
Equivalence of decoupling constants

Tongou Yang

The goal of this note is to give rigorous argument for the equivalence of various formulations of decoupling,
which is a heuristics commonly used in decoupling theory. For simplicity of notation we will only consider
the planar case. The technical treatment resembles that of [2] and [4], but our result generalises the
counterparts in their articles.

1 Definition and notation

1.1 Convention and notation

In this note we use the following conventions and notations.

1. Throughout this article we say a Schwartz function η : R2 → C is good if 1 ≤ |η(x)| ≤ 2 on [−C,C]2

and η̂ is supported on [−C ′, C ′]2, where C,C ′ are absolute constants. In the following, C will always
represent an arbitrary absolute constant, and its value may vary from line to line.

2. Let T ⊆ R2 be an axis-parallel rectangle centred at (x0, y0) with base a and height b. We define a
Schwartz function ηT adapted to T by

ηT (x, y) = η

(
x− x0
a

,
y − y0
b

)
.

Also, for an integer E ≥ 100 we define a weight function wT,E by

wT,E(x, y) =

(
1 +
|x− x0|

a
+
|y − y0|

b

)−E
.

Note that ηT .E wT,E . The lower bound 100 is not important here, and in most applications we
only care about large E’s.

In particular, this definition applies to an axis parallel square B ⊆ R2. Throughout the text we
assume all squares B are axis-parallel, unless otherwise specified.

3. Throughout the text we let φ : [0, 1] → R be a C2-function. A δ-neighbourhood of the graph of

φ over some interval I, denoted by N φ
I (δ), will always refer to the vertical neighbourhood, unless

otherwise specified. In symbols,

N φ
I (δ) = {(s, t) : s ∈ I, |t− φ(s)| < δ}.

Also, for any function f : R2 → C and any interval I ⊆ R, we denote by fI the Fourier restriction
of f to the strip I × R:

f̂I(s, t) = f̂(s, t)1I(s).

Note that for f ∈ Lp(R2) and 1 < p <∞, we have

‖fI‖Lp(R2) . ‖f‖Lp(R2),

by the boundedness of the Hilbert transform.

4. A partition of [0, 1] in this note will be a finite collection of closed intervals with disjoint interiors.
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1.2 Various formulations of decoupling

Definition 1 (Extension operator). Fix a C2-function φ : [0, 1]→ R. We define the extension operator
Eφ by

Eφg(x, y) =

∫ 1

0

g(s)e(xs+ yφ(s))ds,

for g ∈ L1([0, 1]). Here and throughout the text we write e(z) := exp(2πiz).

With this, we can formulate the first version of decoupling, which will be referred to as the extension
operator formulation.

Definition 2. Let Pδ be a partition of [0, 1]. For 0 < p, q ≤ ∞, we let Dφ
lq(Lp),E,(Pδ) be the best constant

such that for any g ∈ L1([0, 1]) and any square B with side length δ−1 we have∥∥Eφg∥∥
Lp(B)

≤ Dφ
lq(Lp),E(Pδ)

∥∥∥∥∥EφgI∥∥Lp(wB,E)

∥∥∥
lq(I∈Pδ)

,

where gI = g1I .

For a good Schwartz function η defined in the beginning of this section, we also define the constant
Dφ
lq(Lp),η(Pδ) in the same way as above, except that the wB,E on the right hand side is replaced by ηB.

Remark. If p ≥ q and we have wB,E on the right hand side, then by Minkowski’s inequality the left hand
side can be replaced by

∥∥Eφg∥∥
Lp(wB,E)

without necessarily changing the decoupling constant. (See also

Section 4 of [2].) However, if we have ηB on the right hand side instead, then this is not obvious and may
even fail.

We also have various neighbourhood versions of decoupling. The following one will be referred to as the
global neighbourhood version.

Definition 3. Let Pδ be a partition of [0, 1]. For 0 < p, q ≤ ∞ and τ > 0, let Gφlq(Lp),τ (Pδ) be the best

constant such that for any f with Fourier support in N φ
[0,1](τδ), we have

‖f‖Lp(R2) ≤ G
φ
lq(Lp),τ (Pδ)

∥∥∥‖fI‖Lp(R2)

∥∥∥
lq(I∈Pδ)

.

Similarly, we have the corresponding local neighbourhood version of decoupling.

Definition 4. Let Pδ be a partition of [0, 1]. For 0 < p, q ≤ ∞ and τ > 0, let Lφlq(Lp),τ,E(Pδ) be the best

constant such that for any f with Fourier support in N φ
[0,1](τδ) and any square B with side length δ−1,

we have
‖f‖Lp(B) ≤ L

φ
lq(Lp),τ,E(Pδ)

∥∥∥‖fI‖Lp(wB,E)

∥∥∥
lq(I∈Pδ)

.

For a good Schwartz function η defined in the beginning of this section, we also define the constant
Lφlq(Lp),τ,η(Pδ) in the same way as above, except that the wB,E on the right hand side is replaced by ηB.

Remark. By a modulation of f in the frequency space, in the local neighbourhood version we may always
take B to be centred at 0. Also, similar to the remark after Definition 2, if p ≥ q and we have wB,E on
the right hand side, then we may replace the left hand side by ‖f‖Lp(wB,E) without necessarily changing
the decoupling constant.

2 Relation between decoupling constants

The main goal of this article is to study the relations between the decoupling constants defined as above.

Let φ : [0, 1] → R be C2, 0 < δ ≤ 1, Pδ be a partition of [0, 1] depending on φ, δ. Also, let E, p, q, η be
given as above. To make the notation simpler, we will do the following reductions. It turns out that in
all the following propositions and theorems, the scale δ, the partition Pδ and the Lebesgue exponents p, q
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will be fixed at the beginning of the assumption and will not change in their proofs. Hence, we will drop
Pδ and the subscript lq(Lp) in the decoupling constants. For instance, Lφlq(Lp),C,E(Pδ) will simply be

reduced to LφC,E and Dφ
lq(Lp),η(Pδ) will become Dφ

η . Moreover, as we proceed to obtain more equivalence

theorems in the following sections, we will keep dropping more subscripts and superscripts to make the
notation even simpler.

Now we come to our first easy observation, namely, the decoupling constants are essentially the same
when the thickness of the neighbourhood is multiplied by an absolute constant. The simple proof is given
in Section 4.1.

Proposition 5. For any τ2 > τ1 > 0 we have

Lφτ1,E ∼ L
φ
τ2,E

, Gφτ1 ∼ G
φ
τ2 .

The implicit constants here depend only on τ2/τ1, p, E.

Reduction of notation. By this proposition, from now on we will drop the thickness τ in the decoupling
constants Lφτ,E and Gφτ (but not Lφτ,η) to make the notation even simpler. In this reduced notation we
will implicitly assume τ = 1.

The following is our first main theorem on the relation of the decoupling constants. The proof is given
in Section 5.

Theorem 6. If q ≤ p, 1 < p < ∞1 and every interval I in the partition Pδ has length at least δ, then
for any τ > 0 we have

Dφ
E . Dφ

η . Lφτ,η . Gφ . LφE .

The implicit constants here only depend on φ, τ, E, η, p, q but will never depend on δ and the actual choice
of the partition Pδ (as long as the assumption holds).

2.1 Generalisation to higher dimensions

In Rn, one can similarly define all the decoupling constants for a surface given by a C2-function φ over
[0, 1]n−1, where Pδ is a partition of [0, 1]n−1 into axis-parallel rectangles. If p, q are in the same range
of Theorem 6 and all dimensions of each rectangle are at least δ, then it turns out that the proof of
Theorem 6 can be easily modified to higher dimensional cases, yielding the same chain of inequalities as
in Theorem 6. The details are left to the reader.

3 The main equivalence theorem

Our final goal in this text is to show that under some general conditions, all the above decoupling
constants are equivalent. In view of Theorem 6, if we are able to show LφE . Dφ

E , then we are done.
For this purpose, we need some regularity on φ and the partition Pδ of [0, 1]. (Compare the formulation
below to that of the sub-admissible partitions in [5].)

Proposition 7. Let E ≥ 100, and suppose φ ∈ CE([0, 1]). Let 0 < δ ≤ 1 and assume that for every
I ∈ Pδ and every 2 ≤ k ≤ E we have |I| ≥ δ and

sup
s∈I
|φ(k)(s)||I|k .φ δ. (1)

Then for any 1 ≤ p <∞ we have
LφE . Dφ

2E+2,

where the implicit constant only depend on φ,E, p but will never depend on q, δ and the actual choice of
the partition Pδ (as long as the assumption holds).

1Note that the theorem does not cover the case p = ∞. But in practice, all decoupling constants given by the triangle
inequality and Hölder will usually be sharp at p = ∞. Also, if p < q, all decoupling inequalities are trivial. Indeed,
by triangle inequality and Hölder followed by an interpolation (see here) we get a trivial upper bound for the decoupling
constants. On the other hand, by taking each fI with sparse physical support, we get a lower bound which essentially
coincides with the upper bound.

http://www.math.ubc.ca/~toyang/Remarks_decoupling.pdf
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The proof will be given in Section 6. As a corollary, we finally arrive at our main equivalence theorem of
decoupling constants.

Theorem 8 (The equivalence theorem). Assume the conditions of Proposition 7. Then for E,F ≥ 300,
q ≤ p, 1 < p <∞ and τ > 0 we have

Dφ
F ∼ D

φ
E ∼ D

φ
η ∼ Lφτ,η ∼ Gφ ∼ L

φ
E ∼ L

φ
F .

The implicit constants here only depend on φ, τ, E, F, η, p, q but will never depend on δ and the actual
choice of the partition Pδ (as long as the assumption holds).

Proof. By Theorem 6 and Proposition 7, for all E ≥ 100 we have

LφE . Dφ
2E+2 . Dφ

η . Lφτ,η . Gφ . LφE ,

and so all the above . can be replaced by ∼. In particular, LφE ∼ Gφ for all E ≥ 100. Hence LφE ∼ LφF
for E,F ≥ 100. Similarly, Dφ

2E+2 ∼ Gφ, and so Dφ
F ∼ Dφ

E for E,F ≥ 300. Thus we have the chain of
equivalences.

To familiarise the reader of the assumptions of Proposition 7, we have the following simple examples.

1. If φ ∈ CE([0, 1]) and φ′′ does not vanish on [0, 1], and Pδ is given by the standard partition of [0, 1]
into intervals of equal length δ1/2 where δ ∈ N−2, then the assumptions of the proposition hold.

2. For φ(s) = sr, r ≥ 3 and δ ∈ N−2r, let

aj = j
2
r δ

1
r ,

and Pδ := {[aj−1, aj ] : 1 ≤ j ≤ δ−1/2}. Then the assumptions of the proposition hold. Indeed, it
suffices to note that the length of the interval [aj−1, aj ] obeys

aj − aj−1 ∼ j
2
r−1δ

1
r .

It turns out that the assumptions of Proposition 7 hold for a large family of functions, including all
polynomial functions of degree at most E.

We need a little more terminology to state the result in full generality. Let φ be an analytic function
such that φ′′ does not vanish identically on [0, 1]. Then φ′′ has at most finitely many zeros zi ∈ [0, 1],
and each zero is of some finite order ni. The maximum of the ni’s will be called the maximum order of
vanishing of φ′′. (If φ′′ does not vanish, we just set its maximum order of vanishing to be 0.) See also [1]
and Section 12.6 of [3]). With this, we have

Lemma 9. Let φ be an analytic function such that φ′′ vanishes to the order at most E − 2 on [0, 1]. Let
I ∈ Pδ and suppose that (1) holds for k = 2. Then (1) holds for all 2 ≤ k ≤ E. Hence, if in addition we
have |I| ≥ δ for every I ∈ Pδ, then the assumptions of Proposition 7 hold.

Proof. Let ψ = φ′′. Then there are finitely many closed intervals J partitioning [0, 1] such that on each
J , ψ admits an infinite series expansion. Without loss of generality, each J contains at most one zero z
of ψ of some order l ≤ E − 2. Hence, on J we can write

ψ(s) =

∞∑
j=l

aj(s− z)j ,

where al 6= 0. Since ψ does not have any other zero on J , we have |ψ(s)| & |s− z|l for all s ∈ J .

Let I ∈ Pδ, and without loss of generality, assume I ⊆ J . Thus, for s ∈ J we have

sup
s∈I
|φ′′(s)| = sup

s∈I
|ψ(s)| & |I|l.

Using (1) for k = 2, we then have |I| . δ
1
l+2 ≤ δ1/E .

Now let 2 ≤ k ≤ E. By the series representing ψ, we also have |ψ(k−2)(s)| . |s− z|l−k+2, from which we
have

sup
s∈I
|φ(k)(s)| = sup

s∈I
|ψ(k−2)(s)| . |I|l−k+2.

Using |I| . δ1/E we just obtained and l ≤ E − 2, we thus have (1) for k.
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3.1 Generalisation to higher dimensions

One may ask if Proposition 7 generalises to Rn. Indeed, suppose in addition that we are in the special
case where

φ(s1, . . . , sn−1) = φ1(s1) + · · ·+ φn−1(sn−1)

and φi ∈ CE([0, 1]). Given a partition Pδ of [0, 1]n−1 given by the Cartesian product of n− 1 partitions
Piδ each satisfying the assumptions in Proposition 7. Then for any 1 ≤ p <∞ we again have

LφE . Dφ
F ,

for some suitable F = F (E). The detail is left to the reader.

The case for a general φ is much more subtle, so we leave it open.

4 Two preliminary equivalences

In this section we prove two easy equivalences of decoupling constants. First, we give a proof of Proposition
5 on the equivalence of comparable thickness of the neighbourhoods. Next we prove another equivalence
theorem on the decoupling constants, namely, adding to φ a linear function with bounded slope does not
essentially affect some decoupling constants. This fact will also be used in the proof of Proposition 7.

4.1 Changing thickness of neighbourhoods

Here we give the simple proof of Proposition 5.

Proof. We only prove the equivalence for Lφτ,E as the global counterpart is even easier. We also only need

to show Lφτ1,E & Lφτ2,E as the other side is trivial.

The proof uses a very trivial scaling argument. Let f have Fourier support on N φ
I (τ2δ), and let B be

the square centred at 0 with side length δ−1. Let g(x, y) = f(x, τ1τ2 y), so that g has Fourier support on

N φ
I (τ1δ). (This is why we choose vertical neighbourhoods.) Then we can apply the definition of Lφτ1,E to

get

‖g‖Lp(B) ≤ L
φ
τ1,E

∥∥∥‖gI‖Lp(wB,E)

∥∥∥
lq(I∈Pδ)

.

But then ‖g‖Lp(B) ∼ ‖f‖Lp(T ) where T is the axis-parallel rectangle centred at 0 with base δ−1 and

height τ2
τ1
δ−1, so in particular ‖f‖Lp(T ) ≥ ‖f‖Lp(B). On the right hand side, ‖gI‖Lp(wB,E) ∼ ‖fI‖Lp(wT ) ∼

‖fI‖Lp(wB,E) since wT ∼ wB,E . Thus we also have

‖f‖Lp(B) . Lφτ1,E

∥∥∥‖fI‖Lp(wB,E)

∥∥∥
lq(I∈Pδ)

.

Thus we have Lφτ2,E . Lφτ1,E .

Now we can drop again the thickness τ in the notation as we did after Proposition 5.

4.2 Adding a linear function

In this section we prove the following proposition.

Proposition 10. Let ψ(s) = φ(s) + as+ b where |a| ≤ C. Then we have

Dφ
E ∼ D

ψ
E , Gφ = Gψ, LφE ∼ L

ψ
E .

The implicit constants here depend on p,E only.
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Proof. We give a proof of the case LφE ∼ L
ψ
E as the proof of Dφ

E ∼ D
ψ
E is similar and the proof of Gφ = Gψ

is easier. We will only prove the . direction and the other side follows by symmetry.

Let f have Fourier support in N φ
[0,1](δ) and B be a square of side length δ−1. We will show that

‖f‖Lp(B) . LψE

∥∥∥‖fI‖Lp(wB,E)

∥∥∥
lq(I∈Pδ)

.

Let g be defined by the relation
ĝ(s, t) = f̂(s, t− as− b),

which is supported in Nψ
[0,1](δ). We also have for all I ∈ Pδ

gI(x, y) = e(by)fI(x+ ay, y).

Then we can apply the definition of LψE to get

‖g‖Lp(B) . LψC,E

∥∥∥‖gI‖Lp(wcB,E)

∥∥∥
lq(I∈Pδ)

.

Since |a| ≤ C, we have ‖g‖Lp(B) ≥ ‖f‖Lp(C−1B). On the right hand side, we have ‖gI‖Lp(wB,E) &
‖fI‖Lp(wB,E). Thus

‖f‖Lp(C−1B) . LψE

∥∥∥‖gI‖Lp(wB,E)

∥∥∥
lq(I∈Pδ)

.

But the above holds for all B. Covering B by O(1) many C−1B’s, we are done.

Reduction of notation. After this proposition, the phase functions φ will no longer change, and so we will
drop the superscript φ from the decoupling constants below.

5 Local-global equivalence, easier relations

In this section, we will prove Theorem 6 step by step.

Proposition 11. For q ≤ p ≤ ∞ and any E ≥ 100 we have

G . LE .

The implicit constant here depends on p,E only.

Proof. Cover R2 by a tiling of squares B of side length δ−1. We then have the weight inequality∑
B wB,E . 1. Hence, for q ≤ p <∞ we have

‖f‖Lp(R2) =

(∑
B

‖f‖pLp(B)

) 1
p

≤ LE

∑
B

(∑
I∈Pδ

‖fI‖qLp(wB,E)

) p
q

 1
p

(by Minkowski) ≤ LE

∑
I∈Pδ

(∑
B

‖fI‖pLp(wB,E)

) q
p

 1
q

. LE

(∑
I∈Pδ

‖fI‖qLp(R2)

) 1
q

.

The case p =∞ is immediate, since then L∞(R2) equals L∞(wB,E) (as w is everywhere positive).
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Proposition 12. For any E ≥ 100, we have DE . Dη, where the implicit constant depends on E and η
only. Also, if 1 < p <∞ and each I ∈ Pδ has length at least δ, then for any τ > 0, we have Dη . Lτ,η,
where the implicit constant depends on p, q, η, τ .

Proof. The relation DE . Dη is trivial since ηB .E wB,E . To prove Dη . Lτ,η, we remove the first and
the last intervals of Pδ and call the resulting collection P ′δ. By the triangle and Hölder’s inequalities, it
then suffices to decouple with respect to P ′δ only, namely, it suffices to prove that for any g ∈ L1([0, 1])
and any square B with side length δ−1 we have

‖Eg′‖Lp(B) . Lτ,η

∥∥∥‖EgI‖Lp(ηB)

∥∥∥
lq(I∈Pδ)

,

where g′ = g1∪P′δ .

Consider the function Eg′ηB , whose Fourier transform equals a function Êg′ ∗ η̂B . By the assumption on
the partition, the left endpoint of ∪P ′δ will be bounded away from 0 by at least δ, and the same holds

for the right endpoint. Hence, by the support condition of η, Êg′ ∗ η̂B is a function supported within
the strip 0 ≤ s ≤ 1. Moreover, if the absolute constant C ′ in the definition of η is chosen small enough
(depending on τ), then Êg′ ∗ η̂B is supported on N φ

[0,1](τδ). Hence, we may apply the definition of Lτ,η
to get

‖Eg′ηB‖Lp(B) ≤ Lτ,η
∥∥∥‖(Eg′ηB)I‖Lp(ηB)

∥∥∥
lq(I∈P′δ)

.

For the left hand side, we have ‖Eg′ηB‖Lp(B) ≥ ‖Eg′‖Lp(B).

The right hand side is trickier. By definition, for each I ∈ P ′δ,

((Eg′ηB)I)
∧(s, t) = Êg′ηB(s, t)1I(s) = Êg′ ∗ η̂B(s, t)1I(s).

Using the support of η̂B and the assumption on the partition, we have

Êg′ ∗ η̂B(s, t)1I(s) = ÊgĨ ∗ η̂B(s, t)1I(s)

where Ĩ is the union of I and all intervals in Pδ adjacent to I. Here we also used the fact that ÊgI is a
distribution supported on the graph of φ above I for all I ⊆ [0, 1]. Thus

(Eg′ηB)I = (EgĨηB)I ,

from which we have

‖(Eg′ηB)I‖Lp(ηB) = ‖(EgĨηB)I‖Lp(ηB)
. ‖(EgĨηB)I‖Lp(R2)

. ‖EgĨηB‖Lp(R2)
,

where in the last inequality we have used the boundedness of the Fourier multiplier (s, t) 7→ 1I(s) and
the assumption that 1 < p <∞. Thus we have∥∥∥‖(Eg′ηB)I‖Lp(ηB)

∥∥∥
lq(I∈P′δ)

.
∥∥∥‖EgĨηB‖Lp(R2)

∥∥∥
lq(I∈P′δ)

.
∥∥∥‖EgIηB‖Lp(R2)

∥∥∥
lq(I∈Pδ)

.
∥∥∥‖EgI‖Lp(ηB)

∥∥∥
lq(I∈Pδ)

,

where in the second inequality we have used the triangle and Hölder’s inequalities.

Proposition 13. If 1 < p < ∞, τ > 0 and each I ∈ Pδ has length at least δ, then we have Lτ,η . G,
where the implicit constant depends on ‖φ′‖∞ as well as p, q, η, τ .

Proof. Let f have Fourier support in N φ
[0,1](τδ), and let B be a square of side length δ−1. Remove the

first and the last intervals of Pδ and call the resulting collection P ′δ. Let f ′ be the Fourier restriction of
f to ∪P ′δ × R. It suffices to prove

‖f ′‖Lp(B) . G
∥∥∥‖fI‖Lp(ηB)

∥∥∥
lq(I∈Pδ)

.
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We start from the left hand side. Since ‖f ′‖Lp(B) . ‖f ′ηB‖Lp(R2), it suffices to study f ′ηB . Note that

f̂ ′ηB is supported on the Minkowski sum of a square with side length δ and N φ
∪P′δ

(τδ), which is contained

in N φ
[0,1](τ

′δ) where τ ′ = τ + 1 + ‖φ′‖∞. Using the definition of G, we have

‖f ′‖Lp(B) . ‖f
′ηB‖Lp(R2) ≤ G

∥∥∥‖(f ′ηB)I‖Lp(R2)

∥∥∥
lq(I∈P′δ)

.

By similar argument as in the proof of Proposition 12, we have for all I ∈ P ′δ

(f ′ηB)I = (fĨηB)I ,

where Ĩ is the union of I and all intervals in Pδ adjacent to I. Thus, as 1 < p <∞, we also have

‖(f ′ηB)I‖Lp(R2) = ‖(fĨηB)I‖Lp(R2)
. ‖fĨηB‖Lp(R2)

. ‖fĨ‖Lp(ηB)
.

The result then follows from the triangle and Hölder’s inequalities.

6 Local-global equivalence, continued

In this section we prove Proposition 7, by modifying the tedious Fourier analytic proof of Section 5 of [2].

Proof of Proposition 7. Let E ≥ 100 and φ, Pδ be given such that for every I ∈ Pδ and every 2 ≤ k ≤ E
we have |I| ≥ δ and

sup
s∈I
|φ(k)(s)||I|k .φ δ. (2)

Our goal is to show that for any 1 ≤ p <∞ we have LE . D2E+2, that is, for any f with Fourier support
in N φ

[0,1](δ/4) and any square B of side length δ−1 centred at 0, we have

‖f‖Lp(B) . D2E+2

∥∥∥‖fI‖Lp(wB,E)

∥∥∥
lq(I∈Pδ)

.

Let F = 2E + 2. We may assume without loss of generality that f̂ is smooth. By the Fourier support of
f , we can write

f(x, y) =

∫ 1

0

∫ δ/4

−δ/4
f̂(s, φ(s) + t)e(xs+ yφ(s) + yt)dtds.

6.1 Taylor expansions

The term e(yt) prevents us from writing the right hand side in the form of Eφg for some g. But since
|y| ≤ δ−1 and |t| ≤ δ/4, we know that e(yt) is “negligible”. To make it rigorous, we use Taylor expansion
to write

e(yt) =

∞∑
j=0

(2πiyt)j

j!
=

∞∑
j=0

(2πiyδ)j

j!
tjδ−j .

But for (x, y) ∈ B we have |yδ| ≤ 1. Hence

|f(x, y)| ≤
∞∑
j=0

(2π)j

j!

∣∣∣∣∣
∫ 1

0

∫ δ/4

−δ/4
f̂(s, φ(s) + t)e(xs+ yφ(s))tjδ−jdsdt

∣∣∣∣∣
=

∞∑
j=0

(2π)j

j!
|Egj(x, y)|,

where Eg := Eφg for simplicity and

gj(s) =

∫ δ/4

−δ/4
f̂(s, φ(s) + t)tjδ−jdt.
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Hence, by the triangle inequality, we have

‖f‖Lp(B) ≤
∞∑
j=0

(2π)j

j!
‖Egj‖Lp(B)

≤
∞∑
j=0

(2π)j

j!
DF

∥∥∥‖E(gj)I‖Lp(wB,F )

∥∥∥
lq(I∈Pδ)

,

where (gj)I(s) = gj(s)1I(s). As a result, it suffices to prove that for all I ∈ Pδ,

sup
j
‖E(gj)I‖Lp(wB,F ) . ‖fI‖Lp(wB,E).

Since p <∞ we can write

‖E(gj)I‖pLp(wB,F ) ∼
∫∫
‖E(gj)I‖pLp(B((u,v),δ−1))δ

2wB,F (u, v)dudv,

where B((u, v), δ−1) is the square centred at (u, v) with side length δ−1.

Now let (x, y) ∈ B((u, v), δ−1). We use a change of variable to compute

E(gj)I(x, y)

=

∫ 1

0

∫ δ/4

−δ/4
f̂(s, φ(s) + t)e(xs+ yφ(s))tjδ−jdsdt

=

∫∫
f̂(ξ1, ξ2)(ξ2 − φ(ξ1))jδ−je((φ(ξ1)− ξ2)y)e(xξ1 + yξ2)dξ1dξ2,

using the Fourier support condition of f . Then we write

(φ(ξ1)− ξ2)y = (φ(ξ1)− ξ2)v + (φ(ξ1)− ξ2)(y − v).

Apply another Taylor expansion to e((φ(ξ1)− ξ2)(y − v)) to get

e((φ(ξ1)− ξ2)(y − v)) =

∞∑
k=0

(2πi)k

k!
(ξ2 − φ(ξ1))k(v − y)k.

Since (x, y) ∈ B((u, v), δ−1), we have |v − y| ≤ δ−1. Hence

|E(gj)I(x, y)| ≤
∞∑
k=0

(2π)k

k!

·
∣∣∣∣∫
I

∫
f̂(ξ1, ξ2)(ξ2 − φ(ξ1))j+kδ−j−ke((φ(ξ1)− ξ2)v)e(xξ1 + yξ2)dξ2dξ1

∣∣∣∣ .
Renaming j + k to j, it now remains to prove∫∫ ∥∥∥∥∫

I

∫
f̂(ξ1, ξ2)(ξ2 − φ(ξ1))jδ−je((φ(ξ1)− ξ2)v)e(xξ1 + yξ2)dξ2dξ1

∥∥∥∥p
Lp(B((u,v),δ−1))

· δ2wB,F (u, v)dudv . ‖fI‖pLp(wB,E),

uniformly in j.

6.2 Introducing a Fourier multiplier

In this subsection we will use the case k = 2 of the assumption (2).

Let σ : [−1/2, 1/2]→ R be a smooth function that equals 1 on [−1/4, 1/4]. Write I = [h, h+ l]. Then we
have σ( s−h4l ) = 1 for all s ∈ I.
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Let Mj(t) = tjσ(t) so that Mj is smooth, equals tj on [−1/4, 1/4] and is supported on [−1/2, 1/2].
Moreover, Mj satisfies the derivative bound

sup
j≥0

∥∥∥M (k)
j

∥∥∥
L∞(R)

.k 1. (3)

Now since |ξ2 − φ(ξ1)| < δ/4, if we define mv = mv,j by

mv(ξ1, ξ2) = Mj(δ
−1(ξ2 − φ(ξ1)))σ

(
ξ1 − h

4l

)
e(vφ(ξ1))

which is a smooth function with compact support, then we have∫
I

∫
f̂(ξ1, ξ2)(ξ2 − φ(ξ1))jδ−je((φ(ξ1)− ξ2)v)e(xξ1 + yξ2)dξ2dξ1

=

∫∫
f̂I(ξ1, ξ2)mv(ξ1, ξ2)e((xξ1 + (y − v)ξ2)dξ2dξ1

= fI ∗m∨v (x, y − v).

Using (2) for k = 2, it is easy to see that for each I ∈ Pδ, N φ
I (δ/4) is contained in a rectangle T of

dimensions ∼ l× δ (with sides being tangent and normal, respectively, to the graph of φ at some point in
I). Thus |m∨v | is roughly a constant lδ on the dual rectangle T ∗ of dimensions ∼ l−1 × δ−1. As a result,
we have ‖m∨v ‖L1(R2) ∼ 1.

Now since p ≥ 1, we use Hölder’s and the fact that ‖m∨v ‖L1(R2) . 1 to estimate∫∫ ∥∥∥∥∫
I

∫
f̂(ξ1, ξ2)(ξ2 − φ(ξ1))jδ−je((φ(ξ1)− ξ2)v)e(xξ1 + yξ2)dξ2dξ1

∥∥∥∥p
Lp(B((u,v),δ−1))

· δ2wB,F (u, v)dudv

=

∫∫ ∫∫
‖fI ∗m∨v (x, y − v)‖pLp

(x,y)
(B((u,v),δ−1))δ

2wB,F (u, v)dudv

.
∫∫
|fI |p ∗m∨v (x, y′)1B(x− u, y′)dxdy′δ2wB,F (u, v)dudv

=

∫∫
|fI(α, β)|p

∫∫ ∫∫
|m∨v (x− α, y′ − β)| δ21B(x− u, y′)dxdy′

· wB,F (u, v)dudvdαdβ

=

∫∫
|fI(α, β)|p

∫∫
|m∨v | ∗ δ21B(u− α,−β)wB,F (u, v)dudvdαdβ.

Therefore, it remains to show the following pure weight inequality:∫∫
|m∨v | ∗ δ21B(u− α,−β)wB,F (u, v)dudv . wB,E(α, β).

In fact, we can show a slightly stronger inequality:∫∫
|m∨v | ∗ δ21B(u− α,−β)wB,F (u, v)dudv . (1 + δ|α|)−E(1 + δ|β|)−E . (4)

6.3 Derivative bound of mv

In this subsection we are going to use the assumptions (2) up to order E. Recall that

mv(ξ1, ξ2) = Mj(δ
−1(ξ2 − φ(ξ1)))σ

(
ξ1 − h

4l

)
e(vφ(ξ1)). (5)

Now we give a derivative estimate on mv.
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Lemma 14. For each 0 ≤ s1 ≤ E and s2 ≥ 0 we have∥∥∥∂s1ξ1 ∂s2ξ2mv

∥∥∥
∞

.s1,s2 l
−s1 (1 + |v|δ)s1 δ−s2 , (6)

where the implicit constant does not depend on j, |v|, δ.

Proof of lemma. First we use a translation and Proposition 10 to reduce to the case h = 0, φ(0) = 0 and
φ′(0) = 0, whence (2) also holds for k = 0, 1. We also have I = [0, l].

The part ∂s2ξ2 is an easy consequence of the derivative bounds of Mj (3). For the part ∂s1ξ1 , we estimate
respectively the three terms

Mj(δ
−1(ξ2 − φ(ξ1))), σ

(
ξ1
4l

)
, e(vφ(ξ1)).

For the first term, using Faà di Bruno’s formula and (3), we see that the k-th derivative of Mj(δ
−1(ξ2 −

φ(ξ1))) is essentially bounded above by

∑ k∏
j=1

∥∥∥δ−1φ(j)∥∥∥mj
∞
,

where the sum is taken over all k-tuples of nonnegative integers m1, . . . ,mk satisfying

m1 + 2m2 + · · ·+ kmk = k. (7)

Thus, using the assumptions (2), we have

∑ k∏
j=1

∥∥∥δ−1φ(j)∥∥∥mj
∞

.
∑

δ−(m1+···+mk)
k∏
j=1

(l−jδ)mj

=
∑

l−(m1+2m2+···+kmk)

∼ l−k,

since the number of such k-tuples depends on k and in turn depends on E only.

The second term σ( ξ4l ) also gives a factor l−k after differentiating k times. The third term e(vφ(ξ)) can
be estimated in a similar way as in the first term:∣∣∣∣ dkdξk1 e(vφ(ξ1))

∣∣∣∣ . l−k
∑

(|v|δ)m1+···+mk .

But for all k-tuples m1, . . . ,mk satisfying (7), the largest possible value of m1 + · · · + mk is k, attained
when m1 = k and mj = 0 for all 2 ≤ j ≤ k. Hence the term e(vφ(ξ)) gives a factor |v|kl−kδk after
differentiating k times.

Combining the three estimates and using Leibniz rule complete the proof of the Lemma.

6.4 Proof of the weight inequality

Now we prove (4). The proof is almost the same as the last part of Section 5 of [2], but for completeness,
we also give it here.

In this part we will use the assumption l = |I| ≥ δ and the choice F = 2E + 2. We will also use the
weight inequalities (5.1) and (5.2) of [2], namely,

(1 + δ| · |)−E ∗ δ′ (1 + δ′| · |)−E (x) . (1 + δ|x|)−E , if δ ≤ δ′ (8)

and
wB,2E(x, y) ≤ (1 + δ|x|)−E (1 + δ|y|)−E . (9)
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Since mv is supported on a constant multiple of the rectangle [0, l]× [−δ, δ], using Lemma 14 and repeated
integration by parts shows that

|m∨v (x, y)| ≤ τ1(x)τ2(y),

where

τ1(x) .s1 l

(
1 +

|x|
l−1(1 + |v|δ)

)−s1
, τ2(y) .s2 δ (1 + δ|y|)−s2 ,

for any 0 ≤ s1 ≤ E, s2 ≥ 0. In particular, both the above hold for s1 = s2 = E. Also, τ2 does not depend
on v. Now we split

1B(u− α,−β) = 1J(u− α)1J(−β)

where J = [−δ−1/2, δ−1/2]. Thus, taking s2 = E and using (8),∫∫
|m∨v | ∗ δ21B(u− α,−β)wB,F (u, v)dudv

≤
∫∫

τ1 ∗ δ1J(u− α) τ2 ∗ δ1J(−β)wB,F (u, v)dudv

. δ (1 + δ|β|)−E
∫∫

τ1 ∗ δ1J(u− α)wB,F (u, v)dudv.

Hence, all that remains is to show∫∫
τ1 ∗ δ1J(u− α)wB,F (u, v)dudv . δ−1 (1 + δ|α|)−E . (10)

Let the integrand be denoted by H(u, v). We split the analysis according to the range of |v|.

(a) If |v| ≤ δ−1, then we have

τ1(x) .E l (1 + l|x|)−E .
Using δ ≤ l and (8), we have

τ1 ∗ δ1J(u− α) . δ (1 + δ|u− α|)−E .

Use (9) to split

wB,F (u, v) . (1 + δ|u|)−E (1 + δ|v|)−E−2 ,
and thus using (8) again we have∫∫

|v|≤δ−1

H(u, v)dudv . (1 + δ|α|)−E
∫
|v|≤δ−1

(1 + δ|v|)−E−2 dv

. δ−1(1 + δ|α|)−E .

(b) If |v| ∼ Kδ−1 where 1 ≤ K ≤ lδ−1, then

τ1(x) .E l

(
1 +

l|x|
|v|δ

)−E
.

Using |v|δ/l ≤ δ−1 and (8), we have

τ1 ∗ δ1J(u− α) . |v|δ2 (1 + δ|u− α|)−E .

Thus, similarly we have ∫∫
|v|∼Kδ−1

H(u, v)dudv

. δ(1 + δ|α|)−E
∫
|v|∼Kδ−1

|v|(1 + δ|v|)−E−2dv

. δ−1K−E(1 + δ|α|)−E .

Summing with respect to K ∈ 2N gives the required bound for the integral of H over δ−1 ≤ |v| ≤
lδ−2.
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(c) If |v| ∼ Klδ−2 where K ≥ 1, we also use

τ1(x) .E l

(
1 +

l|x|
|v|δ

)−E
.

This time, using |v|δ/l ≥ δ−1 and (8), we have

τ1 ∗ δ1J(u− α) . l

(
1 +

l|x|
|v|δ

)−E
.

Thus, using (8), (9) again we have∫∫
|v|∼Klδ−2

H(u, v)dudv

.
∫
|v|∼Klδ−2

δ−1l

(
1 +

l|α|
|v|δ

)−E
(1 + δ|v|)−E−2dv

. δ−1l

∫
|v|∼Klδ−2

(1 + δ|α|)−E(|v|δ2l−1)E(1 + δ|v|)−E−2dv

. δ−1(1 + δ|α|)−Elδ−2(δλ−1)E
∫
|v|∼Klδ−2

|v|−2dv

∼ K−1δ−1(1 + δ|α|)−E ,

using δ ≤ l. Summing with respect to K ∈ 2N gives the required bound for the integral of H over
|v| ≥ lδ−2.

Combining the three bounds above, we thus have∫∫
H(u, v)dudv . δ−1(1 + δ|α|)−E ,

as required. This finishes the proof of (10) and hence the proof of Proposition 7.
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