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Abstract. The Hilbert twenty-first problem asked to find the regular sin-

gular differential equations for a given monodromy matrix. Deligne solved

the twenty-first problem in any given complex manifold. To We interpret
his solution as a prototype of Riemann-Hilbert correspondence. Today,the

Riemann-Hilbert correspondence is referred to as categorical equivalence be-

tween holonomic De Rham functor(differential equations) and holonomic so-
lution functor(solutions).
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1. Integrable Connections

Let’s X be an n dimensional complex manifold and consider the ring DX of a
partial differential operators with OX coefficient.

DX(U) = {P =
∑
α∈Zn+

aα(x)∂αx }|aα(x)is holomorphic }

the product for any P,Q ∈ DX(U), is defined by PQ ∈ DX(U) as (PQ)f = P (Qf)
for f ∈ OX(U). The order of partial differential operators are defined by

ordP := {|α||aα(x) 6= 0}

.
This formulation depend on the coordinate system. We can also construct DX
without of relying on such a coordinate by considering sheaf of holomorphic vector
field Θ.

ΘX := {θ ∈ EndCX (OX)|θ(fg) = (θ(f))g + gθ(f)}
We can regard DX as

DX := {Subring of EndCX (OX)generated by OXand ΘX}
1
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In this thesis,we will reformulate some of the classical theorems from the classical
differential equation theory into the language of sheaf on the manifold via DX -
module. Usually DX -module means left DX -module if we don’t particular say
anything. The most important DX module for the differential equations are for
which we can locally write as M = DN0

X /DN1

X P by using locally DX coefficient
matrix P = (Pij) ∈ M(N1, N2,DX). In other words, when there is an exact
sequence

DN1

X

×P // DN0

X
//M // 0

Such aM are called a coherent DX module. The left exact functor HomDX (∗,OX)
will made the exact sequence to

0 // HomDX (M,OX) // ON0

X

×P // ON1

X

Here we used the isomorphism HomDX (DX ,OX) ∼= OX by φ→ φ(1).
By observing the exact sequence, we will get the isomorphism Hom(M,OX) ∼=
{u(x) ∈ ON0

X |Pu(x) = 0} ⊂ ON0

X . Therefore HomDX (M,OX) is nothing but sheaf
of solutions Pu = 0. Sato began to study a PDE by utilizing local free resolution
for coherent ring DX .

Example 1.1. DX is coherent ring in particular Noetherian.

This example allows us to decompose DX -module M by locally free module so
that

. . . // DNkX ×Pk
// . . .

×P2

// DN1

X ×P1

// DN0

X ×P1

//M // 0

Defining a complex of the sheaf over CX -module

RHomDX (M,OX)

= [ 0 // ON0

X P1×
// ON1

X P2×
// ON2

X P3×
// . . . ]

In particular the isomorphism H0RHomDX (M,OX) ∼= HomDX (M,OX) exist.
Next lemmas are immediate because DX is generated by OX and Θ

Lemma 1.2. Let M be an OX module, Giving left DX-module to M is equivalent
to giving CX linear homomorphism

∇ : Θ→ EndX(M) (θ → ∇θ)

satisfies following conditions
(1)∇fθ(m) = f∇θ(m)(f ∈ OX , θ ∈ ΘX ,m ∈M)
(2)∇θ(fm) = θ(f)m+ f∇θ
(3)θ[θ1,θ2](m) = [∇θ1 ,∇θ2(m)]

Example 1.3. Let’s ΩjX be a sheaf of holomorphic j-form then (M,∇) induces
homomorphism

∇ :M→ Ω1 ⊗OX M (m→
m∑
i=1

dxi ⊗∇∂i(m))

can extend the j-form map

∇i : ΩjX ⊗M→ Ωj+1
X ⊗M (ω ⊗m→ dω ⊗m+ (−1)jω ∧∇m)
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We can easily compute this as a complex, so we can get the De Rham complex

0 //M ∇ // Ω1
X ⊗M

∇1 // Ω2
X ⊗MX

∇2 // . . .

Example 1.4. When M is a rank N left free DX -module , we can describe ∇∂i :
M →M with the local coordinate (x1 . . . xn). The local isomorphism m ∈ M ∼=
ONX can be described by using regular matrix Ai

∇∂i(m) = ∇∂i(m) +Aim

The condition [∂i, ∂j ] = 0 gives [∇∂i ,∇∂j ] = 0 from lemma 1.2, so we have
0 = [∂i +Ai, ∂j +Aj ]m = (∂iAj − ∂jAi + [Ai, Aj ])m thus we have

(1.5)
∂Ai
∂xj
− ∂Aj
∂xi

= [Ai, Aj ]

for an arbitrary i, j (1.5) is called integrability condition and ∇ is called integrable
connection.

Definition 1.6. Locally free finite rank left DX module M is called integrable
connection.

Example 1.7. Horizontal section of integrable connectionM∇ is a subsheaf ofM
such that vanishes under the action of ∇ i.e M∇ = {m ∈M|∇m = 0}

Definition 1.8. Local system L is a locally constant sheaf of finite-dimensional
complex vector space.

Roughly speaking, Riemann-Hilbert correspondence states that an abelian cat-
egory of integrable connection and the local system of the complex manifold are
equivalent. Now we will see the most primitive version of it [Szamuely].
As local systems are vector space, their homomorphism define the abelian cate-
gory Loc(X). The category of integrable connection is categorically equivalent to
abelian category of local system. To prove that fact, we use the Cauchy-Kowalevski
theorem from PDE theory.

Lemma 1.9. Let X = Cn and Y = {xn = 0} = Cn ⊂ X be a complex hypersur-
face. Consider a regular matrix A(x) = (Aij)1≤i,j≤N such that each component of
matrix is holomorphic around the origin of X. Then for an arbitrary vector valued
holomorphic functions around the origin ~a(x1 . . . xn−1) ∈ ONY,0, there is a solution
for an initial value problem

(∂n +A(x))~u(x1 . . . xn) = 0

~u(x1 . . . xn−1, 0) = ~a(x1 . . . xn)

Theorem 1.10. Suppose X is connected, with a rank N integrable connection
(M,∇), horizontal connection M∇ is a local system with rank N . We have an
isomorphism of DX-module

OX ⊗M∇ ∼=M

There is a categorical equivalence of abelian category.

Φ :M∈ Conn(X)→ Loc(X) 3M∇
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Proof. This is local problem so it is sufficient to consider neighborhood around
the origin and think X as X = Cn. Under the local isomorphism M ∼= ONX and
by example 1.4,there exist connection matrix Ai(x) ∈ MN (OX,0) and ∇∂i(m) =
∂im+Aim. and [∂i+Ai, ∂j+Aj ] = 0 from integrable condition. By applying lemma
1.9 iterative, we can show that isomorphism of the stalk by M∇0 ∼= CN (m(x)→
m(0)). This means that M∇ is a local system, and same rank with M.
U → M∇(U) ⊗ OX(U) defines locally free sheaf M on X. We define connection
map ∇M∇ as follows. Given an open subset U with M∇ ∼= CN and fix C basis
s1 . . . sN , so that each section of M can be written as

∑
si ⊗ fi with fi ∈ OX . We

can define ∇M∇ as ∇M∇(
∑
si⊗ fi) =

∑
sidfi. As two choice of si just depend on

C coefficient matrix the difference is annihilate by the action of connection. ∇M∇
does not depend on choice of si.∇M∇ is defined over all the patch of X, so this is
global. �

We will generalize this correspondence into a context of holonomic systems higher
dimensional cases. Although we won’t see on here, this concept is now developed
more into a non-holonomic system. This generalization was made by Mochizuki,
Kedlaya, Kashiwara, and D’Agnolo.
Also there is another important ingredients to discuss Riemann-Hilbert correspon-
dence, which is called a regularity. We will see discussion of regularity in the next
section.
Before concluding this section, see a technique of invertible sheaf M that can be
applied for a DX -module.

Definition 1.11. Invertible sheaf M is locally free OX module of rank 1.

Example 1.12. Canonical sheaf ΩX , and it’s dual Ω⊗−1
X := HomOX (ΩX ,OX) are

examples of invertible OX sheaf. Functors

Mod(DX)→ Mod(DopX ) (M→ ΩX ⊗OX M)

Mod(DopX )→ Mod(DX) (M→ Ω⊗−1
X ⊗OX M)

gives categorical equivalence each other. This shows we can interchange right DX -
module and left DX -module in appropriate moment.

2. The Hilbert’s Twenty-First Problem

We how mathematician tried to solve Hilbert’s twenty-first problem and where
it lead to.
Let X be a compact Riemann surface and consider the differential equations on
open subset U ⊂ X, such that X/U are finite sets z1 . . . zn

(2.1) {( d
dz

)n + a1(z)(
d

dz
)n−1 + . . . an(z)}f(z) = 0

a1(z) . . . an(z) ∈ OX(U) and possible poles on z1, . . . , zn.

Definition 2.2. Let D = x d
dx , if (2.1) can be rewrite as

(2.3) {Dn + b1(z)Dn−1 + . . . b1(z)}f = 0

and b1 . . . bn are holomorphic on zi. Then we will call (2.3) has a regular singularity
at zi
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Let’s consider the solution of (2.3) around regular singularity zi. By letting
polar coordinate z = exp(2πit) around punctured disk around zi. Then solutions
of (2.3) on punctured disk u1(t) . . . un(t) lift to solutions of the universal covering
space of punctured disk ũ1(t) . . . ũn(t). There is a matrix M ∈ GL(n,C) to satisfy
ũ(t + 1) = Mũ(t). This matrix M is usually called the monodromy. Another way
to think monodromy representation is that for rank N local system L, we can think
a representation of fundamental group π1(X, zi) and we can define

(L, zi) : π1(X, zi)→ GL(N.C)

for a loop [γ] ∈ π1(X, zi). What interesting property of regular singularity is, the
Theorem (2.6) tells that equation is essentially determined by a monodromy.

Definition 2.4. The two systems

(2.5)
d

dz
U = AU

d

dz
V = BV

are equivalent when there is an matrix with meromorphic coefficient M such that

B = (
d

dz
M)M−1 +MAM−1

Theorem 2.6. Two differential equations with regular singularities are equivalent
iff monodromy is conjugate.

Hilbert’s twenty-first problem asks whether any finite-dimensional complex rep-
resentation of π1(U) can be obtained from monodromy representation of the differ-
ential equations with regular singularities. When U = P − {0, 1,∞}, this problem
was solved affirmatively in classical Hypergeometric series theory involved by Gauss,
Kummer, and Riemann. Hilbert’s twenty-first problem is well post in the following
sense. If we didn’t impose singularities to a regularity, then there are too many
answer for a given monodromy. On the other hand, in case of regular singularities,
by the theorem 2.6, there is an essentially unique equation for a given monodromy
if there is a solution.
Combine with the theorem 1.10 and next theorem shows category of the mon-
odromy representations and category of connections are equivalent. This means
that Hilbert’s twenty-first problem is true for a connection.

Theorem 2.7. Let X be a connected n−dimensional complex manifold, and x a
point in X. The category of complex local systems on X is equivalent to the category
of finite dimensional left representations of π1(X,x).

Proof. General theory of representation tells that category of representation is
equivalent to the category of group rings, so we will prove that local system is
categorical equivalent to category of group rings.
L is CX -module with π1(X,x) action as a set with some representation . To show
that it is an C[π1(X,x)]-module we have to show that action of π1(X,x) is com-
patible with CX -module structure.
For this let L×L be the direct product sheaf defined by (L×L)(U) = L(U)×L(U)
over all open U ⊂ X; its stalk over a point x is just Lx × Lx. The addition law
on L is a morphism of sheaves L × L given over an open set U by the formula
(s1, s2) → s1 + s2; the morphism Lx × Lx → Lx induced on the stalk at x is the
addition law on Lx. But this latter map is a map of π1(X,x)-sets, which means
precisely that σ(s1 + s2) = σs1 + σs2 for all s1, s2 ∈ Lx and σ ∈ π1(X,x).
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We can show the argument of multiplication of C in a similar way. For the other
direction, take the universal covering space p : X̃ → X. The group π1(X,x) acts

on X̃ as covering transformation. Given a representation ρ : π1(X,x)→ GL(n,C),
we define its associated local system L via the introduction of the constant sheaf
LX̃ on X̃ ; we put:

Γ(U,L) := s ∈ Γ(p−1(U),LX̃) : ∀u ∈ p−1(U),∀ ∈ π1(X,x), s(σ.u) = ρ(σ).s(u)

then we can check the functionality of this constructed local constant sheaf �

Deligne’s was a one of the contributor for the Hilbert’s twenty-first problem and
generally, he is regarded the one solved this problem. His solution of Hilbert’s
twenty-first problem was extended the notion of regular singularities for an ar-
bitrary dimension and showed categorical equivalence between category of regular
connection is categorical equivalence to the category of integrable connection. More
precisely, Delingne meant equations with a regular singularity at normal crossing
divisor D and the equation is defined on X/D.

Definition 2.8. Let X be a non singular variety and D a divisor on X. We say
that a divisor D is of normal crossings at a point x ∈ X if there exists a regular
parameter system x1 . . . xn at x such that D is defined by x1 · · ·xk = 0 (k ≤ n).

Let X be a complex manifold and D ⊂ X a normal crossing divisor. We denote
by OX [D] the sheaf of meromorphic functions on X that are holomorphic on Y :=
X/D and have poles along D

Definition 2.9. Assume that a coherent OX [D]-module M is endowed with a
C-linear morphism

∇ :M→ Ω1
X ⊗OX M

satisfying the conditions

∇(fs) = df ⊗ s+ f∇s (f ∈ OX [D], s ∈M)

[∇θ,∇′θ] = ∇[θ,θ′] (θ, θ′ ∈ ΘX)

Then we call the pair (M,∇) a meromorphic connection along the divisor D
We denote by Conn(X;D) the category of meromorphic connections along D.

In a Riemann surface we say that a meromorphic connections (M,∇) at x = 0 is
regular if there exists a finitely generated OX -submodule N ⊂ M which is stable
by the action of D = x∇ (i.e., DL ⊂ L) and generates M over OX [x].
Regular connections for general algebraic variety is defined by a pull back of the
unit ball B = {x ∈ C||x| < 1}. For a morphism i : B → X such that i−1D = {0}
the stalk (i∗M)0 at 0 ∈ B is a meromorphic connections of one-variable and if this
is regular, then we will say M is regular
We denote by Conn(X;D)reg the category of meromorphic connections along D.

Theorem 2.10. Deligne’s Riemann-Hilbert Correspondence
With above hypothesis,then the restriction functor N → N|Y induces an equivalence

Connreg(X;D)→ Conn(Y )

of categories

The main theme of this note is the vast generalization of Deligne’s RiemannHilbert
correspondence by Masaki Kashiawara. Kashiawara’s Riemann-Hilbert correspon-
dence was formulated in the derived category. Today, this is an essential tool in
algebraic geometry, representation theory and number theory etc...
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3. Holonomic D-modules

To understand coherent DX -module M, we use geometrical interpretation of
M. This geometric idea naturally lead to the concept of characteristic variety and
holonomic DX -module.

Definition 3.1. For a coherent DX -module M if there is an increasing sequence
{FiM} of subsheaf FiM⊂M satisfies following properties
(1)M = ∪FiM, FiM = 0 when i ≤ 0
(2) FiM is coherent FM0 := OX module
(3)(FiM) · (FjM) ⊂ Fi+jM
then we will call F as filtration of M over DX and the pair (M, F ) filtered DX
module.

Example 3.2. DX naturally equip filtration F from the order of partial differential
operators.

Now we prove that coherent DX -moduleM always has a filtration. M is a
coherent DX -module so there exist a sheaf K that satisfies an exact sequence

0→ K → D⊗mX
Φ−→M→ 0

Take a filter for DX from example 3.2. Next lemmas will show that FiM :=
Φ(FiD⊗mX ) is indeed coherent OX module so that it is a filtration.

Lemma 3.3. FiK := K ∩ (FiDX)⊕m is a coherent F0DX := OX sheaf

Proof. (Sketch of the proof)
Each (FiDX)⊕m are coherent F0DX := OX -module. Since DX is a union of fil-
tration, K is generated by a some coherent F0DX submodule K0 ⊂ K ⊂ DmX :
K = DX · K0. Thus if we put Kj = (FjDX) · K0 ⊂ K, K =

∑
j∈ZKj . Each Kj are

coherent OX -module. (FiD)mare notherian as OX -module, so

K ∩ (FiDX)⊕m =
∑
{Kj ∩ (FiDX)⊕m}

is coherent OX -module. �

Utilizing the lemma 3.3, we can prove the existence of a filtration.

Lemma 3.4. Coherent DX-module M which is also finitely generated OX-module
is coherent OX module.

Proof. There is an exact sequence

0→ FiK → (FiDX)⊕m → FiM→ 0

FiK is coherent F0DX = OX sheaf and FiD⊕mX is also coherent OX -module. Thus
FiM is also coherentOX module. M = ∪i∈ZFiM so M is also coherent OX -
module �

To visualize information of coherent M module, we need to choose a specific
filter.

Definition 3.5. A graded ring grFM is defined by grFi M := FiM/Fi−1M and
grFM = ⊕grFi M. If grFM is coherent over grFDX−module then filter for M is
called good filtration.
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By utilizing similar argument to the lemma 3.3 and 3.4 , we can show that coher-
ent DX -moduleM always has a local good filter. Although in global case, Deligne
provided a counterexample for the existence in the category of analytic DX -module.
Now we can begin ”geometrical interpretation” of coherentDX -moduleM. Our set-
ting is complex manifold X of dimension n with a local coordinate x = (x1 . . . xn).
∂i ∈ F1DX define a section [∂i] ∈ grF1 DX = F1DX/F0DX then there is a isomor-
phism of sheaf of ring.

OX [T1 . . . Tn] ∼= grFDX = ⊕grFi DX (Ti → [∂i])

This fact can be stated without using the local coordinates. Consider a canonical
projection cotangent bundle, π : T ∗X → X and consider sheaf of a holomorphic
function OT∗X over T ∗X, and their direct image of the π∗OT∗X . For each section
[P ] ∈ grFi DX , we can define an injection grFDX → π∗OT∗X by taking a principal
symbol σ(P )(x, ξ) ∈ π∗OT∗X . The section of subsheaf grFDX ⊂ π∗OT∗X is a
polynomial of each fiber of π : T ∗X → X, π−1(x) = T ∗xX

∼= Cn. This gives
sequence of injective homomorphism

π−1grFDX → π−1π∗OT∗X → OT∗X

Let M be a coherent DX module and (M, F ) be a local good filter. Then grFM
is coherent grFDX module so there is a local free resolution

(grFDX)⊕m1 → (grDX)⊕m0 → grF (M)→ 0

Apply a right exact functor ∗̃ := OT∗X⊗π−1(grFDX) π
−1(∗) so that OT∗X module

g̃rFM=OT∗X ⊗π−1grFM π−1grFM has a free resolution

(OT∗M )m1 → (OT∗M )m0 → g̃rFM→ 0

so grFM is coherent OT∗Xmodule. support of the ˜grF (M) reflects analytic and
algebraic property of the M. We will call it a characteristic variety.

Definition 3.6. The characteristic variety of M is chM := supp(g̃rFM)

The definition of a ch(M) looks like involving filtration F , but in fact, one can
prove that ch(M) is not dependent on the way of filtration.

Proposition 3.7. A supp(ch(M)) is not depend on the choice of good filter.

Proof. See [Hotta-Takeuchi-Tanizaki] �

Let’s see why this is called the characteristic variety.

Example 3.8. The coherent DX -module M = DX/DXP defined by a partial
differential operators P ∈ Γ(X;DX) has a filter that induced from the filter from
FiDX

FiM = (FiDX +DXP )/DXP grFM∼= grFDX/grFDXσ(P )

with the principal symbol σ(P ). In this case, characteristic variety can be describe
as

chM = {(x, ξ) ∈ T ∗X|σ(P )(x, ξ) = 0}
Namely characteristic variety of M is zero points of principal symbol σ(P ). This
is the motivative example of characteristic variety and also compared with classical
Cauchy-Kowalevski theorem, we can understand why this is called characteristic
variety.
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Example 3.9. However, when it comes to a coherentDX moduleM := DX/
∑
DXPj

defined by several partial differential operators P1 . . . Pn things is getting more com-
plicated. In order to find appropriate results, we must restrict which module can
be appropriate. For an ideal I =

∑
DXPj ⊂ DX has a good filter

FiM = (FiDX + I)/I ⊂M FiI = I ∩ FiDX ⊂ I

grFM∼= grFDX/grFI

Here, grFI ⊂ grFDX is an ideal generated by principal symbols. The characteristic
variety of M is

chM = {(x, ξ) ∈ T ∗X|σ(Q)(x, ξ) = 0 (Q ∈ I)}

Although there is a problem. If we try to interpret characteristic variety as a zero
sets of principal symbol on cotangent bundle, then generally speaking

∑
grF (DX)σ(Pi) ⊂

grF (I) is not equality. Means that chM could be smaller than common zero
points of σ(Pi)s. We want to focused on modules such that grF (DX)σ(Pi) = grFI
holds. This problem has several ways to discuss. Our point is dimension.According
to [P.Schapira], when dimchM =dimX then we have desired equality grF I =∑
grF (DX)σ(Pi).

Dimension of characteristic variety is bounded below by the dimension of X
i.e. dim chM ≥dimX. This inequality is called Bernstein’s inequality. If equality
holds, then we will call the module as a holonomic DX -module.

Theorem 3.10. If coherent DX-module Mis non-zero, then 2dimX ≥ dimchM≥
dimX. In particular if chM = dimX, then we call M is holonomic DX-module.

Example 3.11. OX is a holonomic DX -module.

Intuitively speaking, the least possible dimension for chM means that the ideal
of the system of equation is the largest possible. We expect that solution space to be
finite-dimension. We can safely call it as appropriate module to discuss differential
equation.

Theorem 3.12. If M and N are holonomic DX-module, then for any point x ∈
X,HomDX (M,N )x is finite dimension. [Kashiwara]

From now on, we will occasionally use conormal bundle T ∗YX

Definition 3.13. We assume Y can be described by a local coordinate Y = {x1 =
. . . xd = 0} and X can be written as (x1 . . . xn). Conormal bundle of smooth
submanifold Y ⊂ X be a T ∗YX ⊂ T ∗X such that

T ∗YX = {(x, ξ) ∈ T ∗X|x1 = · · · = xd = ξd+1 = · · · = ξn = 0}

Now, we would like to focus again for the connection. One of the nice conse-
quences of introducing the idea of characteristic variety is that we can now geo-
metrically understand the connection. If M is a connection, namely a locally free
sheaf of finite rank, then the example 3.14 will shows that chM = T ∗XX. The
characteristic variety can be completely described in terms of conormal bundle. In
the proposition 3.15, we will show that this is actually an equivalent statement.
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Example 3.14. LetM be a connection of rank N . By theorem 1.10 we have a local
isomorphism M ∼= O⊕NX . Then we can define a good filter for M by FiM = M
when i ≥ 0 and FiM = 0 if i < 0. We have a local isomorphism

grFM∼= (OX [T1 . . . Tn]/

n∑
i=1

OX [T1 . . . Tn]Ti)
⊕N (n = dimX)

Then for a zero section of T ∗X, i.e.j : X ∼= T ∗XX → T ∗X. we have a local
isomorphism of OX -module

g̃rFM = OT∗X ⊗π−1grFDX π
−1grFM∼= j∗(OX)⊕N

This implies chM = T ∗XX. M is a holonomic DX -module.

Let’s show the full statement in regard relationship between connection and
holonomic DX -module.

Proposition 3.15. For a coherent DX-module M � 0 these conditions are equiv-
alent
(1)M is locally finitely generated over OX
(2) M is a connection
(3) chM = T ∗XX

Proof. (1)→(2) By lemma 3.4 we saw M is coherent OX -module. We will prove
this is a locally free so that M is a connection. For proof, we will use Nakayama’s
lemma.

Lemma 3.16. Let A be a commutative ring, J = J(A) be a Jacobson radical. If
we have M = IM + N for a finitely generated A-module M with their submodule
N ⊂M and ideal I ⊂ J , then M = N

The local ring OX,x, x ∈ X has a unique maximal ideal mx so that we have
OX,x/mx ∼= C. Apply the right exact functor OX,x/mx ⊗OX,x (∗) to the surjective
homomorphism

O⊕NX,x →M→ 0

so that

CN →M := C⊗OX,xMx → 0

thusMx is finite dimension over C. Let’s s1 . . . sN be a basis ofMx over C. Then
Nakayama’s lemma implies Mx =

∑N
i=1OX,xsi We will prove si is a basis of Mx

as a OX,x free module.
Suppose there is a nontrivial relation

(3.17)

N∑
i=1

fisi = 0 (fi ∈ OX,x).

For each (1 ≤ i ≤ N), we will define

ord(fi) = max{k|fi ∈ mkx}

. If apply a partial differential operator ∂i to (2.17), then we have

0 =

N∑
i=1

{((∂jfi)si + fi(∂jsi))} =

N∑
i=1

gisi
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for some gi ∈ OX,x and we will have

min1≤i≤N{ordfi} > min1≤i≤N{ord(gi)}

Repeating this process iterative, we will have a nontrivial relationship forMx
∼= CN

such that
N∑
i=1

hisi = 0 (hi ∈ C, (h1, . . . , hN ) 6= (0, . . . , 0))

but this contradict the hypothesis of s1 . . . s ∈ N being a C-basis. Thus we have
the isomorphism

Mx
∼= OX,xs1 ⊕ · · · ⊕ OX,xsN

For each point x ∈ X there is a homomorphism of coherent OX -module

Φ : O⊕NX →M ((f1, . . . , fN )→
N∑
i=1

fisi)

this induces an isomorphism of stalk Φx : O⊕NX,x ∼=Mx. This is isomorphism around
the x.
We already saw (2)→(3) in example 3.14.
(3)→(1) we can show the statement by introducing the other approach to construct-
ing a characteristic variety. Let F be a good filtration forM, and annihilating ideal
for coherent grFDX -module grFM,

AnngrFDX (grFM) = {s ∈ grFDX |sm = 0 (m ∈ grFM)}

and then it’s vanishing set

V (AnngrFDX (grF (M))) := {(s, ξ) ∈ T ∗X|s(x, ξ) = 0 (s ∈ AnngrFDX (grF (M))) ∈ T ∗X}

is indeed coincide with the characteristic variety.
grF (DX) ∼= OX [T1 . . . Tn] (n = dimX, Ti = [∂i] ∈ grF1 (DX)). (3) told that we
have an equality of the ideal√

AnngrFDXM
=

n∑
i=1

OX [T1, . . . , Tn]Ti

means that for an ideal J :=
∑n
i=1OX [T1, . . . , Tn]Ti ⊂ grF (DX) there is some k

such that

J k ⊂ AnngrFDX (grFM)

Tα = Tα1
1 . . . Tαnn with |α| = k are elements of J k so we have

∂αxFiMx ⊂ Fi+k−1M

Since F is a good filter, there is j0 such that

FiDX · FjM = Fi+jM(j ≤ j0)

So for an arbitrary j ≥ j0
Fj+kM = FkDXFjM⊂ Fj+k−1M

thus the increasing sequence

· · · ⊂ FjM⊂ Fj+1M⊂ . . .

terminate as FjM = Fj+1M so M = FjM is coherent. �
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4. The Cauchy-Kowalevski-Kashiwara Theorem

For a morphism between complex manifold f : Y → X and consider a sheaf of
OY module described as

DY→X := f∗DX = OY ⊗f−1OX f
−1DX

DY→X is a right f−1DX module. Also the homeomorphism of OY induced by a
differential by f∗

ΘY → f∗ΘX = OY ⊗ f−1ΘX

shows DY→X is also a left DY -module. This construction is general. Means that
we can define a inverse image for any DX -module M, so that

f∗M := OY ⊗f−1OX f
−1M = DY→X ⊗f−1DX f

−1M

is a left DY -module and right f−1DX -module. This shows we construct a functor

f∗ : Mod(DX)→ Mod(DY )

Example 4.1. If Y is a submanifold of complex X and f : Y → X is an embedding.
By utilizing a description of local coordinate , (x1 . . . xn) for the X and Y = {x1 =
. . . xd}(d = codimY ). Then we have a local isomorphism

DY→X ∼= DX/(x1DX + . . . xdDX)|Y

Example 4.2. If f : Y → X is submersion, we can locally write Y = S × X so
y = (y1 . . . yd, yd+1 . . . yn). f can be described as

y = (y1 . . . yd, yd+1 . . . yn)→ (yd+1 . . . yn)

Therefore we have local isomorphism

DY→X ∼= DY /DY ∂1 + . . .DY ∂d

The functor f∗ can be extend to the functor between a derived category.

Lf∗ : D+(Mod(DX))→ D+(Mod(DY ))

M• → DY→X ⊗Lf−1DX f
−1M•

by associative property of tensor product, we have

Lf∗(M•) ∼= (OY ⊗Lf−1OX f
−1DX)⊗Lf−1DX f−1M•

∼= OY ⊗Lf−1OY (f−1DX ⊗Lf−1DX f
−1M•)

∼= OY ⊗Lf−1OX f
−1M•

as DX is flat OX module. We call Lf∗M• as an inverse image of f∗. We can also
show that Lg∗(Lf∗(M•)) ∼= L(f ◦ g)∗(M•)
This inverse image is one of the basic operations of a derived category. In this chap-
ter, we want to generalize Cauchy-Kowalevski theorem(lemma 1.9) in the context
of the derived category. Now we will claim that f is a closed embedding throughout
this chapter. Actually, many theorems we will introduce here would also hold in
case of f is a submersion. However for the sake of Riemann-Hilbert correspondence
and to shorten proofs , it is enough to consider the case f is a closed embedding.
Consider a natural morphism induced by f : Y → X

T ∗Y
ρf←− Y ×X T ∗X

ωf−−→ T ∗X
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Where ρf is a homomorphism of holomorphic vector bundle. If f is a closed em-

bedding, then ρf is a surjective. It’s kernel ρ−1
f (T ∗Y Y ) ⊂ Y ×X T ∗X is a conormal

bundle T ∗YX

Definition 4.3. M is non-characteristic if we have

ω−1
f (ch(M)) ∩ ρ−1

f (T ∗Y ) ⊂ Y ×X T ∗XX

Example 4.4. Let M = DX/DXP (P ∈ DX), f : Y = {xn = 0} → X is
a closed embedding. Then principal symbol σ(P )(x, ξ) of P is a homogeneous
over ξ and ch(M) = {(x, ξ) ∈ T ∗X|σ(P ) = 0}. f is non-characteristic for M
ch(M) ∩ T ∗XY ⊂ Y ×X T ∗XX if and only if

σ(P )((x1 . . . xn−1, 0)(0 . . . , 0, 1)) 6= 0

By multipling some holomorphic function to P from left, we can replace a generator
of DXP ⊂ DX as

P ′ = ∂m +
∑

0≥j≥m−1

Qj(x, ∂1 . . . ∂n−1)∂jn

with m = ordP, ordQj ≤ ordP − j.The condition of a f being non-characteristic
is equivalent to Y is a non-characteristic for a partial differential operator P in
classical PDE. We may treat as if P ′ is a degree m polynomial and divide DX to
get a local isomorphism

f∗M = (DX/xnDX +DXP ) ∼= D⊗mY
Moreover, by a free resolution of right f−1DX -module DY→X

0→ f−1DX
xn×−−−→ f−1DX → DY→X → 0

We have

Lf∗(M) = [0→ (DX/DXP )|Y
xn×−−−→ (DX/DXP)|Y → 0)]

We have HjLf∗(M) = 0 and H0Lf∗(M) ∼= D⊗mY . This example will be generalized
by theorem 3.8. Before proving statements, let’s see lemma for proving statement.

Lemma 4.5. If f : Y → X is closed embedding, then f is non-characteristic for
M if and only if ρf is finite over ω−1

f (chM)

Proof. See [Takeuchi] �

Definition 4.6. A subset S of T ∗X, S ⊂ T ∗X is called conic when S is closed
under the action of C∗ on T ∗X, as these characteristic variety

Lemma 4.7. A characteristic variety for the coherent DX-module M is conic.

Proof. Chose a local generators of M, u1 . . . um ∈M then put

Ij := {P ∈ DX |Puj = 0} ⊂ DX (1 ≤ j ≤ m)

so there is an injection homomorphism of coherent DX -module

DX/Ij →M

and surjective homomorphism

⊕mj=1(DX/Ij)→M
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then by the formula following lemma,(proof can be found on [Hotta-Takeuchi-
Tanizaki]) we have a chM = ∪mj=1(ch(DX/I)) and actually, ∪mj=1(ch(DX/I)) is
conic because of homogenity of principal symbol.

Lemma 4.8. If there is a short exact sequence of coherent DX-module

0→M′ →M→M′′ → 0

then there is an equality

chM = chM′ ∪ chM′′

�

Theorem 4.9. If a closed embedding f : Y → X of coherent DX-module M is a
non-characteristic, then following statements hold.
(1) HjLf∗(M) = 0 (j 6= 0)
(2) H0Lf∗(M) ∼= f∗M is coherent DX-module.
(3) chf∗M⊂ ρfω−1

f (chM)

Proof. (Step 1) Let’s attempt (1). If f is closed embedding of codimension 1 surface
f : Y → X then

Lf∗ = [0→ f−1M xn×←−−− f−1M→ 0]

Let u ∈ M be a f−1u ∈ f−1M with xn(f−1u) = 0. Then ideal I := {P ∈
DX |Pu = 0} defines injective homomorphism

0→ DX/I →M

gives an inclusion ch(DX/I) ⊂ chM. This shows that a f : Y → X is non-
characteristic for a coherent DX -module DX/I. Since T ∗YX is complex line bundle
over Y and ch(D/I) is a conic, we see that, locally exist a P ∈ I and we have

{(x, ξ) ∈ T ∗X|σ(P )(x, ξ) = 0} ∩ T ∗YX ⊂ Y ×X T ∗XX

holds.This Implies f : Y → X is also non-characteristic forDX/DXP . Furthermore,
without loss of generality, we can assume P = ∂mn +

∑
Qj(x,1 . . . , ∂n−1)∂jn (m =

ordP, ordQj ≤ ordP − j). For this P ∈ I, we put adxn(P ) := [xn, P ] = xn ◦
P − P ◦ xn ∈ DX . In this case, xn(f−1u) = P (f−1u) = 0. For arbitrary k >

0, admxnP (ff
−1u) = 0. Especially when admxn(P ) is holomorphic function. Thus

f−1u = 0. This shows the first statement.
Let’s show the second statement. By the argument of (1), for a local generators of
u1 . . . ul ∈M, there is some Pi ∈ DX with Piui = 0. In addition to that, f : Y → X
is a non-characteristic for DX/DXPj . This induce a short exact sequence

0→ N → ⊕lj=1DX/DXPj →M→ 0

Here f is non-characteristic for N . From computation of example 3.4, we have

0→ f∗N → D⊕NY → f∗M→ 0

with N :=
∑l
i=1 ordPi. This shows that f∗M is locally finitely generated DY

module. Since f∗N also satisfies same hypothesis, we can claim f∗M is coherent
DY module.
(3)Let Pj ∈ DX be what we used in(2) with mj := ordPj . We have an isomorphism
of DY

Φj : D⊕mjY
∼= f∗(DX/DXPj) ∼= DX/xnDX +DXPj
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((R0, R1 . . . Rmj−1))→ [
∑mj−1
k=0 Rk ◦ ∂kn] satisfies following property.

(4.10)

Φj(FiDY⊕Fi−1DY⊕· · ·⊕Fi−mj+1DY ) =
FiDX + (xnDX +DXPj)

xnDX +DXPj
⊂ f∗(DX/DXPj)

Here, define the filtration of f∗(DX/DXPj) ∼= D
⊕mj
Y by

Fi(D
⊕mj
Y ) := FiDY ⊕ . . . Fi−mj+1DY ⊂ f∗(DX/DXPj)

Then surjective homeomorphism Ψ : ⊕lj=1f
∗(DX/DXPj)→ f∗M from (2) induces

the good filtration Fi(f
∗M) := Ψ(⊕lj=1Φj(Fi(D

mj
Y ))) also by the above argument,

we have Fi(f
∗M) = (FiM+ xnM)/xnM⊂ f∗M. This gives a surjection

f∗grFM := (grFM/xngr
FM)→ grF (f∗M)

. From the projection, πY : T ∗Y → Y and π : Y ×X T ∗X → Y we can ] construct
the OT∗Y module

˜f∗grFM := OT∗ ⊗π−1grFDY π
−1(f∗grFM)

and OY×XT∗X -module

ω∗f (g̃rFM) := OY×XT∗X ⊗π−1(f∗grFDX) π
−1(f∗grFM)

Since this is embedding, ρf is finite over compact support of ω∗f (g̃rFM) and we
have an isomorphism
,

f∗grFM∼= ρfω
∗
f ( ˜f∗grFM)

We can get inclusion supp( ˜f∗grFM) ⊂ ρfω
−1
f (chM). By combining surjection of

OT∗Y module ˜f∗grFM→ grF (f̃∗M) we will get what we want.
(Step 2) In case of f : Y = {xn−d+1 = xn−d+2 · · · = xn = 0} → X defines closed

embedding. We can prove by induction from (Step1). Take a complex hyperplane
H such that Y ⊂ H := xn = 0 ⊂ X. Let g : H → X be an embedding then
ρf : Y ×X T ∗X → T ∗Y decomposed into

Y ×X T ∗X = Y ×H (H ×X T ∗X)
idY ×Hρg−−−−−−→ Y ×H T ∗H → T ∗Y

By the hypothesis, ρf is finite over ω−1
f (chM), so the neighborhood of Y in X,

ρg : H ×X T ∗X → T ∗H is also a finite on ω−1
g (chM). Thus g : H → X is non-

characteristic for M around Y . From the (step1), HjLg∗(M) = 0 (j 6= 0) and
we have H0Lg∗(M) ∼= g∗M with ch(g∗M) ⊂ ρgω−1(chM).
By the induction hypothesis, HjLh∗(g∗M) = 0 (j 6= 0) and H0Lh∗(g∗M) ∼=
h∗g∗M ∼= f∗M is coherent. We also have ch(f∗M) ∼= ρhω

−1ρgω
−1(chM) ⊂

ρfω
−1
f (chM). �

We will write H0Lf∗M∼= f∗M asMY . We will callMY as an induced system
over Y . Since f∗OX ∼= OY , we have a homomorphism of sheaf

f−1HomDX (M,OX)

→ Homf−1DX (f−1M, f−1OX)

→ HomDY (DY→X ⊗f−1DX f
−1M,DY→X ⊗f−1DX f

−1OX)
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(4.11) ∼= HomDY (MY ,OY )

From this fact, we can consider MY as a restriction of solution of PDE of X over
Y . In particular, if Y is a hyperplane {xn = 0} with closed embedding f : Y → X
is non-characteristic over M = DX/DXP , then we have a local isomorhism

D⊕mY ∼= DX/xnDX +DXP ∼=MY

In fact, by considering the map ((R0, R1 . . . Rm−1)) → [
∑m−1
k=0 Rk ◦ ∂kn], we can

describe a morphism (3.11) in the following way

{u ∈ OX |Y |Pu = 0} → O⊕mY

u→ (u|Y , ∂nu|Y , . . . ∂m−1
n u|Y )

The classical Cauchy-Kowalevski theorem claims that this map is an isomorphism.
This map can be extend to a derived category by the following way.

f−1RHomDX (M,OX)→ RHomDY (Lf∗M,OY )

In the case of a hyperplane, we can calculate asH0f−1R(M,OX) = {u ∈ OX |Y |Pu =
0}, H1f−1R(M,OX) = (OX/POX)|Y and when j 6= 0, 1, cohomology vanishes.
H0R(MY ,OY ) = O⊕mY and otherwise all cohomoloies vanish.
The Cauchy-Kowalevski theorem claims that 1st cohomology vanishes due to the
solvability of PDE so we can confirm an isomorphism f−1RHomDX (M,OX) ∼=
RHomDY (Lf∗M,OY ). The Cauchy-Kowalevski-Kashiwara’s theorem generalize
this fact.

Theorem 4.12. An embedding f : Y → X is non-characteristic for coherent DX
module M. Then we have an isomorphism of derived category of

f−1RHomDX (M,OX) ∼= RHomDX (Lf∗M,OY )

Proof. (1)Consider the case f : Y := {xn = 0} → X is a closed embedding. Utilize
the exact sequence of coherent DX -module in a proof of theorem 3.9

0→ N → ⊕lj=1DX/DXPj →M→ 0

The classical Cauchy-Kowalevski theorem told that there is an isomorphism for
L := ⊕lj=1DX/DXPj with

f−1RHomDX (L,OX) ∼= RHomDY (LY ,OY )

so we will have the commutative diagram
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0

��

0

��
f−1HomDX (M,OX)

A
//

��

HomDX (MY ,OY )

��
f−1HomDX (L,OX) ∼=

//

��

HomDX (LY ,OY )

��
f−1Hom(N ,OX)

B
//

��

HomDY (NY ,OY )

��
f−1Ext1DX (M,OX)

C
//

��

Ext1DY (MY ,OY )

��
f−1Ext1DX (L,OX) ∼=

//

��

ExtDY (LY ,OY )

��
f−1Ext1DX (N ,OX) //

��

Ext1DY (N ,OY )

��
...

...

Both of vertical sequences are exact. A is injective, and since N is also non-
characteristic with same hypothesis, so B is also injective. Thus, by 5-lemma, A
isan isomorphism. Apply the 5-lemma once more, we will have injection of C. By
doing this argument iterative, we will have the isomorphism

f−1RHomDX (M,OX) ∼= RHomDY (MY ,OY )

(2) When f : Y = {xn−d+1 = xn−d+2 = · · · = xn = 0} → X is closed embedding
of submanifold. With the same method of proof on theorem 3.11 we can prove by
the induction of hyperplane H such that

Y
h−→ H = {xn = 0} g−→ X (f = g ◦ h)

so by induction we will have the following statement.

f−1RHomDX (M,OX) ∼= h−1g−1RHomDX (M,OX)

∼= h−1RHomDH (Lg∗M,OH)

RHomDY (Lh∗Lg∗M,OY )

∼= RHomDY (Lf∗M,OY )

�
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5. The De Rham Functor and The Solution Functor

Let’s denote the dimension of complex manifold X as dX , and derived category
of bounded complex of DX -module as Db(DX). Also

Db
coh(DX) = {M• ∈ Db(DX)|Hj(M•)is coherentDXmodule})

Db
h(DX) = {M• ∈ Db(DX)|Hj(M•)is holonomicDXmodule})

we can define the solution complex SolX(M•) and the De Rham complex DR(M•)
in the following way.

SolX(M•) = RHomDX (M•,OX)

DR(M•) = ΩX ⊗LDX M•
The solution functor is solutions of partial differential equations as we saw in chap-
ter 1. In that sense, solution functor generalize a solution of PDE in a derived
category. Analogously, De Rham complex is higher dimensional analogous of dif-
ferential equations.
Next lemma is just a calculation.

Lemma 5.1. Left DX module OX has a free resolution

0→ D ⊗OX ∧dXΘX → · · · → DX ⊗OX ∧0Θ ∼= DX → OX → 0

Morphisms dk : DX ⊗OX ∧kΘX → DX ⊗OX ∧k−1ΘX (k 6= 0) are given by

dk(P ⊗ θ1 ∧ . . . θk) =
∑
i

(−1)i+1Pθi ⊗ θ1 ∧ . . . θ̆i ∧ θi+1 ∧ · · · ∧ θk

+
∑

(−1)i+jP ⊗ [θj , θj ] ∧ θ1 ∧ · · · ∧ θ̆i ∧ · · · ∧ θ̆j ∧ . . . θk

When k = 0 it is P → P (1)

Let By multiplying tensor product ∧dXΩX ⊗OX (∗) to the exact sequence from
lemma 5.1, then we also got a free resolution of right DX -module ΩX

0→ ∧0ΩX⊗OXDX ∼= DX → ∧1ΩX⊗OXDX → · · · → ∧dXΩX⊗OXDX → ∧dXΩX → 0

Here ΩdXX ⊗OX DX → ΩX and δk : Ωk ⊗OX DX → Ωk+1
X ⊗OX DX are given by

ω ⊗ P → ωP and δk(ω ⊗ P ) = dω ⊗ P +
∑dX
i=1 dxi ∧ ω ⊗ ∂iP .

Combine with the above observations, we can see the De Rham complex DRX(M)
for the coherent DX -module M are

DRX(M) = [0
∇0−−→ Ω1

X ⊗OX M
∇1−−→ . . .∇dX−1ΩdX ⊗OX M→ 0]

with ∇k : Ωk ⊗OXM→ Ωk+1
X ⊗OXM is defined by ω⊗P → dω⊗P +

∑dx
i=1 dxi ∧

ω ⊗ ∂Pi
The solution complex and the De Rham complex are actually, in some sense

they are dual in a derived category from the following calculation. DRXM• ∼=
ΩX⊗LDXM• ∼= (Ω•X⊗DX [dX ])⊗DXM• ∼= ΩX⊗OXM•[dX ] so that opposite version
of higher direct image functor RHom is RHomDX (OX ,M•) ∼= HomDX (DX ⊗OX
∧•ΘX ,M•) ∼= HomOX (OX ∧• ΘX ,M•) ∼= ΩX ⊗OX M∼= DRXM[dX ]
This means that if we multiple ⊗OXΩ−1, we have

RHomDX (OX ,DX)⊗OX Ω⊗−1
X [dX ] ∼= OX

This example motivates to define a dualize functor in the following way.
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Definition 5.2. Contravariant functor DX : Db(DopX )→ Db(DX) is defined by

DX(M•) = RHomDX (M•,DX)⊗OX Ω−1
X [dX ]

For a holonomic DX -module M, we will call DX(M) is a dualizing DX -module.

Indeed, for a coherent bounded complexM•, we have an isomorphism DX(DX(M)) ∼=
M and if M is holonomic, HjDX(M) ∼= 0 if (j 6= 0) and H0(DX(M)) ∼= DX(M)
is a holonomic DX module. In this sense, DX is a dual functor. These fact lead to
an important relation between solution functor and De Rham functor.

Theorem 5.3. For a M• ∈ Db
coh(DX), we have an isomorphism

SolX(DX(M•))[dX ] ∼= DRX(M•)

Proof. We have an isomorphism for M•
Sol(DX(M•))[dX ] ∼= RHomDX (DX(M•),OX)[dX ]

∼= RHomDX (DX(M•),DX)[dX ]⊗LDX OX
∼= ΩX ⊗LDX RHomDX (DX(M•),DX)⊗LOX Ω−1

X [dX ]

ΩX ⊗LDX DX(DX(M•)) ∼= ΩX ⊗LDX M•

Here we used the technique in the example 1.12. �

In the derived category, there is the well-established theory of duality. We want
to utilize this in the analytic theory of PDE. Proofs of 4.5 and 4.7 can be found on
[Kashiwara-Schapira]

Definition 5.4. Let f : X → Y be a continuous function between topological
space X,Y . The direct image functor f∗F ∈ Sh(Y ) is defined by

f∗F(V ) := F(f−1(V )) (V ⊂ Y )

Then subsheaf f! ⊂ f∗(F) is defined by

f!F(V ) := {s ∈ F(f−1(V ))|f |supp s : supp s→ V is a proper map} (V ⊂ Y )

f!F is called proper direct image sheaf.

If we define a map of a one point space aX : X → pt . The sheaf of abelian
group on one point space Sh(pt) is equivalent to ablian category of abelian group
Ab. So there is an isomorphism

(aX)∗ ∼= Γ(X, ∗) (aX)!
∼= Γc(X, ∗)

If in addition to that assigning hypothesis that there exist d > 0 such that for k > d
we have HkRf!F ∼= 0

Theorem 5.5. f : Y → X is a continuous function between a locally compact
Hausdorff space with commutative ring AX and AX-module M, and AY N of
finite global dimension. Poincare-Verdier duality states that there exist a functor of
triangle category f ! such that

Rf∗RHomAX (M•, f !N•) ∼= RHomAY (Rf!M•,N•)

We will call f ! as the twisted inverse image functor.
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Definition 5.6. THe dualizing complex ωX ∈ Db(X) for analytic space is defined
as ωX = a!Cpt. The Verdier duality functor is defined by

DX(F•) := RHom(F•, ωX)

These operation commute to DX in a following sense

Theorem 5.7. For a Holonomic and bounded DX-module M, we have
(1)

DX(SolX(M[dX ])) ∼= DRX(M)

(2) For a category of bounded holonomic DX-module Db
h(DX), we have an isomor-

phism

DRX ◦ DX ∼= DX ◦DRX

6. The Riemann-Hilbert Correspondence

Definition 6.1. The locally closed analytic subset Xα ⊂ X (α ∈ A) define a
stratification X = tα⊂AXα if Xα satisfy following conditions
(1) For an arbitrary α ∈ A, Xα is a smooth and Xα and ∂Xα is an analytic.
(2) For an arbitrary α ∈ A, there is a subset B ⊂ A such that

Xα = tβ∈BXβ

We call Xα as an stratum.
The Whitney stratification is a stratification with additional conditions (a),(b)
(a) Assume that a sequence xi ∈ Xα of points converges to a point y ∈ Xβ (α 6= β)
and the limit T of the tangent spaces TxiXα exists. Then we have TyXβ ⊂ T .
(b) Let xi ∈ Xα and yi ∈ Xβ be two sequences of points which converge to the
same point y ∈ Xβ(α 6= β). Assume further that the limit l (resp. T ) of the lines li
jointing xi and yi (resp. of the tangent spaces TxiXα) exists. Then we have l ⊂ T .

Every analytic space has a stratification. Moreover if M is holonomic DX -
module, then X has a some Whitney stratification X = tα∈AXα and we have
chM⊂ T ∗XαX.[Hotta-Takeuchi-Tanizaki]

Definition 6.2. Let X be an analytic space, and F as sheaf of CX module. F is
constructible sheaf if there is a stratification X = tα∈AXα with restriction F|Xα
is a local system.

Example 6.3. Consider aDX module over complex planeX = C,M := DX/DX(x∂−
λ) (λ ∈ C), and chose a sheaf F = HomDX (M,OX). F|X/{0} ∼= CX/{0}xλ is an lo-
cal system over C/{0}. We have an isomorphism of stalk F0

∼= C(if λ = 0, 1, 2 . . . )
and F = 0(otherwise). If we chose stratification as X = X/0 t 0 then F is an
constructible sheaf.

Definition 6.4. Let X be an analytic space and F• ∈ Db(X). We call complex
F• is an constructible if for an arbitrary j ∈ Z, Hj(F•) is constrctible sheaf. We
denote full subcategory of constructible complex in Db(X) as Db

c(X) ⊂ Db(X)

The partial claim of Kashiwara’s version of Riemann-Hilbert correspondence is
about Grothandieck’s six operations and constructible sheaf.
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Theorem 6.5. (1)If X is an analytic space then dualizing complex is a constructible
ωX ∈ Db

c(X). The Verdier duality functor preserve category Db(X) and involutive
DX ◦ DX = id.
Let f be a morphism between analytic space then
(2)The functor f−1 and f ! : Db(Y ) → Db(X) preserves category of constructible
sheaf. Moreover we have

f ! = DX ◦ f−1 ◦ DY , f−1DX ◦ f ! ◦ DY

(3) When f : X → Y is a proper morphism, the functor Rf∗,Rf! : Db(X)→ Db(Y )
preserves category of constructible sheaf and

Rf! = DY ◦ Rf∗ ◦ DX , Rf∗ = DY ◦ Rf! ◦ DX
Theorem 6.6. The solution complex and the De Rham complex for holonomic
DX-module M SolX(M) DRX(M) are constructible sheaf.

Proof. (outline) By the isomorphism DR(M)∼= SolX(DX(M)), we only need to
prove that F•=SolX(M) is constructible. Let take a Whiteny straitification X =
tα∈AXα with chM ⊂ tα∈AT ∗XαX(detailed explanation of the construction is on
[Hotta-Takeuchi-Tanizaki]). We want to prove that for each α ∈ A and j ∈
Z, Hj(F•) is a locally constant sheaf. In order so, it is sufficient to prove for
each point x ∈ Xα, there exist an open neighborhood U ⊂ X of x such that
a−1
U R(aU )∗(F•|U ) → F|U (aU : U → pt) is an isomorphism. We can prove this by

using theorem 6.7 [Kashiwara-Schapira].

Theorem 6.7. Let X be a complex manifold and XR be the real analytic manifold
underlying X. Then {Ωt}t∈R be a family of relative compact stein open set. Each
boundary ∂Ωt ⊂ XR is C∞ hypersurface for XR. Assume following hypothesis
(1) Ωs ⊂ Ωt (s < t)
(2)Ωt = ∪s<tΩs
(3) For an any t ∈ R, ∩s>t(Ωs/Ωt)∂Ωt and chM ∩ T ∗∂Ωt

XR ⊂ TXRXR Then we
have a fallowing isomorphism

RΓ(∪Ωs;SolX(M)) ∼= RΓ(Ωt;SolX(M))

By assumption of a Whitney stratification there is a family of open set {Ωt ⊂
X}t∈(0,1] with Ω1 ∈ U , ∩t∈(0,1]Ωt = {x} and ∂Ωt is a real C∞hyperplane in X and
T ∗∂Ωt

∗(X) ∩ ch(M) ⊂ T ∗XX so by above theorem we have a desired isomorphism.

Remain is to show Hj(F) is finite dimension, but this requires functional analysis
argument, so skip it. �

We can interpret the above theorem as a generalization of the naive form of
Riemann-Hilbert correspondence in one dimension as De Rham complex is higher-
dimensional analogous of integrable connection and constructible complex is a gen-
eralization of local systems. Kashiwara proved that, furthermore, these sheaves are
other important sheaves.

Definition 6.8. Let X be an analytic space and F• ∈ Db
c(X). F• is called the

perverse sheaf when for arbitrary j ∈ Z
dimsupp(Hj(F•)) ≤ −j dimsupp(HjDX(F•)) ≤ −j

we will denote full subcategory of perverse sheaf as Perv(CX) ⊂ Db
c(X)
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Theorem 6.9. For a holonomic DX-module M, both SolX(M)[dX ] and DR(M)
is perverse sheaf.

Proof. (outline of 6.9) By the isomorphism DRX(M) ∼= Sol(DX(M))[dX ], we only
need to prove SolX(M)[dX ] is perverse sheaf. Also the Verdier duality clams that
we have

DX(SolX(M)) ∼= SolX(DX(M))[dX ]

so we just only need to prove the first condition of F• := SolX(M)

dimsupp(Hj(F•)) ≤ −j

We fix the integer j ∈ Z and put S := suppHj(F•) ⊂ X. We can take a Whitney
stratificationX = tα∈AXα and we have chM⊂ tα∈AT ∗XαX and also fix the subset
B ⊂ A such that S = tα∈BXβ . By the Kashiwara’s conductibility theorem, for
an arbitarly α ∈ A and j ∈ Z, we have Hj(F•)|Xα as a local system on Xα. Also
there is α ∈ B such that dimXα = dimS. With that strata, we take normal slice
Y on x ∈ Xα. Means that Y is submanifold of X with following properties.
(1) Y ∩Xα = {x}
(2) dY + dXα = dX
(3) TxY ∩ TxXα = {0} Namely Y intersect with X at only one point {x} then
taking iY : Y → X as a inclusion map, and by the condition chM ⊂ tα∈AT ∗XαX,
iY is a non-characteristic. By Cauchy-Kowalevski-Kashiwara’s theorem, we have a
following isomorphism.

F•|Y = RHomDX (M,OX)|Y [dX ] ∼= RHomDY (MY ,OY )[dX ]

Here MY is a coherent DY -module. So by our assumption, x ∈ Xα ⊂ S =

supp(Hj(F•)) we have 0 6= Hj(F•)x ∼= Extj+dXDX (MY ,OY )x on the other hand,
we have a following lemma

Lemma 6.10. For a coherent DX-module M

ExtiDX (M,DX) = 0 (j > dX)

Proof. See [Takeuchi] �

and combine with the fact

RHomDX (MY ,OY ) ∼= RHom(MY ,DY )⊗LDY OY
we have ExtiDY (MY ,OY ) = 0 (i > dY ). So the inequality holds for j+ dX ≤ dY ↔
dX − dY ≤ −j �

Kashiwara reached the ultimate form of Riemann-Hilbert correspondence. This
is a categorical equivalence between perverse sheaf and regular singular DX -module.

Definition 6.11. LetM be a holonomic DX -module and chM be a characteristic
variety. Let I be an ideal of GrF (DX) vanishing on chM. M is regular singularity
if there is a locally coherent filtration F (M) and IGrF (M) = 0. We will wrote
Modrh(DX) as category of regular singular DX -module.

Theorem 6.12. Kashiwara’s Riemann-Hilbert Correspondence

DR(∗) : Modrh(DX) ∼= Perv(CX)

SolX(∗) : Modrh(DX)op ∼= Perv(CX)
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