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Does it Stop?
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More Examples
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More Examples
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More Regular Shapes
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Length of Coastlines

Trivia: Which country has the longest coastline in the world? Which is the
runner-up?
List of countries by length of coastline

(a) Map of Canada (b) Map of Nunavut

Tongou Yang (UBC) Fractal Lectures July, 2019 6 / 42

https://en.wikipedia.org/wiki/List_of_countries_by_length_of_coastline


Length of Coastlines

Trivia: Which country has the longest coastline in the world? Which is the
runner-up?
List of countries by length of coastline

(a) Map of Canada

(b) Map of Nunavut

Tongou Yang (UBC) Fractal Lectures July, 2019 6 / 42

https://en.wikipedia.org/wiki/List_of_countries_by_length_of_coastline


Length of Coastlines

Trivia: Which country has the longest coastline in the world? Which is the
runner-up?
List of countries by length of coastline

(a) Map of Canada (b) Map of Nunavut

Tongou Yang (UBC) Fractal Lectures July, 2019 6 / 42

https://en.wikipedia.org/wiki/List_of_countries_by_length_of_coastline


Length of Coastlines

Figure: Map of Russia
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Length of Coastlines

Norwegian: Fjord

Figure: Map of Norway (South Part)
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Crystal Structure

(a) Crystal of Sodium Chloride

(b) Lattice Structure of Sodium Chloride
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Crystal Structure

(a) Crystal of Emerald

(b) Lattice Structure of Emerald
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Fractal Geometry

Fractal Geometry is the study of geometric objects possessing
self-similarity or approximate self-similarity.
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Self-similarity

Some terminology:

Two geometric figures A and B are said to be congruent if one could
be turned into the other using the following transformations:
translations, rotations, and mirror reflections.

A and B are said to be similar if one could be turned into the other
using the following transformations: translations, rotations, mirror
reflections, and dilations.

If A is a geometric figure, we say it is self-similar if some part of A is
similar to the whole of A.
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Are These Self-similar?

A solid disk on the plane

A solid irregular triangle

The boundary of a solid square

A union of two intervals

A sphere (not a ball)

Every (bounded) shape which contains “a solid part” is self-similar; some
shape without “a solid part” is not self-similar.
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Sierpiński Triangle: A Non-Solid Example

Tongou Yang (UBC) Fractal Lectures July, 2019 14 / 42



Wac law Sierpiński: Polish Mathematician

va-tswaf share-pin-ski (English approximation)
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Sierpiński Triangle: Construction

Step 0: Start with a solid triangle (with its boundary).
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Sierpiński Triangle: Construction

Step 1: Find the midpoint of each side. Remove the inner triangle formed
(keeping all boundaries). Get 3 solid triangles.

Question: What does the boundary of the shape look like? Is it
self-similar?
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Sierpiński Triangle: Construction

Step 2: Do the same for the 3 solid sub-triangles formed by the last step.
Get 9 = 32 triangles.

Tongou Yang (UBC) Fractal Lectures July, 2019 18 / 42



Sierpiński Triangle: Construction

Step 3: Do the same for the 32 solid sub-triangles formed by the last step.
Get 33 triangles.
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Sierpiński Triangle: Construction

Step 4: Do the same for the 33 solid sub-triangles formed by the last step.
Get 34 triangles.
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Sierpiński Triangle: Construction

Step 5: Do the same for the 34 solid sub-triangles formed by the last step.
Get 35 triangles.
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Sierpiński Triangle: Construction

Step 6: Do the same for the 35 solid sub-triangles formed by the last step.
Get 36 triangles.

Question: Is the boundary of the shape self-similar?
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Sierpiński Triangle: Construction

Step ∞: Do this for infinitely many times.

Is there any solid part remaining?

What is its boundary? Is it self-similar?

What is the “area” of the remaining figure?
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Mystery Figure: Is There Something or Nothing?

We will need the following formula for an infinite sum of geometric
sequence:

1 + r + r2 + r3 + · · · =
1

1− r
, if 0 < r < 1.

Assume the original triangle has area 1.

The area deleted at Step n is (why?):

3n−1 ×
(

1

4

)n

=
1

4
×
(

3

4

)n−1

.

1

4
×

[
1 +

3

4
+

(
3

4

)2

+ · · ·

]
=

1

4
× 1

1− 3/4
= 1.

Nothing left? But at least the 3 sides of the original triangle are still
there! (Recall we have kept all boundaries)
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Preliminaries for the Lectures

1 Sum of geometric sequences

2 Intervals on the real line

3 Logarithmic functions

4 Basic set theory

5 Base n Digit expansions
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1. Sum of Geometric Sequences: Derivation

We will first prove the partial sum formula

1 + r + r2 + r3 + · · ·+ rn =
1− rn+1

1− r
.

It suffices to verify that

(1− r)(1 + r + r2 + r3 + · · ·+ rn) = 1− rn+1.

As n goes to infinity, the term rn+1 in the partial sum becomes negligible
since 0 < r < 1.
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Exercise

1 Find

S1 = 1 +
1

2
+

1

4
+

1

8
+ · · · .

2 Find

S2 =
1

3
+

2

9
+

4

27
+

8

81
+ · · · .

A Good Picture
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2. Logarithmic Functions: A Quick Review

Let a, b > 0, a 6= 1. The notation c = loga b means ac = b.

For example,
log2 32 = 5 ⇐⇒ 25 = 32.

We use ln b to denote loge b where e ≈ 2.718 is the base of the
natural logarithm. (Remark: the choice of base is unimportant in this
lecture)

We have the following formulas (where x , y > 0, n is an integer):

ln(xy) = ln x + ln y , ln(xn) = n ln x , ln(x−1) = − ln x .
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2. Logarithmic Functions: A Quick Review

We have:

ln x =


is not defined, ifx < 0

< 0, if 0 < x < 1

= 0, ifx = 1

> 0, ifx > 1

.

Figure: Graph of ln x
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Exercise

1 Simplify
ln 2

ln 8
.

2 Simplify
ln(2n) + ln(2× 3n)

ln(6n)
,

where n is a natural number.
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3. Intervals on the Real Line: A Quick Review

Let R denote the set of all real numbers (the real line). Let a < b be real
numbers. Then

The interval (a, b) is equal to the set of all real numbers c satisfying
a < c < b. Both parentheses: open intervals.

The interval [a, b] is equal to the set of all real numbers c satisfying
a ≤ c ≤ b. Both square brackets: closed intervals.

Similar definitions apply to [a, b), (a, b]. We call them
half-open-half-closed intervals.

The above are called bounded intervals.
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3. Intervals on the Real Line: A Quick Review

The interval (a,∞) is equal to the set of all real numbers c satisfying
a < c . This is an unbounded open interval.

The interval [a,∞) is equal to the set of all real numbers c satisfying
a ≤ c . This is an unbounded closed interval.

Similar definitions apply to (−∞, b), (−∞, b].
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4. Basic Set Operations

1 If A,B are sets, then A ∩ B denotes the set of all elements that lie in
both A and B.

2 A ∪ B denotes the set of all elements that lie in either A or B (or in
both).

3 A\B denotes the set of all elements that lie in A but not B.
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Exercise

1 Find [0, 1) ∩ (0.5, 2).

2 Find [0, 1]\(1/3, 2/3).

3 Find (
[0, 1/4] ∪ [3/4, 1]

)
\
(

(1/16, 3/16) ∪ (13/16, 15/16)
)
.
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5. Base n Digit Expansions

In our usual base 10 (decimal) representation, what does the following
numbers mean?

1234 = 1× 103 + 2× 102 + 3× 101 + 4× 100.

3.1415 = 3× 100 + 1× 10−1 + 4× 10−2 + 1× 10−3 + 5× 10−4.

Binary expansion (base 2):

1010(2) = 1× 23 + 0× 22 + 1× 21 + 0× 20 = 10(10).

0.11(2) = 1× 2−1 + 1× 2−2 =

(
3

4

)
(10)

= 0.75(10).

Conventionally, if a number is in base 10, we omit the subscript (10).
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5. Base n Digit Expansions

Let n ≥ 2 be a natural number. Given a real number in the form of
base n expansion, it is easy to compute its corresponding base 10
expansion. What about the reverse direction?

Theorem 0.1

Let 0 ≤ x < 1 be a real number and n ≥ 2 be a natural number. Then
there exists a (possibly infinite) sequence of numbers ak (k = 1, 2, 3, . . . ),
each one of them being one among 0, 1, 2, 3, . . . , n − 1, such that

x = a1n
−1 + a2n

−2 + a3n
−3 + · · · .

The number 10 is nothing special at all! We are used to the base 10
systems mostly because we have 10 fingers!
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base n expansion, it is easy to compute its corresponding base 10
expansion. What about the reverse direction?

Theorem 0.1
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An Example

Write 0.34375 into base n = 4 expansion.

Algorithm (A Calculator may help).:

1 Let s1 = 0.34375. Find the largest integer a1 such that a1× 4−1 ≤ s1.
We get a1 = 1.

2 Let s2 = s1 − a1 × 4−1 = 0.09375. Find the largest integer a2 such
that a2 × 4−2 ≤ s2. We get a2 = 1.

3 Let s3 = s2 − a2 × 4−2 = 0.03125. Find the largest integer a3 such
that a3 × 4−3 ≤ s3. We get a3 = 2.

4 Let s4 = s3 − a3 × 4−3 = 0. The algorithm ends.

Therefore, 0.34375 = 0.112(4).
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Long Division

0.112
0.25 )0.34375

0.25 = 0.25× 1
0.09375
0.06250= 0.252 × 1
0.03125
0.03125= 0.253 × 2

0
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Long Division

Write 1/2 into base n = 3 expansion.

Dividing by 0.3333333 · · · is difficult. Why not use fractions?

0 .1111· · ·
1/3 )1/2

1/3 = 1/3× 1
1/6
1/9 = (1/3)2 × 1
1/18
1/27 = (1/3)3 × 1
1/54
1/81 = (1/3)4 × 1
1/162
· · · · ·
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Check it out!

We guess that 1/2 = 0.11111111 · · ·(3).

Proof: we work backwards:

0.1111 · · ·(3) = 1× 3−1 + 1× 3−2 + 1× 3−3 + · · ·
= (1/3) + (1/3)2 + (1/3)3 + · · ·

=
1

1− 1/3
= 1/2.
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More Examples!

Come up with more questions like this!

Suggestion: work on base 2 and base 3 expansions first.
Example: Write 0.314 into base 3 expansion.
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The End
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