

3. Intervals on the Real Line: A Quick Review

- The interval (a, ∞) is equal to the set of all real numbers c satisfying $a<c$. This is an unbounded open interval.
- The interval $[a, \infty)$ is equal to the set of all real numbers c satisfying $a \leq c$. This is an unbounded closed interval.
- Similar definitions apply to $(-\infty, b),(-\infty, b]$.

4. Basic Set Operations

(1) If A, B are sets, then $A \cap B$ denotes the set of all elements that lie in both A and B.

4. Basic Set Operations

(1) If A, B are sets, then $A \cap B$ denotes the set of all elements that lie in both A and B.
(2) $A \cup B$ denotes the set of all elements that lie in either A or B (or in both).

4. Basic Set Operations

(1) If A, B are sets, then $A \cap B$ denotes the set of all elements that lie in both A and B.
(2) $A \cup B$ denotes the set of all elements that lie in either A or B (or in both).
(3) $A \backslash B$ denotes the set of all elements that lie in A but not B.

Exercise

(1) Find $[0,1) \cap(0.5,2)$.
(2) Find $[0,1] \backslash(1 / 3,2 / 3)$.
(3) Find

$$
([0,1 / 4] \cup[3 / 4,1]) \backslash((1 / 16,3 / 16) \cup(13 / 16,15 / 16))
$$

5. Base n Digit Expansions

In our usual base 10 (decimal) representation, what does the following numbers mean?

$$
1234=1 \times 10^{3}+2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}
$$

5. Base n Digit Expansions

In our usual base 10 (decimal) representation, what does the following numbers mean?

$$
1234=1 \times 10^{3}+2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}
$$

$$
3.1415=3 \times 10^{0}+1 \times 10^{-1}+4 \times 10^{-2}+1 \times 10^{-3}+5 \times 10^{-4} .
$$

5. Base n Digit Expansions

In our usual base 10 (decimal) representation, what does the following numbers mean?

$$
1234=1 \times 10^{3}+2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}
$$

$$
3.1415=3 \times 10^{0}+1 \times 10^{-1}+4 \times 10^{-2}+1 \times 10^{-3}+5 \times 10^{-4} .
$$

Binary expansion (base 2):

$$
1010_{(2)}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=10_{(10)}
$$

5. Base n Digit Expansions

In our usual base 10 (decimal) representation, what does the following numbers mean?

$$
1234=1 \times 10^{3}+2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}
$$

$$
3.1415=3 \times 10^{0}+1 \times 10^{-1}+4 \times 10^{-2}+1 \times 10^{-3}+5 \times 10^{-4} .
$$

Binary expansion (base 2):

$$
\begin{aligned}
& 1010_{(2)}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=10_{(10)} \\
& 0.11_{(2)}=1 \times 2^{-1}+1 \times 2^{-2}=\left(\frac{3}{4}\right)_{(10)}=0.75_{(10)}
\end{aligned}
$$

5. Base n Digit Expansions

In our usual base 10 (decimal) representation, what does the following numbers mean?

$$
1234=1 \times 10^{3}+2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}
$$

$$
3.1415=3 \times 10^{0}+1 \times 10^{-1}+4 \times 10^{-2}+1 \times 10^{-3}+5 \times 10^{-4} .
$$

Binary expansion (base 2):

$$
\begin{gathered}
1010_{(2)}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=10_{(10)} \\
0.11_{(2)}=1 \times 2^{-1}+1 \times 2^{-2}=\left(\frac{3}{4}\right)_{(10)}=0.75_{(10)}
\end{gathered}
$$

Conventionally, if a number is in base 10, we omit the subscript (10).

5. Base n Digit Expansions

- Let $n \geq 2$ be a natural number. Given a real number in the form of base n expansion, it is easy to compute its corresponding base 10 expansion. What about the reverse direction?

5. Base n Digit Expansions

- Let $n \geq 2$ be a natural number. Given a real number in the form of base n expansion, it is easy to compute its corresponding base 10 expansion. What about the reverse direction?

Theorem 0.1

Let $0 \leq x<1$ be a real number and $n \geq 2$ be a natural number. Then there exists a (possibly infinite) sequence of numbers $a_{k}(k=1,2,3, \ldots)$, each one of them being one among $0,1,2,3, \ldots, n-1$, such that

$$
x=a_{1} n^{-1}+a_{2} n^{-2}+a_{3} n^{-3}+\cdots .
$$

5. Base n Digit Expansions

- Let $n \geq 2$ be a natural number. Given a real number in the form of base n expansion, it is easy to compute its corresponding base 10 expansion. What about the reverse direction?

Theorem 0.1

Let $0 \leq x<1$ be a real number and $n \geq 2$ be a natural number. Then there exists a (possibly infinite) sequence of numbers $a_{k}(k=1,2,3, \ldots)$, each one of them being one among $0,1,2,3, \ldots, n-1$, such that

$$
x=a_{1} n^{-1}+a_{2} n^{-2}+a_{3} n^{-3}+\cdots
$$

- The number 10 is nothing special at all! We are used to the base 10 systems mostly because we have 10 fingers!

An Example

Write 0.34375 into base $n=4$ expansion.

An Example

Write 0.34375 into base $n=4$ expansion.
Algorithm (A Calculator may help).:
(1) Let $s_{1}=0.34375$. Find the largest integer a_{1} such that $a_{1} \times 4^{-1} \leq s_{1}$. We get $a_{1}=1$.

An Example

Write 0.34375 into base $n=4$ expansion.
Algorithm (A Calculator may help).:
(1) Let $s_{1}=0.34375$. Find the largest integer a_{1} such that $a_{1} \times 4^{-1} \leq s_{1}$. We get $a_{1}=1$.
(2) Let $s_{2}=s_{1}-a_{1} \times 4^{-1}=0.09375$. Find the largest integer a_{2} such that $a_{2} \times 4^{-2} \leq s_{2}$. We get $a_{2}=1$.

An Example

Write 0.34375 into base $n=4$ expansion.
Algorithm (A Calculator may help).:
(1) Let $s_{1}=0.34375$. Find the largest integer a_{1} such that $a_{1} \times 4^{-1} \leq s_{1}$. We get $a_{1}=1$.
(2) Let $s_{2}=s_{1}-a_{1} \times 4^{-1}=0.09375$. Find the largest integer a_{2} such that $a_{2} \times 4^{-2} \leq s_{2}$. We get $a_{2}=1$.
(3) Let $s_{3}=s_{2}-a_{2} \times 4^{-2}=0.03125$. Find the largest integer a_{3} such that $a_{3} \times 4^{-3} \leq s_{3}$. We get $a_{3}=2$.

An Example

Write 0.34375 into base $n=4$ expansion.
Algorithm (A Calculator may help).:
(1) Let $s_{1}=0.34375$. Find the largest integer a_{1} such that $a_{1} \times 4^{-1} \leq s_{1}$. We get $a_{1}=1$.
(2) Let $s_{2}=s_{1}-a_{1} \times 4^{-1}=0.09375$. Find the largest integer a_{2} such that $a_{2} \times 4^{-2} \leq s_{2}$. We get $a_{2}=1$.
(3) Let $s_{3}=s_{2}-a_{2} \times 4^{-2}=0.03125$. Find the largest integer a_{3} such that $a_{3} \times 4^{-3} \leq s_{3}$. We get $a_{3}=2$.
(9) Let $s_{4}=s_{3}-a_{3} \times 4^{-3}=0$. The algorithm ends.

An Example

Write 0.34375 into base $n=4$ expansion.
Algorithm (A Calculator may help).:
(1) Let $s_{1}=0.34375$. Find the largest integer a_{1} such that $a_{1} \times 4^{-1} \leq s_{1}$. We get $a_{1}=1$.
(2) Let $s_{2}=s_{1}-a_{1} \times 4^{-1}=0.09375$. Find the largest integer a_{2} such that $a_{2} \times 4^{-2} \leq s_{2}$. We get $a_{2}=1$.
(3) Let $s_{3}=s_{2}-a_{2} \times 4^{-2}=0.03125$. Find the largest integer a_{3} such that $a_{3} \times 4^{-3} \leq s_{3}$. We get $a_{3}=2$.
(1) Let $s_{4}=s_{3}-a_{3} \times 4^{-3}=0$. The algorithm ends.

Therefore, $0.34375=0.112_{(4)}$.

Long Division

0.250.112 $\frac{0.34375}{0.25}$ 0.09375	$=0.25 \times 1$
$\frac{0.06250}{0.03125}$	$=0.25^{2} \times 1$
$\frac{0.03125}{0}$	$=0.25^{3} \times 2$

Long Division

Write $1 / 2$ into base $n=3$ expansion.

Long Division

Write $1 / 2$ into base $n=3$ expansion.
Dividing by $0.3333333 \cdots$ is difficult. Why not use fractions?

Long Division

Write $1 / 2$ into base $n=3$ expansion.
Dividing by $0.3333333 \cdots$ is difficult. Why not use fractions?

$$
\begin{aligned}
1 / 3 \begin{array}{l}
\frac{0.1111 \cdots}{1 / 2} \\
\frac{1 / 3}{1 / 6}
\end{array} & =1 / 3 \times 1 \\
\frac{1 / 9}{1 / 18} & =(1 / 3)^{2} \times 1 \\
\frac{1 / 27}{1 / 54} & =(1 / 3)^{3} \times 1 \\
\frac{1 / 81}{1 / 162} & =(1 / 3)^{4} \times 1
\end{aligned}
$$

Check it out!

We guess that $1 / 2=0.11111111 \omega_{(3)}$.

Check it out!

We guess that $1 / 2=0.11111111 \cdots{ }_{(3)}$. Proof: we work backwards:

Check it out!

We guess that $1 / 2=0.11111111 \cdots_{(3)}$.
Proof: we work backwards:

$$
\begin{aligned}
0.1111 \cdots_{(3)} & =1 \times 3^{-1}+1 \times 3^{-2}+1 \times 3^{-3}+\cdots \\
& =(1 / 3)+(1 / 3)^{2}+(1 / 3)^{3}+\cdots \\
& =\frac{1}{1-1 / 3}=1 / 2
\end{aligned}
$$

More Examples!

Come up with more questions like this!

More Examples!

Come up with more questions like this! Suggestion: work on base 2 and base 3 expansions first.

More Examples!

Come up with more questions like this! Suggestion: work on base 2 and base 3 expansions first. Example: Write 0.314 into base 3 expansion.

The End

