Equivalence of decoupling constants

Tongou Yang

The goal of this note is to give rigorous argument for the equivalence of various formulations of decoupling,
which is a heuristics commonly used in decoupling theory. For simplicity of notation we will only consider
the planar case. The technical treatment resembles that of [2] and [1], but our result generalises the
counterparts in their articles.

1 Definition and notation

1.1 Convention and notation

In this note we use the following conventions and notations.

1. Throughout this article we say a Schwartz function 7 : R? — C is good if 1 < |n(z)| < 2 on [-C, C]?
and 7 is supported on [-C"’, C']?, where C, C" are absolute constants. In the following, C' will always
represent an arbitrary absolute constant, and its value may vary from line to line.

2. Let T C R? be an axis-parallel rectangle centred at (zg,%0) with base a and height b. We define a
Schwartz function 7y adapted to T by

nr(z,y) =n ( =20 Y%
T\, a ) b .

Also, for an integer £ > 100 we define a weight function wr g by

|$—ﬂ?o\ + |y—y0|)_E_
a b

wT7E(xay) = (1 +

Note that nr Sg wr g. The lower bound 100 is not important here, and in most applications we
only care about large E’s.

In particular, this definition applies to an axis parallel square B C R2. Throughout the text we
assume all squares B are axis-parallel, unless otherwise specified.

3. Throughout the text we let ¢ : [0,1] — R be a C%-function. A §-neighbourhood of the graph of
¢ over some interval I, denoted by N I¢ (6), will always refer to the vertical neighbourhood, unless
otherwise specified. In symbols,

NP(©O) = {(s,t) : s € I, |t — p(s)] < d}.

Also, for any function f : R? — C and any interval I C R, we denote by f; the Fourier restriction
of f to the strip I x R:

f1(s,t) = f(s,0)11(s).
Note that for f € LP(R?) and 1 < p < oo, we have

1f1ll e @2y S 11l Lr(e2)s
by the boundedness of the Hilbert transform.

4. A partition of [0, 1] in this note will be a finite collection of closed intervals with disjoint interiors.



1.2 Various formulations of decoupling
Definition 1 (Extension operator). Fiz a C?-function ¢ : [0,1] — R. We define the extension operator
E? by
1
£9(e,) = [ gls)elas+ yols)ds

0
for g € L*([0,1]). Here and throughout the text we write e(z) := exp(2miz).

With this, we can formulate the first version of decoupling, which will be referred to as the extension
operator formulation.

Definition 2. Let Ps be a partition of [0,1]. For 0 < p,q < oo, we let qu v,
such that for any g € L*([0,1]) and any square B with side length =1 we hcwe

. (Ps) be the best constant

18200 105y < Discan PO 1201 o [y

where gr = gly.

For a good Schwartz function n defined in the beginning of this section, we also define the constant
Dﬁ(LP (Ps) in the same way as above, except that the wp g on the right hand side is replaced by np.

Remark. If p > q and we have wp g on the right hand side, then by Minkowski’s inequality the left hand
side can be replaced by |‘5¢g” Lo (ws ) without necessarily changing the decoupling constant. (See also

Section 4 of [2].) However, if we have np on the right hand side instead, then this is not obvious and may
even fail.

We also have various neighbourhood versions of decoupling. The following one will be referred to as the
global neighbourhood version.

Definition 3. Let Ps be a partition of [0,1]. For 0 < p,q < 0o and 7 > 0, let GY ~(Ps) be the best

la(LP),
constant such that for any f with Fourier support in ./\/[O 1 (19), we have

[
£ 2y < Glaqre » P‘S)HHfI”Lp(RQ) la(1ePs)’

Similarly, we have the corresponding local neighbourhood version of decoupling.

Definition 4. Let Ps be a partition of [0,1]. For 0 < p,q < oo and 7 > 0, let Lﬂ(m) . 5(Ps) be the best

constant such that for any f with Fourier support in ./\/?8 1 (16) and any square B with side length §~1,
we have

Hf”LP(B) < Lﬁ(LT’),TE Pfs)HHfI”LP(MBE) la(I€Ps)

For a good Schwartz function n defined in the beginning of this section, we also define the constant
L?:(L,, (735) in the same way as above, except that the wp g on the right hand side is replaced by np.

Remark. By a modulation of f in the frequency space, in the local neighbourhood version we may always
take B to be centred at 0. Also, similar to the remark after Definition 2, if p > ¢ and we have wp g on
the right hand side, then we may replace the left hand side by || f|| Lo (ws. ) without necessarily changing
the decoupling constant.

2 Relation between decoupling constants

The main goal of this article is to study the relations between the decoupling constants defined as above.

Let ¢ : [0,1] — R be C?, 0 < § < 1, Ps be a partition of [0,1] depending on ¢,§. Also, let E,p,q,n be
given as above. To make the notation simpler, we will do the following reductions. It turns out that in
all the following propositions and theorems, the scale §, the partition Ps and the Lebesgue exponents p, g



will be fixed at the beginning of the assumption and will not change in their proofs. Hence, we will drop
Ps and the subscript [9(LP) in the decoupling constants. For instance, Lﬁ( Le),C 5(Ps) will simply be

reduced to Lé g and Df;( Lv) n(P‘S) will become Dj?. Moreover, as we proceed to obtain more equivalence
theorems in the following sections, we will keep dropping more subscripts and superscripts to make the

notation even simpler.

Now we come to our first easy observation, namely, the decoupling constants are essentially the same
when the thickness of the neighbourhood is multiplied by an absolute constant. The simple proof is given
in Section 4.1.

Proposition 5. For any 72 > 7 > 0 we have
¢ ¢
L‘rl,E ~ LT2,E7 Gfl ~ G%
The implicit constants here depend only on To/11,p, E.

Reduction of notation. By this proposition, from now on we will drop the thickness 7 in the decoupling
constants Li 5 and G¢ (but not Lf_’m) to make the notation even simpler. In this reduced notation we
will implicitly assume 7 = 1.

The following is our first main theorem on the relation of the decoupling constants. The proof is given
in Section 5.

Theorem 6. If ¢ < p, 1 < p < oo! and every interval I in the partition Ps has length at least §, then
for any 7 > 0 we have

¢ ¢
Dy SDySLE, SGY S Ly
The implicit constants here only depend on ¢, 7, E.n, p, q but will never depend on § and the actual choice
of the partition Ps (as long as the assumption holds).

2.1 Generalisation to higher dimensions

In R™, one can similarly define all the decoupling constants for a surface given by a C2-function ¢ over
[0,1]"71, where P;s is a partition of [0,1]"~! into axis-parallel rectangles. If p,q are in the same range
of Theorem 6 and all dimensions of each rectangle are at least §, then it turns out that the proof of
Theorem 6 can be easily modified to higher dimensional cases, yielding the same chain of inequalities as
in Theorem 6. The details are left to the reader.

3 The main equivalence theorem

Our final goal in this text is to show that under some general conditions, all the above decoupling
constants are equivalent. In view of Theorem 6, if we are able to show L}, < D%, then we are done.
For this purpose, we need some regularity on ¢ and the partition Ps of [0,1]. (Compare the formulation
below to that of the sub-admissible partitions in [5].)

Proposition 7. Let E > 100, and suppose ¢ € CF([0,1]). Let 0 < § < 1 and assume that for every
I € Ps and every 2 < k < E we have |I| > ¢ and

sup |6 (s)[|1]* S 0. S

Then for any 1 < p < co we have
® ¢
Ly S Dapyo,
where the implicit constant only depend on ¢, E,p but will never depend on q,d and the actual choice of

the partition Ps (as long as the assumption holds).

INote that the theorem does not cover the case p = co. But in practice, all decoupling constants given by the triangle
inequality and Hoélder will usually be sharp at p = oco. Also, if p < ¢, all decoupling inequalities are trivial. Indeed,
by triangle inequality and Holder followed by an interpolation (see here) we get a trivial upper bound for the decoupling
constants. On the other hand, by taking each f;r with sparse physical support, we get a lower bound which essentially
coincides with the upper bound.
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The proof will be given in Section 6. As a corollary, we finally arrive at our main equivalence theorem of
decoupling constants.

Theorem 8 (The equivalence theorem). Assume the conditions of Proposition 7. Then for E, F > 300,
q<p,1<p<ooandTt >0 we have

D} ~ Dy ~Df ~ L ~G®~ LY ~ L.

The implicit constants here only depend on ¢, 7, FE, F,n,p,q but will never depend on & and the actual
choice of the partition Ps (as long as the assumption holds).

Proof. By Theorem 6 and Proposition 7, for all £ > 100 we have
Ly S Dpyy S Dy S L2, S G7 S L,

and so all the above < can be replaced by ~. In particular, L‘g ~ G? for all E > 100. Hence L‘g ~ L‘fp
for £, F' > 100. Similarly, D§E+2 ~ G?, and so D? ~ D% for £, F' > 300. Thus we have the chain of
equivalences. O

To familiarise the reader of the assumptions of Proposition 7, we have the following simple examples.

1. If ¢ € CE([0,1]) and ¢" does not vanish on [0, 1], and Ps is given by the standard partition of [0, 1]
into intervals of equal length §'/2 where § € N2, then the assumptions of the proposition hold.
2. For ¢(s) =s",r >3 and § € N2 let
a; = j7or,
and Ps = {[aj_1,a;] : 1 < j < §7'/2}. Then the assumptions of the proposition hold. Indeed, it
suffices to note that the length of the interval [a;_1,a;] obeys
2_q .1
aj —Qj—1~]J" 15T.
It turns out that the assumptions of Proposition 7 hold for a large family of functions, including all
polynomial functions of degree at most E.

We need a little more terminology to state the result in full generality. Let ¢ be an analytic function
such that ¢” does not vanish identically on [0,1]. Then ¢” has at most finitely many zeros z; € [0,1],
and each zero is of some finite order n;. The maximum of the n;’s will be called the mazimum order of
vanishing of ¢". (If ¢" does not vanish, we just set its maximum order of vanishing to be 0.) See also [1]
and Section 12.6 of [3]). With this, we have

Lemma 9. Let ¢ be an analytic function such that ¢" vanishes to the order at most E —2 on [0,1]. Let
I € Ps and suppose that (1) holds for k = 2. Then (1) holds for all 2 < k < E. Hence, if in addition we
have |I| > § for every I € Ps, then the assumptions of Proposition 7 hold.

Proof. Let ¢ = ¢". Then there are finitely many closed intervals J partitioning [0, 1] such that on each
J, 1 admits an infinite series expansion. Without loss of generality, each J contains at most one zero z
of ¥ of some order | < E — 2. Hence, on J we can write

B(s) = ajls — =),
j=l

where a; # 0. Since ¥ does not have any other zero on J, we have [)(s)| 2 |s — z|! for all s € J.

Let I € Ps, and without loss of generality, assume I C J. Thus, for s € J we have

sup |¢" (s)| = sup [¢2(s)| 2 |1]".
sel sel

Using (1) for k = 2, we then have |I| < 5T < §YE.

Now let 2 < k < E. By the series representing 1, we also have [(*=2)(s)| < |s — z|'~*+2, from which we
have

sup |6 (s)| = sup [ (s)] < 1!,
sel sel

Using |I| < 0'/F we just obtained and [ < E — 2, we thus have (1) for k. O



3.1 Generalisation to higher dimensions

One may ask if Proposition 7 generalises to R™. Indeed, suppose in addition that we are in the special
case where

O(81,.- -, Sn—1) = 01(81) + -+ Pn_1(8n—1)

and ¢; € C¥([0,1]). Given a partition Ps of [0,1]"~! given by the Cartesian product of n — 1 partitions
P§ each satisfying the assumptions in Proposition 7. Then for any 1 < p < co we again have

¢ @
L S Dp,

for some suitable F' = F(FE). The detail is left to the reader.

The case for a general ¢ is much more subtle, so we leave it open.

4 Two preliminary equivalences

In this section we prove two easy equivalences of decoupling constants. First, we give a proof of Proposition
5 on the equivalence of comparable thickness of the neighbourhoods. Next we prove another equivalence
theorem on the decoupling constants, namely, adding to ¢ a linear function with bounded slope does not
essentially affect some decoupling constants. This fact will also be used in the proof of Proposition 7.

4.1 Changing thickness of neighbourhoods
Here we give the simple proof of Proposition 5.

Proof. We only prove the equivalence for Lf_” g as the global counterpart is even easier. We also only need
to show L? . > Lf_; g as the other side is trivial.

T1,E ~

The proof uses a very trivial scaling argument. Let f have Fourier support on N, I¢ (126), and let B be
71

the square centred at 0 with side length 6=1. Let g(z,vy) = f(z, ?23/)7 so that g has Fourier support on
N, I¢ (110). (This is why we choose vertical neighbourhoods.) Then we can apply the definition of th 5 to
get

< thE H ||gI||LP(wB,E)

9/l e (5) 19(1ePs)

But then [lg|l;»5) ~ [Ifllzs(r) where T is the axis-parallel rectangle centred at 0 with base 571 and
height %5’1, so in particular || fll oy = [fll 1o(p)- On the right hand side, |97/l 1oy oy ~ 1 f1ll 2o () ~
/1l £o () Since wr ~wp . Thus we also have

11wy S Z, |12 2o

14(16775).

Thus we have Lf—;,E < Lf_’hE. O

Now we can drop again the thickness 7 in the notation as we did after Proposition 5.

4.2 Adding a linear function

In this section we prove the following proposition.

Proposition 10. Let ¢(s) = ¢(s) + as + b where |a| < C. Then we have
Dy ~ DY, G*=GY, Ly ~LY.

The implicit constants here depend on p, E only.



Proof. We give a proof of the case L% ~ L% as the proof of D‘fj ~ D}g is similar and the proof of G = G¥
is easier. We will only prove the < direction and the other side follows by symmetry.

Let f have Fourier support in N 0 1]( ) and B be a square of side length §=!. We will show that

1y S T8 1570 2o

la(IePs)

Let g be defined by the relation R
g(s,t) = f(s,t —as —b),

which is supported in Af[% 11(6). We also have for all I € Ps

g1(z,y) = e(by) fr(z + ay,y).

Then we can apply the definition of L}g to get

¥
2oy S L6190 109 |

Since [a| < C, we have ||gll,»5) = [IfllLr(c-1p)- On the right hand side, we have [|gr|l1(,, ) 2
HfIHLp(wB‘E)- Thus

o] ~
||f||Lp(c 1By~ ME HgI”LP(wB,E) l9(I€Ps)

But the above holds for all B. Covering B by O(1) many C~!B’s, we are done. O

Reduction of notation. After this proposition, the phase functions ¢ will no longer change, and so we will
drop the superscript ¢ from the decoupling constants below.

5 Local-global equivalence, easier relations

In this section, we will prove Theorem 6 step by step.
Proposition 11. For ¢ < p < oo and any E > 100 we have

G < Lg.
The implicit constant here depends on p, E only.

Proof. Cover R? by a tiling of squares B of side length §~!. We then have the weight inequality
> pwp e S 1. Hence, for ¢ < p < oo we have

If1l Lo g2y = (lefllu B)>

P

QP
=

<15 (¥ (Z 121 2 )

I1ePs

(by Minkowski) < Lg Z (ZHfIHip(wB,E))
B

I1€Ps

Tl
Q=

Lp (Z ||f1||%p(ug2)> :

I1ePs

The case p = oo is immediate, since then L>°(R?) equals L>(wp g) (as w is everywhere positive). [



Proposition 12. For any E > 100, we have Dg S D,,, where the implicit constant depends on E and n
only. Also, if 1 < p < oo and each I € Ps has length at least 0, then for any T > 0, we have D,y < L.,
where the implicit constant depends on p,q,n, T

Proof. The relation Dg S D, is trivial since np Sg wp,g. To prove D, < L., we remove the first and
the last intervals of Ps and call the resulting collection P§. By the triangle and Holder’s inequalities, it
then suffices to decouple with respect to P} only, namely, it suffices to prove that for any g € L([0,1])
and any square B with side length §~! we have

1€ o) S Lron|[1€91 ] o)

19(I€Ps)’
where g’ = glyp;.

Consider the function £g'npg, whose Fourier transform equals a function gg\’ * 5. By the assumption on
the partition, the left endpoint of UP; will be bounded away from 0 by at least d, and the same holds
for the right endpoint. Hence, by the support condition of 7, 6{g\ * g is a function supported within
the strip 0 < s < 1. Moreover, if the absolute constant C’ in the definition of 7 is chosen small enough
(depending on 7), then Eg * 7p is supported on /\/[0 1] (16). Hence, we may apply the definition of L
to get

/ /
€5 1) < Lral 1€ 15 o0 |, g

For the left hand side, we have (|Eg'n5| 105y = 1€9' ]| 1o (p)
The right hand side is trickier. By definition, for each I € Pj,
((Eg'np) )" (s,t) = Egmp(s,)11(s) = Eg' * 5 (s, ) L1(s).
Using the support of 775 and the assumption on the partition, we have
Eq' * (s, 6)11(s) = Eg; * B (s,t)11(s)

where I is the union of I and all intervals in P adjacent to I. Here we also used the fact that ga isa
distribution supported on the graph of ¢ above I for all I C [0, 1]. Thus

(Eg'np)1 = (EgiB)r,
from which we have
1€ )il Lo (ngy = 1€9mB) 1l 1oy S NEgmBII Lo w2y S 1€97MB 1o 2y

where in the last inequality we have used the boundedness of the Fourier multiplier (s,t) — 17(s) and
the assumption that 1 < p < co. Thus we have

1E9n8) 11 1 < [1€gimsll o,

19(I€Py) la(1ePy)
S H||£gl773||LP(R2) le(IcPs)
3
S H”ggI”Lp("B) 19(1€P5)
where in the second inequality we have used the triangle and Holder’s inequalities. O

Proposition 13. If1 < p < oo, 7 > 0 and each I € Ps has length at least §, then we have L., < G,
where the implicit constant depends on ||¢'|| ., as well as p,q,n, T

Proof. Let f have Fourier support in N 0 1]( J), and let B be a square of side length 1. Remove the

first and the last intervals of Ps and call the resulting collection Pj. Let f’ be the Fourier restriction of
f to UP§ x R. It suffices to prove

(T Pt [ 77 e

19(IePs)



We start from the left hand side. Since ||f'[|;,5) < [1f'nB | 1o (re2), it suffices to study f'np. Note that
f/’n\B is supported on the Minkowski sum of a square with side length § and NUp, (79), which is contained
in j\/[‘g 1 (1'0) where 7/ =741+ ||¢'|| . Using the definition of G, we have

!/ !/ !
Py E P [Ty P .

By similar argument as in the proof of Proposition 12, we have for all I € Pj
(f'ne)r = (fims)1,
where T is the union of I and all intervals in Ps adjacent to I. Thus, as 1 < p < co, we also have
1 m8)t oy = 181 gy S 18l sy S 1l

The result then follows from the triangle and Holder’s inequalities. O

6 Local-global equivalence, continued

In this section we prove Proposition 7, by modifying the tedious Fourier analytic proof of Section 5 of [2].

Proof of Proposition 7. Let E > 100 and ¢, Ps be given such that for every I € Ps and every 2 < k< FE
we have |I| > § and

sup 168 ()[11]F <y 0. (2)

Our goal is to show that for any 1 < p < 0o we have Ly < Dag.o, that is, for any f with Fourier support

in [o 1 (6/4) and any square B of side length 6~ centred at 0, we have

S Do '
||fHLp(B)N 2E+2 HfIHLp(’LUB,E) 19(I€Ps)

Let FF = 2FE + 2. We may assume without loss of generality that f is smooth. By the Fourier support of
f, we can write

f(a,v) / /MA T t)e(ws + yo(s) + yt)dtds.

5/4

6.1 Taylor expansions
The term e(yt) prevents us from writing the right hand side in the form of £%g for some g. But since

ly| <871 and [t| < 6/4, we know that e(yt) is “negligible”. To make it rigorous, we use Taylor expansion
to write

5/4 ) )
|f(z,y)] < — |/ / + te(xs + yo(s))t? 6 dsdt

j:() 5/4
N
=> £9;(x, ),
per i

5/a o
9;(s) =/ f(s,6(s) +t)t7 67 dt.



Hence, by the triangle inequality, we have

2m)7
J!

NE

1oy < 1€9,1 o

<.
Il
=)

2m)7
D 1€ o

1M

lq(I€P5)7

<.
I
=)

where (g;)1(s) = g;(s)11(s). As a result, it suffices to prove that for all I € Ps,

Sp(lE(G) 11l Loy ) S T Lo s )
J

Since p < 0o we can write

1€ s IEWGN I o (B((u0),5-1))0 wB.F (u, v)dudv,
)~ (B((u0),6-1))

where B((u,v),67 1) is the square centred at (u,v) with side length §1.
Now let (z,y) € B((u,v),6~1). We use a change of variable to compute

Eg

/ / 6/4 f +t)e(xs + yd(s))t/ 6/ dsdt

5/4

— [[ fen e - sy 5 e((6(6) - etats + yéa)derdea,
using the Fourier support condition of f. Then we write

(6(&1) — &)y = (9(&1) — E)v + (o(&1) — &2)(y — v).

Apply another Taylor expansion to e((¢(&1) — &) (y — v)) to get

o0

e((p(&1) — B(£1))" (v —y)*.

Since (z,y) € B((u,v),571), we have |[v — y| < §~1. Hence

oo

T k
E iy <3 D

=

i / F(&1,6)(& — ¢(£))7 TR Fe((¢(&1) — &)v)e(x&r + y€o)dEadés | .

Renaming j 4+ k to j, it now remains to prove
P

//H/]/f(&’&)(52 — 0(&1)) 6 e((¢(&1) — E2)v)e(xér + yéa)dEad

~52wB,F(u,v)dudv < fllby

HLP(wB,E)’

Lr(B((u,v),671))

uniformly in j.

6.2 Introducing a Fourier multiplier

In this subsection we will use the case k = 2 of the assumption (2).

Let 0 : [-1/2,1/2] — R be a smooth function that equals 1 on [—1/4,1/4]. Write I = [h, h+1]. Then we
have () =1 for all s € I.
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Let M;(t) = t’o(t) so that M; is smooth, equals ¢/ on [—1/4,1/4] and is supported on [—1/2,1/2].
Moreover, M; satisfies the derivative bound

k
supHM; )HLOO(R) <p L. (3)

>0
Now since [€2 — ¢(&1)| < 6/4, if we define m,, = m, ; by

ma(61,8) = M6 & - ste)e (S0 etwsten)

which is a smooth function with compact support, then we have
| [ i e —serseor) - e + v
— [[ i m (6 )elats + (v - )&)dgade

:fl*mq\)/(may_v)'

Using (2) for k = 2, it is easy to see that for each I € Py, ./\/14)(5/4) is contained in a rectangle T' of
dimensions ~ [ x § (with sides being tangent and normal, respectively, to the graph of ¢ at some point in
I). Thus |mY| is roughly a constant I on the dual rectangle T* of dimensions ~ =1 x §~1. As a result,
we have [[m) || 11 gy ~ 1.

Now since p > 1, we use Hélder’s and the fact that [|[my[|;: ey < 1 to estimate

//H//f(ﬁhﬁz)(& — (€))7 Te((p(&1) — Eo)v)e(xéy + y&o)dEadEy 3

Lr(B((u,v),671))

6wBFuUdudv

— [] [[ 1514 m¥an =0l o sy S wmr o)

< // |frlP % m) (2,9 ) g (2 — u,y)dzdy' §*wp F(u, v)dudv

— [[1stamr [[ [[mie=a - 9110l - u.y)dody
~wp p(u, v)dudvdadp

= // |f1(a,ﬂ)|p/ Im.Y | * 5%1p(u — a, =B wp, r(u,v)dudvdadf.

Therefore, it remains to show the following pure weight inequality:
/ Imy| * 6°15(u — a, = B)wp, r(u,v)dudv S wp, (o, B).
In fact, we can show a slightly stronger inequality:

/ |m.y | * 6213(u — o, —f)wp, p(u,v)dudv S (1+ 5|a|)_E(1 + 6|B|)_E. (4)

6.3 Derivative bound of m,

In this subsection we are going to use the assumptions (2) up to order E. Recall that

ma(61,) = M6 € - st6)e (S0 ) etwstca), )

Now we give a derivative estimate on m.,,.
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Lemma 14. For each 0 < s; < E and so > 0 we have

where the implicit constant does not depend on j,|vl,d.

O, Oy

Sarusa 17 (L4 [v]8)™ 672, (6)

Proof of lemma. First we use a translation and Proposition 10 to reduce to the case h = 0, ¢(0) = 0 and
¢'(0) = 0, whence (2) also holds for k = 0,1. We also have I = [0,1].

The part 0;2 is an easy consequence of the derivative bounds of M; (3). For the part 97!, we estimate
respectively the three terms

M (6N E — 6(61)), a@) e(wd(Er)).

For the first term, using Fad di Bruno’s formula and (3), we see that the k-th derivative of M;(67*(& —
@®(£1))) is essentially bounded above by

mg
)
oo

k
S II[oe
j=1
where the sum is taken over all k-tuples of nonnegative integers my, ..., my satisfying
mi +2mg + -+ kmy, = k. (7)
Thus, using the assumptions (2), we have

o (B
j=1

k

I < 25—(m1+~~+mk) H(l—j(g)mg

oo j=1

— Z l—(m1+2m2+"'+kmk)

m

~ 1R

since the number of such k-tuples depends on k and in turn depends on E only.

The second term 0(4%) also gives a factor [ =% after differentiating k times. The third term e(vo(€)) can
be estimated in a similar way as in the first term:

k
1

But for all k-tuples myq, ..., my satisfying (7), the largest possible value of mq + -+ - + my is k, attained
when m; = k and m; = 0 for all 2 < j < k. Hence the term e(vé(£)) gives a factor |v|*I=F6* after
differentiating k times.

Combining the three estimates and using Leibniz rule complete the proof of the Lemma. O

6.4 Proof of the weight inequality

Now we prove (4). The proof is almost the same as the last part of Section 5 of [2], but for completeness,
we also give it here.

In this part we will use the assumption | = |I| > 6 and the choice F = 2E + 2. We will also use the
weight inequalities (5.1) and (5.2) of [2], namely,

(L48]-)F w8 1+0]- )" (@) S+l F, i 5 <& (8)

and
wp2p(z,y) < (1+0a)) ™ (1+dly)~". (9)
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Since m,, is supported on a constant multiple of the rectangle [0, ] X [—§, 8], using Lemma 14 and repeated
integration by parts shows that

[my (x,y)] < 11 (x)72(y),

where
|z - s
Se 14— , Sey 0(1+0 ’,
T1(£L') ~S1 ( + l_l(l ¥ |’U‘(§) TQ(y) ~ ( + |y|)

for any 0 < 57 < F, so > 0. In particular, both the above hold for s; = s = E. Also, 7o does not depend
on v. Now we split

lp(u—a,=f) =1;(u—a)l;(-p)
where J = [-§71/2,571/2]. Thus, taking s = F and using (8),

/ Imy| % 6*15(u — a, —B)wp r(u, v)dudv
< [[rs 00t ) o 51w,

<s(+0l8) 7" // 1 %015 (u — @)wp p(u, v)dud.
Hence, all that remains is to show
// 71 %017 (u — a)wp p(u,v)dudv <57 (1+ o). (10)
Let the integrand be denoted by H(u,v). We split the analysis according to the range of |v|.

(a) If [v] <671, then we have
mi(z) Spl(1+1z)) 7.
Using § <[ and (8), we have
mx0ly(u—a) <S(1+6u—al) .

Use (9) to split
wp,p(u,v) S (14 8Jul) ™" (1+0Jo) ™72,

and thus using (8) again we have

// H(u, v)dudv < (1+ 5|a\>—E/ (14 6lo)F~2 dv
[v|<o—1 Ju|<6-1
<511+ dlal)".

(b) If |v| ~ K6—1 where 1 < K <167, then

la|\ 7
<pl|(1l+ — .
n@ %1+

Using |v]6/l < 67! and (8), we have

%0l (u—a) < o621+ 68u—al) .

// H(u,v)dudv
[v|~K§—1

sa<1+6|a|>-E/

|[v|~K6—
S OTUKE (1 + dlal) "

Thus, similarly we have

o] (1 + 8Jv])~*dv

Summing with respect to K € 2N gives the required bound for the integral of H over §~1 < |v| <
1672
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(c) If |v] ~ Ki6~2 where K > 1, we also use

This time, using |v|d/l > §~! and (8), we have

-E
Tl*élJ(u—a)§l<1+U> .

Thus, using (8), (9) again we have

// H(u,v)dudv
[~ K152

—E
5/ 61 <1+”0‘|) (1 + 6v))~F2dv
|v|~K15—2 [v|6

<5 / (1+ 6lal) B (j0]63) B (1 + 8Jo]) B ~2du
[o|~E 152

<o+ 5|a|)*E15*2(5x1)E/ |v| " 2dv

|[v|~K16—2
~ K771+ dla))7F,

using & < [. Summing with respect to K € 2N gives the required bound for the integral of H over
lv| > 1672

Combining the three bounds above, we thus have

// H(u, v)dudv < 5-(1+ 6lal)~E,

as required. This finishes the proof of (10) and hence the proof of Proposition 7. O
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