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1 Introduction

This article (second edition) serves as an informal study guide for [4], which in turn serves
as a study guide for [3]. It gives a detailed proof for the decoupling inequality in the case

2 ≤ p ≤ 2(n+1)
n−1

. It is self-contained if and only if combined with [2], [4], and [5].

Please feel free to email to toyang@math.ubc.ca if you find any mistakes or you have any
suggestions.

With the basic setting in [4] and the notations and conventions in the next section, our
final goal is to prove the following decoupling theorem:

Theorem 1.1. Let n ≥ 2, E ≥ 100n and 2 ≤ p ≤ 2(n+1)
n−1

. Then we have the following
(local) decoupling inequality:

‖Eg‖Lp(wBR,E) .ε,p,n,E R
ε

 ∑
Q∈P

R−1/2 ([− 1
2
, 1
2

]n−1)

‖EQg‖2
Lp(wBR,E)

 1
2

,

for any R ≥ 1.

2 Notations and Conventions

1. e(x) = exp(2πix) for x ∈ C.

2. Cross-references in red with a hyper-link refer to an item in this article, while those
in black refer to an item in the study guide by [Bourgain-Demeter, [4]]. We write
[BD] for short in subsequent texts.

3. Unless otherwise specified, B(x,R) denotes the axis parallel cube centred at x with
side length R. Given E ≥ 100n and any cube B with side length R, we let cB denote
the centre of B. We then define the weight function adapted to B as wB(x) =

wB,E(x) =
(

1 + |x−cB |
R

)−E
.

We will also use the notation BR to denote any cube with side length R and some
centre cB. For C > 0 and any geometric figure F (e.g. rectangles, squares and balls)
with centre c, we also use CF to denote the dilation of F with c fixed.

4. By an absolute constant we mean a constant depending on the dimension n (and
possibly E) only. When writing a constant Ca,b,c,etc or a parameter ν(a, b, c, etc)
depending on several parameters, we also implicitly assume that they depend on n
(and E) as well.

toyang@math.ubc.ca
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By definition, the decoupling constant Decn(δ, p, E) depends on n, p, δ, E. Unless
we need to specify its dependence on E, we will drop it in the following texts.
Sometimes we will also drop its dependence on n or p if it is not the main point
of concern. (For example, the simplest notation of the decoupling constant will be
Dec(δ).)

5. Unless otherwise specified, every physical scale in this note and [BD] will be in 2N,
and every frequency scale will be in 2−N. (We say the scales are dyadic in this case.)
This makes all partitions of cubes real partitions instead of bounded overlapping
covers. Nevertheless, sometimes we may prove more general theorems that help to
deal with bounded overlapping cases.

6. By disjoint rectangles in Rk we mean rectangles whose interiors are disjoint. Hence
they are disjoint a.e. in terms of k-dimensional Lebesgue measure. Unless otherwise
specified, we will simply say they are disjoint.

7. We use Pn−1 to denote the truncated paraboloid in the frequency space:

Pn−1 =

{
(ξ, |ξ|2) : ξ ∈

[
−1

2
,
1

2

]n−1
}
.

8. Instead of using the longer notation Part to mean partition of cubes, we simply
denote it as P .

3 Some Preliminary Technicalities

3.1 Inequality on weights, I

The scales in this subsection are not necessarily dyadic.

Proposition 3.1. Let 1 ≤ R′ ≤ R. Let B be a finite overlapping covering of B with
R′-cubes ∆ which intersect B. Here, by finite overlapping we mean:

1B(x) ≤
∑
∆∈B

1∆(x) ≤ Cn (3.1)

for all x. Then

1. #B . (R/R′)n.

2. 1B .
∑

∆∈B w∆ . wB.

The implicit constants here depend on E and n only.

Proof. 1. For all ∆ ∈ B, ∆ ∩ B 6= ∅ and 1 ≤ R′ ≤ R, so ∆ ∈ 3B. Hence by (3.1) we
further have ∑

∆∈B

1∆ ≤ Cn13B.

Integrating on both sides, we get #B(R′)n ≤ Cn(3R)n, so #B . (R/R′)n.



5

2. “1B .
∑

∆∈B w∆”

If x ∈ B, then there is ∆ ∈ B so that x ∈ ∆. Then |x− c∆| ≤
√
nR′/2, whence∑

∆∈B

w∆(x) ≥ w∆(x) =
1(

1 + |x−c∆|
R′

)E & 1.

“
∑

∆∈B w∆ . wB”

• If x /∈ 4
√
nB, then |x− cB| ≥ 4

√
n ·R/2 = 2

√
nR. For each ∆ intersecting B,

we have |cB − c∆| ≤
√
nR/2 +

√
nR′/2 ≤

√
nR. Hence |x − c∆| ≥ |x − cB| −

|cB − c∆| ≥ |x − cB| −
√
nR ≥ 1

2
|x − cB|, where we have 1

2
|x − cB| ≥ R ≥ R′.

Hence∑
∆∈B

w∆(x) =
∑
∆∈B

1(
1 + |x−c∆|

R′

)E . #B · 1(
|x−cB |
R′

)E .

(
R

R′

)n
· R′E

|x− cB|E
.

On the other hand, as |x− cB| ≥ 2
√
nR ≥ R,

wB(x) =
1(

1 + |x−cB |
R

)E ≥ 1(
2|x−cB |

R

)E ∼ RE

|x− cB|E
.

Since E ≥ 100n and R ≥ R′, we have
(
R
R′

)n · R′E

|x−cB |E
≤ RE

|x−cB |E
.

• If x ∈ 4
√
nB, then wB(x) ∼ 1. We need to show that∑

∆∈B

w∆(x) . 1. (3.2)

To do this we need a lemma:

Lemma 3.2. Let x be a point in Rn and let R > 0, K ∈ N. Let B be a collection
of cubes ∆ with the same side length R satisfying the following property:

(a) They have bounded overlap: ∑
∆∈B

1∆ ≤ Cn.

(b) For each ∆ ∈ B, |c∆ − x| ≤ 2KR.

Then #B . 2Kn.

Proof of Lemma 3.2. All ∆ ∈ B are contained in the cube B(x, 2K+2R). Then

#BRn = #B|∆| =
∫
B(x,2K+2R)

(∑
∆∈B

1∆

)
≤
∫
B(x,2K+2R)

Cn ∼ 2KnRn. (3.3)

Hence #B . 2Kn.
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Now we return to the proof that
∑

∆∈B w∆(x) . 1. Fix x ∈ 4
√
nB. Partition

B = ∪∞K=0BK where

BK := {∆ ∈ B : 2K−1R′ < |c∆ − x| ≤ 2KR′}, K ≥ 1

B0 = {∆ ∈ B : |c∆ − x| ≤ R′}.

Since ∆ has side length R′, B0 has at most O(1) elements, in the same spirit as
(3.3). Indeed, if |c∆−x| ≤ R′, then ∆ ∈ B(x, 3R′). Hence by finite overlapping
(3.1), ∑

∆∈B0

1∆(y) ≤ Cn1B(x,3R′)(y).

Integrating over Rn on both sides, we get #B0 . 1. Hence
∑

∆∈B0
w∆(x) . 1.

For K ≥ 1, |c∆ − x| ∼ 2KR′, so w∆(x) ∼ 2−KE. Using Lemma 3.2 we have∑
∆∈BK

w∆(x) ≤ #BK · 2−KE . 2−K(E−n).

Summing with respect to K ≥ 0, we have
∑

∆∈B w∆(x) . 1.

Remark: The proof of
∑

∆∈B w∆(x) . 1 shows that it is generally true whenever the
∆’s have finite overlap. It is independent of the geometric figure they are covering. This
observation will be useful in some technical argument in parabolic rescaling.

Proposition 3.3. Fix B, a finite overlapping cover of Rn with R-cubes B′, and let B be
an arbitrary R-cube. Then

1. wB(x) .
∑

B′∈B 1B′(x)wB(cB′).

2.
∑

B′∈B wB′(x)wB(cB′) . wB(x).

Proof. Let c denote the centre of B.

1. Let x ∈ Rn. Then there is B′ ∈ B such that x ∈ B′, so |x − cB′ | ≤
√
nR/2. We

have two cases.

• |cB′ − c| ≥
√
nR.

In this case,

|cB′ − c| ≤ |cB′ − x|+ |x− c| ≤
√
n

2
R + |x− c| ≤ 1

2
|c− cB′|+ |x− c|.

Hence |c− cB′| ≤ 2|x− c|, whence

wB(x) =
1(

1 + |x−c|
R

)E ≤ 1(
1 +

|cB′−c|
2R

)E ∼ wB(cB′).
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• |cB′ − c| <
√
nR.

In this case, wB(cB′) ∼ 1. Since wB(x) ≤ 1, the result follows.

2. Fix x ∈ Rn. We partition the covering into B1,B2, where B1 := {B′ ∈ B : |x−cB′ | ≥
2|x− c|}, B2 := {B′ ∈ B : |x− cB′ | < 2|x− c|}.
If B′ ∈ B1, then |c− cB′| ≥ |x− cB′ | − |x− c| ≥ |x− c|. Hence∑

B′∈B1

wB′(x)wB(cB′) ≤
∑
B′∈B1

wB′(x) · 1(
1 + |x−c|

R

)E
≤ 1(

1 + |x−c|
R

)E ∑
B′∈B

wB′(x)

.
1(

1 + |x−c|
R

)E = wB(x),

since
∑

B′∈B wB′(x) . 1 in the same spirit as in (3.2).

If B′ ∈ B2, we consider the following cases:

• If x ∈
√
nB, then using the trivial bound wB ≤ 1:∑

B′∈B2

wB′(x)wB(cB′) .
∑
B′∈B

wB′(x) · 1 . 1 ∼ wB(x).

• If x /∈
√
nB, then we consider the inequality defining B2: |x− cB′| < 2|x− c|.

This implies that the entire cube B′ is contained in B(x, 3|x − c|): indeed, if
y ∈ B′, then |y − x| ≤ |y − cB′| + |cB′ − x| ≤

√
nR/2 + 2|x − c| ≤ 3|x − c| as

x /∈
√
nB.

Then in the same spirit of (3.3), we have #B2 .
(
|x−c|
R

)n
. Thus

∑
B′∈B2

wB′(x)wB(cB′) .

(
|x− c|
R

)n
≤
(
|x− c|
R

)E
∼ wB(x).

3.2 Use of reverse Minkowski in Remark 4

Write
Ai = ‖fi‖pLp(αu+βv).

Then
Ai = α‖fi‖pLp(u) + β‖fi‖pLp(v) := Ai,1 + Ai,2.
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Then

O2(αu+ βv) =

(∑
i

‖fi‖2
Lp(αu+βv)

) p
2

=

(∑
i

A
2
p

i

) p
2

=

(∑
i

(Ai,1 + Ai,2)
2
p

) p
2

= ‖Ai,1 + Ai,2‖
l
2
p (i)

≥ ‖Ai,1‖
l
2
p (i)

+ ‖Ai,2‖
l
2
p (i)

=

(∑
i

A
2
p

i,1

) p
2

+

(∑
i

A
2
p

i,2

) p
2

=

(∑
i

α
2
p‖fi‖2

Lp(u)

) p
2

+

(∑
i

β
2
p‖fi‖2

Lp(v)

) p
2

= α

(∑
i

‖fi‖2
Lp(u)

) p
2

+ β

(∑
i

‖fi‖2
Lp(v)

) p
2

= αO2(u) + βO2(v).

4 A Reverse Hölder’s Inequality

4.1 A lemma on Schwartz functions

We start with the following technical lemma.

Lemma 4.1. Let 1 ≤ p < ∞. There is a nonnegative Schwartz function η on Rn such
that η(x) ≥ 1 on B(0, 1) and that the Fourier transform of η1/p is supported on B(0, 1).

Proof. Let φ be a bump function supported on B(0, 1
2
) with, say, φ∨(0) =

∫
φ = 2 and

such that |φ∨| ≥ 1 on B(0, 1). Take η = (φ∨ · φ∨)p, so η is positive, smooth, and η(x) ≥ 1

on B(0, 1). By construction, (η
1
p )∧ = φ(·) ∗ φ(−·), so it is supported on B(0, 1).

Definition 4.2. Let 1 ≤ p <∞. Let B ⊆ Rn. Given η as in Lemma 4.1, we define

ηB(x) = ηB,p(x) = η

(
x− cB
l(B)

)
. (4.1)

We call ηB a Schwartz function adapted to B with exponent p.

Note that η̂
1/p
B will be supported on B(0, l(B)−1).

4.2 Computations related to extension operator

For x = (x1, . . . , xn) ∈ Rn, write x′ = (x1, . . . , xn−1). Write e(t) = exp(2πit). The
extension operator defined in BD is as follows:

Eg(x) =

∫
[− 1

2
, 1
2

]n−1

g(ξ)e(x′ · ξ + xn|ξ|2)dξ.
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With this notation, g is defined directly on the frequency cube [−1
2
, 1

2
]n−1 but not on

the paraboloid; note also that the Jacobian is not present. Since we may assume that
g ∈ C∞c ([−1

2
, 1

2
]n−1), we could also view g as a smooth function defined on Rn−1 that

vanishes outside [−1
2
, 1

2
]n−1.

We rewrite Eg as

Eg(x) =

∫
Rn−1

∫
R
δ0(ξn − |ξ|2)g(ξ)e(x′ · ξ + xnξn)dξndξ.

Hence, formally,
Êg(ξ, ξn) = g(ξ)δ0(ξn − |ξ|2).

Thus Êg is a (tempered) distribution in Rn supported on the compact hypersurface S, in
the sense that if h ∈ C∞(Rn), then

Êg(h) =

∫
Rn
g(ξ)δ0(|ξ|2 − ξn)h(ξ, ξn)dξdξn

=

∫
Rn−1

g(ξ)h(ξ, |ξ|2)dξ.

Moreover, Êg will not be a function unless the support of g is disjoint from S. Hence it
makes no sense to talk about E∗Eg in this case.

If φ ∈ S(Rn), then for η ∈ Rn−1, ηn ∈ R,

φ̂Eg(ξ) = Êg ∗ φ(ξ) =

∫ ∫
g(η)δ0(|η|2 − ηn)φ(ξ − η, ξn − ηn)dηdηn

=

∫
g(η)φ(ξ − η, ξn − η2)dη.

which is a normal function in the frequency space. So if g is supported on a cube Q ⊆ Rn−1

with l(Q) = R−1 and φ is supported on B(0, R−1/10), then Êg ∗ φ(ξ) is supported on a
tiny neighbourhood of the paraboloid over Q.

4.3 Locally constant property

The following proposition is a slight generalization to Corollary 4.3. This locally constant
property will also be referred to as the uncertainty principle, a reverse Hölder’s inequality
or a Bernstein-type inequality in the following texts.

Proposition 4.3. Let 1 ≤ p ≤ q ≤ ∞. Let R ≥ 1. Let ηB = ηB,p be a Schwartz function
adapted to a cube B ⊆ Rn with exponent p (see (4.1)). Then for each cube Q ⊆ [0, 1]n−1

with l(Q) = R−1 and each cube B ⊆ Rn with l(B) ≥ R we have

‖EQg‖Lq(B) . (R−n)
1
p
− 1
q ‖EQg‖Lp(ηB). (4.2)

Thus we have, for all E ≥ 0,

‖EQg‖Lq#(B) .

(
l(B)

R

)n
p
−n
q

‖EQg‖Lp#(wB,E), (4.3)
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This says that EQg is roughly constant at scales ≥ R.

Proof. By (4.1), η̂
1/p
B is a function supported on B(0, l(B)−1) ⊆ B(0, R−1). As shown

above, ÊQg is a distribution supported on the paraboloid above Q with l(Q) = R−1, so in
particular, it is supported on a rectangle Q×I where |I| ≤ 2(n−1)R−1. Using Minkowski

sum,
̂
η

1/p
B EQg = η̂

1/p
B ∗ÊQg is supported in a rectangle 3Q×J with all dimensions ≤ cnR

−1

(using the map Q 3 ξ 7→ |ξ|2 and triangle inequality), which is in turn contained in some
cube Q′ ⊆ Rn with l(Q′) = cnR

−1. Then apply the usual Bernstein inequality to the

function η
1/p
B EQg to get∥∥∥η1/p

B EQg
∥∥∥
Lq(B)

. (R−n)
1
p
− 1
q

∥∥∥η1/p
B EQg

∥∥∥
Lp(B)

, (4.4)

which then implies (4.2) as η ≥ 1 in B. The implication from (4.2) to (4.3) is trivial.

5 Thickening the Paraboloid (Section 5)

5.1 Inequality on weights, II

A single exponent E will be fixed throughout the subsection.

Proposition 5.1. Let B be a cube with side length R. Then wB(y) ∼ wB(x) if y ∈
B(x,R). That is, wB is roughly constant at scale R.

Proof. Let cB be the centre of B. Let y ∈ Rn. If y ∈ B, then wB(y) ∼ 1. Also,

|x− cB| ≤ |x− y|+ |y − cB| ≤
√
nR . R.

Hence wB(x) & 1 ∼ wB(y). Switching the roles of x and y shows that wB(y) ∼ wB(x).

If y /∈ B, then |y − cB| >
√
nR/2. let K be the unique natural number such that

2K−1
√
nR/2 < |y − cB| ≤ 2K

√
nR/2. Then wB(y) ∼ 2−KE. Also,

|x− cB| ≤ |x− y|+ |y − cB| ≤ (1 + 2K)

√
n

2
R . 2KR.

Thus wB(x) & 2−KE ∼ wB(y). Switching the roles of x and y shows that wB(y) ∼
wB(x).

For future use, we will need a slightly more general proposition:

Proposition 5.2. Let BR be a cube centred at the origin. If |cj| ≤ 1 for j = 1, 2, . . . , n,
then

1

Rn

∫
wBR(y)wBR(x1 − c1y1, · · ·xn − cnyn)dy1 · · · dyn . wBR(x),

where the implicit constant does not depend on cj, 1 ≤ j ≤ n.

As a corollary, we have the following proposition.
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Proposition 5.3. If R′ ≤ R and BR, BR′ are centred at the origin, then we have

wBR ∗
(

1

(R′)n
wBR′ ,E

)
. wBR .

Proof of Proposition 5.2. Cover Rn by the collection B of translates of BR. Then by 1 of
Proposition 3.3, it suffices to prove that∑

B′∈B

wBR(cB′)
1

Rn

∫
1B′(y)wBR(x1 − c1y1, · · · xn − cnyn)dy1 · · · dyn . wBR(x).

Since |cj| ≤ 1 for j = 1, 2, . . . , n, by Proposition 5.1, we have

1B′(y)wBR(x1 − c1y1, . . . , xn − cnyn) ∼ 1B′(y)wBR(x1, . . . , xn),

where the implicit constant does not depend on cj, 1 ≤ j ≤ n. Hence we have∑
B′∈B

wBR(cB′)
1

Rn

∫
1B′(y)wBR(x1 − c1y1, · · · xn − cnyn)dy1 · · · dyn

∼
∑
B′∈B

wBR(cB′)
1

Rn

∫
1B′(y)wB′R(x1, . . . , xn)dy1 · · · dyn

=
∑
B′∈B

wB′(x)wBR(cB′) . wBR(x),

by 2 of Proposition 3.3.

5.2 A slight generalisation of Theorem 5.1

For future use, we generalise Theorem 5.1 slightly by enlarging N1/R to NC/R where
C > 1 is an absolute constant and the new NC/R extends to negative neighbourhoods:
−C/R ≤ δ ≤ C/R.

For each Q ⊆ [−1/2, 1/2]n−1 and δ > 0, we denote

NQ,δ = {ξ = (ξ, ξn) : ξ ∈ Q, |ξn − |ξ|2| ≤ δ}.

We also denote
Nδ = N[− 1

2
, 1
2

]n−1,δ.

For a Schwartz function f : Rn → C and Q ⊆ [−1/2, 1/2]n−1 with Fourier support in Nδ,
we denote

fQ,δ = (f̂1NQ,δ)
∨ = f ∗ 1∨NQ,δ .

In (5), we change the notation gj to fj to indicate the dependence of fj on f .

fj(s) =

∫ C/R

−C/R
f̂(s, s2 + t)

(
Rt

2

)j
dt. (5.1)
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5.2.1 Reduction to the case Q = [0, R−1/2]

It is easy to see why we can assume BR to be centred at the origin, but it is not really
easy to see why we can just consider the case Q = [0, R−1/2].

Proposition 5.4. Let Q0 denote the interval [0, R−1/2]. Assume

sup
j
‖EQ0gj‖Lp(wBR ,F ) .

∥∥∥gNC/R(Q0)

∥∥∥
Lp(wBR ,E)

(5.2)

holds for all functions g with Fourier support in NC/R(Q0). Then for all cubes Q =
[u, u+R−1/2] ⊆ [0, 1], we have

sup
j
‖EQfj‖Lp(wBR ,F ) .

∥∥∥fNC/R(Q)

∥∥∥
Lp(wBR ,E)

(5.3)

holds for all functions f with Fourier support in NC/R(Q), where the implicit constant
does not depend on u.

Proof. By a change of variable (as in the proof of parabolic rescaling 7.1 in the following)
we have

|EQfj(x)| =
∣∣∣∣∫
Q0

fj(u+ s)e(x1s+ 2x2us+ x2s
2)ds

∣∣∣∣ . (5.4)

Let T denote the following affine shear transformation:

T (ξ1, ξ2) := (ξ1 + u, 2uξ1 + ξ2 + u2).

We have | det(T )| = 1 and

T−1(η1, η2) = (η1 − u, η2 − 2uη1 + u2).

Then let g(x) = f(T−1x), so ĝ(ξ) = f̂(Tξ), i.e. f̂(ξ) = ĝ(T−1ξ). Thus by (5.1) and simple
computation,

fj(u+ s) =

∫ C/R

−C/R
ĝ(s, s2 + t)

(
Rt

2

)j
dt. (5.5)

As (5.1) suggests, we will show fj(u+s) = gj(s), which is true if g also has Fourier support
within NC/R([0, 1]). One good thing about the parabola is that it interacts well with such
affine shear transformation T . More precisely, not only does T−1 map the parabola over
Q to the parabola over Q0, but T−1(NC/R(Q)) is also exactly NC/R(Q0). Too see this,
note (η1 − u)− (η′1 − u) = η1 − η′1 and

(η2 − 2uη1 + u2)− (η1 − u)2 = η2 − η2
1.

Hence g also has Fourier support NC/R([0, 1]) (see Figure 1), and so fj(u+ s) = gj(s).

If we define
y = (y1, y2) = L(x1, x2) = (x1 + 2ux2, x2),

Then (5.4) rewrites

|EQfj(x)| =
∣∣∣∣∫
Q0

gj(s)e(y1s+ y2s
2)ds

∣∣∣∣ = |EQ0gj(y)|. (5.6)
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Figure 1: T acts well with NC/R

Thus we can apply (5.2) to gj to get

‖EQ0gj‖Lp(wBR ,F ) .
∥∥∥gNC/R(Q0)

∥∥∥
Lp(wBR ,E)

. (5.7)

Since | det(L)| = 1, by (5.6), the left hand side of (5.7) is equal to

‖EQ0gj‖Lp(wBR ,F ) =

(∫
|EQfj(x)|pwBR(Lx)dx

) 1
p

.

Recall we assumed c(BR) = 0. Since 0 ≤ u < 1, we have |Lx| ∼ |x| and hence wBR(Lx) ∼
wBR(x). Hence ‖EQ0gj‖Lp(wBR ,F ) ∼ ‖EQfj‖Lp(wBR ,F ).

For the right hand side of (5.7), we have

|gNC/R(Q0)(x)| =

∣∣∣∣∣
∫
NC/R(Q0)

f̂(Tξ)e(x1ξ1 + x2ξ2)dξ1dξ2

∣∣∣∣∣
=

∣∣∣∣∣
∫
NC/R(Q)

f̂(η)e((x1 − 2ux2)η1 + x2η2)dη1dη2

∣∣∣∣∣
= fNC/R(Q)(L

−1x).

Hence similarly,
∥∥∥gNC/R(Q0)

∥∥∥
Lp(wBR ,E)

∼
∥∥∥fNC/R(Q)

∥∥∥
Lp(wBR ,E)

, and so we have (5.3).

From now on we write Q = Q0 = [0, R−1/2].

5.2.2 About cutoff functions

The second to last equality on Page 7 follows from Proposition 5.1 and Fubini’s theorem:

‖EQfj‖pLp(wBR ,F ) ∼
∫
‖EQfj‖pLp#(B(y,R))

wBR,F (y)dy.
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The last equality on Page 7 follows from (5.1) by writing back to product measure on
NC/R(Q):

EQfj(x) =

∫
NC/R(Q)

f̂(ξ)

(
R(ξ2 − ξ2

1)

2

)j
e((ξ2

1 − ξ2)x2)e(ξ · x)dξ.

For the third inequality on Page 8, instead of proving it holds uniformly in j, we could
allow a multiplicative factor Cj on the right hand side.

The fourth equality on Page 8 now becomes∫
NC/R(Q)

f̂(ξ)

(
R(ξ2 − ξ2

1)

2

)j
e((ξ2

1−ξ2)y2)e(ξ·x)dξ = Cj

∫
F̂ (ξ)mj(ξ)e(ξ1x1+ξ2(x2−y2))dξ,

where

mj(ξ) = mj,y2(ξ) = e(ξ2
1y2)Mj

(
R(ξ2 − ξ2

1)

2C

)
η(R1/2ξ1)η(Rξ2). (5.8)

Here, η ≡ 1 on [−2C, 2C] and supported on [−3C, 3C] is a bump function. (Note this is
where the reduction Q = [0, R−1/2] is used.) Also, Mj is defined to be a bump function
that agrees with tj on [−1/2, 1/2] and that satisfies the derivative bound:

sup
j≥0

∥∥∥∥ dkdtkMj

∥∥∥∥
L∞(R)

.k 1, (5.9)

for each k ≥ 0. For example, we can just take Mj(t) = σ(t)tj where σ is a bump function
that equals 1 on [−1/2, 1/2] and that is supported on [−3/4, 3/4]. We then check (5.9).

Let k ≥ 0. By the Leibniz rule, for j ≥ k we have∥∥∥∥ dkdtkMj

∥∥∥∥
L∞(R)

≤
k∑
l=0

(
k

l

)∥∥σ(l)
∥∥
∞j(j − 1) · · · (j − k + l + 1)

(
3

4

)j−k+l+1

≤ (k + 1)! sup
0≤l≤k

∥∥σ(l)
∥∥
∞

(
3

4

)j
jk

.k 1,

once we notice that supj≥k(3/4)jjk .k 1 (say, using ratio test).

5.2.3 Reduction to weight inequality

The last inequality on Page 8 (note we directly defined mj so there is no m̃j in our
notation:) ∫ ∥∥∥∥∫ F̂ (ξ)mj(ξ)e(ξ1x1 + ξ2(x2 − y2))dξ

∥∥∥∥p
Lp#(B(y,R))

wBR,F (y)dy

=

∫ ∥∥∥∥(F̂mj

)∨
(x1, x2 − y2)

∥∥∥∥p
Lp#(B(y,R))

wBR,F (y)dy

=

∫ ∥∥F ∗m∨j (x1, x2 − y2)
∥∥p
Lp#(B(y,R))

wBR,F (y)dy

= R−2

∫ ∫
B(y,R)

∣∣F ∗m∨j (x)
∣∣p dxwBR,F (y)dy. (5.10)



15

Now we show that
∥∥m∨j ∥∥1

. 1. Indeed, mj is a bump function with height ∼ 1 and is

supported on NC/R(Q), which is contained in a rectangle of dimensions C ′R−1/2×C ′R−1.
Hence we can write mj(ξ1, ξ2) = e(ξ2

1y2)ψ(R1/2ξ1, Rξ2) for some absolute bump function
ψ. Thus m∨j (x1, x2) = R−3/2ψ∨(R−1/2x1, R

−1x2) will be a Schwartz function. Then it is

easy to see that
∥∥m∨j ∥∥1

. 1.

As a consequence of Jensen’s inequality, we have

∣∣F ∗m∨j (x1, x2 − y2)
∣∣p =

∣∣∣∣∫∫ F (x1 − z1, x2 − y2 − z2)m∨j (z1, z2)dz1dz2

∣∣∣∣p
.
∫∫
|F (x1 − z1, x2 − y2 − z2)|pm∨j (z1, z2)dz1dz2

= |F |p ∗
∣∣m∨j ∣∣ (x1, x2 − y2).

Continuing the computation in (5.10), we have

R−2

∫ ∫
B(y,R)

∣∣F ∗m∨j (x)
∣∣p dxwBR,F (y)dy

. R−2

∫ ∫∫
|F |p ∗

∣∣m∨j ∣∣ (x1, x2 − y2)1BR(x1 − y1, x2 − y2)dx1dx2wBR,F (y)dy

= R−2

∫ ∫∫
|F |p ∗

∣∣m∨j ∣∣ (x)1BR(x1 − y1, x2)dx1dx2wBR,F (y)dy, (x2 − y2 7→ x2)

=

∫
|F (x′)|p

(∫ ∫∫ ∣∣m∨j ∣∣ (x− x′)R−21BR(x1 − y1, x2)wBR,F (y)dx1dx2dy

)
dx′.

Recall F = fNC/R(Q). Hence it remains to show that∫ ∫ ∣∣m∨j ∣∣ (x− x′)R−21BR(x1 − y1, x2)wBR,F (y)dxdy . wBR,E(x′).

By symmetry of 1BR , the left hand side is equal to∫ ∣∣m∨j ∣∣ ∗ (R−21BR)(y1 − x′1,−x′2)wBR,F (y)dy.

For simplicity of notations we write x′ = x. Using

wBR,E(x) &

(
1 +
|x1|
R

)−E (
1 +
|x2|
R

)−E
,

it suffices to prove∫ ∣∣m∨j ∣∣ ∗ (R−21BR)(y1 − x1,−x2)wBR,F (y)dy .

(
1 +
|x1|
R

)−E (
1 +
|x2|
R

)−E
,

which is a pure weight inequality independent of f or F .
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5.2.4 A derivative bound

We prove the following derivative bound:∥∥∂s1ξ1∂s2ξ2mj

∥∥
∞ .s1,s2

(
R

1
2 +R−

1
2 |y2|

)s1
Rs2 . (5.11)

We consider each factor in (5.8).

1. For the first term e(ξ2
1y2), we can show by induction that

∂s1ξ1 e(ξ
2
1y2) =

{
e(ξ2

1y2)y
(s1+1)/2
2 ξ1

∑(s1−1)/2
k=0 cs1,k(ξ

2
1y2)k, if s1 is odd

e(ξ2
1y2)y

s1/2
2

∑s1/2
k=0 cs1,k(ξ

2
1y2)k, if s1 is even.

We consider two cases: |y2| ≤ R or |y2| > R.

• If |y2| ≤ R, then we have |ξ2
1y2| ≤ 1 since |ξ1| ≤ R−1/2. Then |y1|1/2 ≥ |y1ξ1|

and so in both cases of s1, we have the bound∥∥∂s1ξ1 e(ξ2
1y2)

∥∥
∞ .s1 |y2|s1/2. (5.12)

• If |y2| > R, then we have |ξ2
1y2| > 1 and hence we have the bound∣∣∣∣∣
K∑
k=0

cs1,k(ξ
2
1y2)k

∣∣∣∣∣ .s1 |ξ2
1y2|K .

So in both cases of s1, we have the bound∥∥∂s1ξ1 e(ξ2
1y2)

∥∥
∞ .s1 R

−s1/2|y2|s1 . (5.13)

The first term has no contribution to ∂s2ξ2mj.

2. The analysis for ∂s1ξ1 for the second term Mj(R(ξ2 − ξ2
1)/(2C)) is similar as the first

term. We can show by induction that

∂s1ξ1Mj

(
R(ξ2 − ξ2

1)

2C

)

=

 R(s1+1)/2ξ1

∑(s1−1)/2
k=0 cs1,kM

(k+(s−1)/2)
j

(
R(ξ2−ξ2

1)

2C

)
(Rξ2

1)k, if s1 is odd

Rs1/2
∑s1/2

k=0 cs1,kM
(k+s/2)
j

(
R(ξ2−ξ2

1)

2C

)
(Rξ2

1)k, if s1 is even.

and hence

∂s2ξ2∂
s1
ξ1
Mj

(
R(ξ2 − ξ2

1)

2C

)

=

 R(s1+1)/2+s2ξ1

∑(s1−1)/2
k=0 cs1,s2,kM

(k+(s1−1)/2+s2)
j

(
R(ξ2−ξ2

1)

2C

)
(Rξ2

1)k, if s1 is odd

Rs1/2+s2
∑s1/2

k=0 cs1,s2,kM
(k+s1/2+s2)
j

(
R(ξ2−ξ2

1)

2C

)
(Rξ2

1)k, if s1 is even.

Since |ξ1| ≤ R−1/2, we always have |Rξ2
1 | ≤ 1, so using (5.9) we have the bound∥∥∂s2ξ2∂s1ξ1Mj(R(ξ2 − ξ2

1)/(2C))
∥∥
∞ .s1,s2 R

s1/2+s2 . (5.14)
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3. The third term is easy: ∥∥∂s1ξ1 η(R1/2ξ1)
∥∥
∞ .s1 R

s2/2. (5.15)

It has no contribution to ∂s2ξ2mj.

4. The fourth term is easy: ∥∥∂s2ξ2 η(Rξ2)
∥∥
∞ .s2 R

s2 . (5.16)

It has no contribution to ∂s1ξ1mj.

• If |y2| ≤ R, then the bounds given by (5.12), (5.15) and (5.16) are all dominated by
that of (5.14). Hence we have∥∥∂s1ξ1∂s2ξ2mj

∥∥
∞ .s1,s2 R

s1/2+s2 . (5.17)

• If |y2| > R, then the bound on ∂s1ξ1mj is dominated by (5.13) and the bound on
∂s2ξ2mj is dominated by (5.14). Hence we have∥∥∂s1ξ1∂s2ξ2mj

∥∥
∞ .s1,s2 |y2|s1Rs2−s1/2. (5.18)

Combining (5.17) and (5.18), we get (5.11).

The rest are easy to follow; the key is to use Proposition (5.3) many times.

5.3 Higher dimensions

If n ≥ 3, then Subsection 5.2.1 becomes a similar reduction to the case [0, R−1/2]n−1 using
a similar affine shear transformation T . After such reduction, we need to perform n − 1
Taylor expansions instead of just once (so we use n Taylor expansions in total). The
corresponding mj will then be (with ξ = (ξ′, ξn))

mj(ξ) = e(|ξ′|2yn)Mj

(
R(ξn − |ξ′|2)

2C

) n−1∏
k=1

η(R1/2ξk)η(Rξn).

The analogue of (7) is then∫ ∣∣m∨j ∣∣ ∗ (R−n1BR)(y′ − x′,−xn)wBR,F (y)dy .

(
1 +
|x′|
R

)−E (
1 +
|xn|
R

)−E
,

The derivate bound becomes∥∥∥∂s1ξ1 · · · ∂sn−1

ξn−1
∂snξnmj

∥∥∥
∞

.s1,··· ,sn−1,sn

(
R

1
2 +R−

1
2 |yn|

)s1+···+sn−1

Rs2 ,

and hence Equation (8) becomes

φ1(x′) .s R
−(n−1)/2

(
1

1 + |x′|
R1/2+R−1/2|yn|

)s

.
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Equation (10) becomes∫
φ1 ∗

(
R1−n1IR

)
(y′ − x′)wBR,F (y)dy . R

(
1 +
|x′|
R

)−E
.

We still have three cases in the end, and Proposition 5.3 is applicable in all dimensions.
The general (4) we require is

wBR,F (x′, xn) ≤
(

1 +
|x′|
R

)−E1
(

1 +
|xn|
R

)−E2

, if E1 + E2 ≤ F,

and the corresponding assumptions on F for all three cases becomes F ≥ E, F ≥ E+n+1,
F ≥ 2E + 2, respectively. Hence Γn(E) = 2E + 2 works for all dimensions.

6 L2-decoupling

Theorem 6.1. Let Q be a cube with l(Q) ≥ R−1. Then for each cube BR with side length
R we have

‖EQg‖L2(wBR ) .

 ∑
q∈PR−1 (Q)

‖Eqg‖2
L2(wBR )

 1
2

. (6.1)

Note that the physical and frequency scales are exactly dual to each other in this case.

Lemma 6.2. Let f =
∑

n fn and suppose suppfn := {x ∈ Rn : fn(x) 6= 0} has finite
overlap in the sense that ∑

n

1suppfn ≤ C. (6.2)

Then fn’s are almost orthogonal in the sense that for each 1 ≤ p <∞,∫
|f |p .

∑
n

∫
|fn|p.

Proof. We compute directly∫
|f |p =

∫ ∣∣∣∣∣∑
n

fn

∣∣∣∣∣
p

=

∫ ∣∣∣∣∣∑
n

fn1suppfn

∣∣∣∣∣
p

≤
∫ (∑

n

|fn|p
) p

p
(∑

n

|1suppfn|
p′

) p
p′

.
∫ ∑

n

|fn|p =
∑
n

∫
|fn|p,

where the . follows from (6.2).
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Hence to show (12), write, by Plancherel,

‖Eqg‖2
L2(ηB′ )

=

∫ ∣∣∣∣Êqg ∗ η̂1/2
B′

∣∣∣∣2 .
Then with fQ = Êqg ∗ η̂1/2

B′ , we see suppfQ is contained in a tiny neighbourhood of the
paraboloid over Q, so suppfQ and suppfQ′ overlap only if Q and Q′ are adjacent. Hence
each point in Rn lies in at most 2n slightly enlarged cubes, so suppfQ has finite overlap.
Using Lemma 6.2 with fQ and

∑
q∈Part1/R(Q) Eqg = EQg, we have

∫ ∣∣∣∣ÊQg ∗ η̂1/2
B′

∣∣∣∣2 . ∫ ∑
q∈Part1/R(Q)

∣∣∣∣Êqg ∗ η̂1/2
B′

∣∣∣∣2 =
∑

q∈Part1/R(Q)

‖Eqg‖2
L2(ηB′ )

.

For the left hand side of the above equation, we have∫ ∣∣∣∣ÊQg ∗ η̂1/2
B′

∣∣∣∣2 = ‖EQg‖2
L2(ηB′ )

≥ ‖EQg‖2
L2(B′).

7 Parabolic Rescaling

Proposition 7.1. Let 0 < δ ≤ σ ≤ 1 and p ≥ 2. For each cube Q ⊆ [0, 1]n−1 with
l(Q) = σ1/2 and each cube B ⊆ Rn with l(B) ≥ δ−1 we have

‖EQg‖Lp(wB) . Decn(p, δσ−1)

 ∑
q∈P

δ1/2
(Q)

‖Eqg‖2
Lp(wB)

 1
2

.

Edited Aug 2023: there was a problem with the weight inequality in the previous version,
so I removed this part.

7.1 Trivial decoupling and trivial scaling

The following propositions are too trivial to be written in [BD], but they are often used.

Note that in this subsection, we shall not assume that the constants c and C are dyadic.

Proposition 7.2 (Trivial decoupling). If c ≤ 1 is a constant, then Dec(c) .c 1.

(Note that Dec(c, p) does not make sense if c > 1.)

Proof. If we cover [0, 1]n−1 by finitely overlapping c-cubes Q, then there are at most
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O(c1−n) such cubes. Hence for any cube B with l(B) ≥ c−1,

‖Eg‖Lp(wB) ≤
∑
Q

‖EQg‖Lp(wB)

≤

(∑
Q

‖EQg‖2
Lp(wB)

) 1
2
(∑

Q

12

) 1
2

.c

(∑
Q

‖EQg‖2
Lp(wB)

) 1
2

.

Hence Dec(c) .c 1.

Proposition 7.3 (Trivial scaling). If C ≥ 1 is a constant, we have Dec(δ) .C Dec(Cδ).

Proof. Consider B = Bδ−1 ⊆ Rn and a finitely overlapping of [0, 1]n−1 using Cδ cubes Q.
By the remark in the last subsection above, decoupling with scale Cδ can be also applied
to a spacial cube B of scale δ−1 ≥ (Cδ)−1. Thus

‖Eg‖Lp(wB) ≤ Dec(Cδ)

 ∑
Q∈P

(Cδ)1/2
([0,1]n−1)

‖EQg‖2
Lp(wB)


1
2

. (7.1)

Then we use cubes q of scales δ to cover Q. Using parabolic rescaling proved just now to
the cube B with l(B) = δ−1, we have

‖EQg‖Lp(wB) ≤ Dec(C−1)

 ∑
q∈P

δ1/2
(Q)

‖Eqg‖2
Lp(wB)

 1
2

. (7.2)

By trivial decoupling 7.2, we have Dec(C−1) .C 1. Combining (7.1) and (7.2) gives

‖Eg‖Lp(wB) .C Dec(Cδ)

 ∑
q∈P

δ1/2
([0,1]n−1)

‖Eqg‖2
Lp(wB)

 1
2

.

Hence Dec(δ) .C Dec(Cδ).

Corollary 7.4 (Non-dyadic scales). To prove the decoupling theorem for all frequency
scales δ ≤ 1, it suffices to prove it for all dyadic scales δ ∈ 2−N.

8 Reduction to Multilinear Decoupling

8.1 Remark 8.3

Lemma 8.1. Let P i = (ξ(i), |ξ(i)|2), 1 ≤ i ≤ n be points on Pn−1. Then the volume V of
the parallelepiped spanned by the (upward) unit normals n(P i) is comparable to the area
A of the n-simplex with vertices ξ(i), 1 ≤ i ≤ n.
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Proof. By shoelace formula, the area A of the n-simplex equals

1

(n− 1)!

∣∣∣∣∣∣∣∣∣det


ξ

(1)
1 ξ

(1)
2 · · · ξ

(1)
n−1 1

ξ
(2)
1 ξ

(2)
2 · · · ξ

(2)
n−1 1

...
... · · · ...

...

ξ
(n)
1 ξ

(n)
2 · · · ξ

(n)
n−1 1


∣∣∣∣∣∣∣∣∣

On the other hand, we have n(P i) = (−2ξ(i),1)√
4|ξ(i)|2+1

. The volume V of the parallelepiped

formed by P i, 1 ≤ i ≤ n equals∣∣∣∣∣∣∣∣∣det


−2ξ

(1)
1 −2ξ

(1)
2 · · · −2ξ

(1)
n−1 1

−2ξ
(2)
1 −2ξ

(2)
2 · · · −2ξ

(2)
n−1 1

...
... · · · ...

...

−2ξ
(n)
1 −2ξ

(n)
2 · · · −2ξ

(n)
n−1 1


∣∣∣∣∣∣∣∣∣

n∏
i=1

(4|ξ(i)|2 + 1)−
1
2 ∼ A.

We change the definition of transversality, so that in the argument below, in all dimensions
n, the corresponding cubes are K−1-transverse. This makes the notations a little simpler.

Definition 8.2. We say that cubes Q1, . . . , Qn ⊆ [0, 1]n−1 are ν-transverse if the volume
of the parallelepiped spanned by unit normals n(P i) is greater than νn−1, for each choice
of P i = (ξ(i), |ξ(i)|2) ∈ Pn−1 with ξ(i) ∈ Qi.

Lemma 8.3. Let n ≥ 2, K ≥ 1. Then there is an absolute (dyadic) constant C1 = C1(n)
such that the following is true. For each 1 ≤ i ≤ n, let αi be cubes in [0, 1]n−1 with side
length K−1 and centres ci. Suppose that

1. |c1 − c2| ≥ C1K
−1.

2. For all 3 ≤ i ≤ n, the hyperplane Hi formed by {cj : 1 ≤ j ≤ i − 1} is (i − 2)-
dimensional.

3. For all 3 ≤ i ≤ n, the distance from ci to Hi is ≥ C1K
−1.

Then αi, 1 ≤ i ≤ n are K−1-transverse.

8.2 Proposition 8.4

The following is modified from Definition 8.1 in [BD].

Definition 8.4 (Multilinear decoupling constant). Let E ≥ 100n, 2 ≤ p <∞, 0 < ν ≤ 1.
We define MDecn(δ, ν,m) = MDecn(δ, p, ν,m,E) be the smallest constant such that the
inequality ∑

∆∈Pµ−1 (B)

n∏
i=1

‖EQig‖
p/n
Lp(∆)

 1
p

≤ MDecn(δ, ν,m)
n∏
i=1

 ∑
qi∈Pδ1/2 (Qi)

‖Eqig‖
2
Lp(wB)

 1
2n

holds for each cube B ⊆ Rn with l(B) = δ−1, each g : [0, 1]n−1 → C and each n-tuple of
ν-transverse cubes Qi with equal side length µ ≥ δ2−m.
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The parameter m is introduced only due to some technicality in the final induction step,
when we will take m to be a large positive integer.

The following is Proposition 8.4. in [BD].

Proposition 8.5. Let E ≥ 100n and 2 ≤ p <∞. Assume we have the decoupling theorem
for a lower dimensional (thickened) paraboloid:

Dec2(δ, p,Γ2(E)) .ε δ
−ε.

Then there is Cε > 0 and an absolute constant C > 0 such that for all K ≥ 1, all m ≥ 1
and all R ≥ K2m,

‖Eg‖Lp(wBR ) ≤ CεK
ε

 ∑
α∈PK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR )

 1
2

+ CεK
ε

 ∑
β∈P

K−1/2 ([0,1]2)

‖Eβg‖2
Lp(wBR )

 1
2

+ CK4MDec3(R−1, p,K−1,m,E)

 ∑
∆∈PR−1 ([0,1]2)

‖E∆g‖2
Lp(wBR )

 1
2

.

8.2.1 Three scenarios

Let us consider a typical case n = 3 first. For each α ∈ PK−1([0, 1]2), define

cα(BK) =

(
1

|BK |

∫
|Eαg|p

) 1
p

= ‖Eαg‖Lp#(BK).

Let α∗ = α∗(K) be a cube that maximizes cα(BK).

We define
Sbig = {α : cα(BK) ≥ K−2cα∗(BK)}. (8.1)

With the C1 in lemma 8.3, we define

SL = {ξ ∈ R2 : d(ξ, L) ≤ C1K
−1}. (8.2)

Proposition 8.6. With notations above, we have

‖Eg‖Lp#(BK) .

[
cα∗(BK) +K4 max

α1,α2,α3

K−1−transverse

3∏
i=1

c
1
3
αi(BK)

]
+

∥∥∥∥∥∑
α⊆SL

Eαg

∥∥∥∥∥
Lp#(BK)

. (8.3)

Proof. The three scenarios are as follows (see Figure 2:)

1. In Case 1, by triangle inequality we have

‖Eg‖Lp#(BK) ≤
∑
α

‖Eαg‖Lp#(BK) =
∑
α

cα(BK) .C1 cα∗(BK).
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Figure 2: Three Different Scenarios

2. In Case 2, we have the bound

|Eg| ≤

∣∣∣∣∣∑
α⊆SL

Eαg

∣∣∣∣∣+

∣∣∣∣∣∑
α 6⊆SL

Eαg

∣∣∣∣∣ ≤
∣∣∣∣∣∑
α⊆SL

Eαg

∣∣∣∣∣+
∑
α/∈Sbig

|Eαg| ,

and hence

‖Eg‖Lp#(BK) .

∥∥∥∥∥∑
α⊆SL

Eαg

∥∥∥∥∥
Lp#(BK)

+
∑
α/∈Sbig

‖Eαg‖Lp#(BK)

.

∥∥∥∥∥∑
α⊆SL

Eαg

∥∥∥∥∥
Lp#(BK)

+K2K−2cα∗(BK),

since there are O(K2) cubes α.

3. In Case 3, we have the bound

‖Eg‖Lp#(BK) ≤
∑
α

‖Eαg‖Lp#(BK) ≤ K2cα∗(BK) ≤ K2K2cαi(BK),

for all i = 1, 2, 3. Taking geometric averages over i = 1, 2, 3 on both sides,

‖Eg‖Lp#(BK) ≤ K4

3∏
i=1

c
1
3
αi(BK) ≤ K4 max

α1,α2,α3

K−1−transverse

3∏
i=1

c
1
3
αi(BK).
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Using Proposition 8.6, the first and the second terms of (8.3) are easy to bound, using
the definition of cα(BK):

cα∗(BK) ≤ ‖Eα∗g‖Lp#(BK) ≤

 ∑
α∈PartK−1 ([0,1]n−1)

‖Eαg‖2
Lp#(BK)

 1
2

, (8.4)

Also,

K4 max
α1,α2,α3

K−1−transverse

3∏
i=1

c
1
3
αi(BK) = K4 max

α1,α2,α3

K−1−transverse

3∏
i=1

‖Eαig‖
1
3

Lp#(BK)
. (8.5)

8.2.2 Analysis on the strip

For the term in Case 2 above, we define ESLg =
∑

α⊆SL Eαg. By a translation and
rotation we may assume that L is the line ξ2 = 1 (using ξ2 = 0 will result in the following
δ′ ∼ K−2, which is unrepresentative). We also assume the spacial cube is [0, K]3. Then
for each x2, let fx2(ξ1, ξ3) = (F1,3(e(−·3)ESLg))(ξ1, ξ3), that is,

fx2(ξ1, ξ3) =

∫∫
e(−x3)ESLg(x1, x2, x3)e(−x1ξ1 − x3ξ3)dx1dx3

=

∫∫∫∫
(g1SL)(η1, η2)e(x1η1 + x2η2 + x3η

2
1 + x3η

2
2 − x3)dη1dη2e(−x1ξ1 − x3ξ3)dx1dx3

=

∫∫
(g1SL)(η1, η2)e(x2η2)δ0(η1 − ξ1)δ0(η2

1 + η2
2 − 1− ξ3)dη1dη2

=

∫
(g1SL)(ξ1, η2)e(x2η2)δ0(ξ2

1 + η2
2 − 1− ξ3)dη2.

Next we perform a change of variables u = ξ2
1 + η2

2 − ξ3 − 1, with du
dη2

= 2η2. Then the
above is equal to∫

(g1SL)

(
ξ1,
√
u+ ξ3 − ξ2

1 + 1

)
e

(
x2

√
u+ ξ3 − ξ2

1 + 1

)
δ0(u)

1

2
√
u+ ξ3 − ξ2

1 + 1
du

= (g1SL)

(
ξ1,
√
ξ3 − ξ2

1 + 1

)
e

(
x2

√
ξ3 − ξ2

1 + 1

)
1

2
√
ξ3 − ξ2

1 + 1
. (8.6)

Hence for each x2, fx2(ξ1, ξ3) is supported in the set S =
{(
ξ1,
√
ξ3 − ξ2

1 + 1
)
∈ SL

}
,

that is,

S = {(ξ1, ξ3) : 0 ≤ ξ1 ≤ 1, ξ2
1 − 2C1K

−1 + C2
1K
−2 ≤ ξ3 ≤ ξ2

1 + 2C1K
−1 + C2

1K
−2}. (8.7)

Let δ′ = 2C1K
−1 + C2

1K
−2 and assume K is large enough so that δ′ ∼ C1K

−1. So S is
in turn contained in the δ′-neighbourhood of the parabola ξ3 = ξ2

1 over ξ ∈ [0, 1]. Hence
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we can apply (a slightly generalised version of) Theorem 5.1 with n = 2, f = e(−x3)ESL
and BR = [0, K]2 to get

‖ESLg‖Lpx1,x3
(w[0,K]2,E)(x2)

. Dec2(K−1, p,Γ2(E))

 ∑
I∈Part

K−1/2 [0,1]ξ1

∥∥(e(−·3)ESLg)Nδ′ (I)
∥∥2

Lpx1,x3
(w[0,K]2,E)

 1
2

(x2),

(8.8)

where Nδ′(I) denotes the δ′-neighbourhood of the parabola ξ3 = ξ2
1 over ξ1 ∈ I. Note the

implicit constant is independent of x2.

We cover SL by disjoint rectangles U of dimensions C1K
−1 and K−1/2 (see Figure 3). The

scale K−1/2 is chosen to be the same as the scale of partitioning intervals I in (8.8). Note∑
I∈Part

K−1/2 [0,1]ξ1
can be replaced by

∑
U . Moreover,

Figure 3: Dividing SL by rectangles U

(e(−·3)ESLg)Nδ′ (I)(x1, x3)

=

∫
Nδ′ (I)

(F1,3(e(−·3)ESLg))(ξ1, ξ3)e(x1ξ1 + x3ξ3)dξ1dξ3

(8.6)
=

∫
Nδ′ (I)

(g1SL)

(
ξ1,
√
ξ3 − ξ2

1 + 1

)
e

(
x2

√
ξ3 − ξ2

1 + 1

)
1

2
√
ξ3 − ξ2

1 + 1
e(x1ξ1 + x3ξ3)dξ1dξ3.

Then in view of (8.7) we observe

1Nδ′ (I)∩SL(ξ1, ξ3) = 1U

(
ξ1,
√
ξ3 − ξ2

1 + 1

)
.
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Hence

(e(−·3)ESLg)Nδ′ (I)(x1, x3)

=

∫
(g1U)

(
ξ1,
√
ξ3 − ξ2

1 + 1

)
e

(
x2

√
ξ3 − ξ2

1 + 1

)
1

2
√
ξ3 − ξ2

1 + 1
e(x1ξ1 + x3ξ3)dξ1dξ3.

Changing variables back v =
√
ξ3 − ξ2

1 + 1, the above is equal to

e(−x3)EUg(x1, x2, x3).

Hence (8.8) becomes

‖ESLg‖Lpx1,x3
(w[0,K]2,E)(x2) . Dec2(K−1, p,Γ2(E))

(∑
U

‖EUg‖2
Lpx1,x3

(w[0,K]2,E)

) 1
2

(x2)

Raising both sides to the power p and integrating over x2 ∈ [0, K], using Minkowski’s
inequality we have

‖ESLg‖Lp(BK ,E) . Dec2(K−1, p,Γ2(E))

(∑
U

‖EUg‖2
Lp(wBK,E)

) 1
2

. (8.9)

We next show how to use triangle inequality to bound the term above on the right. For
each U , enlarge it to become a square U ′ of dimension l(U ′) = K−1/2. Then V := U ′\U ⊆
ScL, and EUg = EU ′g − EV g (see Figure 4). Using triangle inequality, we have(∑

U

‖EUg‖2
Lp(wBK )

) 1
2

.

(∑
U ′

‖EU ′g‖2
Lp(wBK )

) 1
2

+

(∑
V

‖EV g‖2
Lp(wBK )

) 1
2

. (8.10)

Since each U ′ is a square within [0, 1]n−1 with scale K−1/2, we can bound the
∑

U ′ term
by:  ∑

β∈Part
K−1/2 ([0,1]2)

‖Eβg‖2
Lp(wBK )

 1
2

. (8.11)

For the
∑

V term, we further split V into K−1 cubes α. (They are the same α’s that
partitions [0, 1]n−1 at the beginning. See Figure 4 again.) Each such α lies outside SL, so
it has small contribution in the second scenario (see Figure 2 again):

‖Eαg‖Lp(wBK ) ≤ K−2|BK |
1
p cα∗(BK) = K−2‖Eα∗g‖Lp(wBK ).

Since there are around (K1/2)2 = K such cubes α in a single V and we have around K1/2
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Figure 4: Enlarging U to a square U ′

such V ’s,

(∑
V

‖EV g‖2
Lp(wBK )

) 1
2

≤

∑
V

(∑
α⊆V

‖Eαg‖Lp(wBK )

)2
 1

2

≤

(∑
V

(
K−1‖Eα∗g‖Lp(wBK )

)2
) 1

2

. K−3/4‖Eα∗g‖Lp(wBK )

≤ K−3/4

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK )

 1
2

.
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8.2.3 Summation

Combining (8.3), (8.4), (8.5), (8.9), (8.10), (8.11) and the estimate right above and using
the assumption that Dec2(K−1, p,Γ2(E)) .ε K

ε, we get

‖Eg‖Lp(BK) .ε

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(BK)

 1
2

+Kε

 ∑
β∈Part

K−1/2 ([0,1]2)

‖Eβg‖2
Lp(wBK )

 1
2

+KεK−3/4

 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK )

 1
2

+K4 max
α1,α2,α3

K−1−transverse

3∏
i=1

‖Eαig‖
1
3

Lp(BK),

Combining the terms above and using the trivial inequality 1BK . wBK except for the
last term, we have

‖Eg‖Lp(BK) .ε K
ε


 ∑
α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK )

 1
2

+

 ∑
β∈Part

K−1/2 ([0,1]2)

‖Eβg‖2
Lp(wBK )

 1
2


+K4 max

α1,α2,α3

K−1−transverse

3∏
i=1

‖Eαig‖
1
3

Lp(BK).

Then we raise both sides to the power p, sum over BK ∈ PK(BR) and then raise both
sides to the power 1/p. We also use Minkowski’s inequality with exponents p ≥ 2 and
the inequality

∑
BK

wBK . wR which follows from Proposition 3.1. The left hand side
becomes ‖Eg‖Lp(BR). The first two terms on the right become ∑

α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR )

 1
2

and

 ∑
β∈Part

K−1/2 ([0,1]2)

‖Eβg‖2
Lp(wBR )

 1
2

,

respectively.

To deal with the last term, we note that for each BK , the maximum is attained at some
K−1-transverse triples α1, α2, α3 dependent on each individual BK . Thus

max
α1,α2,α3

K−1−transverse

3∏
i=1

‖Eαig‖
1
3

Lp(BK) =
3∏
i=1

∥∥Eαi(BK)g
∥∥ 1

3

Lp(BK)
.
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Thus the above process gives

K4

 ∑
BK∈PK(BR)

max
α1,α2,α3

K−1−transverse

3∏
i=1

‖Eαig‖
p
3

Lp(BK)

 1
p

= K4

 ∑
BK∈PK(BR)

3∏
i=1

∥∥Eαi(BK)g
∥∥ p3
Lp(BK)

 1
p

≤ K4 MDec3(R−1, p,K−1,m,E)

 3∏
i=1

∑
qi∈PR−1/2 (αi)

‖Eqig‖
2
Lp(wBR )

 1
6

,

where, in the notations of Defintion 8.4, l(B) = R = δ−1, l(αi) = K−1 ≥ δ2−m since
R ≥ K2m .

For each 1 ≤ i ≤ 3, we further use the trivial bound∑
qi∈PR−1/2 (αi)

‖Eqig‖
2
Lp(wBR ) ≤

∑
∆∈P

R−1/2 ([0,1]2)

‖E∆g‖2
Lp(wBR ).

Then the geometric mean is also bounded by
∑

∆∈P
R−1/2 ([0,1]2)‖E∆g‖2

Lp(wBR ).

Combining all the above computations, we get

‖Eg‖Lp(BR) ≤ CεK
ε

 ∑
α∈PK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR )

 1
2

+ CεK
ε

 ∑
β∈P

K−1/2 ([0,1]2)

‖Eβg‖2
Lp(wBR )

 1
2

+ CK4MDec3(R−1, p,K−1,m,E)

 ∑
∆∈PR−1 ([0,1]2)

‖E∆g‖2
Lp(wBR )

 1
2

.

Lastly, we can replace Lp(BR) on the left hand side by Lp(wBR) as usual. This proves
Proposition 8.5.

8.3 Parabolic rescaling

Proposition 8.7 (Parabolic rescaling). Let m ≥ 1. Let τ ⊆ [0, 1]2 be a square with side
length δ ≥ R−1/2K2m−1

. Assume

Dec2(δ′, p,Γ2(E)) .ε δ
′−ε.
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Then for all K ≥ 1 and all R ≥ K2m,

‖Eτg‖Lp(wBR ) ≤ CεK
ε

 ∑
α∈PδK−1 (τ)

‖Eαg‖2
Lp(wBR )

 1
2

+ CεK
ε

 ∑
β∈P

δK−1/2 (τ)

‖Eβg‖2
Lp(wBR )

 1
2

+K4MDec3(δ−2R−1, K−1,m)

 ∑
∆∈PR−1 (τ)

‖E∆g‖2
Lp(wBR )

 1
2

.

Proof. Refer to the notations in previous parabolic rescaling. We change variables as
before. Cover T (BR) by δ2R cubes B′. Applying Proposition 8.5 to each B′ with the
same K ≥ 1 and δ2R ≥ K2m , we have

‖EG‖Lp(B′) .ε K
ε


 ∑
α∈PartK−1 ([0,1]2)

‖EαG‖2
Lp(wB′ )

 1
2

+

 ∑
β∈Part

K−1/2 ([0,1]2)

‖EβG‖2
Lp(wB′ )

 1
2


+ CK4MDec3(δ−2R−1, K−1,m)

∑
∆∈P

δ−1R−1/2 ([0,1]2)

‖E∆G‖2
Lp(wB′ )

.

Change variables back. The first and the second terms are bounded above by

Kε

 ∑
α∈PartδK−1 (τ)

‖Eαg‖2
Lp(wBR )

 1
2

and Kε

 ∑
β∈Part

δK−1/2 (τ)

‖Eβg‖2
Lp(wBR )

 1
2

,

respectively. For the third term, the factor δ in T leads to the cancellation: δδ−1R−1/2 =
R−1/2, so it becomes

CK4MDec3(δ−2R−1, K−1,m)

 ∑
∆∈P

R−1/2 (τ)

‖E∆g‖2
Lp(wBR )

 1
2

.

8.4 Induction on scales

We prove the 3D-case first.
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Theorem 8.8. Fix p ∈ [2,∞) and E ≥ 300. Then for each 0 < ν ≤ 1, each m ≥ 1 and
each ε > 0, there is Cν,m = Cν,p,m,E and ηε(ν) = ηε(ν, p, E) with limν→0+ ηε(ν) = 0 such
that for all R ≥ ν−2m we have

Dec3(R−1) ≤ Cν,mR
ηε(ν)+ε sup

1≤R′≤R
MDec3(R′−1, p, ν,m,E).

We abbreviate MDec3(δ, p, ν,m,E) as MDec(δ) for this section as all the other parameters
will be fixed.

Proof. Let K = ν−1, so R ≥ K2m . By Proposition 8.5 applied to δ = l([0, 1]n−1) = 1,

‖Eg‖Lp(wBR ) ≤ CεK
εI1 + CεK

εI2 + CK4MDec(R−1)I3, (8.12)

where

I1 =

 ∑
Q1∈PK−1 ([0,1]2)

‖EQ1g‖
2
Lp(wBR )

 1
2

,

I2 =

 ∑
Q2∈PK−1/2 ([0,1]2)

‖EQ2g‖
2
Lp(wBR )

 1
2

,

I3 =

 ∑
Q3∈PR−1/2 ([0,1]2)

‖EQ3g‖
2
Lp(wBR )

 1
2

,

and the constant Cε will be fixed throughout the iteration.

Note that I3 is exactly the main term on the right hand side of the original decoupling
inequality.

For each Q1 in the expression I1, if l(Q1) = K−1 ≥ R−1/2K2m−1
, then we can further use

Proposition 8.7 with the same K, R and m but with δ = l(τ) = l(Q1) = K−1 to get

‖EQ1g‖Lp(wBR ) ≤ CεK
εI1,1(Q1) + CεK

εI1,2(Q1) + CK4MDec(K2R−1)I1,3(Q1),

where, similarly,

I1,1(Q1) =

 ∑
Q1,1∈PK−2 (Q1)

∥∥EQ1,1g
∥∥2

Lp(wBR )

 1
2

I1,2(Q1) =

 ∑
Q1,2∈PK−3/2 (Q1)

∥∥EQ1,2g
∥∥2

Lp(wBR )

 1
2

I1,3(Q1) =

 ∑
Q1,3∈PR−1/2 (Q1)

∥∥EQ1,3g
∥∥2

Lp(wBR )

 1
2

.
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We can do the same for I2 and I3. We will also abbreviate Ii1,i2([0, 1]2) simply as Ii1,i2 for
1 ≤ i1, i2 ≤ 3.

For a typical term I1,3, observe that ∑
Q1∈PK−1 ([0,1]2)

I2
1,3(Q1)

 1
2

=

 ∑
Q1∈PK−1 ([0,1]2)

∑
Q1,3∈PR−1/2 (Q1)

∥∥EQ1,3g
∥∥2

Lp(wBR )

 1
2

=

 ∑
Q1,3∈PR−1/2 ([0,1]2)

∥∥EQ1,3g
∥∥2

Lp(wBR )

 1
2

= I3.

Similar argument can be used to get, for example, ∑
Q1∈PK−1 ([0,1]2)

I2
1,1(Q1)

 1
2

=

 ∑
Q1,1∈PK−2 ([0,1]2)

∥∥EQ1,1g
∥∥2

Lp(wBR )

 1
2

= I1,1

 ∑
Q1∈PK−1 ([0,1]2)

I2
1,2(Q1)

 1
2

=

 ∑
Q1,2∈PK−3/2 ([0,1]2)

∥∥EQ1,2g
∥∥2

Lp(wBR )

 1
2

= I1,2.

Hence we have (combining all absolute constants into a single C)

I1 =

 ∑
Q1∈PK−1 ([0,1]2)

‖EQ1g‖
2
Lp(wBR )

 1
2

≤ CCεK
ε(I1,1 + I1,2) + CK4MDec(K2R−1)I3,

Similarly, as l(Q2) = K−1/2, using Proposition 8.7 with K−1/2 ≥ R−1K2m we can get

I2 ≤ CCεK
ε(I2,1 + I2,2) + CK4MDec(KR−1)I3.

Hence
‖Eg‖Lp(wBR ) ≤ C (CεK

ε(I1,1 + I1,2 + I2,1 + I2,2) +M) ,

where
M := K4 sup

1≤R′≤R
MDec(R′−1)I3. (8.13)

We can continue in this fashion to get I~j for ~j ∈ {1, 2}m provided δ ≥ R−1/2K2m−1
. For

example, consider a typical term I2,1. For each Q2,1 ∈ PK−3/2(Q2), using Proposition 8.7,
it splits into 3 terms:∥∥EQ2,1g

∥∥
Lp(wBR )

≤ CεK
εI2,1,1(Q2,1) + CεK

εI2,1,2(Q2,1) + CK4MDec(K3R−1)I2,1,3(Q2,1).

The scales of partitioning cubes in the terms I2,1,1, I2,1,2 and I2,1,3 are K−5/2, K−2, and
R−1/2, respectively.

We define
N := max{N ′ ≥ 1 : KN ′−1R−1 ≤ K−2m}. (8.14)
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Figure 5: The iteration process

Then the final partitioning cubes should have length R−1/2 (given by the term I3), K−N/2

or K−(N−1)/2 (given by iterations of I1 and I2). See Figure 5.

Each arrow in blue in Figure 5 generates a multiplicative factor bounded by A := CCεK
ε

to the intermediate terms I~j with j ∈ {0, 1, 2}N , where a 0 entry in the index means there
is no further division (for example, the number of iterations along the top line is ≤ N/2).

Each iteration also contributes to a multiplicative factor C ≤ A to the main term M . The
bottom line 1→ K−1/2 → K−1 → · · · contributes to the largest number of multiplicative
factors, which is bounded by

1 + A+ A2 + · · ·AN ≤ 2NAN .

Since we iterate for at most N times, the total number of multiplicative factors created
is bounded by .

1 + 1 + 2 + 3 + 5 + 8 + 13 + · · ·+ FN ≤ 1 + 2 + 4 + 8 + · · ·+ 2N ≤ 2N+1.

If we bound all intermediate factors also by the trivial bound 2NAN , then

‖Eg‖Lp(wBR ) ≤ AN
∑

~j∈{0,1,2}N

I~j + 2NAN2N+1M. (8.15)
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But each I~j is a term of the form ∑
α∈Pδ′ ([0,1]2)

‖Eαg‖2
Lp(wBR )

 1
2

,

where α is a cube of size δ′ = K−N/2 or K−(N−1)/2.

By (8.14), δ′ ≥ R−1/2. We can use the trivial triangle inequality and Cauchy Schwarz
inequality to get

‖Eαg‖Lp(wBR ) ≤

(δ′R 1
2

)2 ∑
∆∈P

R−1/2 (α)

‖E∆g‖2
Lp(wBR )

 1
2

≤ K2m−1

 ∑
∆∈P

R−1/2 (α)

‖E∆g‖2
Lp(wBR )

 1
2

.

Squaring both sides and summing with respect to α shows that I~j ≤ K2m−1
I3. As we

have ≤ 2N+1 many indices ~j, by (8.13) and (8.15) we finally get

‖Eg‖Lp(wBR ) ≤ AN2N+1K2m−1

I3 + 2NAN2N+1M

≤ A2NK2m+1

sup
1≤R′≤R

MDec(R′−1)I3,

as we can assume A ≥ 100 and we have MDec(R−1) ≥ 1 (sharpness of the decoupling
inequality). Lastly, by (8.14), N ≤ (logR/ logK)− 2m + 1 ≤ logR/ logK, so

A2N ≤ A
2 logR
logK ≤ R2ε+

2 log(CCε)
logK .

Recall ν = K−1. Thus taking

ηε(ν) =
2 log(CCε)

logK
, Cν,m = K2m+1,

we are done.

8.5 Other dimensions

8.5.1 The planar case

In the case n = 2, we are in either Case 1 or Case 3 of Figure 2. With an obvious reduction
of lemma 8.1 to the planar case, Proposition 8.5 reduces to

‖Eg‖Lp(BR) .

 ∑
α∈PK−1 ([0,1])

‖Eαg‖2
Lp(wBR )

 1
2

+K2 max
α1,α2

K−1−transverse

2∏
i=1

‖Eαig‖
1
2

Lp(wBR )

Note that without the lower dimensional term, we do not have the term CεK
ε, and the

induction step is easier. This is the first case in Theorem 8.9.
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8.5.2 Higher dimensions

Things get more complicated in the case n ≥ 4. Let us take n = 4 as an example. In this
case, Figure 2 gives 4 cases, namely,

1. The large terms are concentrated around a CK−1-neighbourhood;

2. The large terms are concentrated around a tube with cross-section scale CK−1;

3. The large terms are concentrated around a plate with thickness CK−1;

4. There are 4 cubes with large contribution that are CK−1-separated.

The first and the fourth cases are easy to deal with. The second term is bounded essentially
by the Dec2(K−1) times a term with frequency scales of partition K−1/2, which can be
proved following similar argument as in (8.2.2) by fixing 2 variables and taking the Fourier
transform with respect to the remaining 2 variables. Similarly, the third term is bounded
essentially by Dec3(K−1) times a term with frequency scales of partition K−1/2 (see Figure
6).

Now in each step of parabolic rescaling (Proposition 8.7), each term of scale δ splits
into 4 terms with scales K−1δ, K−1/2δ, K−1/2δ and R−1/2 and multiplicative factors
O(1), O(Dec2(K−1)), O(Dec3(K−1)) and O(KO(1)MDec4(R−1δ−2)), respectively. By the
induction hypothesis, both Dec2(K−1) and Dec3(K−1) are bounded above by CεK

ε, so
similar argument as in Subsection 8.4 proves the following theorem in full generality
(Theorem 8.2 with slight modifications):

Theorem 8.9 (Multilinear decoupling dominates decoupling). Fix n ≥ 2, p ∈ [2,∞) and
E ≥ 100n. Then we have the following:

1. If n = 2, then for each 0 < ν ≤ 1 and m ≥ 1, there is Cν,m = Cν,p,m,E and
η(ν) = η(ν, p, E) such that limν→0+ η(ν) = 0 and for each R ≥ ν−2m, we have

Dec2(R−1, p, E) ≤ Cν,mR
η(ν) sup

1≤R′≤R
MDec2(R′−1, p, ν,m,E). (8.16)

2. If n ≥ 3, then we have the following implication (a) =⇒ (b), where

(a) For each ε > 0, there is Cε = Cε,p,n,E > 0 such that Decn−1(R, p,Γn−1(E)) ≤
CεR

ε for all R ≥ 1.

(b) For each ε > 0, 0 < ν ≤ 1 and m ≥ 1, there is Cν,m = Cn,ν,p,m,E and
ηε(ν) = η(ν, ε, p, n, E) such that limν→0+ ηε(ν) = 0 and for each R ≥ ν−2m, we
have

Decn(R−1, p, E) ≤ Cν,mR
ηε(ν)+ε sup

1≤R′≤R
MDecn(R′−1, p, ν,m,E). (8.17)



36

Figure 6: Reduction to lower dimensions when n = 4

9 Applying Multilinear Kakeya Inequality

Let q = p(n−1)
n

. We rewrite the main inequality in Theorem 9.2 as 1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n


1
p

(9.1)

.ε,ν δ
−ε

n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(wB)

 1
2n

, (9.2)

where p ≥ 2n
n−1

, i.e. q ≥ 2. Here, l(Qi) = µ ≥ δ for all 1 ≤ i ≤ n. The implicit constant
above will be independent of the positions and the size of Qi, 1 ≤ i ≤ n.
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9.1 Heuristics: the axis-parallel case

We use a heuristic argument to see why the condition q ≥ 2 is necessary.

For clarity, we slightly change notations. We will denote Qi,j, 1 ≤ j ≤ (µ/δ)n−1 := J to
be the partitioning cubes for Qi, 1 ≤ i ≤ n. Since Q1, . . . , Qn are transverse, we have
Q1,j1 , . . . , Qn,jn ’s are transverse for any n-tuple (j1, . . . , jn).

To use heuristics to find necessary conditions on the exponent p, let us assume we are in
the best case, in which all normal directions on Pn−1 over Qi,j are exactly parallel to ei
(however, this is always false in the rigourous sense, as the most separated two subcubes
from the same cube would be almost transverse.) Hence for each Qi,j, by wave packet
decomposition, we may write

EQi,jg ≈
∑
Ti∈Ti

cTi,j1Ti ,

where Ti is a (δ−1)n−1 × δ−2-tube with the longest side nearly parallel to ei. (The family
Ti does not depends on j since we made the simplification assuming the perfectly axis-
parallel case.) Thus we have around δ−2n/δ−n−1 = δ1−n tubes Ti,j contained in B. We
change notations and index those cubes with l = 1, 2, . . . , δ1−n. Thus

EQi,jg1B ≈
∑
l

ci,j,l1Ti,l .

An important observation is that for each ∆ ∈ B,

∆ =
n⋂
i=1

Fi(∆),

where Fi(∆) is a rectangle with dimensions (δ−2)n−1× δ−1, with the shortest side parallel
to ei. Moreover, this relation is bijective: for each n-tuple (F1, . . . , Fn) such that Fi ⊆ B
for all i, the intersection

n⋂
i=1

Fi

uniquely determines a δ−1-cube ∆ ⊆ B. Hence we may rewrite the averaged summation
(#B)−1

∑
∆∈B in (9.1) into(

1

#F1

∑
F1⊆B

)
· · ·

(
1

#Fn

∑
Fn⊆B

)
=

(
δ
∑
k1

)
· · ·

(
δ
∑
kn

)
,

where we used the observation that #B = δ−n and #Fi = δ−1 for each i, and indexed
Fi ⊆ B by ki = 1, 2, . . . , δ−1.

Fix 1 ≤ i ≤ n and j. We can thus view
∥∥EQi,jg∥∥Lq#(∆)

as a function of Fi, 1 ≤ i ≤ n. But

another important observation is that as EQi,jg is roughly a constant on Ti,l for each l,∥∥EQi,jg∥∥Lq#(∆)
can be viewed as depending on

k′i := (k1, . . . , ki−1, ki+1, . . . , kn)
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only. Hence if ∆ = ∩ni=1Fi, we may write∥∥EQi,jg∥∥Lq#(∆)
≈ cj(k

′
i).

Hence (9.1) can be written as(δ∑
k1

)
· · ·

(
δ
∑
kn

)
n∏
i=1

(∑
j

c2
j(k
′
i)

) p
2n

 1
p

.

We further denote

fi(k
′
i) =

(∑
j

c2
j(k
′
i)

) p
2n

.

We will consider the Loomis-Whitney inequality, which is the prototype of the multilinear
Kakeya inequality:

Theorem 9.1 (Loomis-Whitney). Let n ≥ 2. Let (Xi, µi), 1 ≤ i ≤ n be measure spaces.
Write x = (x1, . . . , xn) and for each 1 ≤ i ≤ n, write

x′i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ X ′i := X1 × · · ·Xi−1 ×Xi+1 × · · ·Xn.

Let fi be nonnegative measurable functions defined on X ′i. Then we have the following
inequality: ∫

X1

· · ·
∫
Xn

n∏
i=1

fi(x
′
i)dµ1(x1) · · ·µn(xn) ≤

n∏
i=1

‖fi‖Ln−1(X′i)
.

Moreover, equality holds if and only if there are nonnegative measurable functions gi :
R→ R, 1 ≤ i ≤ n such that

fi(x
′
i) =

∏
j 6=i

gj(xj).

In n = 2 this theorem is trivial. For n ≥ 3, we can prove this by induction via a Hölder’s
inequality, a Minkowski’s inequality followed by another Hölder’s inequality.

Let us assume the case where the above inequality is almost an equality.

Observe that while k′i ranges through all possible (n−1)-tuples, at the same time li ranges
through all cubes Ti,l. Hence cj(k

′
i) = ci,j,li .

Now we use the theorem with the integrals taken to be δ
∑

ki
and with fi(x

′
i) = fi(k

′
i).

Applying the theorem assuming we approximately have an equality, we have

(9.1) ≈

(
n∏
i=1

‖fi‖ln−1
# (k′i)

) 1
p

.
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Now we analyse ‖fi‖ln−1
# (k′i)

. Fix i. Hence we can write

‖fi‖ln−1
# (k′i)

=

δ∑
k′i

(∑
j

c2
j(k
′
i)

) p(n−1)
2n


1

n−1

=

δ∑
li

(∑
j

c2
i,j,li

) p(n−1)
2n


1

n−1

=
∥∥∥‖ci,j,li‖l2(j)

∥∥∥p/n
l
p(n−1)/n
# (li)

,

so

(9.1) ≈
n∏
i=1

∥∥∥‖ci,j,li‖l2(j)

∥∥∥1/n

l
p(n−1)/n
# (li)

=
n∏
i=1

∥∥∥‖ci,j,l‖l2(j)

∥∥∥1/n

lq#(l)
,

since q = p(n− 1)/n.

Now we come to the right hand side. For each 1 ≤ i ≤ n, we may partition B as

B =
⋃
Ti⊆B

Ti =
⋃
li

Ti,li .

Hence

∥∥EQi,1g∥∥Lq#(B)
≈

(
1

|B|
∑
l

∫
Ti,l

cqi,j,l

) 1
q

= δ
n−1
q

(∑
li

cqi,j,li

) 1
q

= ‖ci,j,l‖lq#(l).

Hence ignoring the ε-loss, we have

(9.2) =
n∏
i=1

(∑
j

‖ci,j,l‖2
lq#(l)

) 1
2n

=
n∏
i=1

∥∥∥‖ci,j,l‖lq#(l)

∥∥∥1/n

l2(j)
.

Then we see that if we assume q ≥ 2, then (9.1) . (9.2) follows from Minkowski’s
inequality.

9.2 Proof of Theorem 9.2

We have two approaches to the rigorous proof. The first one is to use dyadic pigeonholing,
which is how [BD] does it. The second approach is to generalise the multilinear Kakeya
inequality using multilinear interpolation applied to the endpoints (1, n

n−1
) and (∞,∞),

and it is much more succinct. We will give both arguments.
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9.2.1 The first approach: dyadic partition

For each i, we partition Pδ(Qi) = ∪K+1
k=1 Pi,k, where

K = min{k ≥ 1 : 2k ≥ δ−E}, (E is a large constant, say 100n) (9.3)

Q∗i,1 is such that max
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥Lq#(wB)
is attained, (9.4)

Pi,k =

{
Qi,1 ∈ Pδ(Qi) : 2−k

∥∥∥EQ∗i,1g∥∥∥Lq#(wB)
<
∥∥EQi,1g∥∥Lq#(wB)

≤ 2−k+1
∥∥∥EQ∗i,1g∥∥∥Lq#(wB)

}
, 1 ≤ k ≤ K, (9.5)

Pi,K+1 =

{
Qi,1 ∈ Pδ(Qi) :

∥∥EQi,1g∥∥Lq#(wB)
≤ 2−K

∥∥∥E∗Qi,1g∥∥∥
Lq#(wB)

}
. (9.6)

Thus (9.1) can be computed as 1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n


1
p

=

 1

#B
∑
∆∈B

n∏
i=1

K+1∑
k=1

∑
Qi,1∈Pi,k

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n


1
p

=

 1

#B
∑
∆∈B

K+1∑
k1=1

· · ·
K+1∑
kn=1

n∏
i=1

∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n


1
p

(
1

2n
≤ 1

)
≤

 1

#B
∑
∆∈B

K+1∑
k1=1

· · ·
K+1∑
kn=1

 n∏
i=1

∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥2

Lq#(w∆)

 1
2n


p

1
p

(p ≥ 1) ≤
K+1∑
k1=1

· · ·
K+1∑
kn=1

 1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n


1
p

.

Since K = O(log(δ−1)) by (9.3), there are at most O(log(δ−1)n) n-tuples (k1, . . . , kn).
Since we allow an ε-loss here, to prove Theorem 9.2, it suffices to prove that for any
n-tuple (k1, . . . , kn), we have 1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n


1
p

.ε,ν δ
−ε

n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(wB)

 1
2n

.

(9.7)
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By Hölder’s inequality (as q ≥ 2), we have 1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n


1
p

≤

 1

#B
∑
∆∈B

n∏
i=1


 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(w∆)

 2
q

#P
1− 2

q

i,ki


p

2n


1
p

=

( n∏
i=1

#P
p

2n
− 1
n−1

i,ki

)
1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(w∆)

 1
n−1


1
p

.

Proposition 9.2. For any n-tuple (k1, . . . , kn), we have

1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(w∆)

 1
n−1

.ε,ν δ
−ε

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(wB)

 1
n−1

.

(9.8)

Proof of Theorem 9.2 Assuming Proposition 9.2. By Proposition 9.2, we have( n∏
i=1

#P
p

2n
− 1
n−1

i,ki

)
1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(w∆)

 1
n−1


1
p

.ε,ν δ
−ε

n∏
i=1

#P
1
n( 1

2
− 1
q )

i,ki

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(wB)

 1
qn

.

Next we fix an 1 ≤ i ≤ n. We have two cases: 1 ≤ ki ≤ K or ki = K + 1.

• If ki = K + 1, then by (9.6) we have

#P
1
n( 1

2
− 1
q )

i,ki

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(wB)

 1
qn

≤ δ−
n−1
n ( 1

2
− 1
q )
(
δ−(n−1)2−Kq

) 1
qn

∥∥∥EQ∗i,1g∥∥∥ 1
n

Lq#(wB)

≤ δ−
n−1
2n δ

E
n

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(wB)

 1
2n

(E = 100n) ≤

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(wB)

 1
2n

.
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• If 1 ≤ ki ≤ K, then by (9.5), each term
∥∥EQi,1g∥∥qLq#(wB)

is comparable, so we have

the reverse Hölder’s inequality:

#P
1
n( 1

2
− 1
q )

i,ki

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(wB)

 1
qn

.

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥2

Lq#(wB)

 1
2n

≤

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(wB)

 1
2n

.

Hence we have

n∏
i=1

#P
1
n( 1

2
− 1
q )

i,ki

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(wB)

 1
qn

.
n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(wB)

 1
2n

,

which finishes the proof of Theorem 9.2.

9.2.2 Proof of Proposition 9.2

Fix a cube Q = Qi,1. Cover Rn by a family FQ of pairwise disjoint, mutually parallel
tiles TQ pointing in the direction of the normal N(cQ) to Pn−1 (the wave packets). We let
them have the longer side nδ−2 and shorter sides

√
nδ−1 (so the scale is not dyadic, but

it does not matter). We could also let 0 be the centre of some TQ ∈ FQ.

For all x ∈ B, x ∈ ∆ for some ∆ ∈ B. There is also a unique TQ ∈ FQ that contains x,
which we denote as TQ(x). We claim that ∆ ⊆ 4TQ(x). Indeed, since x ∈ TQ(x), in each
shorter direction v, |(x− cT (Q)(x)) · v| ≤ 1

2

√
nδ−1. If y ∈ ∆, then |(y − x) · v| ≤ |y − x| ≤√

nδ−1, so |(y − cT (Q)(x)) · v| ≤ 3
2

√
nδ−1 ≤ 2

√
nδ−1. For the longer direction v′, similarly

we also have |(y − cT (Q)(x)) · v′| ≤ 2nδ−2. Hence y ∈ 4TQ(x).

Note that if x ∈ B and TQ(x)∩B 6= ∅, then TQ(x) ⊆ 4nB, by similar argument as above.
Hence 4TQ(x) ⊆ 16nB for all x ∈ B. Hence although FQ is a cover for the whole Rn, we
only care about those cubes TQ ∈ FQ that intersects B and such that 4TQ fully lies in
16nB.

(The analysis above could be more refined but only by a factor of O(1), so this is not
necessary.) See Figure 7 below.

We define
FQ(x) =

∑
TQ∈FQ

sup
y∈4TQ(x)

‖EQg‖Lq#(wB(y,δ−1))
1TQ(x), (9.9)

which is constant on each tile TQ. (Note that FQ is defined on all of Rn, and is independent
of B. The reason why we defined FQ instead of the following more natural summation∑

TQ∈FQ

‖EQg‖Lq#(∆)1TQ(x)

is that the term ‖EQg‖Lq#(w∆) depends on individual ∆’s, but FQ does not.) Since ∆ ⊆
4TQ(x), this implies that

‖EQg‖Lq#(w∆)1∆(x) ≤ FQ(x)1∆(x). (9.10)
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Figure 7: The wave packets TQ

Lemma 9.3. Let Ai,∆ be any sequence indexed by i and ∆ where ∆’s are disjoint. Then
we have the following equality:∑

∆∈B

n∏
i=1

Ai,∆ =
1

|∆|

∫
Rn

n∏
i=1

(∑
∆∈B

Ai,∆1∆(x)

)
dx.

Proof of lemma. Consider the right hand side. By the distributive law,

n∏
i=1

(∑
∆∈B

Ai,∆1∆(x)

)
=
∑

∆1∈B

· · ·
∑

∆n∈B

n∏
i=1

Ai,∆i
1∆i

(x).

However, recall the ∆’s are disjoint. Hence
∏n

i=1 Ai,∆i
1∆i

(x) 6= 0 only if ∆1 = · · · = ∆n.
Thus we have ∑

∆1∈B

· · ·
∑

∆n∈B

n∏
i=1

Ai,∆i
1∆i

(x) =
∑
∆∈B

n∏
i=1

Ai,∆1∆(x).

Taking integrals over Rn, we get

1

|∆|

∫
Rn

n∏
i=1

(∑
∆∈B

Ai,∆1∆(x)

)
dx =

1

|∆|

∫
Rn

∑
∆∈B

n∏
i=1

Ai,∆1∆(x)dx

=
1

|∆|
∑
∆∈B

n∏
i=1

Ai,∆

∫
Rn

1∆(x)dx

=
∑
∆∈B

n∏
i=1

Ai,∆.
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Recall Q = Qi,1. Applying Lemma 9.3 with Ai,∆ =
(∑

Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(w∆)

) 1
n−1

, we

have

1

#B
∑
∆∈B

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(w∆)

 1
n−1

=
1

#B
1

|∆|

∫
Rn

n∏
i=1

∑
∆∈B

 ∑
Qi,1∈Pi,ki

∥∥EQi,1g∥∥qLq#(w∆)

 1
n−1

1∆(x)dx

= δ2n

∫
16nB

n∏
i=1

∑
∆∈B

 ∑
Qi,1∈Pi,ki

(∥∥EQi,1g∥∥Lq#(w∆)
1∆(x)

)q 1
n−1

dx

(by (9.10)) ≤ δ2n

∫
16nB

n∏
i=1

∑
∆∈B

 ∑
Qi,1∈Pi,ki

F q
Qi,1

(x)1∆(x)

 1
n−1

dx

= δ2n

∫
16nB

n∏
i=1

 ∑
Qi,1∈Pi,ki

F q
Qi,1

(x)

 1
n−1 (∑

∆∈B

1∆(x)

)
dx

.
1

|16nB|

∫
16nB

n∏
i=1

 ∑
Qi,1∈Pi,ki

F q
Qi,1

(x)

 1
n−1

dx.

Now we are ready to use the following version of the multilinear Kakeya inequality (slightly
modified from a combination of Corollary 5 and Corollary 6 of [5]): for any cube BR of
side length R ≥ nδ−2 and any family of functions Fi of the form

Fi =
∑
P∈Pi

cP1P ,

where Pi, 1 ≤ i ≤ n are ν-transverse families of (R1/2)n−1 ×R-tiles, we have

1

|BR|

∫
BR

n∏
i=1

|Fi|
1

n−1 .ε,ν R
ε

n∏
i=1

(
1

|BR|

∫
BR

|Fi|
) 1

n−1

. (9.11)

(The main difference from Theorem 9.1 is that we do not restrict the tiles P ⊆ BR here;
we restrict the domain of integration instead.) We let R = 16nδ−2 = l(16nB) and

Fi =
∑

Qi,1∈Pi,ki

F q
Qi,1

=
∑

Qi,1∈Pi,ki

∑
TQ∈FQi,1

sup
y∈4TQ(x)

‖EQg‖qLq#(wB(y,δ−1))
1TQ(x).

Let Pi = ∪Qi,1∈Pi,kiFQi,1 . Since {Qi : 1 ≤ i ≤ n} are ν-transverse, so are any family of
sub-cubes {Qi,1 ⊆ Qi : 1 ≤ i ≤ n}, and thus any choice of tiles TQ from each one of the
families FQi,1 , 1 ≤ i ≤ n also have ν-transverse directions. Hence we can apply (9.11)
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with the above R and Fi to get

1

|16nB|

∫
16nB

n∏
i=1

 ∑
Qi,1∈Pi,ki

F q
Qi,1

(x)

 1
n−1

dx

(by (9.11)) .ε,ν δ
−ε

n∏
i=1

 1

|16nB|

∫
16nB

∑
Qi,1∈Pi,ki

F q
Qi,1

(x)dx

 1
n−1

= δ−ε
n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥FQi,1∥∥qLq#(16nB)

 1
n−1

.

Proposition 9.4. For each q ≥ 1, Q = Qi,1 and any ball B with radius δ−2,

‖FQ‖Lq#(16nB) . ‖EQg‖Lq#(wB),

where FQ is defined in (9.9). If the proposition is true, then we have

n∏
i=1

 ∑
Qi,1∈Pi,ki

∥∥FQi,1∥∥qLq#(16nB)

 1
n−1

.
n∏
i=1

 ∑
Qi,1∈Pi,ki

‖EQg‖qLq#(wB)

 1
n−1

,

which implies Proposition 9.2. Hence all that is left is the proof of Proposition 9.4.

9.2.3 The second approach: multilinear interpolation

Using the observation and terminology in Subsection 9.2.2, we shall compute (9.1) directly.

Our goal is to use (9.10). First, we use Lemma 9.3 with

Ai,∆ =

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n

and get

(9.1)p =
1

#B
1

|∆|

∫
Rn

n∏
i=1

∑
∆∈B

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(w∆)


p

2n

1∆(x)dx

(by (9.10)) ≤ δ2n

∫
Rn

n∏
i=1

∑
∆∈B

 ∑
Qi,1∈Pδ(Qi)

FQi,1(x)2


p

2n

1∆(x)dx

.
1

16nB

∫
16nB

n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

FQi,1(x)2


p

2n

dx.
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We let, similar as above,

Fi =
∑

Qi,1∈Pδ(Qi)

F 2
Qi,1

=
∑

Qi,1∈Pδ(Qi)

∑
TQ∈FQi,1

sup
y∈4TQ(x)

‖EQg‖qL2
#(wB(y,δ−1))

1TQ(x).

Now we interpolate between (9.11) which is rewritten as:∥∥∥∥∥
n∏
i=1

|Fi|
1
n

∥∥∥∥∥
L

n
n−1
# (BR)

.ε,ν R
ε

n∏
i=1

‖Fi‖
1
n

L1
#(BR)

and the following trivial (∞,∞)-bound:∥∥∥∥∥
n∏
i=1

|Fi|
1
n

∥∥∥∥∥
L∞# (BR)

≤
n∏
i=1

‖Fi‖
1
n

L∞# (BR)

to get ∥∥∥∥∥
n∏
i=1

|Fi|
1
n

∥∥∥∥∥
Lt#(BR)

.ε,ν R
ε

n∏
i=1

‖Fi‖
1
n

Ls#(BR), (9.12)

for all n/(n− 1) ≤ t ≤ ∞ and s = t(n− 1)/n ≥ 1. (See Theorem 1.15 of [2].)

Now if p ≥ 2n/(n − 1), we can apply (9.12) with R = 16nδ−2, t = p/2 ≥ n/(n − 1) and
s = t(n− 1)/n = q/2 ≥ 1 to get

(9.1) .

 1

16nB

∫
16nB

n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

FQi,1(x)2


p

2n

dx


1
p

.ε,ν δ
−ε

n∏
i=1

∥∥∥∥∥∥
∑

Qi,1∈Pδ(Qi)

F 2
Qi,1

∥∥∥∥∥∥
1

2n

L
q
2
#(16nB)

≤ δ−ε
n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥FQi,1∥∥2

Lq#(16nB)

 1
n

,

by the triangle inequality. Now using Proposition 9.4, we have

δ−ε
n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥FQi,1∥∥2

Lq#(16nB)

 1
n

. δ−ε
n∏
i=1

 ∑
Qi,1∈Pδ(Qi)

∥∥EQi,1g∥∥2

Lq#(wB)

 1
n

,

which is (9.2).



47

9.3 Proof of Proposition 9.4

Heuristically, Proposition 9.4 holds as by the uncertainty principle, EQg is locally constant
in each tile TQ and thus it will still be roughly constant in each smaller cube B(y, δ−1)
near 4TQ. The rigorous proof is based on Fourier analytic techniques, which is similar to
the proof in Subsection 5.2 of Section 5.

9.3.1 Reduction to the case Q = Q0

First we show why we can reduce to the case Q = Q0 = [−δ/2, δ/2]n−1. (Note Q0 is
actually not a subset of [0, 1]n−1, but we can of course extend the definition of EQg for
such Q’s. The symmetry here will simplify the notations a bit.)

The proof will be similar to the argument in Subsection 5.2.1 in Section 5.2. For each
Q = Qi,1, write Q = Q0 +σ and ξ = η+σ where ξ ∈ Q and η ∈ Q0. Write G(u) = g(u+σ)
and

z = Lu = (u1 + 2unσ1, . . . , un−1 + 2unσn−1, un),

so | det(L)| = 1. With this, we can compute∫
|EQg(u)|qwB(y,δ−1)(u)du =

∫
|EQ0G(z)|qwB(y,δ−1)(L

−1z)dz. (9.13)

We then prove a weight inequality:

wB(y,δ−1)(L
−1z) ∼ wB(Ly,δ−1)(z). (9.14)

Indeed, since σ ∈ [−1, 1]n−1, the mapping L is bilipschitz with constant O(1). Thus
|Ly − z| ∼ |y − L−1z|, and hence we have (9.14). Thus∫

|EQ0G(z)|qwB(y,δ−1)(L
−1z)dz ∼

∫
|EQ0G(z)|qwB(Ly,δ−1)(z)dz,

which implies ‖EQg‖Lq#(wB(y,δ−1))
∼ ‖EQ0G‖Lq#(wB(Ly,δ−1))

.

Clearly, L a bijection between each TQ ∈ FQ and some parallelepiped L(TQ). We claim
that L(TQ) ⊆ 4TQ0 for some TQ0 ∈ FQ0 , where FQ0 is defined in the same way as FQ was
defined (we can also assume 0 is the centre of some TQ0). Indeed, if cQ is the centre of Q,
then cQ = σ + cQ0 = σ. Thus

N(cQ) =
(−2σ1, . . . ,−2σn−1, 1)√

1 + 4σ2
1 + · · ·+ 4σ2

n−1

.

Recalling the definition of L, we have L(N(cQ)) ‖ (0, . . . , 0, 1) = N(cQ0). But L is a
shear transformation, so L(TQ) is a parallelepiped with the longest side parallel to N(cQ0).
However, as σ ∈ [−1, 1]n−1, the distortion should not be too much.) Hence L(TQ) ⊆ 4TQ0 ,
and thus L(4TQ(x)) ⊆ 16TQ0(Lx).

Recalling the definition of FQ (9.9) and changing Ly to y, we have

FQ(x) . F0(Lx) :=
∑

TQ0
∈FQ0

sup
y∈16TQ0

(Lx)

‖EQ0G‖Lq#(wB(y,δ−1))
14TQ0

(Lx) .

The Q = Q0 case is given by the following proposition:
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Proposition 9.5. We have, for all spatial cubes B′ of side length δ−2 and all G,

‖F0‖Lq#(64nB′) . ‖EQ0G‖Lq#(wB′ )
.

Proof of Proposition 9.4 assuming Proposition 9.5. Since FQ(x) . F0(Lx), letting x′ =
Lx, by the bilipschitz property of L,∫

16nB

|FQ(x)|qdx .
∫
L−1(16nB)

|F0(x′)|qdx′ ≤
∫

64nB′
|F0(x′)|qdx′,

for some B′ with cB′ = L(cB) and l(B′) = δ−2. Thus ‖FQ‖Lq#(16nB) . ‖F0‖Lq#(64nB′). By

Proposition 9.5, it suffices to show ‖EQ0G‖Lq#(wB′ )
. ‖EQg‖Lq#(wB).

Reversing the change of variable as in (9.13), we get∫
|EQ0G(z)|qwB′(z)dz =

∫
|EQg(u)|qwB′(Lu)du.

But as L is Lipschitz, |Lu− cB′| ∼ |u− L−1(cB′)| = |u− cB|, hence∫
|EQg(u)|qwB′(Lu)du ∼

∫
|EQg(u)|qwB(u)du.

This shows that ‖EQ0G‖Lq#(wB′ )
. ‖EQg‖Lq#(wB).

9.3.2 Several further reductions

All that is left is the proof of Proposition 9.5, and this is where Fourier analytic tools will
be used. By an abuse of notation we will write Q0 = Q = [−δ/2, δ/2]n−1.

Then in the new notations,

F0(x) =
∑

TQ∈FQ

sup
y∈16TQ(x)

‖EQG‖Lq#(wB(y,δ−1))
14TQ(x),

and we will be proving
‖F0‖Lq#(64nB) . ‖EQG‖Lq#(wB),

for any spatial cube B of length δ−2.

• Given any B as above, consider the subcollection FBQ of tubes TQ ∈ FQ that intersect
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64nB. Since 4TQ’s have bounded overlap, we have

‖F0‖qLq#(64nB)

=
1

|64nB|

∫
64nB

 ∑
TQ∈FBQ

sup
y∈16TQ(x)

‖EQG‖Lq#(wB(y,δ−1))
14TQ(x)

q

dx

≤ 1

|64nB|

∫
64nB

 ∑
TQ∈FBQ

sup
y∈16TQ

‖EQG‖qLq#(wB(y,δ−1))
14TQ(x)

 ∑
TQ∈FBQ

14TQ(x)


q
q′

dx

. δ2n
∑

TQ∈FBQ

sup
y∈16TQ

‖EQG‖qLq#(wB(y,δ−1))

∫
64nB

14TQ(x)dx

. δn−1
∑

TQ∈FBQ

sup
y∈16TQ

‖EQG‖qLq#(wB(y,δ−1))
.

it suffices to show∑
TQ∈FBQ

sup
y∈16TQ

‖EQG‖qLq#(wB(y,δ−1))
. δ1−n‖EQG‖qLq#(wB)

. (9.15)

• We show that it suffices to prove that (9.15) holds for B centred at 0. Given any
cube B with centre c, we define G′(ξ) = G(ξ)e(c′ · ξ + cn · |ξ|2) so that EQG

′(z) =
EQG(z + c). Hence for any y ∈ 16TQ, letting y = x+ c,

‖EQG‖qLq(wB(y,δ−1))
=

∫
|EQG(z)|qwB(y,δ−1)(z)dz

(u = z − c) =

∫
|EQG′(u)|qwB(y,δ−1)(u+ c)du

=

∫
|EQG′(u)|qwB(x,δ−1)(u)du.

Let T ′Q = TQ−c, which is another tube in FQ and such that 16T ′Q contains x = y−c.
Since TQ intersects 64nB, T ′Q intersects 64nB − c. By (9.15) applied to the cube
B − c centred at 0, we have∑

T ′Q∈F
B−c
Q

sup
x∈16T ′Q

‖EQG′‖qLq#(wB(x,δ−1))
. δ1−n‖EQG′‖qLq#(wB−c)

.

Next we change variables back to get∑
TQ∈FBQ

sup
y∈16TQ

‖EQG‖qLq#(wB(y,δ−1))
. δ1−n‖EQG‖qLq#(wB)

,

as required. So this process above is almost trivial.

• For each TQ ∈ FBQ , denote cTQ = (c1, . . . , cn−1, cn). Let B′ be a
√
nδ−1-cube centred

at (c1, . . . , cn−1, 0). Let B be the collection of all such cubes B′ as TQ ranges through
FBQ .
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We have the following weight inequality:∑
B′∈B

wB′(x
′, δxn) . wB(x). (9.16)

Figure 8: Covering by tiles TQ

Hence by (9.16), the right hand side of (9.15) can be bounded from below:

δ1−n‖EQG‖qLq#(wB)
= δ1−n 1

|B|

∫
|EQG(x)|q wB(x)dx

& δn+1
∑
B′∈B

∫
|EQG(x)|q wB′(x′, δxn)dx.

For each B′ ∈ B, there are at most O(1) tubes TQ ∈ FBQ that have the same entries
as B′ in the first (n− 1)-coordinates; let TB′ denote the slightly larger tube formed
by the union of the aforesaid tubes (see Figure 8 again), so TB′ has dimensions
O(δ−1) in the first (n− 1) coordinates and O(δ−2) in the last coordinate. Note also
the n-th coordinate of c(TB′) is 0. To show (9.15), it thus suffices to show for each
B′ ∈ B,

sup
y∈16TB′

‖EQG‖qLq#(wB(y,δ−1))
. δn+1

∫
|EQG(x)|q wB′(x′, δxn)dx. (9.17)

• To use the oscillatory feature of the Fourier transform, we will use some distribution
theory. Recall how we showed in 4.2 of Section 4 that Êg is a distribution supported

on the compact set Pn−1 ⊆ Rn. Similarly, ÊQG is also a distribution supported on

the paraboloid above Q. Thus we can write EQG(z) = ÊQG(e(z·)).
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Fix a bump function h ∈ C∞c (Rn) supported on B(0, 1/10) with
∫
h = 1. Define

φm(ξ) = ÊQG∗hm(ξ) where hm(ξ) = (δ−2m)nh(δ−2mξ). Then we have the following
properties:

– supm‖φm‖1 <∞. (Refer to 4.2 in Section 4.)

– supp(φm) ⊆ T = [−3δ/4, 3δ/4]n−1 × [−δ2/10, δ2/2] for all m.

– For any function f ∈ C∞(Rn), we have
∫
φmf → ÊQG(f).

Taking fz(ξ) = e(ξ · z) above, we have

φ∨m(z) =

∫
φm(ξ)e(ξ · z)dξ → EQG(z), for any z ∈ Rn.

Moreover, by the dominated convergence theorem, we have φ∨m → EQG in Lq#(wB(y,δ−1))

and also in Lq#(wB′(x
′, δxn)). Thus we may prove (9.17) with ÊQG replaced by φm

for each m. However, for simplicity of notations, we shall use an abuse of notation

and treat ÊQG as if it was a function supported on T .

9.3.3 The main proof

We now proof (9.17). Let B′ ∈ B be given. Write cB′ = c, y = ε+ c and z = u+ y. Since
y ∈ 16TB′ , we have |εj| . δ−1 for 1 ≤ j ≤ n− 1 and |εn| . δ−2. Then we compute, using
Taylor expansion,

|EQG(z)| =
∣∣∣∣∫ ÊQG(η)e(ξ · z)dη

∣∣∣∣
=

∣∣∣∣∫ ÊQG(η)e(η · (u+ c+ ε)dη

∣∣∣∣
=

∣∣∣∣∣
∫
ÊQG(η)e(ξ · (u+ c))

∞∑
j1=0

· · ·
∞∑
jn=0

(2πiηj11 ε
j1
1 ) · · · (2πiηjnn εjnn )

j1! · · · jn!
dη

∣∣∣∣∣
≤

∞∑
j1=0

· · ·
∞∑
jn=0

Cj1+···+jn

j1! · · · jn!
δ−(j1+···+jn−1+2jn)

∣∣∣∣∫ ÊQG(η)e(η · (u+ c))ηj11 · · · ηjnn dη
∣∣∣∣ .

For each j ≥ 0, let Mj ∈ C∞c (R) be such that

• Mj(t) = tj for |t| ≤ 3/4,

• Mj(t) = 0 for |t| > 7/8, and

• supj≥0 ‖M
(k)
j ‖∞ .k 1.

(Refer to (5.9) for existence of such functions.) Then using the assumption that ÊQG is
supported on T with dimensions δn−1 × δ2, we have, for any y ∈ 16TB′ ,

|EQG(u+ y)| ≤
∞∑
j1=0

· · ·
∞∑
jn=0

Cj1+···+jn

j1! · · · jn!

∣∣∣∣∫ ÊQG(η)e(η · (u+ c))mα(δ−1η′, δ−2ηn)dη

∣∣∣∣
=

∞∑
j1=0

· · ·
∞∑
jn=0

Cj1+···+jn

j1! · · · jn!

∣∣EQG ∗ (mα(δ−1·′, δ−2·n)∨)(u+ c)
∣∣ ,
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where

mα(η) = Mj1(η1) · · ·Mjn−1(ηn−1)Mjn(ηn), and where α = (j1, . . . , jn). (9.18)

By the triangle inequality, to show (9.17), it suffices to show that

δn
∫ ∣∣EQG ∗ (mα(δ−1·′, δ−2·n)∨)(u+ c)

∣∣q wB(0,δ−1)(u)du . δn+1

∫
|EQG(x)|q wB′(x′, δxn)dx.

Letting H(u) = EQG(u+ c) and changing v = x− c, the above is equivalent to∫ ∣∣H ∗ (mα(δ−1·′, δ−2·n)∨)(u)
∣∣q wB(0,δ−1)(u)du . δ

∫
|H(v)|q wB(0,δ−1)(v

′, δvn)dv. (9.19)

Next we compute
(mα(δ−1·′, δ−2·n)∨)(u) = δn+1m∨α(δu′, δ2un), (9.20)

so in particular, ‖mα(δ−1·′, δ−2·n)∨‖1 . 1. Now we can apply Jensen’s inequality with
q ≥ 1 to get ∫ ∣∣H ∗ (mα(δ−1·′, δ−2·n)∨)(u)

∣∣q wB(0,δ−1)(u)du

=

∫ ∣∣∣∣∫ H(v)(mα(δ−1·′, δ−2·n)∨)(u− v)dv

∣∣∣∣q wB(0,δ−1)(u)du

≤
∫ ∫

|H(v)|q
∣∣mα(δ−1·′, δ−2·n)∨(u− v)

∣∣ dv wB(0,δ−1)(u)du

=

∫
|H(v)|q

∫ ∣∣mα(δ−1·′, δ−2·n)∨(u− v)
∣∣wB(0,δ−1)(u)dudv.

Thus (9.19) will be true if we can prove the following weight inequality:∫ ∣∣mα(δ−1·′, δ−2·n)∨(u− v)
∣∣wB(0,δ−1)(u)du . δwB(0,δ−1)(v

′, δvn). (9.21)

By (9.20) and using the symmetry of wB(0,δ−1), the left hand side of (9.21) is equal to

δn+1

∫ ∣∣m∨α(δv′ − δu′, δ2vn − δ2un)
∣∣wB(0,δ−1)(u)du.

Now we use the definition of mα (9.18) and the uniform derivative bound of M
(k)
j to get

|m∨α(u)| .E wB(0,1),E(u) for any E, and hence

δn+1

∫ ∣∣m∨α(δv′ − δu′, δ2vn − δ2un)
∣∣wB(0,δ−1)(u)du

. δn+1

∫
wB(0,1)(δv

′ − δu′, δ2vn − δ2un)wB(0,δ−1)(u)du

= δn+1

∫
wB(0,δ−1)(v

′ − u′, δvn − δun)wB(0,δ−1)(u)du.

Using Proposition 5.2, we get

δn+1

∫
wB(0,δ−1)(v

′ − u′, δvn − δun)wB(0,δ−1)(u)du . δwB(0,δ−1)(v
′, δvn),

which is the right hand side of (9.21).



53

10 Decoupling in the Range 2 ≤ p ≤ 2n
n−1

In this section we show Decn(δ, p) .ε δ
−ε for 2 ≤ p ≤ 2n

n−1
, using induction on scales. We

first introduce some general notations which may be used in this section as well as all
subsequent sections.

10.1 Notations and conventions

Let p0 = 2n
n−1

. Let g : [0, 1]n−1 → C be given. We will fix g in the rest of the whole section,
so we drop the dependence on g of all terms in this section. But keep in mind that all
implicit constants will be independent of g.

Fix 0 < ν < 1 and n ν-transverse cubes Q1, . . . , Qn ⊆ [0, 1]n−1 with the same side length
l(Qi) := µ. All implicit constants will be independent of µ and the positions of the
frequency cubes Qi, 1 ≤ i ≤ n.

Let E ≥ 100n. Notice that we allow every implicit constant including the decoupling
constants to depend on E, so we will hide the parameter E from our notations.

For s ∈ N and K ≥ 1, let Bs
K denote a cube in Rn with side length Ks with arbitrary

centre. For simplicity, if s = 1, we will usually abbreviate B1
K as BK .

We will only be dealing with K’s with µ ≥ K−1, i.e. K ≥ µ−1.

Let 1 ≤ t, p < ∞ be exponents and q ≤ s ≤ r be positive integers. As µ ≥ K−1 ≥ K−q,
we can define

Dt(q, B
r
K) =

n∏
i=1

 ∑
Qi,q∈PK−q (Qi)

∥∥EQi,qg∥∥2

Lt#(wBr
K

)

 1
2n

.

Then q = p0(n−1)
n

= 2 in (9.2). For ε > 0 and ν fixed above, let Cε,ν be the implicit
constant in the inequality (9.1) ≤ Cε,ν(9.2). For K ≥ 1, taking the δ in (9.2) to be K−1,
we have (9.2) = KεD2(1, B2

K).

We write Bs(Br
K) to be the (unique) partition of Br

K with cubes Bs
K of side length Ks.

Define

Ap(q, B
r
K , s) =

 1

#Bs(Br
K)

∑
BsK∈Bs(B

r
K)

D2(q, Bs
K)p

 1
p

.

Hence if p0 = 2n
n−1

, taking δ = K−1 in (9.1), we have (9.1) is equal to Ap0(1, B2
K , 1). In

particular, Theorem 9.2 says

Ap0(1, B2
K , 1) ≤ Cε,νD2(1, B2

K).

Thus if p ≤ p0, then by definition of Ap and Jensen’s inequality, we trivially have

Ap(1, B
2
K , 1) ≤ Ap0(1, B2

K , 1) ≤ Cε,νD2(1, B2
K). (10.1)
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10.1.1 General properties

With the notations above, we state and prove some general properties. Note all proposi-
tions in this subsection are true as long as 2 ≤ p <∞.

Proposition 10.1. Let 1 ≤ t, p <∞ be exponents and let q ≤ s ≤ r be positive integers.
For any K ≥ µ−1 and m ≥ 1, we have the following equalities:

Dt(q, B
r
Km) = Dt(mq,B

mr
K ), (10.2)

Ap(q, B
r
Km , s) = Ap(mq,B

mr
K ,ms), (10.3)

Ap(q, B
r
K , r) = D2(q, Br

K). (10.4)

They are immediate by definition.

Proposition 10.2. If K ≥ µ−1, then we have

D2(1, BK) &
n∏
i=1

‖EQig‖
1
n

L2
#(wBK )

.

Proof. By the L2-decoupling Theorem 6.1 with R = K and l(Qi) = µ ≥ K−1,

D2(1, BK) =
n∏
i=1

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBK )

 1
2n

&
n∏
i=1

‖EQig‖
1
n

L2
#(wBK )

.

Proposition 10.3. If K ≥ µ−1, m ≥ 1, and 2 ≤ p <∞, then we have

Ap(1, B
m
K , 1) . D2(1, Bm

K ) ≤ Dp(1, B
m
K ).

Proof. We only prove the first inequality, as the second follows immediately from Jensen’s
inequality.

Ap(1, B
m
K , 1)p =

1

#B1(Bm
K )

∑
BK∈B1(BmK )

D2(1, BK)p

=
1

#B1(Bm
K )

∑
BK∈B1(BmK )

n∏
i=1

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBK )


p

2n

≤ 1

#B1(Bm
K )

n∏
i=1

 ∑
BK∈B1(BmK )

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBK )


p
2


1
n

,

where the last inequality follows from the following Hölder’s inequality for n-terms:

∑
j

n∏
i=1

|ai,j|
1
n ≤

n∏
i=1

(∑
j

|ai,j|

) 1
n

.
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Since p ≥ 2, using Hölder’s inequality we have

∑
BK∈B1(BmK )

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBK )


p
2

≤

 ∑
BK∈B1(BmK )

∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBK )


p
2
 ∑
BK∈B1(BmK )

1

1− p
2

. K−
np
2 Kn(m−1)(1− p

2)

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2(wBm
K

)


p
2

,

where we have used the following weight inequality as a consequence of Proposition 3.1:∑
BK∈B1(BmK )

wBK . wBmK .

Hence

1

#B1(Bm
K )

n∏
i=1

 ∑
BK∈B1(BmK )

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBK )


p
2


1
n

. K−(m−1)nK−
np
2 Kn(m−1)(1− p

2)
n∏
i=1

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2(wBm
K

)


p

2n

=
n∏
i=1

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBm

K
)


p

2n

.

Hence

Ap(1, B
m
K , 1) .

n∏
i=1

 ∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(wBm

K
)

 1
2n

= D2(1, Bm
K ).

10.2 Intermediate steps

The intermediate steps consist of two parts: an induction on scales argument, followed
by an appliaction of Corollary 4.3, which a Bernstein-type inequality (or reverse-Hölder’s
inequality or locally constant property).

10.2.1 The induction argument

We start with a lemma which facilitates our induction argument.
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Lemma 10.4. Let 2 ≤ p ≤ p0, K ≥ µ−1, and M ≥ 2. Then

Ap(1, B
M
K , 1) .ε,ν K

εAp(2, B
M
K , 2).

Proof. We first prove the case M = 2:

Ap(1, B
2
K , 1) .ε,ν K

εAp(2, B
2
K , 2) = KεD2(2, B2

K), (10.5)

where the last equality follows from (10.4). Recall (10.1) which says

Ap(1, B
2
K , 1) ≤ Cε,νD2(1, B2

K).

Hence it suffices to show D2(1, B2
K) . KεD2(2, B2

K), which raised to the power 2n is
equivalent to

n∏
i=1

∑
Qi,1∈PK−1 (Qi)

∥∥EQi,1g∥∥2

L2
#(w

B2
K

)
.

n∏
i=1

∑
Qi,2∈PK−2 (Qi)

∥∥EQi,2g∥∥2

L2
#(w

B2
K

)
. (10.6)

The right hand side of (10.6) is equal to

n∏
i=1

∑
Qi,1∈PK−1 (Qi)

∑
Qi,2∈PK−2 (Qi,1)

∥∥EQi,2g∥∥2

L2
#(w

B2
K

)
.

Thus (10.6) is true if for every Qi,1 ∈ PK−1(Qi), we have

∥∥EQi,1g∥∥L2
#(w

B2
K

)
.

 ∑
Qi,2∈PK−2 (Qi,1)

∥∥EQi,2g∥∥2

L2
#(w

B2
K

)

 1
2

.

But the above just follows from the L2-decoupling inequality (6.1) with R = K2 and
l(Q) = l(Qi,1) = K−1 ≥ K−2 = R. This proves (10.5).

Next we prove Lemma 10.4 for a general M ≥ 2, which raised to the power p is equivalent
to

1

#B1(BM
K )

∑
B1∈B1(BMK )

D2(1, B1
K)p .ε,ν

1

#B2(BM
K )

∑
B2
K∈B2(BMK )

D2(2, B2
K)p.

The left hand side of the above inequality is equal to

1

#B2(BM
K )

∑
B2∈B2(BMK )

1

#B1(B2
K)

∑
B1
K∈B1(B2

K)

D2(1, B1
K)p.

Hence it suffices to show that for each B2
K ∈ B2(BM

K ), we have

1

#B1(B2
K)

∑
B1
K∈B1(B2

K)

D2(1, B1
K)p .ε,ν K

εD2(2, B2
K)p,

Raising both sides to the power 1/p, we see the above is exactly (10.5) which we proved
to be true.
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Now we come to the main induction step.

Proposition 10.5. Let 2 ≤ p ≤ p0, R ≥ µ−1 and m ≥ 1. Then for each ε > 0, there is
Cε,ν such that

Ap(1, B
2m

R , 1) ≤ Cm−1
ε,ν R2m−1εAp(1, B

2
R2m−1 , 1).

Proof. Applying Lemma 10.4 with M = 2m and K = R, we have

Ap(1, B
2m

R , 1) ≤ Cε,νR
εAp(2, B

2m

R , 2) = Cε,νR
εAp(1, B

2m−1

R2 , 1).

Applying Lemma 10.4 with M = 2m−1 and K = R2, we have

Ap(1, B
2m−1

R2 , 1) ≤ Cε,νR
2εAp(2, B

2m−1

R2 , 2) = Cε,νR
2εAp(1, B

2m−2

R4 , 1).

We can perform the above process (m− 1) times until we get

Ap(1, B
4
R2m−2 , 1) ≤ Cε,νR

2m−2εAp(2, B
4
R2m−2 , 2)Cε,ν = Ap(1, B

2
2m−1 , 1).

(The reason we stop at the (m − 1)-th step is that we like to obtain a term of the form
Ap(1, B

2
K , 1) which facilitates a decoupling that matches the right hand side of Definition

8.4.) Combining the above inequalities gives

Ap(1, B
2m

R , 1) ≤ Cm−1
ε,ν R2m−1εAp(1, B

2
R2m−1 , 1).

10.2.2 Applying a Bernstein-type inequality

We first use Proposition 4.3 to get to an inequality close enough to the form in Definition
8.4.

Proposition 10.6. Let 0 < ν ≤ 1 and Q1, . . . , Qn be an n-tuple of ν-transverse cubes
with the same side length µ. If 2 ≤ p ≤ p0, then for any m ≥ 1 and any R ≥ µ−2m, we
have  ∑

B′∈P
R2−m (BR)

(
n∏
i=1

‖EQig‖
p
Lp(B′)

) 1
n


1
p

≤ Cm
ε,νR

ε
2R

n/2−n/p
2m

 n∏
i=1

∑
Qi,1∈PR−1/2 (Qi)

∥∥EQi,1g∥∥2

Lp(wBR )

 1
2n

,

where Cm
ε,ν is independent of µ, R and the positions of BR and Qi, 1 ≤ i ≤ n.

Proof. Applying Propositions 10.3 and 10.5 with 2 ≤ p ≤ p0, m ≥ 1 and K = R2m−1 ≥
µ−1, we have, for some absolute constant C > 0,

Ap(1, B
2m

R , 1) ≤ CCm−1
ε,ν R2m−1εD2(1, B2

R2m−1 ).
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(Assuming C ≤ Cε,ν , we may bound CCm−1
ε,µ ≤ Cm

ε,ν .) We compute

Ap(1, B
2m

R , 1) =

 1

#B1(B2m
R )

∑
BR∈B1(B2m

R )

D2(1, BR)p

 1
p

(by Prop 10.2) &

 1

#B1(B2m
R )

∑
BR∈B1(B2m

R )

(
n∏
i=1

‖EQig‖
p

L2
#(wBR )

) 1
n


1
p

. (10.7)

We now invoke Proposition 4.3. As R ≥ µ−1 = l(Qi)
−1, using (4.3) we have

‖EQig‖L2
#(wBR ) & (µR)

n
p
−n

2 ‖EQig‖Lp#(BR) ≥ R
n
p
−n

2 ‖EQig‖Lp#(BR).

We shall see that we can afford such a loss of the power on R.

Thus we have

Ap(1, B
2m

R , 1) & R
n
p
−n

2

 1

#B1(B2m
R )

∑
BR∈B1(B2m

R )

(
n∏
i=1

‖EQig‖
p
Lp#(wBR )

) 1
n


1
p

= R−
2mn
p R

n
p
−n

2

 1

#B1(B2m
R )

∑
BR∈B1(B2m

R )

(
n∏
i=1

‖EQig‖
p
Lp(wBR )

) 1
n


1
p

.

Also by (10.3),

D2(1, B2
R2m−1 ) ≤ R−

2mn
p

 n∏
i=1

∑
Qi,1∈P

R−2m−1 (Qi)

∥∥EQi,1g∥∥2

Lp(wB
R2m

)

 1
2n

.

Thus (hiding any absolute constant C inside Cε,ν as before), ∑
BR∈B1(B2m

R )

(
n∏
i=1

‖EQig‖
p
Lp(wBR )

) 1
n


1
p

≤ Cm
ε,νR

n
2
−n
pR2m−1ε

 n∏
i=1

∑
Qi,1∈P

R−2m−1 (Qi)

∥∥EQi,1g∥∥2

Lp(wB
R2m

)

 1
2n

.

Changing variables R2m 7→ R, we have for any m ≥ 1 and any R ≥ µ−2m , ∑
B′∈P

R2−m (BR)

(
n∏
i=1

‖EQig‖
p
Lp(wB′ )

) 1
n


1
p

≤ Cm
ε,νR

ε
2R

n/2−n/p
2m

 n∏
i=1

∑
Qi,1∈PR−1/2 (Qi)

∥∥EQi,1g∥∥2

Lp(wBR )

 1
2n

.
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10.3 The final argument

10.3.1 Bounding the multilinear decoupling constant

The main result is the following:

Proposition 10.7. Let 0 < ν ≤ 1. If 2 ≤ p ≤ p0, then for all m ≥ 1 and 0 < δ ≤ 1,

MDecn(δ, p, ν,m,E) ≤ Cm
ε,νR

ε
2R

n/2−n/p
2m = Cm

ε,νδ
− ε

2 δ−
n/2−n/p

2m .

Proof. Refer to Definition 8.4. Let g : [0, 1]n−1 → C. Let m′ ≥ 1, 0 < δ ≤ 1. Let B with
l(B) = δ−1. Let 0 < ν ≤ 1 and {Qi : 1 ≤ i ≤ n} be an n-tuple of ν-transverse cubes in

[0, 1]n−1 such that l(Qi) = µ ≥ δ2−m
′
.

If we can show ∑
∆∈Pµ−1 (B)

n∏
i=1

‖EQig‖
p/n
Lp(∆)

 1
p

≤ A
n∏
i=1

 ∑
qi∈Pδ1/2 (Qi)

‖Eqig‖
2
Lp(wB)

 1
2n

, (10.8)

for some multiplicative factor A independent of g, µ and the positions of {Qi, 1 ≤ i ≤ n},
then we have MDecn(δ, p, ν,m′, E) ≤ A.

To apply Proposition 10.6, we let R = δ−1 and let m = m′. Thus µ ≥ R−2−m .

We then compute  ∑
∆∈Pµ−1 (B)

n∏
i=1

‖EQig‖
p/n
Lp(w∆)

 1
p

=

 ∑
B′∈P

R2−m (B)

∑
∆∈Pµ−1 (B′)

n∏
i=1

‖EQig‖
p/n
Lp(w∆)

 1
p

(n-Hölder) ≤

 ∑
B′∈P

R2−m (B)

 n∏
i=1

∑
∆∈Pµ−1 (B′)

‖EQig‖
p
Lp(w∆)

 1
n


1
p

.

 ∑
B′∈P

R2−m (B)

(
n∏
i=1

‖EQig‖
p
Lp(wB′ )

) 1
n


1
p

,

where the last line follows from
∑

∆∈Pµ−1 (B′) w∆ . wB′ . Hence we can use Proposition
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10.6 to get  ∑
B′∈P

R2−m (B)

(
n∏
i=1

‖EQig‖
p
Lp(wB′ )

) 1
n


1
p

. Cm
ε,νR

ε
2R

n/2−n/p
2m

 n∏
i=1

∑
Qi,1∈PR−1/2 (Qi)

∥∥EQi,1g∥∥2

Lp(wBR )

 1
2n

= Cm
ε,νR

ε
2R

n/2−n/p
2m

n∏
i=1

 ∑
qi∈Pδ1/2 (Qi)

‖Eqig‖
2
Lp(wB)

 1
2n

.

Hence we see our A in (10.8) can be taken to be Cm
ε,νR

ε
2R

n/2−n/p
2m .

10.3.2 Proof of decoupling inequality

Theorem 10.8. Let n ≥ 2 and E ≥ 100n. If 2 ≤ p ≤ p0, then we have

Decn(R−1, p, E) .ε,n,p,E R
ε,

for all R ≥ 1.

Proof. We first prove the case n = 2. Recall (8.16) of Theorem 8.9, which says that for
each 0 < ν ≤ 1 and m ≥ 1, there is Cν,m = Cν,p,m,E and η(ν) = η(ν, p, E) such that
limν→0+ η(ν) = 0 and for each R ≥ ν−2m , we have

Dec2(R−1, p, E) ≤ Cν,m,pR
η(ν) sup

1≤R′≤R
MDec2(R′−1, p, ν,m,E). (10.9)

Let ε > 0. Since limν→0+ η(ν) = 0, take 0 < ν ≤ 1 with η(ν) < ε.

By Corollary 7.4, it suffices to assume R ∈ 2N.

Let 1 ≤ R′ ≤ R. Take m ≥ 1 large enough such that (n
2
− n

p
)2−m−1 ≤ ε (so m depends

on n and ε only). Then by Proposition 10.7 with δ = R′−1, we have

MDec2(R′−1, p, ν,m,E) ≤ Cm
ε,νR

′ ε
2R′

n/2−n/p
2m ≤ Cm

ε,νR
ε,

which holds for all 1 ≤ R′ ≤ R. Taking C ′(ε) = C ′(ε, p, E) = Cν,mC
m
ε,ν which depends in

turn on ε, p and E only, we have, by (10.9), for all R ≥ ν−2m ,

Dec2(R−1, p, E) ≤ C ′(ε)R2ε.

Denote K = ν−2m which depends in turn on ε, n, E only. It remains to prove that for
1 ≤ R ≤ K we also have decoupling. Write I = [1, K] ∩ 2N, which has finite cardinality
#I := N = N(ε, p, E). Write I = {R1, . . . , RN}. For each 1 ≤ i ≤ N , we use trivial
decoupling 7.2 to get Dec2(R−1

i , p, E) ≤ Ci = Ci,ε,p,E. Take C ′′(ε) = max1≤i≤N Ci, and
then take C(ε) = max{C ′(ε), C ′′(ε)} = C(ε, p, E). Thus for all R ≥ 1, we have

Dec2(R−1, p, E) ≤ C(ε)R2ε.
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Now assume for some n ≥ 2, we have Decn(R−1, p, E) .ε,n,p,E R
ε. Then by Theorem 5.1,

we have
Decn(R−1, p,Γn−1(E)) .ε,n,p,E R

ε.

Using (8.17) of Theorem 8.9, we have for each ε > 0, 0 < ν ≤ 1 and m ≥ 1, there is
Cν,m = Cn,ν,p,m,E and ηε(ν) = η(ν, ε, p, n, E) such that limν→0+ ηε(ν) = 0 and for each
R ≥ ν−2m , we have

Decn(R−1, p, E) ≤ Cν,mR
ηε(ν)+ε sup

1≤R′≤R
MDecn(R′−1, p, ν,m,E).

Now argue similarly as in the case n = 2.

11 Decoupling in the Range 2n
n−1 < p ≤ 2(n+1)

n−1

In this section we show Decn(δ, p) .ε δ
−ε for 2n

n−1
< p ≤ 2(n+1)

n−1
, using an interpolation

argument in addition to the arguments in the previous section. We will still use the
notations and conventions as in the last section.

Let q = p(n−1)
n

, so q < p. For simplicity, let p0 = 2n
n−1

and p1 = 2(n+1)
n−1

. Since p ≥ p0, we
have q ≥ 2. Let α = αp such that

1

q
=

1− α
2

+
α

p
. (11.1)

We first prove the non-endpoint case p < p1. In the end, we will prove the endpoint case
p = p1.

11.1 The induction argument

The corresponding lemma to Lemma 10.4 is the following:

Lemma 11.1. Let p0 < p <∞, K ≥ µ−1, and M ≥ 2. Then

Ap(1, B
M
K , 1) .ε,ν K

εAp(2, B
M
K , 2)1−αDp(1, B

M
K , 1)α.

Proof. Imitating the proof of Lemma 10.4, it suffices to prove the case M = 2:

Ap(1, B
2
K , 1) .ε,ν K

εD2(2, B2
K)1−αDp(1, B

2
K)α. (11.2)

Recall Theorem 9.2 says that for some Cε,ν = Cε,ν,n,p,E, we have

Ap(1, B
2
K , 1) ≤ Cε,νDq(1, B

2
K).

Using Hölder’s inequality twice (first by (11.1) and then with respect to l2), we have

Dq(1, B
2
K) ≤ D2(1, B2

K)1−αDp(1, B
2
K)α,

which completes the proof of (11.2).
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The main proposition which follows by induction is the following.

Proposition 11.2. Let p0 < p < p1, R ≥ µ−1 and m ≥ 1. Then for each ε > 0, there is
Cε,ν = Cε,ν,α(p) = Cε,ν,p,n,E such that

Ap(1, B
2m

R , 1) .ε,ν,α R
βmAp(1, B

2
R2m−1 , 1)(1−α)m−1

m−2∏
l=0

Dp(1, B
2m−l

R2l )α(1−α)l ,

for some βm = βm,p.

Proof. Applying Lemma 11.1 with M = 2m and K = R, we have

Ap(1, B
2m

R , 1) ≤ Cε,νR
εAp(2, B

2m

R , 2)1−αDp(1, B
2m

R )α

= Cε,νR
εAp(1, B

2m−1

R2 , 1)1−αDp(1, B
2m

R )α.

Applying Lemma 11.1 again with M = 2m−1 and K = R2, we have

Ap(1, B
2m−1

R2 , 1) ≤ Cε,νR
2εAp(2, B

2m−1

R2 , 2)1−αDp(1, B
2m−1

R2 )α

= Cε,νR
2εAp(1, B

2m−2

R4 , 1)1−αDp(1, B
2m−1

R2 )α.

We can perform the above process (m− 1) times until we get

Ap(1, B
4
R2m−2 , 1) ≤ Cε,νR

2m−2εAp(2, B
4
R2m−2 , 2)1−αDp(1, B

4
R2m−2 )α

= Cε,νAp(1, B
2
2m−1 , 1)Dp(1, B

4
R2m−2 )α.

Combining the above inequalities gives

Ap(1, B
2m

R , 1) ≤
[
C1+(1−α)+···+(1−α)m−2

ε,ν (Rε)1+2(1−α)+···+[2(1−α)]m−2
]

·

[
Ap(1, B

2
R2m−1 , 1)(1−α)m−1

m−2∏
l=0

Dp(1, B
2m−l

R2l )α(1−α)l

]
.

Since we have p > p0, that is, α < 1, we have

1 + (1− α) + · · ·+ (1− α)m−2 ≤ α−1.

Similarly, we have

1 + 2(1− α) + · · ·+ [2(1− α)]m−2 ≤ max

{
(2− 2α)m

1− 2α
,m,

1

2α− 1
,

}
:= βm. (11.3)

By a slight abuse of notation, this finishes the proof of the proposition.

Remark: The first bound works for the case α < 1/2, the second bound works for the
case α = 1/2 and the third bound works for the case α > 1/2. Since we assume in the
assumption that p < p1, we have

α =
np− p− 2n

(n− 1)(p− 2)
= 1− 2

(n− 1)(p− 2)
<

1

2
.

Hence we use the first bound (2− 2α)m(1− 2α)−1. However, the exact value of βm is not
important, since it will contribute to a power that finally goes to 0 as m→∞.
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11.2 Applying a Bernstein-type inequality

The analogue to Proposition 10.6 is given by

Proposition 11.3. Let 0 < ν ≤ 1 and Q1, . . . , Qn be an n-tuple of ν-transverse cubes
with the same side length µ. If p0 < p < p1, then for any m ≥ 1 and any R ≥ µ−2m, we
have  ∑

B′∈P
R2−m (BR)

(
n∏
i=1

‖EQig‖
p
Lp(B′)

) 1
n


1
p

.ε,ν,p R
βmε+

n
2
−n
pP (m)

 n∏
i=1

∑
qi∈PR−1/2 (Qi)

‖Eqig‖
2
Lp(wBR,E)

 1
2n

.

where

P (m) :=
m−2∏
l=0

Decn(R−1+2l+1−m
, p)α(1−α)l . (11.4)

Proof. Applying Propositions 10.3 and 11.2 with 2 < p0 < p < p1, m ≥ 1 and K =
R2m−1 ≥ µ−1, we have

Ap(1, B
2m

R , 1) .ε,ν,p R
βmεDp(1, B

2
R2m−1 )(1−α)m−1

m−2∏
l=0

Dp(1, B
2m−l

R2l )α(1−α)l . (11.5)

The argument for the lower bound for Ap(1, B
2m

R , 1) is the same as in Proposition 10.6:

Ap(1, B
2m

R , 1) & R
n
p
−n

2
− 2mn

p

 ∑
BR∈B1(B2m

R )

(
n∏
i=1

‖EQig‖
p
Lp(wBR )

) 1
n


1
p

.

For the upper bound of the right hand side of (11.5), fix 0 ≤ l ≤ m−2 and Q ∈ P
R−2l (Qi).

We may use parabolic rescaling (Proposition 7.1) with δ1/2 = R−2m−1
, l(Q) = σ1/2 = R−2l

(so δ ≤ σ) and B = BR2m with l(B) = R2m = δ−1 to bound:

‖EQg‖Lp(wB) . Decn(R−2m+2l+1

, p)

 ∑
q∈P

R−2m−1 (Q)

‖Eqg‖2
Lp(wB)

 1
2

.

This shows that for all 0 ≤ l ≤ m− 2,

Dp(1, B
2m−l

R2l ) =
n∏
i=1

 ∑
Q∈P

R−2l
(Qi)

‖Eqg‖2
Lp#(wB)

 1
2n

. Decn(R−2m+2l+1

, p)
n∏
i=1

 ∑
Q∈P

R−2l
(Qi)

∑
q∈P

R−2m−1 (Q)

‖Eqg‖2
Lp#(wB)

 1
2n

= Decn(R−2m+2l+1

, p)Dp(1, B
2
R2m−1 ).
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Hence the right hand side of (11.5) is bounded above by

Rβmε

(
m−2∏
l=0

Decn(R−2m+2l+1

, p)α(1−α)l

)
Dp(1, B

2
R2m−1 )(1−α)m−1+α+α(1−α)+···+α(1−α)m−2

= Rβmε

(
m−2∏
l=0

Decn(R−2m+2l+1

, p)α(1−α)l

)
Dp(1, B

2
R2m−1 ).

Therefore similar to the proof of Propsition 10.6 we have ∑
BR∈B1(B2m

R )

(
n∏
i=1

‖EQig‖
p
Lp(wBR )

) 1
n


1
p

.ε,ν,p R
βmε+

n
2
−n
p

m−2∏
l=0

Decn(R−2m+2l+1

, p)α(1−α)l

 n∏
i=1

∑
Qi,1∈P

R−2m−1 (Qi)

∥∥EQi,1g∥∥2

Lp(wB
R2m

)

 1
2n

.

Changing R2m 7→ R, we have ∑
B′∈P

R2−m (BR)

(
n∏
i=1

‖EQig‖
p
Lp(wB′ )

) 1
n


1
p

.ε,ν,p R
βmε+n/2−n/p

2m

m−2∏
l=0

Decn(R−1+2l+1−m
, p)α(1−α)l

 n∏
i=1

∑
qi∈PR−1/2 (Qi)

‖Eqig‖
2
Lp(wBR )

 1
2n

.

11.3 Estimating the decoupling constants

The key difference of this argument from the case 2 ≤ p ≤ p0 is that we do not bound
the multilinear decoupling constant directly by δ−ε. Instead, we bound the multilinear
decoupling constant by a product of decoupling constants, and then use Theorem 8.9 to
get the bound in a reverse direction. Combining the two directions gives the result.

Using the same proof, we get an analogue to Proposition 10.7:

Proposition 11.4. Let 0 < ν ≤ 1. If p0 < p < p1, then for all m ≥ 1 and 0 < δ ≤ 1,

MDecn(δ, p, ν,m,E) .ε,ν,p δ
−βmε+n/2−n/p

2m P (m),

where P (m) was defined in (11.4).

Thus we are left with estimating P (m). Recall that

P (m) =
m−2∏
l=0

Decn(R−1+2l+1−m
, p)α(1−α)l .
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Proposition 11.5. Let 0 < ν ≤ 1. If p0 < p < p1, then for any ε > 0, there is
0 < δ0 = δ0(ε) ≤ 1 such that for all m ≥ 1 and 0 < δ < δ0,

MDecn(δ, p, ν,m,E) .ε,ν,p δ
−βmε+n/2−n/p

2m
−
(

1+ 21−mα
1−2α

− (1−α)m

1−2α

)
(τ+ε)

.

Proof. Write Dec(δ) = Decn(δ, p, E). Our first claim is the following:

Lemma 11.6. There is a constant τ = τp,n,E ∈ [0,∞) such that

τ = sup

{
s ∈ R : lim sup

δ→0
Dec(δ)δs =∞

}
= inf

{
s ∈ R : lim

δ→0
Dec(δ)δs = 0

}
.

Proof of lemma. The existence of a τ ∈ [−∞,∞] is a general property satisfied by all
nonnegative sequences. To show τ ∈ [0,∞), we recall that by trivial decoupling (triangle
inequality and Cauchy-Schwarz), 1 ≤ Dec(δ) . δ−(n−1)/4. Thus

sup

{
s ∈ R : lim sup

δ→0
Dec(δ)δs =∞

}
≤ n− 1

4

and
inf
{
s ∈ R : lim

δ→0
Dec(δ)δs = 0

}
≥ 0.

Now let ε > 0. Then for δ small enough, we have Dec(δ)δτ+ε ≤ 1. Using α 6= 1/2, we
have

logδ−1 P (m) ≤
m−2∑
l=0

(
1− 2l+1−m) (τ + ε)α(1− α)l

=
m−2∑
l=0

(τ + ε)α(1− α)l −
m−2∑
l=0

(τ + ε)α21−m(2− 2α)l

=

(
1 +

21−mα

1− 2α
− (1− α)m

1− 2α

)
(τ + ε).

Combining with Proposition 11.4, we are done.

11.4 Proof of decoupling inequality

Theorem 11.7. Let n ≥ 2 and E ≥ 100n. If p0 < p < p1, then we have for all R ≥ 1,

Decn(R−1, p, E) .ε,n,p,E R
ε.

Proof. We give a detailed proof of the case n = 2 only. The proof in higher dimensions
follows from induction as in the proof of Theorem 10.8.

Recall (8.16) of Theorem 8.9, which says that for each 0 < ν ≤ 1 and m ≥ 1, there is
Cν,m = Cν,p,m,E and η(ν) = η(ν, p, E) such that limν→0+ η(ν) = 0 and for each R ≥ ν−2m ,
we have

Dec2(R−1, p, E) ≤ Cν,m,pR
η(ν) sup

1≤R′≤R
MDec2(R′−1, p, ν,m,E).
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Since η(ν) → 0, take 0 < ν ≤ 1 small enough such that η(ν) < ε. Then by Proposition
11.5, we have for R large enough,

Dec2(R−1, p, E) .ε,m,p R
βmε+

n/2−n/p
2m

+
(

1+ 21−mα
1−2α

− (1−α)m

1−2α

)
(τ+ε)

.

Using the first equality of Lemma 11.6, we can find a sequence Rk →∞ such that

Dec2(R−1
k , p, E) ≥ Rτ−ε

k .

Examining the power of R, we are forced to have

τ − ε ≤ βmε+
n/2− n/p

2m
+

(
1 +

21−mα

1− 2α
− (1− α)m

1− 2α

)
(τ + ε).

But this holds for all m ≥ 1 and all ε > 0. Letting ε→ 0 and multiplying both sides by
2m, we have

τ

(
(2− 2α)m

1− 2α
− 2α

1− 2α

)
≤ n

2
− n

p
, (11.6)

for all m ≥ 1. Since α < 1/2 and τ ≥ 0, this forces to τ = 0.

Hence by definition of τ , for any ε > 0,

lim
δ→0

Decn(R−1, p, E)δε = 0.

Finally, using similar argument as in the proof of Theorem 10.8, the decoupling inequality
for p0 < p < p1 holds for all R ≥ 1.

11.5 The endpoint case

We prove

Theorem 11.8. Let n ≥ 2 and E ≥ 100n. If p = p1, then we have for all R ≥ 1,

Decn(R−1, p1, E) .ε,n,p,E R
ε.

Proof. As before, it suffices to show

‖Eg‖Lp1 (BR) .ε R
ε

 ∑
Q∈P

R−1/2 ([0,1]n−1)

‖EQg‖2
Lp1 (wBR,E)

 1
2

.

Let ε > 0. Take p < p1 such that
n

p
− n

p1

<
ε

4
.

By (4.3) with Q = [0, 1]n−1, q = p1 and p = p, we have

‖Eg‖Lp1# (BR) . R
n
p
− n
p1 ‖Eg‖Lp#(wBR,E) ≤ R

ε
4‖Eg‖Lp#(wBR,E). (11.7)
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Applying the decoupling inequality to ‖Eg‖Lp#(wB,E), we have, for some Cε = Cε,p

‖Eg‖Lp#(BR) ≤ CεR
ε
2

 ∑
Q∈P

R−1/2 ([0,1]n−1)

‖EQg‖2
Lp#(wBR,E)

 1
2

≤ CεR
ε
2

 ∑
Q∈P

R−1/2 ([0,1]n−1)

‖EQg‖2
L
p1
# (wBR,E)

 1
2

,

by Jensen’s inequality. Thus

‖Eg‖Lp(BR) ≤ CεR
ε
2

+n
p
− n
p1

 ∑
Q∈P

R−1/2 ([0,1]n−1)

‖EQg‖2
L
p1
# (wBR,E)

 1
2

≤ CεR
3ε
4

 ∑
Q∈P

R−1/2 ([0,1]n−1)

‖EQg‖2
L
p1
# (wBR,E)

 1
2

.

Combining with (11.7), we have

‖Eg‖Lp1# (BR) . Rε

 ∑
Q∈P

R−1/2 ([0,1]n−1)

‖EQg‖2
L
p1
# (wBR,E)

 1
2

.
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