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1 Introduction

This article (second edition) serves as an informal study guide for [1], which in turn serves
as a study guide for [3]. It gives a detailed proof for the decoupling inequality in the case
2<p< % It is self-contained if and only if combined with [2], [1], and [5].

Please feel free to email to toyang@math.ubc.ca if you find any mistakes or you have any
suggestions.

With the basic setting in [1] and the notations and conventions in the next section, our

final goal is to prove the following decoupling theorem:

Theorem 1.1. Letn > 2, E > 100n and 2 < p < % Then we have the following
(local) decoupling inequality:

D=

2
||Eg||Lp(wBR7E) Se,p,mE R Z ||EQ9||Lp(wBR7E) )
QEPR71/2([—%7%]"71)

for any R > 1.

2 Notations and Conventions

1. e(z) = exp(2mix) for z € C.

2. Cross-references in red with a hyper-link refer to an item in this article, while those
in black refer to an item in the study guide by [Bourgain-Demeter, [1]]. We write
[BD] for short in subsequent texts.

3. Unless otherwise specified, B(z, R) denotes the axis parallel cube centred at z with
side length R. Given E' > 100n and any cube B with side length R, we let cg denote
the centre of B. We then define the weight function adapted to B as wg(z) =

o—cpl\ 7
UJB7E(Z‘) = (1 + TB> .

We will also use the notation Br to denote any cube with side length R and some
centre cg. For C' > 0 and any geometric figure F' (e.g. rectangles, squares and balls)
with centre ¢, we also use C'F' to denote the dilation of F' with ¢ fixed.

4. By an absolute constant we mean a constant depending on the dimension n (and
possibly E) only. When writing a constant Cypcetc O a parameter v(a,b, ¢, etc)
depending on several parameters, we also implicitly assume that they depend on n
(and F) as well.


toyang@math.ubc.ca

By definition, the decoupling constant Dec, (9, p, F') depends on n,p,d, E. Unless
we need to specify its dependence on E, we will drop it in the following texts.
Sometimes we will also drop its dependence on n or p if it is not the main point
of concern. (For example, the simplest notation of the decoupling constant will be
Dec(6).)

5. Unless otherwise specified, every physical scale in this note and [BD] will be in 2V,
and every frequency scale will be in 27N, (We say the scales are dyadic in this case.)
This makes all partitions of cubes real partitions instead of bounded overlapping
covers. Nevertheless, sometimes we may prove more general theorems that help to
deal with bounded overlapping cases.

6. By disjoint rectangles in R* we mean rectangles whose interiors are disjoint. Hence
they are disjoint a.e. in terms of k-dimensional Lebesgue measure. Unless otherwise
specified, we will simply say they are disjoint.

7. We use P"! to denote the truncated paraboloid in the frequency space:

Pl = {(5, € €€ [—% ﬂ}

8. Instead of using the longer notation Part to mean partition of cubes, we simply
denote it as P.

3 Some Preliminary Technicalities

3.1 Inequality on weights, I

The scales in this subsection are not necessarily dyadic.

Proposition 3.1. Let 1 < R’ < R. Let B be a finite overlapping covering of B with
R'-cubes A which intersect B. Here, by finite overlapping we mean:

1p(z) <> 1alz) <Gy (3.1)

AeB

for all x. Then
1. #B < (R/R)™.
2. 16 S D acgWa S wp.
The implicit constants here depend on E and n only.

Proof. 1. Foral Ae B,ANB# @and 1 <R < R, so A € 3B. Hence by (3.1) we
further have

Z Ia < Cplsp.

AcB
Integrating on both sides, we get #B(R')" < C,(3R)", so #B < (R/R')™.



2. “13 ~ ZAeBwA
If z € B, then there is A € B so that 2 € A. Then |z — ca| < v/nR'/2, whence

1
S wa(@) 2 wale) - ——— 21
Ack (1+E541)

“ZAGB WA S an

o If z ¢ 4,/nB, then |x — cg| > 4y/n - R/2 = 2/nR. For each A intersecting B,
we have |cg — cal < /nR/2+ /nR'/2 < \/nR. Hence |z — ca| > |z — cp| —
lcg — cal > |z — ¢p| — /nR > 5|z — cp|, where we have 3|z —cpg| > R > R

Hence
1 1 R\" RF
Suse) =¥ g s < (1)
Acw act (14 54l) (E72) 5

On the other hand, as |z — cg| > 2v/nR > R,

1 - 1 RE
EZ E~ . _ . E
(1+ |m—RcB|> <2|z;%c5\> |z — cpl

Since E > 100n and R > R/, we have (ﬁ)n L _RE o~ _RE

lr—cpl|F — |z—cplF"

o If v € 4,/nB, then wp(z) ~ 1. We need to show that

> walz) S 1. (3.2)

AeB

wp(r) =

To do this we need a lemma:

Lemma 3.2. Let x be a point in R™ and let R > 0, K € N. Let B be a collection
of cubes A with the same side length R satisfying the following property:

(a) They have bounded overlap:

ZlA < C,.

AeB

(b) For each A € B, |ca — | < 28R,
Then #B < 25,

Proof of Lemma 3.2. All A € B are contained in the cube B(z, 2572 R). Then

#BR" = #B|A| :/ (Z 1A> < / C, ~2K"R". (3.3)
B(z,2K+2R) B(z,2K+2R)

AeB

Hence #B < 257, O



Now we return to the proof that Y\ .swa(z) $ 1. Fix o € 4/nB. Partition
B = U%_ Bk where

Bg ={A€B: 2K 'R < |ea — 2| <28R}, K>1
By ={Ae€B:|ca—x| <R}
Since A has side length R’, By has at most O(1) elements, in the same spirit as

(3.3). Indeed, if |ca —x| < R, then A € B(x,3R’). Hence by finite overlapping
(3.1),

Z 1A(y) < CnlB(x,SR’)(y)‘

A€By

Integrating over R™ on both sides, we get #By < 1. Hence ),z wa(r) S 1.
For K > 1, |ca — z| ~ 25 R/, so wa(x) ~ 275F, Using Lemma 3.2 we have

Z wa(r) < #By - 27KF L a7 KEm,
A€EBK

~Y

Summing with respect to K > 0, we have ), zwa(z) S 1.
[l

Remark: The proof of ), swa(x) S 1 shows that it is generally true whenever the
A’s have finite overlap. It is independent of the geometric figure they are covering. This
observation will be useful in some technical argument in parabolic rescaling.

Proposition 3.3. Fiz B, a finite overlapping cover of R™ with R-cubes B’, and let B be
an arbitrary R-cube. Then

1. wp(x) S Ypep Lo (@)ws(cs).
2. ZB’EB wB/(x)wB(cB/) 5 wB(x)

Proof. Let ¢ denote the centre of B.

1. Let z € R™. Then there is B’ € B such that x € B’ so |z — c¢p| < /nR/2. We
have two cases.

e [cp —c| > +/nR.
In this case,

NG

1
\cB/—c|§|cBl—x]—|—]:c—c|g7R+|x—c|§§]c—03/|—|—1x—c|.

Hence |¢ — cp/| < 2|z — ¢|, whence

1 1
wp(z) = < 5 ~ wp(cp).

<1 + ﬂ)E N (1 + |CB/*C|)
R 2R




® |CB/ — C| < \/ﬁR
In this case, wp(cp) ~ 1. Since wg(z) < 1, the result follows.

2. Fix x € R™. We partition the covering into By, By, where By := {B" € B: |zt —cp/| >
2z —c|}, By:={B € B:|v —cp| <2z —l|}.

If B € By, then |¢c — cp/| > |x — cp| — | — ¢| > |x — ¢|. Hence

> wp(@)wslep) < Y wp(x)- ;E

B'eB; B'eB; (]_ + ‘w—};c'>

R N

<1 + %) B'eB
1

~ o=\ ©
(1+%)

since ) pepwp(x) < 1in the same spirit as in (3.2).

A
I
g

R

3

If B’ € By, we consider the following cases:

e If x € \/nB, then using the trivial bound wp < 1:

Z U}B/(ZL‘)U}B(CB/) 5 Z UJB/(I) -1 5 1~ wB(x)

B'eBy B'eB

e If x ¢ \/nB, then we consider the inequality defining Bs: |x — cp/| < 2]z — ¢|.
This implies that the entire cube B’ is contained in B(z, 3|z — ¢|): indeed, if
y € B, then |y —z| < |y —cp| + |cp — x| < /nR/2+ 2|z — ¢| < 3|z — ] as

x ¢ \/nB.
Then in the same spirit of (3.3), we have #B; < (%)n Thus

> wnleunten) 5 (“51) < (’””;C')E ~ wp().

B’eBs

3.2 Use of reverse Minkowski in Remark 4

Write
Ai = [ fill o (s o)
Then
Ai = all fillppy + Bl fill Loy = Aix + Aia.



Then

OQ(Oéu—f—ﬂU) = (Z”fiHiP(au-‘rﬁv)) = (Z Alp)

D
2

= (Z(Ai,l + Am)”) = i1 + Aiall 2

%

> [1Aiall z ) + IAizll 2

= (Z A§1) + <Z AEz)
(Zainfinip(u)) + (Zﬁi“ﬁ”ip(v)>
=« (ZHleip(u)) + 5 (ZHfZH%P(v))

= OéOQ(U) + ﬁOQ('U)

4 A Reverse Holder’s Inequality

4.1 A lemma on Schwartz functions

We start with the following technical lemma.

Lemma 4.1. Let 1 < p < oco. There is a nonnegative Schwartz function n on R™ such
that n(z) > 1 on B(0,1) and that the Fourier transform of n'/? is supported on B(0,1).

Proof. Let ¢ be a bump function supported on B(0, %) with, say, ¢¥(0) = [¢ =2 and
such that |¢¥| > 1 on B(0,1). Take n = (¢" - ¢Y)?, so 7 is positive, smooth, and n(x) > 1

on B(0,1). By construction, (n%)/\ = ¢(+) * ¢(—-), so it is supported on B(0, 1). O
Definition 4.2. Let 1 <p < oco. Let B C R™. Given n as in Lemma 4.1, we define
r — Cp
= = . 4.1
(o) = nmy(o) = (557 (1)

We call ng a Schwartz function adapted to B with exponent p.

—_

Note that n,lg/p will be supported on B(0,1(B)™1).

4.2 Computations related to extension operator

For x = (xy,...,2,) € R", write 2’ = (xy,...,2,-1). Write e(t) = exp(2mit). The
extension operator defined in BD is as follows:

Botw)= [ o@els' €+ mlel)ie



With this notation, g is defined directly on the frequency cube [—2, é]” ! but not on

the paraboloid; note also that the Jacobian is not present. Since we may assume that

g € C=([-%,%]"1), we could also view g as a smooth function defined on R"! that

212
vanishes outside [—3, 3]" "

We rewrite Eg as

/Rn 1/50 — 1€P)g(E)e(a’ - € + 2,8, dEndE.

Hence, formally,

Eg(€,6) = 9(€)0(& — €*)-

Thus E/’\g is a (tempered) distribution in R™ supported on the compact hypersurface S, in
the sense that if h € C*°(R"), then

Bylh) = | (@€ - &nle, &),

= [ sonelerae

Moreover, E\g will not be a function unless the support of ¢ is disjoint from S. Hence it
makes no sense to talk about E*Fg in this case.

If ¢ € S(R"), then for n € R"! n, € R,
GEg(€) = By o(€) = / / g(m6olnl? — 1) S(E — 0, &0 — na)dndn,
- / o(MS(E — 1,60 — 1)

which is a normal function in the frequency space. So if g is supported on a cube @) C R
with [(Q) = R™! and ¢ is supported on B(0, R~'/10), then Fg * ¢(€) is supported on a
tiny neighbourhood of the paraboloid over Q).

4.3 Locally constant property

The following proposition is a slight generalization to Corollary 4.3. This locally constant
property will also be referred to as the uncertainty principle, a reverse Holder’s inequality
or a Bernstein-type inequality in the following texts.

Proposition 4.3. Let 1 <p < qg<oo. Let R> 1. Let ng = np, be a Schwartz function
adapted to a cube B C R"™ with exponent p (see (4.1)). Then for each cube Q C [0,1]"!
with 1(Q) = R™" and each cube B C R™ with I(B) > R we have

| Eaollpam) S (R34 Eqgl gy (4.2)

Thus we have, for all E > 0,

I(B)\ " s
Bty S (“50) " 1ot o (43)



10

This says that Egg is roughly constant at scales > R.

Proof. By (4.1), ny? is a function supported on B(0,1(B)~*) C B(0,R!). As shown
above, FEqg is a distribution supported on the paraboloid above @ with [(Q) = R™!, so in
particular, it is supported on a rectangle @ x I where |I| < 2(n—1)R~!. Using Minkowski

sum, 77]13/ PEog = 77,13/ P *E/’Q\g is supported in a rectangle 3Q) x J with all dimensions < ¢, R~*
(using the map @ > & — |€]? and triangle inequality), which is in turn contained in some
cube ' C R"™ with I[(Q') = ¢,R™'. Then apply the usual Bernstein inequality to the

function 7]]13/ PEqg to get

which then implies (4.2) as 7 > 1 in B. The implication from (4.2) to (4.3) is trivial. [

1/p

1 1
R ||n"E H , 14
(R o, (4.

1
nB/pEQg‘ L9(B) SJ

5 Thickening the Paraboloid (Section 5)

5.1 Inequality on weights, 11

A single exponent E will be fixed throughout the subsection.

Proposition 5.1. Let B be a cube with side length R. Then wgp(y) ~ wg(x) if y €
B(x, R). That is, wg is roughly constant at scale R.

Proof. Let cp be the centre of B. Let y € R". If y € B, then wg(y) ~ 1. Also,
|z —cp| < |z —y|+ |y —ca| <vVnR SR

Hence wg(z) 2 1 ~ wp(y). Switching the roles of x and y shows that wg(y) ~ wp(z).

If y ¢ B, then |y — cg| > /nR/2. let K be the unique natural number such that
2K-1L/mR/2 < |y — cp| < 25\/nR/2. Then wp(y) ~ 275E. Also,

|l —cp| < |z —y|+ |y —cp| < (1+2K)4R§2KR.

Thus wg(zr) = 275% ~ wg(y). Switching the roles of 2 and y shows that wg(y) ~
wp(x). O

For future use, we will need a slightly more general proposition:

Proposition 5.2. Let By be a cube centred at the origin. If |c;| <1 for j=1,2,...,n,

then
1

Rn

where the implicit constant does not depend on cj, 1 < j < n.

wBR(y>wBR(x1 —CalYi, Ty — cnyn)dyl cedyn S wBR(I)a

As a corollary, we have the following proposition.
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Proposition 5.3. If R' < R and Bg, Br are centred at the origin, then we have

1
WpBg * WU}BR,,E SJIUBR-

Proof of Proposition 5.2. Cover R" by the collection B of translates of Bg. Then by 1 of
Proposition 3.3, it suffices to prove that

|
> wa () T / L (Y)wp, (21 — iy, T — CaYn)dys - Ay S wpp (7).
B'eB

Since |¢;| <1 for j =1,2,...,n, by Proposition 5.1, we have

lp(y)wp,(T1 — Y1y« s Tn — CoYn) ~ e (Y)wp, (21, ..., T0),

where the implicit constant does not depend on ¢;, 1 < j < n. Hence we have

1
Z wBR(CB’) / lp (3/>wBR(x1 —CQY1, T — Cnyn)dyl e dyy

B'eB R
1
~ Z wBR(CB’)ﬁ/lB’(y)wB}?(mlw--axn)dyl"'dyn
B'eB
= Z wp(T)wpy(cp) S wpy(7),
B'eB
by 2 of Proposition 3.3. O]

5.2 A slight generalisation of Theorem 5.1

For future use, we generalise Theorem 5.1 slightly by enlarging N;/p to N¢/r where
C > 1 is an absolute constant and the new Ng/r extends to negative neighbourhoods:

_C/R<5<CJR.
For each Q C [-1/2,1/2]* " and 6 > 0, we denote

Ngs =1{6= (&) : £ € Q,|& — €] < 6}

We also denote

1 19n-1 .
—5:3]"7 10

For a Schwartz function f: R" — C and Q C [—1/2,1/2]"~! with Fourier support in Ny,
we denote

fQ,(S = (leQ,(S)\/ - f * ]‘XQﬁ'

In (5), we change the notation g; to f; to indicate the dependence of f; on f.

£i(s) = /C/R s, 82+ 1) (@)jdt. (5.1)

_o/R 2
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5.2.1 Reduction to the case Q = [0, R~/?]

It is easy to see why we can assume Bpr to be centred at the origin, but it is not really
easy to see why we can just consider the case Q = [0, R™/?].

Proposition 5.4. Let Q, denote the interval [0, R™'/?]. Assume

(5.2)

Paus S|
Sl;PH QogJHLP(wBR,F)N INc/r(Qo) Lr(wpy,E)

holds for all functions g with Fourier support in Ne/r(Qo). Then for all cubes Q@ =
[u,u + R™'?] C [0,1], we have

Dl B0 15w ) S (R (5.3)

Lp(’wBR,E)

holds for all functions f with Fourier support in N¢/p(Q), where the implicit constant
does not depend on wu.

Proof. By a change of variable (as in the proof of parabolic rescaling 7.1 in the following)
we have

|Eqfi(z)] = ‘ filu+ s)e(z18 + 2xaus + x95)ds| . (5.4)
Qo

Let T denote the following affine shear transformation:

T(&1,&) = (& 4 u, 2u&s + & + u?).

We have | det(T")| = 1 and

T, m2) = (1 — u, 70 — 2umy + u?).

-~ ~

Then let g(z) = f(T 'x), s0 g(&) = f(T€), i.e. f(§)=g(T~'E). Thus by (5.1) and simple
computation,

filu+s) = /C/R G(s,s* +1) (@y dt. (5.5)

—CJR 2

As (5.1) suggests, we will show f;(u+s) = g;(s), which is true if g also has Fourier support
within N¢/r([0,1]). One good thing about the parabola is that it interacts well with such
affine shear transformation 7. More precisely, not only does 7~ map the parabola over
@ to the parabola over @, but T~H(N¢/r(Q)) is also exactly No/r(Qo). Too see this,

note (n —u) — (9] —u) =n —n} and
(2 — 2umy +u?) — (m — w)® = — 1}

Hence g also has Fourier support Ne/g([0,1]) (see Figure 1), and so f;(u + s) = g;(s).

If we define
y = (y1,92) = L(z1,25) = (1 + 2uy, x5),

Then (5.4) rewrites

Eofy ()] = \ [ 0s6)etns + 12571 = Eauss o) (5.6)
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Figure 1: T acts well with N g

Thus we can apply (5.2) to g; to get

150093 sy S 93000

Since |det(L)| = 1, by (5.6), the left hand side of (5.7) is equal to

1EQo9ill o s, 1y = (/ IEij(x)|prR(La:)da;)

Recall we assumed ¢(Bg) = 0. Since 0 < u < 1, we have |Lz| ~ |z| and hence wg, (Lx) ~
'lUBR(x)' Hence ||EQogj||Lp(wBR’F) ~ ”Eij”LP(wBR,F)'

For the right hand side of (5.7), we have

1980 20y ()] = /N T + g
c/r(Qo

= / Fm)e((@1 — 2uas)m + wams)dnidny
Ne/r(Q)

= fNen@ (L)

, and so we have (5.3). O

Hence similarly, ” INe)r(Qo) ~ H fNC/R(Q) o
R7

Lp(’LUBR,E)

From now on we write Q = Qo = [0, R~'/?].

5.2.2 About cutoff functions

The second to last equality on Page 7 follows from Proposition 5.1 and Fubini’s theorem:

1B auny i ~ [ 10y (6)d:
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The last equality on Page 7 follows from (5.1) by writing back to product measure on
Neyr(Q):

Barn) = [ 7o (MY et - epmete- o
Nc/r

For the third inequality on Page 8, instead of proving it holds uniformly in j, we could
allow a multiplicative factor C? on the right hand side.

The fourth equality on Page 8 now becomes

fo (Be-)Y o I N
/JVC/R(Q)f(§)< 5 ) e((&—&)y2)e(éx)dE = C /F(f) (O e(&r+Ea(ra—10))dE,

where
€)= myun(©) = ety (NS meonne). 58)

Here, n = 1 on [—2C, 2C] and supported on [—3C,3C] is a bump function. (Note this is
where the reduction @ = [0, R™/?] is used.) Also, M, is defined to be a bump function
that agrees with ¢/ on [—1/2,1/2] and that satisfies the derivative bound:

dk:

=M.,

dtk Skl

~Y Y

L= (R)

sup
Jj=>0

(5.9)

for each k£ > 0. For example, we can just take M;(t) = o(¢)# where o is a bump function
that equals 1 on [—1/2,1/2] and that is supported on [—3/4,3/4]. We then check (5.9).

Let k£ > 0. By the Leibniz rule, for j > k we have

k k J—k+14+1
H d <I;)‘}U(l)“mj(j_1>"'(j_k+l+1) G)
=0

_dtij
3 J
< (k+1)! sup HU(Z)HOO (—) G*

0<I<k 4

IN

L>o(R)

Skl

)

once we notice that sup,,(3/4)75% <i 1 (say, using ratio test).

5.2.3 Reduction to weight inequality

The last inequality on Page 8 (note we directly defined m; so there is no 7; in our
notation:)

WBR,F (y) dy

/ H [ F@my@etein + e - v

-/

= /HF * mJV(an, T — yQ)Hi;&(B(y’R))wB&F(y)dy

= R2// |F * mjv(:v)|p drwg,, r(y)dy. (5.10)
B(y,R)

p
L%, (B(y.R))
~ v p
(Fms) (1,2 = p2) Wy (y)dy
L%, (B(y.R))
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Now we show that Hm}’Hl < 1. Indeed, m; is a bump function with height ~ 1 and is

supported on N, r(Q), which is contained in a rectangle of dimensions C’ R'2xC'R.
Hence we can write m; (&1, &) = e(E3y2)(RY2€,, RE;) for some absolute bump function
¢. Thus mY (z1,22) = R3¢V (R™2x, R~ 'x,) will be a Schwartz function. Then it is
easy to see that HmyHl <1

As a consequence of Jensen’s inequality, we have
|F>x<m (z1, 22 — ‘// (21— 21,79 — Yo — 22)M (21722)d21d22

S // |F(21 — 21,22 — Y2 — 22)["'m (21, 20)d21d 2z,

= [F|” % {mjv| (21,2 — y2).

Continuing the computation in (5.10), we have

e @ o)y
B(y,R)

SR // [P s |m| (w1, 22 — y2) 1y (21 — y1, 22 — yo)dardiy wp,, p(y)dy

=R~ // |F|p |m 1BR yl,xz)dxldwngR,F(y)dy, ($2—y2'—>$2)

= / |F(z")P <// |m) | (x — 2')R*1p,(x1 — yl,xg)wBRﬁp(y)dxld:Ugdy) dx’.

Recall F' = fy,, /n(@)- Hence it remains to show that

// |m) | (x — ') R?1p, (21 — y1, 22)wper(y)dedy S wp, 6(2).

By symmetry of 1p,, the left hand side is equal to

[ e (B 21801 = ey

For simplicity of notations we write 2’ = x. Using

|21 A
WpeE(T) 2 (1 +0 L=
it suffices to prove

-E -E
X

which is a pure weight inequality independent of f or F.
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5.2.4 A derivative bound
We prove the following derivative bound:

oz 0zms | . S (BE+ B 2pal) " R (5.11)
We consider each factor in (5.8).

1. For the first term e(£21,), we can show by induction that

(519 )y (Sl+1)/2f Z 81 b/ Csl,k(€%y2)k, if 51 is odd
e(E2ya )yt ? S Cslk(£1y2)k7 if 51 is even.

(926(5%3;2) = {

We consider two cases: |yo| < R or |y2| > R.

o If [y5] < R, then we have |2y,| < 1 since |&| < R™Y2. Then |11|Y? > |11
and so in both cases of s;, we have the bound

|02 e(&fy2)l| . S T2, (5.12)

e If |y2| > R, then we have |£?y5| > 1 and hence we have the bound

K
2081,/€(€%y2)k 551 |§%y2|K
k=0
So in both cases of s;, we have the bound
[0} e(€Twe)||  Sor Byl (5.13)

The first term has no contribution to 8§§mj.

2. The analysis for 9; for the second term M;(R(&, —&7)/(2C)) is similar as the first
term. We can show by induction that

o R(& — &)
O M; ( 2C
31+1)/25 Z 81 1)/ ij(k"‘(s_l)/Q) < (52 51 > (Rfl) , if S1 is odd

R/? 251_/5 Cs1 k M(k+s/2) ( (52 &) ) (REXE, if sy is even.
and hence

S2 051 R(€2 - 52)
O, 0c, M; (Tl

R(31+1)/2+52§1 Z’(::lan/z 651782,kM](k+(81—1)/2+sz) ( (Ez &) ) (351) , if 51 is odd
fs1/24s2 221:/02 Csl,sz,chJ(k+81/2+S2) (R(Sz &) ) (R§1> , if s1 is even.

Since |£;] < R™Y2, we always have |R¢?| < 1, so using (5.9) we have the bound

020 My (R(& — €0)/(20) | Sersn B2 (5.14)
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3. The third term is easy:
105 n(RV2&)|| . <o R, (5.15)

It has no contribution to (952 m;.

4. The fourth term is easy:
|0g2n(RE)|| . S R (5.16)

It has no contribution to (95511 m;.

o If |y5| < R, then the bounds given by (5.12), (5.15) and (5.16) are all dominated by
that of (5.14). Hence we have

02102 M| Sern B2 (5.17)

e If [yo| > R, then the bound on 9;/m; is dominated by (5.13) and the bound on
dz2m; is dominated by (5.14). Hence we have

102102 my || Sasn ly2l " R, (5.18)

Combining (5.17) and (5.18), we get (5.11).

The rest are easy to follow; the key is to use Proposition (5.3) many times.

5.3 Higher dimensions

If n > 3, then Subsection 5.2.1 becomes a similar reduction to the case [0, R~*/?]"~! using
a similar affine shear transformation 7". After such reduction, we need to perform n — 1
Taylor expansions instead of just once (so we use n Taylor expansions in total). The
corresponding m; will then be (with § = (£/,&,))

n—1

) = e Pty (FE5 ) TTntr one,).

k=1

The analogue of (7) is then

—n x - Ty B
[l ()6 o st s (14521 (10 )

The derivate bound becomes

and hence Equation (8) becomes

o 1 s
d1(a') S5 BT Wz( 7] ) '
L+ mrmrr e

st Sl As S1++8n—1
Oy -+ O Ogrmy;

5317"'7577,71,577. (R% + R7%|yn’
o0
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Equation (10) becomes

']

-E
/ O (R7",) (4 = 2 Jwpe p(y)dy S R (1 + f) .

We still have three cases in the end, and Proposition 5.3 is applicable in all dimensions.
The general (4) we require is

wopr (o’ [N (g bl
Bk (5 n) < {14 1+ i By + By < F,

and the corresponding assumptions on F' for all three cases becomes F' > E, F > E+n+1,
F > 2FE + 2, respectively. Hence I',,(E) = 2F + 2 works for all dimensions.

6 L’-decoupling

Theorem 6.1. Let Q be a cube with [(Q) > R™. Then for each cube Br with side length
R we have

2

2
||EQ9HL2(wBR) S E ”qu”L2(7-UBR) : (6.1)
qEPR—l(Q)

Note that the physical and frequency scales are exactly dual to each other in this case.

Lemma 6.2. Let f = ) f, and suppose suppf, = {z € R" : f,(z) # 0} has finite
overlap in the sense that

> Lapps, <C. (6.2)

Then f,’s are almost orthogonal in the sense that for each 1 < p < o0,

i En:/w.

Proof. We compute directly
P P
Z fn 1suppfn

Jir= S -/
</ (;mp)z <21f>

< /;w - ;/imp,

where the < follows from (6.2). O




19

Hence to show (12), write, by Plancherel,

2
||qu||L2(nB,) = /

Then with fo = qg * 773/, , we see suppfq is contained in a tiny neighbourhood of the
paraboloid over @), so suppfq and suppfor overlap only if () and @’ are adjacent. Hence
each point in R" lies in at most 2" slightly enlarged cubes, so suppfg has finite overlap.
Using Lemma 6.2 with fo and > E,9 = Egg, we have

/ ‘EQg * 773,

For the left hand side of the above equation, we have

/ ’EQQ £y

7 Parabolic Rescaling

2

—

1/2
E.q *773/'

g€Party /p(Q)

BV

g€Party /r(Q

2

2
= Z HquHm(nB,)-

g€Part /r(Q)

12
Eg*nB/,

2
2
= ||EQ9||L2 (ngr) 2 HEQ9HL2(B')'

Proposition 7.1. Let 0 < § < 0 < 1 and p > 2. For each cube Q C [0,1]"! with
1(Q) = 0'/? and each cube B C R™ with [(B) > 6~" we have

_ 2
||EQ9||Lp(wB) < Dec,(p, 60 1) E ||qu||LP(wB)
q€Ps1/2(Q)

Edited Aug 2023: there was a problem with the weight inequality in the previous version,
so I removed this part.

7.1 Trivial decoupling and trivial scaling

The following propositions are too trivial to be written in [BD], but they are often used.

Note that in this subsection, we shall not assume that the constants ¢ and C' are dyadic.

Proposition 7.2 (Trivial decoupling). If ¢ <1 is a constant, then Dec(c) <. 1.
(Note that Dec(c, p) does not make sense if ¢ > 1.)

Proof. If we cover [0,1]"~! by finitely overlapping c-cubes @, then there are at most
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O(c'™") such cubes. Hence for any cube B with [(B) > ¢!,

1Bl oy < D1 EalILF (ws)
Q

1 1
< (Z\rEQg\rip(wB>> (Zl?)
Q
< (ZHEanip(wB))
Q

Hence Dec(c) <. 1. O

NI

Proposition 7.3 (Trivial scaling). If C' > 1 is a constant, we have Dec(d) Se Dec(C9).

Proof. Consider B = Bs-1 C R™ and a finitely overlapping of [0, 1]*~! using C¢ cubes Q.
By the remark in the last subsection above, decoupling with scale C'd can be also applied
to a spacial cube B of scale §~! > (C§)~!. Thus

| E9ll () < Dec(C) S el | - (7.1)

QG’P(C&)UQ([OJ]"*l)

Then we use cubes ¢ of scales d to cover (). Using parabolic rescaling proved just now to
the cube B with [(B) = 6!, we have

1Eatlliguy <Dl [ 3 1ElEn, | - (72)
q€P;1/2(Q)

By trivial decoupling 7.2, we have Dec(C~') <¢ 1. Combining (7.1) and (7.2) gives

2

IEGN 1o () Sc Dec(C9) Y B ey

q€P;1/2([0,1] 1)
Hence Dec(6) <¢ Dec(C9). O

Corollary 7.4 (Non-dyadic scales). To prove the decoupling theorem for all frequency
scales 6 < 1, it suffices to prove it for all dyadic scales § € 27N,

8 Reduction to Multilinear Decoupling

8.1 Remark 8.3

Lemma 8.1. Let P’ = (¢®[¢D|2), 1 < i < n be points on P"~L. Then the volume V of
the parallelepiped spanned by the (upward) unit normals n(P?) is comparable to the area
A of the n-simplex with vertices €9, 1 <i <n.



21

Proof. By shoelace formula, the area A of the n-simplex equals

gV gy gl

P R
(n—1)! : oL :
g” g - 55{‘31 1

On the other hand, we have n(P") = % The volume V' of the parallelepiped

formed by P?, 1 < i < n equals

—2¢ 9 O TR 1
oo | 220 0 Beop
: : ... : 1/21
—26t” -2 - 25““ 1

]

We change the definition of transversality, so that in the argument below, in all dimensions
n, the corresponding cubes are K ~!-transverse. This makes the notations a little simpler.

Definition 8.2. We say that cubes Q1,...,Q, C [0,1]""" are v-transverse if the volume
of the parallelepiped spanned by unit normals n(P?) is greater than v, for each choice

of P'= (£, [€V?) € P! with €V € Q.
Lemma 8.3. Let n > 2, K > 1. Then there is an absolute (dyadic) constant C, = Cy(n)

such that the following is true. For each 1 <1 < n, let o; be cubes in [0, 1)1 with side
length K=t and centres ¢;. Suppose that

1. |Cl — Cg| > ClK_l.

2. For all 3 < i < n, the hyperplane H; formed by {c; : 1 < j <i—1} is (i — 2)-
dimensional.

3. For all 3 <i <mn, the distance from ¢; to H; is > C1 K~ 1.

Then o, 1 <i <n are K~ '-transverse.

8.2 Proposition 8.4

The following is modified from Definition 8.1 in [BD].

Definition 8.4 (Multilinear decoupling constant). Let £ > 100n, 2 <p < 00, 0 < v < 1.
We define MDec,, (8, v,m) = MDec, (6, p,v,m, E) be the smallest constant such that the
inequality

P 2n

3 HHEngHp/n <MDec,(Gv,m) [T | D 1Ewglfouy

A€P,_1(B) i= i=1 \qi€P;1/2(Qi)

holds for each cube B C R™ with I(B) = 6!, each g : [0,1]"' — C and each n-tuple of

v-transverse cubes Q; with equal side length u > 62"
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The parameter m is introduced only due to some technicality in the final induction step,
when we will take m to be a large positive integer.

The following is Proposition 8.4. in [BD].

Proposition 8.5. Let £ > 100n and 2 < p < co. Assume we have the decoupling theorem
for a lower dimensional (thickened) paraboloid:

DeC2<5,p, FQ(E)) SE 5_6'

Then there is C. > 0 and an absolute constant C > 0 such that for all K > 1, allm > 1
and all R > K*",

2
HEg||LP(wB ) > < C.K* Z HEagHLp(wBR)

aeP 1 ([0,1]2)

N|=

2
+ C.K* Z HEﬁgHLp(wBR)
56731(_1/2([071]2)

NI

+ CK*MDecs(R™,p, K~',m, E) Yo 1Baglis,
A€PL_1([0,1]2)

8.2.1 Three scenarios

Let us consider a typical case n = 3 first. For each a € Pg-1([0, 1]?), define

1 :
colB) = (s [VEasP)” = 1Eut i,

Let a* = a*(K) be a cube that maximizes ¢, (Bk).

We define
Stig = {1 co(Bk) > K 2%c, (Bk)}- (8.1)

With the C] in lemma 8.3, we define
Sp={¢eR?:d( L) <Ci K™Y, (8.2)

Proposition 8.6. With notations above, we have

3
||E9HL§;(BK) N Ca*(BK) + Kt max Hcaz BK

o1,00,03  J
K~1—transverse i=1

+1Y° Eag

OéCSL

—~
.OO
w

SN—

L (Bk)
Proof. The three scenarios are as follows (see Figure 2:)

1. In Case 1, by triangle inequality we have

1Eqg|| (Br) = 1Eag|l e (Bx) — ¢a(Bx) Sy Car(Bi)-
# #
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l
R
N

.

@ Largest poss
rg,%io*\ o& SB;S-

ble

= One PM& S—l'o.{‘e

Figure 2: Three Different Scenarios

2. In Case 2, we have the bound

|Egl <Y Eagl+| Y Eag| <[> Eag|+ > |Eagl,
aCSy, aZSy, aCSy, OCQSbig
and hence
1Bl 0y S || D Eag + 3 1Bagllis sy
agSL L;&(BK) OéQSbig
S Eag + K?K2¢,.(Bg),
acSe L%, (Bk)

since there are O(K?) cubes a.

3. In Case 3, we have the bound

||Eg||L§;(BK) < Z“Eag“/:;(Bm < K?cq+(Bg) < K*K?cq,(Bx),
for all 7+ = 1,2, 3. Taking geometric averages over ¢ = 1,2, 3 on both sides,

3 3
1 1
1Bglus ey < K TLcb(Br) < K max [ edu(Bro)

a1,02,03
i=1 K~1—transverse i=1
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O

Using Proposition 8.6, the first and the second terms of (8.3) are easy to bound, using
the definition of ¢, (Bk):

N|=

2
|L;£(BK) = Z ||Eoc9HL§;(BK) ’ (8.4)

a€Part 1 ([0,1]7~1)
Also,

3 3
K*  max Hc,i(BK) =K* max H||Eaig

a1,02,a3 a1,02,a3
K—1—transverse i=1 K—1—transverse i=1

(8.5)

1
E
L% (Bk)

8.2.2 Analysis on the strip

For the term in Case 2 above, we define Eg, g = ZaQSL E.g. By a translation and
rotation we may assume that L is the line & = 1 (using & = 0 will result in the following
8" ~ K% which is unrepresentative). We also assume the spacial cube is [0, K|>. Then

for each @y, let [y, (&1, &) = (Fis(e(—3)Es,9))(&1,&3), that is,

Fn(€1:60) = [ [ (=) Bayg(on, 0 va)e(-n6s — aate)dda
= ////(glsL)(m, ne)e(xim + wat + w30t + w3y — wa)dmdipe(—11&1 — w3€3)drrdy
= //(glsL)(m, n2)e(x2m2)00(m — €1)0o (0t + 03 — 1 — &)dmdi

= /(glsL)(&,772)6@2772)50(5% + 15 — 1 —&)dn,.

Next we perform a change of variables u = & + 02 — & — 1, with 57“2 = 21y. Then the
above is equal to

1
/(g1SL) (51,\/u+£3—§%+1) e (xQ\/u+f3—§%+1> 50(“)2\/u+€3_5f+1du

= (g1s,) (51,\/53—§%+1)e(x2x/§3—§f+1> W 1£2+1. (8.6)
3= &1

Hence for each xs, f,,(&1,&3) is supported in the set S = {(51, V& — &+ 1> € SL},
that is,

S={(£,8):0<6 <1, 200K ' +C?K 2 <& <&+ 200K P+ CEK 2}, (8.7)

Let ¢’ = 2C1K~' + C2K~? and assume K is large enough so that &' ~ C;K~!. So S is
in turn contained in the ¢’-neighbourhood of the parabola & = £ over £ € [0, 1]. Hence
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we can apply (a slightly generalised version of) Theorem 5.1 with n = 2, f = e(—x3)Es,
and By = [0, K]? to get

1Es.9ll 2 ) (2)

Ty,3 (w[O,K]2 E
1
2

. (22),
nc1,303(“’[0,K]2,E)

< Deco (K1, p, To(E)) Z |(e(—3)Es,9)ny 1)

IEPaI‘tK_l/2 [0,1]51

(8.8)

where Ny (I) denotes the §’-neighbourhood of the parabola & = &2 over & € I. Note the
implicit constant is independent of 5.

We cover Sy, by disjoint rectangles U of dimensions C; K ! and K ~*/2 (see Figure 3). The
scale K ~1/2 is chosen to be the same as the scale of partitioning intervals I in (8.8). Note
> IePart,_ j5[0,1]¢, €A1 be replaced by > ,;. Moreover,

)
u

{

!

Figure 3: Dividing Sy, by rectangles U

(6(_‘3)E5L9)N5,(I)(561, 933)
= /]‘v " (f1,3(€(—-3)ESLg))(£1a 53)6(37151 + x3€3)d§1d§3

(8.6) X
B /Na/(I)(glsL) <£17 \/@) ‘ <x2m> QWG(%& + 2383)d&d&s.

Then in view of (8.7) we observe

Ly (660 = 1o (6 fes - € +1).
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Hence

(e(—3)Es, 9)ny ) (71, 73)

= /(QlU) <§17 & — &+ 1) e <$2\/53 — &+ 1) NG _1 = 1€($1§1 + 2383)d&1dE3.

Changing variables back v = /&3 — &2 + 1, the above is equal to

e(—$3)EUg(l'17 Zo, I3)‘

Hence (8.8) becomes

2

1Es.9l .z (22) S Deca(K ™", p,T5(E)) (%:||EUQHigm(w[O’K]g’E)) (22)

z1,23 (w[o,K]2,E)

Raising both sides to the power p and integrating over z5 € [0, K], using Minkowski’s
inequality we have

2

1B, 90l 1oy, 5y S Deca(K ", p, To(E)) (ZHEUQHZ(U,BK,E)) : (8.9)
U

We next show how to use triangle inequality to bound the term above on the right. For
each U, enlarge it to become a square U’ of dimension {(U’) = K~/2. Then V := U'\U C
S$, and Eyg = Eyrg — Evg (see Figure 4). Using triangle inequality, we have

1
2

1 1
2 2
(zuEUguzp(wBK)) s(z||EU,guzp(w3K>) +(anvguzp(wBK>) W)
U U’ 1%

Since each U’ is a square within [0, 1]"~! with scale K~/2, we can bound the Y, term
by:

=

Z ||E/39Hip(wBK) : (8.11)

BePart . 1,5([0,1]?)

For the ), term, we further split V into K~* cubes . (They are the same o’s that
partitions [0, 1]"! at the beginning. See Figure 4 again.) Each such « lies outside Sz, so
it has small contribution in the second scenario (see Figure 2 again):

_ 1 _
HEagHLP(wBK) < K 2|BK’pCOl*<BK) =K 2HEOé*gHLP(wBK)'

Since there are around (K'/2)? = K such cubes « in a single V and we have around K'/2
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such Vs,

Figure 4: Enlarging U to a square U’

(anvguzp(wBKJ
174

N

N

2
< Z (Z“Eag“LP(wBK))

\4 aCV

2
(Z (K—1||Ea*g||Lp<wBK)) )
1%

< K34 Epeg

N|=

IN

|Lp(wBK)

[N

_ 2
<k Bl

a€Part 1 ([0,1]2)
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8.2.3 Summation

Combining (8.3), (8.4), (8.5), (8.9), (8.10), (8.11) and the estimate right above and using
the assumption that Deco(K 1 p, To(F)) <. K¢, we get

2
||Eg||LP(BK) Se Z ||Ea9||Lp(BK)

a€Part 1 ([0,1]2)

2
+ K* Z HE,Bg”Lp(wBK)

BePart . _1/5([0,1]?)

B 2
+K5K 3/4 Z ||EOég||LP(’LUBK)

a€Part 1 ([0,1]2)

3
1
+ Kt max H”EaigHZP(BK)’

a1,02,03
K~1—transverse i=1

Combining the terms above and using the trivial inequality 15, < wp, except for the
last term, we have

N

2
HEgHLP(BK) Se K° ||Ea9||Lp(wB )
K

a€Part 1 ([0,1]2)

2
+ Z “EﬁgHLp(wBK)
BePart,_1/((0.1)%)

3
1
4+ K* max HHEaig |2P(BK)'

a1,02,03 .
K~ —transverse i=1

Then we raise both sides to the power p, sum over Bx € Pk (Bg) and then raise both
sides to the power 1/p. We also use Minkowski’s inequality with exponents p > 2 and
the inequality > By WBK < wpg which follows from Proposition 3.1. The left hand side
becomes ||Eg||;,(p,,- The first two terms on the right become

[NIE
N

9 2
> 1Bl | and > 1Bl |

a€Part 1 ([0,1]2) BePart . 1/2([0,1]?)

respectively.

To deal with the last term, we note that for each Bk, the maximum is attained at some
K ~'-transverse triples ay, as, a3 dependent on each individual Bg. Thus

3 3
. 1
alr%%?géi; HHEOéigHzP(BK) = H||Eocz‘(BK)gHzP(BK)'

K~1—transverse i=1 i=1
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Thus the above process gives

3=

%
’LP(BK)

3
4
AR D DR | (L2

Bg €Pk(Bgr) K~ —transverse i=1

3
P
= K* Z HHEO%(BK)QHIS/P(BK)

B €Pk(BR) i=1

B =

o=

3
< K'MDecs(Rp, Km B (TT 20 1Bl |

=1 q;E€P_1/2(c)

where, in the notations of Defintion 8.4, I(B) = R = § 7}, l(ay) = K~! > §* " since
R> K?",
For each 1 < i < 3, we further use the trivial bound

2 2
Z HE 9 |Lp(wBR) é Z ”EAgHLl’(wBR)‘

2 €Pp—1/2 (i) AEP,_1/2([0,1]?)

Then the geometric mean is also bounded by >, 2(0 1]2)||EAg||ip(wBR).
R7 b

Combining all the above computations, we get

€ 2
HEQHLP(BR) < CK E HEagHLp(wBR)
a€Pp-1([0,1]%)

NI

€ § : 2
+ CEK HEﬁgHLP(wBR)
BEP . —1/2([0,1]?)

NI

+CK4MD6C3(R_17pa K_lam7E) Z ||EAg||iP(wBR)
AEP,_1([0,1]2)

Lastly, we can replace LP(Bpg) on the left hand side by LP(wp,,) as usual. This proves
Proposition 8.5.

8.3 Parabolic rescaling

Proposition 8.7 (Parabolic rescaling). Let m > 1. Let 7 C [0, 1)? be a square with side
length § > R™Y2K2"" . Assume

Decy (8, p, T2(E)) <. 6'°.
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Then for all K > 1 and all R > K?",

=

2
1Bl oy < CE | S 1Bt

a€EPs 1 (7)

2
+O€K€ E ”EﬂgHLp(wBR)
BEP o —1/2(7)

+ K*MDec3(6 2R, K1, m) Z ||EA9||iP(wBR)
AEPg_1(T)

Proof. Refer to the notations in previous parabolic rescaling. We change variables as
before. Cover T(Bg) by 6°R cubes B’. Applying Proposition 8.5 to each B’ with the
same K > 1 and 6°R > K?", we have

2
HEG”LI’(B’) Sa K* Z HEOcG”LP(wB,)

a€Part 1 ([0,1]2)

2
+ Z HEBGHLp(wB,)
BeEPart . _1/2([0,1]?)
_ — — 2
+ CK*MDecy (6 2R, K", m) > IEAG Loy )-

AEP;_y p—1/2([0,1]?)

Change variables back. The first and the second terms are bounded above by

€ 2 e 2
K Y. Bl | adK > 1Bl |

a€Parts ;- —1(7) BeParts, —1/2(7)

[SIeN
IS

respectively. For the third term, the factor § in 7" leads to the cancellation: 66 'R™Y/? =
R~'/2_ 50 it becomes

(I

CK'MDecs(0 2R~ K~ m) [ > [1Baglini, )
AGPR—l/Q(T)

8.4 Induction on scales

We prove the 3D-case first.
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Theorem 8.8. Fizp € [2,00) and E > 300. Then for each 0 < v <1, each m > 1 and
each € > 0, there is C, ., = Cypmp and n.(v) = n.(v, p, E) with lim, o+ n.(v) = 0 such
that for all R > v=2" we have

Decs(R™Y) < €, R sup MDecs(R'™,p,v,m, E).
1<R'<R

We abbreviate MDecs(6, p, v, m, E) as MDec(9) for this section as all the other parameters
will be fixed.

Proof. Let K =v~! so R > K*". By Proposition 8.5 applied to § = [([0,1]"71) = 1,
IEGN 1o, ) < C-K°I + C.K*I, + CK"MDec(R™) I3, (8.12)
R

where

[NIE

2
]1 - Z HEQLgHLp(wBR) s
Q1E€P,—1([0,1]%)

N|=

2
]2 = Z ”EQQ.QHLP(U;BR) 5
Q26P,, 1 (0.112)

D=

2
[3 - Z HEngHLP(wBR) s
Q3€P,1/2([0,1]%)

and the constant C. will be fixed throughout the iteration.

Note that I3 is exactly the main term on the right hand side of the original decoupling
inequality.

For each @) in the expression Iy, if [(Q1) = K~ ! > R™Y2K2™" then we can further use
Proposition 8.7 with the same K, R and m but with § = I(7) = [(Q,) = K~ to get

||Eng||Lp(wBR) < C.K L1 (Q1) + C.K°I 5(Qy) + CK*MDec(K*R™ 1)1, 3(Q1),

where, similarly,

[ SIS

I11(Q1) = Z HEQngHiP(wBR)
Q1,1€P—2(Q1)

1

3

112(Q1) = > B,
Q1,2€P . 3/2(Q1)

1

3

L5(Q1) = > 1Bastllis,)

Q1,3€P5-1/2(Q1)
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We can do the same for I and 3. We will also abbreviate I;, ;, ([0, 1]?) simply as I, ;, for
1 <iy,49 < 3.

For a typical term I, 3, observe that

2

N[

Z 112,3(621) = Z Z HEQLngip(wBR)
Q1€P,—1([0,1]2) Q1E€PK-1((0.1]?) Q1 3EP-1/2(Q1)
%
= Z HEQLBgHip(wBR) = Is.

Q1,367DR71/2([071]2)

Similar argument can be used to get, for example,

N[

1
2

Z I12,1(Q1) = Z ||EQ1,1gHip(wBR) =1,
Q1EP,-1([0,1]2) Q1,1€P, 2([0,1]2)
; :
Z 112,2(621) = Z HEQ1,29||2Lp(wBR) = [1,2'
Q1€P-1([0,1]?) Q1,2€P,_3/2([0,1]2) '

Hence we have (combining all absolute constants into a single C')

Il = Z HEngHiP(wBR) S CCEKE(IL:[ + 1172) —+ 0K4MDGC(K2R_1)13,
Q1€'PK71([0,1]2)

Similarly, as [(Qy) = K~'/2, using Proposition 8.7 with K~'/2 > R7'K?" we can get

I, < CC.K*(Iyy + I15) + CK*MDec(K R™')I.

Hence
HEQHLp(wBR) < C(C.K*(Iig+ Lig+ Ioy + ag) + M),
where
M = K* sup MDec(R ). (8.13)
I<R'<R

We can continue in this fashion to get I+ for j € {1,2}" provided § > R™Y/2K?""". For
example, consider a typical term I5;. For each Q21 € Py s/2(Q2), using Proposition 8.7,
it splits into 3 terms:

HEng”Lp(wBR) < C:KI511(Q21) + C.K L1 2(Q21) + C'K4MDeC(K3R—1>]27173(ngl).

The scales of partitioning cubes in the terms Iy, Io12 and I, 3 are K~=°/2, K2 and
R~1/2 respectively.

We define
N :=max{N' >1: KN7IR1 < k~2"}. (8.14)
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Figure 5: The iteration process

Then the final partitioning cubes should have length R~'/? (given by the term I3), K ~N/2
or K~WW=1/2 (given by iterations of I; and I,). See Figure 5.

Each arrow in blue in Figure 5 generates a multiplicative factor bounded by A := CC.K*
to the intermediate terms I 7 with j € {0,1,2}", where a 0 entry in the index means there
is no further division (for example, the number of iterations along the top line is < N/2).

Each iteration also contributes to a multiplicative factor C' < A to the main term M. The
bottom line 1 — K~'/2 - K~' — ... contributes to the largest number of multiplicative
factors, which is bounded by

1+ A+ A%+ .. AV <2o2N AN,

Since we iterate for at most N times, the total number of multiplicative factors created
is bounded by .

1+14+2+43+5+8+13+ -+ Fy<1+2+4+8+-.-+2V <2V
If we bound all intermediate factors also by the trivial bound 2N AN, then

1EGl o,y < AY > L+ 2NANNML (8.15)

je{0,1,2}3v
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But each I; is a term of the form

2
Z ||Eag||Lp(wBR) ;
a€Py ([0,1]2)

where « is a cube of size §' = K~—N/2 or K-(N-1)/2,

By (8.14), &' > R™Y2. We can use the trivial triangle inequality and Cauchy Schwarz
inequality to get

1\ 2 2
1Bty < | (FBF) D 1Bl
AEPR,1/2 (Oc)

m—1 2
< K2 Z ||EAg||LP(wBR)
A€P,_1/2(a)

Squaring both sides and summing with respect to « shows that Iz < K 2" I, As we
have < 2V+! many indices 7, by (8.13) and (8.15) we finally get

2777,71

HEgHLp(wBR) S AN2N+1K [3—|—2NAN2N+1M

< APNKT gup MDec(R™Y 15,
1<R'<R

as we can assume A > 100 and we have MDec(R™') > 1 (sharpness of the decoupling
inequality). Lastly, by (8.14), N < (log R/log K) — 2™ + 1 < log R/ log K, so

2log(CC¢)

2log R
AQN < AloZgK < R25+ log K

Recall v = K~1. Thus taking

~ 2log(CC:)

’[]E(y) _ Cum _ }(,Q’erl7

log K ’

we are done. O
8.5 Other dimensions

8.5.1 The planar case

In the case n = 2, we are in either Case 1 or Case 3 of Figure 2. With an obvious reduction
of lemma 8.1 to the planar case, Proposition 8.5 reduces to

=

2
5 1
HEQHLP(BR) N Z HEaQHLp(wBR) +K° nax HHEaig |zp(wBR)
a€Pp—1([0,1]) K~ —transverse i=1

Note that without the lower dimensional term, we do not have the term C.K¢, and the
induction step is easier. This is the first case in Theorem 8.9.
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8.5.2 Higher dimensions

Things get more complicated in the case n > 4. Let us take n = 4 as an example. In this
case, Figure 2 gives 4 cases, namely,

1. The large terms are concentrated around a C'K ~!-neighbourhood;
2. The large terms are concentrated around a tube with cross-section scale C K~ 1;
3. The large terms are concentrated around a plate with thickness CK ~!;

4. There are 4 cubes with large contribution that are C'K ~!-separated.

The first and the fourth cases are easy to deal with. The second term is bounded essentially
by the Decy(K~!) times a term with frequency scales of partition K ~'/2, which can be
proved following similar argument as in (8.2.2) by fixing 2 variables and taking the Fourier
transform with respect to the remaining 2 variables. Similarly, the third term is bounded

essentially by Decs(K ') times a term with frequency scales of partition K /2 (see Figure
6).

Now in each step of parabolic rescaling (Proposition 8.7), each term of scale ¢ splits
into 4 terms with scales K16, K~%/2§, K~'/2§ and R~'/? and multiplicative factors
O(1), O(Decy(K™1)), O(Decs(K 1)) and O(K°MMDecy(R™1672)), respectively. By the
induction hypothesis, both Decy(K ') and Decs(K ') are bounded above by C.K¢, so

similar argument as in Subsection 8.4 proves the following theorem in full generality
(Theorem 8.2 with slight modifications):

Theorem 8.9 (Multilinear decoupling dominates decoupling). Fizn > 2, p € [2,00) and
E > 100n. Then we have the following:

1. If n = 2, then for each 0 < v < 1 and m > 1, there is Cyp, = Cypmp and
n(v) = n(v,p, E) such that lim,_o+ n(v) = 0 and for each R > v=2", we have
Decy(R7,p, E) < C,y R"™) sup MDecy(R'™Y, p,v,m, E). (8.16)
1<R'<R

2. If n > 3, then we have the following implication (o) — (b), where

a) For each € > 0, there is C, = C. g > 0 such that Dec,,_1(R,p,I',,_1(F)) <
7p1 k) -
C.R° forallR>1.

(b) For each ¢ > 0, 0 < v < 1 and m > 1, there is Cyp, = Cpppmpe and
n.(v) = n(v,e,p,n, E) such that lim,_+ n.(v) = 0 and for each R > v=2", we
have

Dec, (R, p, E) < C,,, R sup MDec, (R, p,v,m, E). (8.17)
1<R'<R
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Figure 6: Reduction to lower dimensions when n = 4

9 Applying Multilinear Kakeya Inequality

Let ¢ = 1@. We rewrite the main inequality in Theorem 9.2 as

p
2n p

1 n
%ZH > Eeudllys (9.1)

AeBi=1 \ Qi 1€P5(Q:)

n

Se,u 0 ¢ H Z ||EQi,1g||i;1¢(wB) ) (92)

=1 \Qi,1€P5(Q:)

where p > 22 ie. g > 2. Here, [(Q;) = u > 0 for all 1 < i < n. The implicit constant

n—17

above will be independent of the positions and the size of @;, 1 <17 < n.
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9.1 Heuristics: the axis-parallel case

We use a heuristic argument to see why the condition ¢ > 2 is necessary.

For clarity, we slightly change notations. We will denote Q;;, 1 < j < (u/d)" ! := J to
be the partitioning cubes for @;, 1 < i < n. Since @Q4,...,Q, are transverse, we have
Q1j1s-- > Qnyj, s are transverse for any n-tuple (ji,. .., Jn).

To use heuristics to find necessary conditions on the exponent p, let us assume we are in
the best case, in which all normal directions on P! over Q; ; are exactly parallel to e;
(however, this is always false in the rigourous sense, as the most separated two subcubes
from the same cube would be almost transverse.) Hence for each @);;, by wave packet
decomposition, we may write
EQi,jg ~ Z CTM 1Ti7
T,€T;

where T; is a (671)"~! x §2-tube with the longest side nearly parallel to e;. (The family
T; does not depends on j since we made the simplification assuming the perfectly axis-
parallel case.) Thus we have around §2"/6~""! = §'~" tubes T}, contained in B. We
change notations and index those cubes with [ = 1,2,...,6'™™. Thus

Eq. ;915 = Zcz;gylln,z-
l

An important observation is that for each A € B,

where F;(A) is a rectangle with dimensions (672)"~! x §~!, with the shortest side parallel
to e;. Moreover, this relation is bijective: for each n-tuple (Fi, ..., F,) such that F; C B
for all 7, the intersection

uniquely determines a d~'-cube A C B. Hence we may rewrite the averaged summation

(#B)7' Y Acp in (9.1) into

) (e 2)-(x) ()

where we used the observation that #B = 6" and #F; = §~! for each 4, and indexed
F,CBbyk =1,2,...,67%

Fix 1 <7 <n and j. We can thus view ||EQZ.ngLq () 352 function of F;, 1 <i <n. But
’ #

another important observation is that as Eg, g is roughly a constant on T;; for each [,
HEQi 7.gHLq (a) Can be viewed as depending on
" #

k‘; = (kla .- ->ki—1aki+17 .- '7k:n)
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only. Hence if A =N}, F;, we may write
~ /
HEQi,J'gHL;(A) ~ ¢j(ky)-

Hence (9.1) can be written as

i=1 J

S~—
SN——
[ V]
&
Q=

(2)(x)i (e

We further denote

I
s - ()
J
We will consider the Loomis-Whitney inequality, which is the prototype of the multilinear
Kakeya inequality:

Theorem 9.1 (Loomis-Whitney). Let n > 2. Let (X;, p;), 1 <i <n be measure spaces.
Write x = (x4, ...,x,) and for each 1 < i < n, write

/ [
Ty = (21, i1, Tig1y -+, Tp) € Xj 1= Xy X0 Xy X X X X

Let f; be nonnegative measurable functions defined on X[. Then we have the following

inequality:
J ARy AR | ELCECA EREN Y § (e
X1 X i=1

n =1
Moreover, equality holds if and only if there are nonnegative measurable functions g; :
R—R,1<17<n such that

fila)) = 1] 9i())-

JF

In n = 2 this theorem is trivial. For n > 3, we can prove this by induction via a Holder’s
inequality, a Minkowski’s inequality followed by another Holder’s inequality.

Let us assume the case where the above inequality is almost an equality.

Observe that while k] ranges through all possible (n—1)-tuples, at the same time [; ranges
through all cubes T;;. Hence c;(k]) = ¢; ju

i

Now we use the theorem with the integrals taken to be § ), and with fi(z}) = fi(k}).
Applying the theorem assuming we approximately have an equality, we have

(9.1) = <H||fz‘||l;—1(k;))
1=1

P
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Now we analyse ||f,~||l$1(k£). Fix i. Hence we can write

— 271
||fi||zy1(k;) = 52 <Z Cj(ki)>
K J

p(gfl) n—1

(i)
l; J

p/n
lg&(n—l)/n(liy

Iciga, 12(5)

SO

9

n 1/n n 1/n
( ) g || 7.7711”[2(]) l;:(nfl)/n(li) g || 7]7l||l2(J) lq#(l)

since ¢ = p(n — 1)/n.
Now we come to the right hand side. For each 1 <7 < n, we may partition B as
B=J =T
T;CB l;

Hence

1 1
1 ! n—1 !
HEQi,lgHL;&(B) ~ (EZ/T cgj’l) =0 ql (Z cgj’li) = Hci,j,lqu#(l).
1 il

Hence ignoring the e-loss, we have

1
2n n 1/n
02) =11 <;||Cz,y,z||z;(z)> = EH||Cz7y,z||z;(l)Hl2(j)'

n
=1

Then we see that if we assume ¢ > 2, then (9.1) < (9.2) follows from Minkowski’s
inequality.

9.2 Proof of Theorem 9.2

We have two approaches to the rigorous proof. The first one is to use dyadic pigeonholing,
which is how [BD] does it. The second approach is to generalise the multilinear Kakeya
inequality using multilinear interpolation applied to the endpoints (1, -2=) and (oo, c0),

T n—1
and it is much more succinct. We will give both arguments.



9.2.1 The first approach: dyadic partition
For each i, we partition Ps(Q;) = Ur'P; , where
K =min{k >1:2"> 6%} (E is a large constant, say 100n)

;1 1s such that o rggx@ ||EQ“gHLq wp) is attained,

zk - {Qzl S P5<QZ : HEQ < HEQi,lgHLq#(wB)

#(U’B)

< 2—k+1

}, 1<k<K,
LY (wp)

7Di,K—i—l = {Qzl € P& Qz ||EQz1gHLq < QiKHE&,lg

Thus (9.1) can be computed as

2n p
B Z H Z HEng”iq#(wA)
AeBi=1 \Q;1€Ps(Q:)
n K+1 % P

1
- #BZH Z Z HEQzlg”Lq(wA

AEB i=1 k=1 Q;1€P; &

K+1 K+1 n 2n

1
e >N S |EQ119HLQ(M>

AeB ki=1 kn=11=1 QZ 16771 k;

K+1 K+1 n 2n

1 1
(%SOS %A ZZ H Z ‘Eng”quA

eB k1=1 kn=1 =1 Qz 16791 k;

K+1 K+1 n 2n

1
(p=1) Z Z %ZH Z HEQ'L,lgHiq#(wA)

ki1=1 kn=1 AeBi=1 \Qi1€EP;k,

Since K = O(log(67')) by (9.3), there are at most O(log(6—1)") n-tuples (k...

Lq#(wB)} .
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k).

Since we allow an e-loss here, to prove Theorem 9.2, it suffices to prove that for any

n-tuple (ki,...,k,), we have

ZH Z HEQMQHZL;(M) Sew 0 H Z HEQngHLq

AGBl 1 \Qi1€P;x, =1 \Q4,1€P5(Q:)

1
2n

»(wB)

(9.7)



By Holder’s inequality (as ¢ > 2), we have

=\ P
ZH( > |Ee. IQIILW)
AEle Qi €EPik,

V)
3
S =

2
q

_2
ZH ( Z ||EQ 1gHLq wA)) #/Pikiq
AeBz 1 Qi 1€P;, k;

IN

(e =) o zn( S e n) |
=1

AEBl 1 Qi71€73 k;

Proposition 9.2. For any n-tuple (ky, ..., k), we have

AGBz 1

Qi,1€Pik, i=1 i,1€P; K,
Proof of Theorem 9.2 Assuming Proposition 9.2. By Proposition 9.2, we have
- i
n P 1 "
(H #P’LQZZ n_1> ZH ( Z ‘EQ 19HL‘1 % (wa) )
i=1 AeBz 1 \Qi1€Pix,;
1
e Gl
Sew 0 H #P., Z ”EQz‘,lgHL‘I#(wB) .
i=1 Qi1 EP;k,
Next we fix an 1 < i <n. We have two cases: 1 <k; < Kor k; = K + 1.
o If k; = K + 1, then by (9.6) we have
1
;(;_1) ” ne1(1_1 L
#2000 Y Besllyy, | <8 G0 (2R | By g
Qi,1€P;i k,

< 57%(5% ( Z HEngHiq ALY

1

2n
(E100n><< > EQZ,lg@(wB)) .

Z H ( Z EQi,Ig”(Zq#(wA)) Sg,y 6 ¢ H ( Z EQ%lgi;&(wB)> .
Q

41
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o If 1 <k; <K, then by (9.5), each term HEQ“quLq( ) is comparable, so we have
, # w

the reverse Holder’s inequality:

1

qan 2n
1(1_1
w0 Bl | S| X el
Qi,1€Pi K, Qi,1€P;k,
n
< Z HEng”ij#(wB)
Qi,1€P5(Q1)
Hence we have
n 1(1-1) ” n 9 &
H#P;kzz ’ Z ||EQi,lquLq#(wB) S’ H Z HEQi,lg”L;(wB) ’
i=1 Qi,1€P;k, =1 \Qi,1€P5(Q:)
which finishes the proof of Theorem 9.2. O]

9.2.2 Proof of Proposition 9.2

Fix a cube @) = @; 1. Cover R" by a family Fq of pairwise disjoint, mutually parallel
tiles Ty pointing in the direction of the normal N(cg) to P! (the wave packets). We let
them have the longer side nd~2 and shorter sides /nd ! (so the scale is not dyadic, but
it does not matter). We could also let 0 be the centre of some Ty € Fo.

For all z € B, x € A for some A € B. There is also a unique Ty € F¢ that contains z,
which we denote as Ti(x). We claim that A C 4Ty (z). Indeed, since x € Ti(x), in each
shorter direction v, |(z — crQ)@)) - v| < 2v/nd~'. Iy € A, then |(y —z) - v| < |y — 2| <
Vot so |(y — er@y@)) - v < 3v/mdét < 24/nd~t. For the longer direction ¢/, similarly
we also have |(y — cr@)@)) - V'] < 2nd2. Hence y € 4Ty (x).

Note that if x € B and T(x) N B # @, then Ty(x) C 4nB, by similar argument as above.
Hence 4T (x) C 16nB for all x € B. Hence although F, is a cover for the whole R", we
only care about those cubes Ty € F that intersects B and such that 47 fully lies in
16nB.

(The analysis above could be more refined but only by a factor of O(1), so this is not
necessary.) See Figure 7 below.

We define

Fo(z) = sup (|1 EQgll e

)1TQ ({,E), (99)

which is constant on each tile Ty). (Note that Fy, is defined on all of R", and is independent
of B. The reason why we defined F{, instead of the following more natural summation

Z HEQQHLLI#(A)LTQ(‘%)
ToeFq
is that the term || Eqg|| L% (wa) depends on individual A’s, but F does not.) Since A C
4To(z), this implies that

1 Baglly sy 18(2) < Fo(a)1a(e). (9.10)



43

Figure 7: The wave packets Tt

Lemma 9.3. Let A; o be any sequence indezxed by i and A where A’s are disjoint. Then
we have the following equality:

> ﬁAm = |AL| / ) f[ (Z Ai,AlA(x)) dz

AeBi=1 i=1 \AeB

Proof of lemma. Consider the right hand side. By the distributive law,

H (Z Ai,AlA(iU)> = Z Z HAizAilAi(x)

i=1 \AeB A€B  AneBi=1
However, recall the A’s are disjoint. Hence [[}_; A;a,1a,(z) # 0 only if A; =+ = A,,.
Thus we have
IREDBY | EIENEESD 3y | PIRRE
AEB  AneBi=1 AeB i=1

Taking integrals over R", we get

1 " 1 -
WAn H (Z Ai,AlA(LE)) dr = |A_|/Rn z HAi,AlA(x)dx

i=1 \AeB AeB i=1

ZHAM/ 1a(e)da

AeBz 1

:znma

AeB i=1



44

Recall @ = Q1. Applying Lemma 9.3 with A;n = (ZQ €Pik ”EQilquLq( A)>ma we
i,1 i,k; s # w
have

n—1

1 n
I S Iy,
AeB i=1

Qi,1€EPsk,

#B N / > Eeusliywy | 1al@)de

=1 AGB Qz 167)1 k;

n

e [ LIS (sl s0))

i=1 AeB \ Qi 1€EPix,

n

(by(9.1()))§52”/16 I3 S m@uw| @

nB =1 AeB \ Qi,1€Piy,

— 5% / BH S F () (Z 1A(x)> dx

i=1 \ Qi,1€Ps k,

n

1
S (16D Il > @] d

16nB =1 \ Qi €Pi .k,

Now we are ready to use the following version of the multilinear Kakeya inequality (slightly
modified from a combination of Corollary 5 and Corollary 6 of [5]): for any cube Bg of
side length R > nd~? and any family of functions Fj of the form

F Z Cplp,

where P;, 1 < i < n are v-transverse families of (R'/2)"~! x R-tiles, we have

Rl <., R ) 11
H| B RH(|BR| BR| |) 5-11)

(The main difference from Theorem 9.1 is that we do not restrict the tiles P C By here;
we restrict the domain of integration instead.) We let R = 16nd~2 = [(16nB) and

Fy = Z quz Z Z sup ||EQg||L#(w 5—1>)1TQ(x)'

Qi,1€Pik; Qi €Pik; TQEFQ, yedTo(z)

|BR| Brj

Let P; = Ug, ,ep, . FqQ,,- Since {Q; : 1 < i < n} are v-transverse, so are any family of
sub-cubes {Q;1 € Q; : 1 < i < n}, and thus any choice of tiles Ty from each one of the
families Fq,,,1 < i < n also have v-transverse directions. Hence we can apply (9.11)



with the above R and F; to get

\16nBy /m.an Y (@) dr

i=1 \Qi,1€EPik;

n

(by (9.11)) <., 0~ H

=1

F2 (z)dx
”B| 16nB (). 167311@ s

5_EH Z ||FQz1

i=1 \ Qs,1€Psk,

n—1

LY, (16nB)

Proposition 9.4. For each ¢ > 1, Q = Q;1 and any ball B with radius 62,
HFQ”L;&(wnB) N HEQQHL;&(wBy

where Fy is defined in (9.9). If the proposition is true, then we have

n n—1 n—1

[Tl X Feuliyes | SII| X 1Fedliyu, ]

i=1 \Qi,1€EPix, i=1 \Qi,1€EPix,

3

which implies Proposition 9.2. Hence all that is left is the proof of Proposition 9.4.

9.2.3 The second approach: multilinear interpolation

45

Using the observation and terminology in Subsection 9.2.2, we shall compute (9.1) directly.

Our goal is to use (9.10). First, we use Lemma 9.3 with

PRSI SUN TN
Qi,1€P5(Qq)

and get

(9.1)" = #B]A\/nHZ S Eandliy | sl

i=1 AeB Qi, 1€Ps(Q4)

n

(by (9.10)) 5% RHH > FQ”() 1 (2)da

=1 AeB \Q;1€Ps(Q

n

slGnB/Mg Y Faar) e

Qi 1€Ps(Q
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We let, similar as above,

2
Fi = Z FQi,1 = Z Z sup )HEQQH%Q#(U}B(%&_I))LTQ('T)'

Qi,1€P5(Q1) Qi1€P5(Qi) TEFQ, y€AT (z

Now we interpolate between (9.11) which is rewritten as:

n
1
JkiE
=1

n
1
56,1/ R HHF"HEL(BR)

L T (Br) =1

and the following trivial (oo, co)-bound:

n

115

=1

3

Ly(Br) =1

to get

1
L (Br) (9.12)

n i . n
[TIE v B TJIA
i=1 L (Br) =1
forall n/(n —1) <t <ooand s =1t(n—1)/n>1. (See Theorem 1.15 of [2].)

Now if p > 2n/(n — 1), we can apply (9.12) with R = 16nd2, t = p/2 > n/(n — 1) and
s=tn—1)/n=q/2 > 1 to get

1
. 2n
el | DR
1=1|Q;,1€Ps(Q4) Li(lGnB)
<46 ° H Z HFQz‘,l }L;(lGnB) ’

i=1 \ Q;,1€EPs(Q:)
by the triangle inequality. Now using Proposition 9.4, we have

n n

2 D D 125

=1 \Q;1€Ps(Q:)

2
|Lq#(16nB)

3=

n

55*51_[ Z HEQi,lgﬂi;ﬁ(ws) ’

=1 \ Q;,1€EPs(Qs)

which is (9.2).
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9.3 Proof of Proposition 9.4

Heuristically, Proposition 9.4 holds as by the uncertainty principle, Eqg is locally constant
in each tile Ty and thus it will still be roughly constant in each smaller cube B(y,d ')
near 47y. The rigorous proof is based on Fourier analytic techniques, which is similar to
the proof in Subsection 5.2 of Section 5

9.3.1 Reduction to the case Q =

First we show why we can reduce to the case Q = Qo = [—d/2,6/2]"". (Note Qo is
actually not a subset of [0,1]""!, but we can of course extend the definition of Egg for
such @’s. The symmetry here will simplify the notations a bit.)

The proof will be similar to the argument in Subsection 5.2.1 in Section 5.2. For each
Q = Qiq, write Q = Qp+0 and £ = n+o0 where £ € Q and n € Qy. Write G(u) = g(u+0)
and

z=Lu= (u; + 2un01, ..., Up_1 + 2Up0p,_1, Uy),

so |det(L)| = 1. With this, we can compute

/|EQ9 Niwp(y.s-1)(u du—/IEQO 2)|"wp 1) (L~ 12)dz. (9.13)
We then prove a weight inequality:

WB(y,s-1) (qu) ~ WB(Ly,s~1) (2). (9.14)

Indeed, since o € [—1,1]""!, the mapping L is bilipschitz with constant O(1). Thus
|Ly — z\ ly — L™'2], and hence we have (9.14). Thus

[ 1o @ gLz ~ [ B, Gl fwmays(2)dz,

which implies ||Eqgl| ;4 ~ || Eg,

G )
#Wp(y, 5-1)) HLi(wB(Ly,a—l))

Clearly, L a bijection between each T € Fg and some parallelepiped L(7Tg). We claim
that L(Ty) C 4Ty, for some Ty, € Fg,, where F, is defined in the same way as Fg was
defined (we can also assume 0 is the centre of some Ty, ). Indeed, if ¢¢ is the centre of @,
then cg = o + cg, = 0. Thus

—20q,...,—20,1,1
N(CQ) = ( : 2 - 2) :
V14407 + - +4do2
Recalling the definition of L, we have L(N(cq)) || (0, ,1) = N(cg,). But L is a

shear transformation, so L(TQ) is a parallelepiped with the longest side parallel to N(cg,).
However, as 0 € [—1,1]""!, the distortion should not be too much.) Hence L(Tg) C 4Ty,
and thus L(4Tg(x)) C 16Ty, (Lx).

Recalling the definition of Fyy (9.9) and changing Ly to y, we have

Fy(z) < Fo(La) = Y sup || Eg, Gl 14

1 Lz).
y€16Tq, (L) #(wB(y,a—l)) 4TQ0( ‘T)

Too€F Qo

The @ = Qg case is given by the following proposition:
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Proposition 9.5. We have, for all spatial cubes B' of side length 62 and all G,

||F0||L‘1#(64nB’) = HEQOG”LL(UJ ’)

Proof of Proposition 9.4 assuming Proposition 9.5. Since Fg(zx) S Fo(Lz), letting 2’ =
Lz, by the bilipschitz property of L,

| JRa@pdss [ (R@rar < [ (R Em,
16nB L—1(16nB) 64nB’

for some B’ with cgr = L(cp) and I(B') = 672, Thus HFQHLq (16nB) 5 HFOHLq (6anpr)- BY
Proposition 9.5, it suffices to show HEQOGHL‘I# (wgr) S ||EQg||Lq

#(wB

Reversing the change of variable as in (9.13), we get

[ 1Ea,G@ w21z = [ Eag(uwlrwn(Luydu

But as L is Lipschitz, |Lu — cp| ~ |u — L™ (cp/)| = |u — cp|, hence

/|EQg(u)|qu/(Lu)du~/|EQg(u)|qu(u)du.

This shows that ||EQOG||LQ (wy) S ||EQg||Lq O

wB

9.3.2 Several further reductions

All that is left is the proof of Proposition 9.5, and this is where Fourier analytic tools will
be used. By an abuse of notation we will write Qo = Q = [—6/2,46/2]"1.

Then in the new notations,

Fo(z) = Z Sup HEQG‘|L;(QUB(%571))14TQ(’1')7

ToeFo YEI6TR(@)

and we will be proving
||F0||L3#(64n3) SJ ||EQG||L3¢(U)B)’

for any spatial cube B of length §—2.

e Given any B as above, consider the subcollection .7-"5 of tubes Tiy € F that intersect
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64nB. Since 4T3’s have bounded overlap, we have

HFO”qu#(MnB)
q

1

- sup  [|EQG||a (,, Lyp, () | dx
|64TLB| 64nB TQG}'S YEL6T (x) Q L#( B(y,é—l)) Q

1 7
< E~GlY 1 1 d
= 64nB| Jeunp Z sup [ Fe “Lq#(wB(y,rlQ 47, () Z a1, (%) z

16T,
Tq 6.7:3 ve Q Tq 6.7:5

S0 Y sw 1EeGliy, ) /6 | Marg(0)da

€167y
TQE.Fg Y Q

<Y swp [EoGlly,

ToerD y€16Tg Wp(y,5-1))
Q

it suffices to show

S sup 1EoGlY

SO EQG|4, . (9.15)
TocFs ye16Ty #(ws)

Wp(y,5-1))

We show that it suffices to prove that (9.15) holds for B centred at 0. Given any
cube B with centre ¢, we define G'(§) = G(&)e(d - € + ¢, - [€]?) so that EgG'(z) =
EqG(z + ¢). Hence for any y € 16Ty, letting y = x + ¢,

106 taguy,,, 1) = | 1EQG(N wn5) (s

(u=z—-c)= / |EQG' (u)| "wpy,6-1y(u + ¢)du

WB(y,6—1)

= / |EQG,<U) |qu(z,5*1) (u)du

Let T, = Tq —c, which is another tube in Fg and such that 167, contains x = y—c.
Since Tg intersects 64nB, T, intersects 64nB — c. By (9.15) applied to the cube
B — ¢ centred at 0, we have

Z Sup HEQG/Hqu (Wp(,5-1)
71 e pB-c TEW6TY #2 B,
R€/Q

) S 51_n||EQG,||%;£(wac)'

Next we change variables back to get

> sup ||EQG||7;q#(wB(y’6,l>) S 51_n||EQG||qu#(wB)’

5 YEL6TG
TQG]‘—Q
as required. So this process above is almost trivial.

For each Ty € ]-"5, denote cr, = (c1,...,Cn-1,¢n). Let B' be a /ndt-cube centred
at (c1,...,¢n-1,0). Let B be the collection of all such cubes B’ as T, ranges through
FB.

Q
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We have the following weight inequality:

Z w2, 0x,) S wp(x). (9.16)
B'eB

iy
Te [H‘

€4nB
{g’}

B I n§ "

AN
L H\ | ||

\

e ¢ 7

Figure 8: Covering by tiles T

Hence by (9.16), the right hand side of (9.15) can be bounded from below:
1
1-n q _ sl-n q
J HEQGHLq#(wB) =0 Bl /\EQG(x)\ wp(z)dx

20y / |EQG ()| wpr (2, 62, ) di.

B'eB

For each B’ € B, there are at most O(1) tubes Ty € F5 that have the same entries
as B’ in the first (n — 1)-coordinates; let T denote the slightly larger tube formed
by the union of the aforesaid tubes (see Figure 8 again), so T has dimensions
O(671) in the first (n — 1) coordinates and O(62) in the last coordinate. Note also
the n-th coordinate of ¢(Ts/) is 0. To show (9.15), it thus suffices to show for each
B € B,

EoG|4
yeslltlagBIH ? ”Laqéﬁ(“’B(y,a—l)

) S (5"“/\EQG(x)\qu/(x',éxn)da:. (9.17)

e To use the oscillatory feature of the Fourier transform, we will use some distribution
theory. Recall how we showed in 4.2 of Section 4 that Fg is a distribution supported

on the compact set P"~* C R™. Similarly, FoG is also a distribution supported on
the paraboloid above Q). Thus we can write EqG(z) = EgG(e(z-)).
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Fix a bump function h € C°(R") supported on B(0,1/10) with [h = 1. Define

O (&) = @*hm(f) where h,,,(£) = (672m)"h(62m&). Then we have the following
properties:

— sup,, ||¢mll; < oo. (Refer to 4.2 in Section 4.)
— supp(¢n) € T = [-35/4,36/4]" 1 x [-62/10,6%/2] for all m.
— For any function f € C*(R"™), we have [ ¢,,f — @?}(f)

Taking f.(&) = e(€ - z) above, we have
/qu 2)d§ — EgG(z), for any z € R™.

Moreover, by the dominated convergence theorem, we have ¢, — EgG in Liﬁ(w B(y,6-1))

and also in L% (wg/ (7', 02,)). Thus we may prove (9.17) with EQ?? replaced by ¢,
for each m. However, for simplicity of notations, we shall use an abuse of notation
and treat EoG as if it was a function supported on 7.

9.3.3 The main proof
We now proof (9.17). Let B’ € B be given. Write cgr = ¢, y = e+ c and z = u+y. Since

y € 16T, we have |g;| S 67 for 1 <j<n—1and |, <62 Then we compute, using
Taylor expansion,

1PaG(:) = | [ BaGtnele- Z)dn‘

= | [ EoGn)e(n - (u+c+ €)dn‘

27rz77j15” - (2minireln)
- | [Ebmete ey Yy CTE i)

.71 0 ]nio

C]1+ “+Jn ( et oy )
JiT T In—1 JIn
<> Z A

J1=0 ]_0

For each j > 0, let M; € C*(R) be such that

[ BeGtwetn - - -n%"dn‘ |

o M;(t) =1t for |t| < 3/4,
e M;(t) =0 for |t| > 7/8, and
o sup;so [ M7l S 1.

(Refer to (5.9) for existence of such functions.) Then using the assumption that EQ?J is
supported on T with dimensions 6"~ ! x 6%, we have, for any y € 1675,

C]l"l‘ +]n
|EoG(u+y)| < Z Z P /EQG (u A+ ¢))ma (67,67 2n,)dn
J1=0 Jn=0
& Cittin

-—‘EQG*(ma((S LT (u+ o),
= ot dal
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where

ma(n) = My, (m) - My, (1) Mj, (n,), and where o = (ju, ..., jin)- (9.18)

By the triangle inequality, to show (9.17), it suffices to show that
5 / |EQG % (ma(67,672)")(u + )|  wigosn (u)du < 6™ / |EoG(2)|* wi (2, 62 da.
Letting H(u) = EgG(u + ¢) and changing v = x — ¢, the above is equivalent to

/ |H « (ma (07" ,67%0) ") (u)|" wpo5-1) (w)du S 5/ |H(v)|* wpos-1) (v, 6vy)dv. (9.19)

Next we compute

(Mo (071 072)) () = 8" T'mY (6, 6%uy,), (9.20)

so in particular, ||mq(671,672,)Y|l; < 1. Now we can apply Jensen’s inequality with
qg > 1 to get

J 1 (a6 720 )| 51 ()

= [| [ HO) 57200 = 0 o

< [ [ 1@ (757200 = o) do s ()

= [1HE) [ |ma6,50) (0 = 0) w51 (u)dud.
Thus (9.19) will be true if we can prove the following weight inequality:

/ [ma(07,67%)Y (u — v)| wps-1)(W)du S Swps—1) (v, dvy,). (9.21)
By (9.20) and using the symmetry of wp(gs-1), the left hand side of (9.21) is equal to
5t / |m2 (60" — 6u’, 6%v, — 6%uy)| wi(o,s-1) (u)du.

Now we use the definition of m, (9.18) and the uniform derivative bound of M J(k)

Imy(u)] SE wao,1),s(u) for any E, and hence

to get

5n+1 / ‘mZ(&/ . (SU/, 52'071 — 52Un)| @UB(07671)<U/)dU,
S 6n+1 /wB(O,l) ((S'UI . 5ul752vn — 52un)U}B(076—1)(u)du

_ 5n+1 /U)B(O,él)(vl . u/’ (5Un — 5un)w3(o,5—1)(u)du.

Using Proposition 5.2, we get
gt /wB(0751)(U/ — ', v, — Sty )wp(o5-1)(w)du S dwps-1y (v, duy),

which is the right hand side of (9.21).
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10 Decoupling in the Range 2 < p < %

In this section we show Dec,,(0,p) <. 67 for 2 < p < %, using induction on scales. We

first introduce some general notations which may be used in this section as well as all
subsequent sections.

10.1 Notations and conventions

Let py = % Let g : [0,1]""! — C be given. We will fix g in the rest of the whole section,
so we drop the dependence on g of all terms in this section. But keep in mind that all
implicit constants will be independent of g.

Fix 0 < v < 1 and n v-transverse cubes Q1,...,Q, C [0,1]""! with the same side length
[(Q;) = p. All implicit constants will be independent of p and the positions of the
frequency cubes Q;, 1 <17 < n.

Let £ > 100n. Notice that we allow every implicit constant including the decoupling
constants to depend on F, so we will hide the parameter E from our notations.

For s € N and K > 1, let B} denote a cube in R™ with side length K* with arbitrary
centre. For simplicity, if s = 1, we will usually abbreviate Bl as Bp.

We will only be dealing with K’s with > K, i.e. K > p L.

Let 1 < t,p < 0o be exponents and g < s < r be positive integers. As u > K1 > K¢,
we can define

n 2n

Dt(qa B;() - H Z HEinngi;(wB%)
i=1 Qi,qepK*q(Qi)

Then ¢ = 20D — 2 in (9.2). For ¢ > 0 and v fixed above, let C.,, be the implicit

n

constant in the inequality (9.1) < C.,(9.2). For K > 1, taking the 4 in (9.2) to be K,
we have (9.2) = K°Dy(1, B%).

We write B*(B}) to be the (unique) partition of B} with cubes Bj; of side length K*.
Define

1
A(q.By.s) = | =y Y. Dalq. By
#B (BK) B;EBS(B%)

Hence if py = 2%, taking 6 = K~' in (9.1), we have (9.1) is equal to A, (1, B, 1). In
particular, Theorem 9.2 says

Ay (1, Bk, 1) < C.,Ds(1, B).
Thus if p < pg, then by definition of A, and Jensen’s inequality, we trivially have

A,(1,B%,1) < A, (1, B%,1) < C.,Dy(1, B). (10.1)
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10.1.1 General properties

With the notations above, we state and prove some general properties. Note all proposi-
tions in this subsection are true as long as 2 < p < oc.

Proposition 10.1. Let 1 <t,p < oo be exponents and let ¢ < s < r be positive integers.

For any K > p=' and m > 1, we have the following equalities:
Dy(q, Bgn) = Di(mgq, BE"), (10.2)
A,(q, Bgm, s) = Ap(mgq, BE", ms), (10.3)
Ap(q, B, ) = Da(q, Bi). (10.4)

They are immediate by definition.

Proposition 10.2. If K > u~!, then we have

Dy(1, Bx) 2 | [I1Eq.9

=1

1
B :
Li#(wBK)

Proof. By the L*-decoupling Theorem 6.1 with R = K and I(Q;) = u > K™,

n 2n

D2(17 BK) = H Z HEngHii(wBK) Z HHEQig

=1 \Qi1€P,-1(Q:) i=1

1
|22 ()
L (wpy)

Proposition 10.3. If K > =Y, m > 1, and 2 < p < oo, then we have
AP(LB?(% 1) 5 D2(17B?(1) < DP(LBIW(L)'

Proof. We only prove the first inequality, as the second follows immediately from Jensen’s
inequality.

m 1
AP(I’BK71)p: #BI(B?) Z D2(17BK)p
BKEBl(B;'g)

n 2n

1
ey > | > By,

BreBY(BR) i=1 \Qi1€P,-1(Q:)

M)
3=

n

1 2
< 4B (B} H Z Z ”EQiﬁlgHLi(wBK) ’
K7 i=1 \ BreB (BR) \Qia€Pr—1(Qi)
where the last inequality follows from the following Hélder’s inequality for n-terms:

n n
S T lesl> <] (Z \%j|>
J =1 i=1

- J

n
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Since p > 2, using Holder’s inequality we have

S 2 el

BreBL(BE) \Qi,1€P—1(Qi)

I3

p 1—

< > > 1Eenolis, > 1
Br€eB(B) Qi 1€P-1(Q4) BreB(BY)
p
2

<k i 0D (S g, |
Qi 1€PK—1(Qs) 3

[NIiS]

where we have used the following weight inequality as a consequence of Proposition 3.1:

E WB ,S wpm.

BreBY(BR)
Hence
P\
1 - 2 2
L > el
#B'(B}) i=1 \ BxeBY(B7) \Qi1€Px-1(Q:) )
P
. 2n
cxometoo [T Rl
i=1 \Q;,1EPk—1(Q:)
P
" 2n
= H Z HEQ% gH22 wprm
i=1 \Qi1EPL-1(Qs) )
Hence y
i 2n
A1, B, 1) H > HEQngHLz wsg) | = Dol B

10.2 Intermediate steps
The intermediate steps consist of two parts: an induction on scales argument, followed

by an appliaction of Corollary 4.3, which a Bernstein-type inequality (or reverse-Holder’s
inequality or locally constant property).

10.2.1 The induction argument

We start with a lemma which facilitates our induction argument.



o6

Lemma 10.4. Let 2 <p <py, K > u~t, and M > 2. Then
Ap(1, B, 1) Sew KEA(2, By, 2).
Proof. We first prove the case M = 2:
A1, B2 1) Sy KoA(2, B, 2) = K*Dy(2, B2), (10.5)
where the last equality follows from (10.4). Recall (10.1) which says
A,(1, B3, 1) < C.,Dy(1, BE).

Hence it suffices to show Do(1, B%) < K°Dy(2, B%), which raised to the power 2n is
equivalent to

H Z ||EQ1 1gHL2 (w 2 ~ H Z HEQz,ZgHii(ng )’ (106)
i=1 Qi 1€PK—1(Q:) i=1 Q; 2P —2(Qi) K
The right hand side of (10.6) is equal to
H Z Z ||EQi,2gHii(wB2 )’
1=1 Qi 1€EP—1(Q:) Qi 2€P—2(Qi,1) K

Thus (10.6) is true if for every Q;1 € Pr-1(Q;), we have

N

HEngH[; 2 (wy 2) 5 Z HEQi,?g”ii(sz)
Qi,2€Px—2(Q4,1) K

But the above just follows from the L2-decoupling inequality (6.1) with R = K? and
1(Q)=1(Q;1) = K~' > K~2 = R. This proves (10.5).

Next we prove Lemma 10.4 for a general M > 2, which raised to the power p is equivalent

to
1 1
1 K BIEB1(B?(1) 2 B%EBQ(B%)
The left hand side of the above inequality is equal to

1 1 -
PEEY 2 FEEL 2 DL B

B2eBy(B¥) Bl.€Bi(B%)

Hence it suffices to show that for each B% € By(BY), we have

1
BT | 2 DBl Sew KDo(2 B
WPK) p1ep,(B2)

Raising both sides to the power 1/p, we see the above is exactly (10.5) which we proved
to be true. O]
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Now we come to the main induction step.

Proposition 10.5. Let 2 < p < py, R > p~' and m > 1. Then for each € > 0, there is
C., such that

Ap(1,BE" 1) < O R E A (1, B 1),
Proof. Applying Lemma 10.4 with M = 2™ and K = R, we have
A,(1,BY" 1) < C.,R°A,(2, BY"2) = C.,R°A,(1, B3 ', 1).
Applying Lemma 10.4 with M = 2™~! and K = R?, we have
A,(1,B% 1) < C.,R*¥A,(2, B35 " ,2) = C.,R¥A,(1,B% " 1).
We can perform the above process (m — 1) times until we get

AP<L Bézm—% 1) < Ca,uR2m728Ap(27 B?z?m‘Q’Q)CEvV = AP(L Bgm—lv 1)'

(The reason we stop at the (m — 1)-th step is that we like to obtain a term of the form
A, (1, B%,1) which facilitates a decoupling that matches the right hand side of Definition
8.4.) Combining the above inequalities gives

Ap(l’ B%m’ 1) S ng_lRQmilaAp(]ﬁ B]2%27n717 1)

10.2.2 Applying a Bernstein-type inequality

We first use Proposition 4.3 to get to an inequality close enough to the form in Definition
8.4.

Proposition 10.6. Let 0 < v < 1 and Q1,...,Q, be an n-tuple of v-transverse cubes
with the same side length . If 2 < p < po, then for any m > 1 and any R > p~2", we
have

" B\
5 (HHEM |§p(3/)>
(Br) \i=1

BIEP , m
I 2
S CE,VRQR " H Z HEQi,lgHLp(wBR) ’
=1 Qi 1€P,_1/2(Qs)

where CT", is independent of pu, R and the positions of Br and Q;,1 <1 < n.

Proof. Applying Propositions 10.3 and 10.5 with 2 < p < pg, m > 1 and K = R >
p~ L, we have, for some absolute constant C' > 0,

Ay(1,BE" 1) < CCM T R 2 Dy(1, B2 ).



(Assuming C' < C.,,, we may bound CCI*' < C ) We compute

A,(1,B%" 1) =

(by Prop 10.2) >

1 i
w3 (ki) |

1

i, 2 0

BreBY(BE")

1
n

BreBL(BE™)

We now invoke Proposition 4.3. As R > p~! = [1(Q;)™!, using (4.3) we have

||EQig||Li(wBR)

2 WR)r 2 Equgll r 5y 2 B2 I EQudl 2, (15,

We shall see that we can afford such a loss of the power on R.

Thus we have

AP(L Blz%mv 1) Z R%_%

1
ot 3o (Lot

1

1
n P
Lp wB

BreB'(BE")

_2Mn _n_n 1
-5 g, & (T )

Also by (10.3),

Dy(1,B%,.0)

BreBY(BE™)

H Z HEngHip(wBRQm)

1=1 Qz‘,lE'PR,Qm—l (Qi)

Thus (hiding any absolute constant C' inside C, , as before),

BreBY(BE™)

> (e

<CM Ry RYE
— Yew

Changing variables R?" +— R, we have for any m > 1 and any R > p~2"

I

<ccnrir T T Y |Bewsli,

2.

B'€P —m (Br)

3=
B I=

LP wB )

I > e, .,

=1 Q1 EP_gm—1 (Qi)

Y

1\ b
H”EQigHIip(wB,))

1=1

=1 Qi 1€P_1/2(Q4)

3=

S =

o8

(10.7)
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10.3 The final argument
10.3.1 Bounding the multilinear decoupling constant

The main result is the following:

Proposition 10.7. Let 0 < v < 1. If 2 < p < py, then for allm >1 and 0 < 6 <1,

7L/2 n/p n/2 n/P

MDec, (4, p, v, m, E) < CT, RiR 7 = =Cl0 35

Proof. Refer to Definition 8.4. Let g : [0,1]"! — C. Let m’ > 1,0 < ¢ < 1. Let B with
I((By=061 Let 0 <v <1and {Ql 1 <i < n} be an n-tuple of v-transverse cubes in

[0, 1]~ such that 1(Q;) = p > 62" .

If we can show

n

> HIIEngll”/” <ATTL D2 1Bl | (10.8)

A€P,_1(B) i= =1 \qi€P;1/2(Qi)

for some multiplicative factor A independent of g, u and the positions of {Q;, 1 < i < n},
then we have MDec, (4, p,v,m’, E) < A.
To apply Proposition 10.6, we let R = §~! and let m = m/. Thus > R~2 "

We then compute

3=

‘p/"
LP(wa)

> HHE@

A€P, 1 (B) i=1

= 2 RIEY,

| B'EP,—m (B) AP, 1 (B') i=1

B =

|P/Tb
Lr(wa)

S
3=

(n-Holder) < | H Z |

BEP ,-m(B) \i=1 AP,

1
n
: >
~ Lp (wgr) ’
_B’G’PR2,m (B)

3=

where the last line follows from ), p By WA < wpg. Hence we can use Proposition
I
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10.6 to get

1
1 1

n
‘p
L (wB/)

m n/2 n/Z)
SCf R R H E HEQi,lgHiP(wBR)
=1 Qi 1€P_1/2(Q4)

5 @\E@g

B'EP - m (B)

1

n 2n

m n/2 'ﬂ/p 2
=7 R R H Z Hqu-g”Lp(wB)

=1 \q:€P;1/2(Qi)
n/2 n/p

Hence we see our A in (10.8) can be taken to be CT;, R:R O

10.3.2 Proof of decoupling inequality

Theorem 10.8. Letn > 2 and F > 100n. If 2 < p < pg, then we have
Decn(R717p7 E) SE,R,p,E RE?
for all R > 1.

Proof. We first prove the case n = 2. Recall (8.16) of Theorem 8.9, which says that for
each 0 < v <1 and m > 1, there is Cy,, = Cypmp and n(v) = n(v,p, E) such that
lim, o+ n(v) = 0 and for each R > v~2" we have

Decy(R™Y,p, E) < CympR™) sup MDecy(R ™1, p,v,m, E). (10.9)
1<R'<R
Let £ > 0. Since lim, g+ n(v) =0, take 0 < v < 1 with n(v) < e
By Corollary 7.4, it suffices to assume R € 2V.

Let 1 < R" < R. Take m > 1 large enough such that (§ — %)Z_m_l < £ (so m depends
on n and € only). Then by Proposition 10.7 with § = R'~!, we have

n/2—n/p
2m

MDecy (R, p,v,m, E) < CZLVR’%R’ < Cr R,

which holds for all 1 < R' < R. Taking C'(¢) = C'(¢,p, ) = C,,,C", which depends in
turn on €, p and E only, we have, by (10.9), for all R > v=2"

Decy(R™1,p, E) < C'(e) R*.

Denote K = v~2" which depends in turn on e,n, E only. It remains to prove that for
1 < R < K we also have decoupling. Write I = [1, K] N 2", which has finite cardinality
#I := N = N(g,p,E). Write I = {Ry,...,Ry}. For each 1 < i < N, we use trivial
decoupling 7.2 to get Decy(R; ', p, E) < C; = Ciepp. Take C”(e) = maxj<;<n C;, and
then take C'(e) = max{C’(¢),C"(e)} = C(e,p, E). Thus for all R > 1, we have

Decy(R™,p, E) < C(e) R*.
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Now assume for some n > 2, we have Dec, (R, p, E) <., R°. Then by Theorem 5.1,

we have
Decn<R717p7 Fn*1<E)) SEJMD:E RE‘

Using (8.17) of Theorem 8.9, we have for each ¢ > 0, 0 < v < 1 and m > 1, there is
Com = Chppmpe and n.(v) = n(v,&,p,n, E) such that lim, ,o+ 7:(v) = 0 and for each
R > 12" we have

Dec,(R™,p, E) < C,,, R"™*¢ sup MDec, (R, p,v,m, E).
1<R'<R

Now argue similarly as in the case n = 2. O

11 Decoupling in the Range -2 < p < 2n+1)

n—1

In this section we show Dec,(d,p) <. 6~ for % < p < =%, using an interpolation
argument in addition to the arguments in the previous section. We will still use the

notations and conventions as in the last section.

2(n+1)

2(n+1)
n—1

Let ¢ = @, so q¢ < p. For simplicity, let py = n2—” and p; = . Since p > pg, we

-1
have ¢ > 2. Let o = «, such that

1 2 (11.1)

We first prove the non-endpoint case p < p;. In the end, we will prove the endpoint case
b =D
11.1 The induction argument
The corresponding lemma to Lemma 10.4 is the following:
Lemma 11.1. Let py <p < oo, K > p~', and M > 2. Then
Ap(1, B 1) Sew K°A(2, B, 2)' 7 Dy(1, By 1)°.
Proof. Imitating the proof of Lemma 10.4, it suffices to prove the case M = 2:
A,(1,B%,1) <., K°Dy(2, B%)' " *D,(1, B¥)*. (11.2)
Recall Theorem 9.2 says that for some C;, = C, ., p g, We have
A,(1,B%,1) < C.,D,(1, B%).
Using Holder’s inequality twice (first by (11.1) and then with respect to [?), we have
D, (1, BY) < Dy(1, BE)' "D, (1, B)"

which completes the proof of (11.2). O
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The main proposition which follows by induction is the following.

Proposition 11.2. Let pg < p < p1, R > p~' and m > 1. Then for each € > 0, there is
CE,I/ == Ce7y7a(p) == Cg’y’p’n’E SUCh tha/t

m—2

Ap(1, BE' 1) Sewa B AL(1, B2 )" T Dy(1, B2 o)

Rr2! )
=0

for some B = B p-

Proof. Applying Lemma 11.1 with M = 2™ and K = R, we have
A,(1,B%" 1) < C.,R*A,(2,B%",2)"*D,(1, B3 )~
= C.,R°A,(1, B3 ,1)'™D,(1,B%").
Applying Lemma 11.1 again with M = 2™~ and K = R?, we have
A, (1, B3 1) < C.,R¥A,(2, B3 ,2)" D, (1, B3 ')®
= C.,R*A,(1,B% " 1)'=*D,(1, B% )"
We can perform the above process (m — 1) times until we get

Ap(1, By, 1) < Coy R 2 A (2, B s, 2) Dy (1, Bl s)®
- CE,VA (1 BQm 1,1)D (1 BR2m 2) .

Combining the above inequalities gives

A1, BY 1) < [Chp et e ey el ]

m—2
Ap(l,B]Q%2m71, (1 am 1 H Dp 2m l (1a)l] .

1=0

Since we have p > pg, that is, a < 1, we have
I+1-a)+-+(1—-a)"?<at

Similarly, we have

1421 —a)+---+[2(1 —a)]™? < max { (21—_2202”1777% 2041— T } = Pm.  (11.3)

By a slight abuse of notation, this finishes the proof of the proposition. n

Remark: The first bound works for the case a < 1/2, the second bound works for the
case @ = 1/2 and the third bound works for the case a > 1/2. Since we assume in the
assumption that p < p;, we have

—_

np—p-—2n 2

Th-Dp-2  m-Dp-2) 2

Hence we use the first bound (2 — 2a)™(1 — 2a) ™. However, the exact value of 3, is not
important, since it will contribute to a power that finally goes to 0 as m — oo.
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11.2 Applying a Bernstein-type inequality

The analogue to Proposition 10.6 is given by

Proposition 11.3. Let 0 < v < 1 and Q1,...,Q, be an n-tuple of v-transverse cubes
with the same side length . If po < p < p1, then for any m > 1 and any R > 2", we
have

3=

1
Z (HHEng \ifo))
i=1

B'€P ,—m (Br)

Bm +777 ;
Na v,p R°m pP H Z ||EQig||Lp(wBRaE)
=1 ¢;€P_1/2(Q:)

where

l\’)

Decn (R pyet—a), (11.4)
=0

Proof. Applying Propositions 10.3 and 11.2 with 2 < pg < p < p;, m > 1 and K =
R?"™" > 17!, we have
m—2

Ap(l,Bém,l) ~SEV,D R%"D (1 BRzm . (1 o H DP Z:ll (1704)1‘ (11‘5)
=0

The argument for the lower bound for A,(1, B%",1) is the same as in Proposition 10.6:

1 1
m 2_2_27"71
ALBE D) ZRE Y (HHE@QHMB) -

BreBY(BE™)

For the upper bound of the right hand side of (11.5), fix 0 <1 <m—2and Q € Pp_x(Q;).
We may use parabolic rescaling (Proposition 7.1) with 6'/2 = R=2""" | [(Q) = ¢!/? = R
(so 6 <o) and B = Bpem with [(B) = R?*" = §~! to bound:

_om 141 2
”EQg”Lp(wB) < Dec, (R™"27 p) Z ||qu||Lp(wB)
qepR_Qm—l (Q)

This shows that for all 0 <[ <m — 2,

n 2n

ml 2
p, B =TI X Wl

=1 \QeP (Qi)

r—2!

n

< Dec, R‘QmHH1 H Z Z ||qu‘|ii(w3)

1=1 QGPR_QI (Ql) qe,PR_mel (Q)

= Dec,(R™2" ™", p)D, (1, B% s
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Hence the right hand side of (11.5) is bounded above by

m—2
R (H DeCn(R_2m+2l+lap)a(l_a)l> Dp(L Bizm_l)(l—a)'"*l+a+a(1—a)+~~~+a(1—a)m*2

=0

=0

m—2
— Rfne (H Dec, (R~2"+2", p)a“—a)l) Dy(1, Bs).

Therefore similar to the proof of Propsition 10.6 we have

1

1
> (HHEQ,-QHZWBR))

BreBY(BE") \i=l1
m—2 n %
n_n _om_ 9l+1 PRV 2
S,s,l/,p RPme+3—3 H Decn(R 2m 42 7p>cv(1 a) H Z HEinl‘gHLP(U)B )
1=0 i=1 Qi,1€PR,2m71 (Q4) "
Changing R*" — R, we have
. 1\ v
> (Tt )
BIGPRQ—m (Br) \i=1
bmetn/2—n/p Tt - -
me+n/2—n/p _ I+1—m PRY
Sevp B 27 H Dec, (R™'*? ,p)a(l *) H Z ||EQig||2LP(wBR)
1=0 =1 qi€P,_1/2(Qi)

11.3 Estimating the decoupling constants

The key difference of this argument from the case 2 < p < pq is that we do not bound
the multilinear decoupling constant directly by 6 ¢. Instead, we bound the multilinear
decoupling constant by a product of decoupling constants, and then use Theorem 8.9 to
get the bound in a reverse direction. Combining the two directions gives the result.

Using the same proof, we get an analogue to Proposition 10.7:
Proposition 11.4. Let 0 <v < 1. Ifpg < p < p1, then for allm >1 and 0 < < 1,

P(m)7

_ Bme+n/2—n/p
2m

MDec,, (8, p,v,m, E) Scpp O
where P(m) was defined in (11.4).

Thus we are left with estimating P(m). Recall that

m—2
P(m) = Dec,, (R™1+277" pyati-a),
1=0
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Proposition 11.5. Let 0 < v < 1. Ifpy < p < p1, then for any ¢ > 0, there is
0 < dp = do(e) <1 such that for allm > 1 and 0 < § < dy,

_ 1—
,ﬁma+;%2 n/p (1+2 ;T;a (11 f;)m)(TJrE)

MDec,, (0, p,v,m, E) Scpp O
Proof. Write Dec(d) = Dec,, (0, p, E). Our first claim is the following:
Lemma 11.6. There is a constant 7 = 7,, 5 € [0,00) such that

T = sup {S € R : limsup Dec(6)6* = oo} = inf {s eR: (lsir%Dec(é)ds = 0} .
—

6—0

Proof of lemma. The existence of a 7 € [—00, 00| is a general property satisfied by all
nonnegative sequences. To show 7 € [0, 00), we recall that by trivial decoupling (triangle
inequality and Cauchy-Schwarz), 1 < Dec(d) < 6~"~V/4. Thus

-1
sup {s € R : limsup Dec(6)0° = oo} < I

6—0 -

and

inf {8 € R : lim Dec(9)6° = O} > 0.

6—0 -

]

Now let £ > 0. Then for § small enough, we have Dec(6)07 < 1. Using a # 1/2, we
have

m—2

logs—1 P(m Z — 2 (1 4+ 2)a(l — @)

=0
-2

3 N

(T +¢e)a(l —a) — Z_(T +£)a2'7™(2 — 2a)!
=0 =0

(1 - e

1 -2« 1 -2«

Combining with Proposition 11.4, we are done. O]

11.4 Proof of decoupling inequality

Theorem 11.7. Let n > 2 and E > 100n. If pg < p < p1, then we have for all R > 1,
Decn(R71>p7 E) Ss,n,p,E RE-

Proof. We give a detailed proof of the case n = 2 only. The proof in higher dimensions
follows from induction as in the proof of Theorem 10.8.

Recall (8.16) of Theorem 8.9, which says that for each 0 < v < 1 and m > 1, there is
Com = Cypm,e and n(v) = n(v,p, E) such that lim,_,o+ n(v) = 0 and for each R > v~*",
we have

Decy(R™1,p, E) < Cyp p R1Y suwp MDecy(R'™Y, p, v, m, E).
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Since n(v) — 0, take 0 < v < 1 small enough such that n(v) < e. Then by Proposition
11.5, we have for R large enough,

217771,& - (1704)7n

DecQ(‘R_l)p; E) < Rﬁmg+n/22:nn/p+<l+ 1-2a 1—2a )(T+€)

~E,M,p '

Using the first equality of Lemma 11.6, we can find a sequence R — oo such that
Decy(R; ', p, E) > R °.

Examining the power of R, we are forced to have

n/2 —n/p 2=mq (1 — )™
—e< _ 1 — .
T—¢€ < Bme+ o +( t1{ 9 1-2a (T+¢)

But this holds for all m > 1 and all € > 0. Letting ¢ — 0 and multiplying both sides by
2™ we have
(2 —2a)™ 2 n
T — <5 -
1 -2« 1 -2« 2
for all m > 1. Since aw < 1/2 and 7 > 0, this forces to 7 = 0.

(11.6)

n
p>

Hence by definition of 7, for any € > 0,

lim Dec, (R, p, E)d° = 0.

6—0

Finally, using similar argument as in the proof of Theorem 10.8, the decoupling inequality
for py < p < p; holds for all R > 1. O

11.5 The endpoint case

We prove

Theorem 11.8. Let n > 2 and E > 100n. If p = p1, then we have for all R > 1,

DeCn(R_l,p1, E) Sa,n,p,E R*.

Proof. As before, it suffices to show

2
HEgHLm(BR) Se ’° Z HEQgHLm(wBR’E)
QEP _1/2([0,1]"71)

Let € > 0. Take p < p; such that
n n €

p m 4
By (4.3) with Q = [0,1]*"%, ¢ = p; and p = p, we have

HEQHLQ(BR) S RE—EHEQHL;(wBR,E) < REHEQHL;&(wBRE)- (11.7)
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(wp.p)7 WE have, for some C. = C.,

Applying the decoupling inequality to || Eg|| 2,

1
2

£ 2
||Eg||L;;é(BR) S 05R2 Z ||EQg||Li(wBR,E)
QeP, 1 (0 )

D=

o

2
< C.R > 1Eeolin s,

QEP—1/2([0,1]"~1)

by Jensen’s inequality. Thus

S

gqn_n 9
| gl < C-RFT5 75 > Bl e
QEP—1/2([0,1]71)

1
2

3 2
< C.R3 Z HEQgHLZE(wsR,E)
QGPR_1/2([O:1]"71)

Combining with (11.7), we have

[SIE

2
1Egll 22 5y S B > 1£Q9 11221 (s, )
QEP_1/2([0,1]71)
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