Algebra Qual solutions

Tomoki Oda

1 Introduction

This document cover solution for recent problems, with other people’s solu-
tion, it covers all the correct solutions except for Fall 2021 problem 7 which we
couldn’t figure out if Noetherian or not. For the solution part, I would like to
appreciate Spencer Martin and Jung Joo Suh for the countless of discussions.
I would like to credit all the people who attribute for making credit Emil Geisler,
Emmy Van Rooy, Harahm Park, Matthew Tyler, Robert Miranda Thomas Mar-
tinez and William Chang.

I would like especially thanks to Ariana Chin and Stepan Malkov.



2 Spring 2024

I think only problems need to argue on here for this year are 3, 6 and 9. I can
explain briefly how to solve others, 1.it is almost identical to Fall 2022 problem

It is just a Nullstellensatz

Basic property of Tor functor, quite similar to Spring 2022 Problem 3
Asked so many times

Basic properties of Nilpotent group

8. This is nontrivial but I gave as an alternative solution as 2022 Fall 6
10. construction of the colimit

Spring 2024 Question 3 Find all positive integers n such that cos(
rational

Solution sketch When n = 1,2 this is rational and omit those cases.
Assume n # 1,2 so that et ¢ R. Suppose Q(cos%) = @, then the nontrivial

extension Q(e%)/@)(cas%) has degree 2, as the minimal polynomial being

B

Nt

27
n

) is

2% —2cos(25) + 1, so the extension of Q(e**")/Q is also degree 2 extension. This

is same things as calculating the degree of cyclotomic polynomial. The degree of
cyclotomic polynomial can be calculate by the Euler’s tortient function. Tortient
function is multiplicative when prime is relatively prime. Also we can exclude
all prime bigger than 2,3 by estimate it below. Only possibilities are 1,2, 3,4, 6
Spring 2024 Question 6 Analysing the structure of the Sylow 5 group, prove
finite group G of order 300 is not simple.
Solutionns = 1,6 when ns = 1 this is not simple, so assume ns = 6. In this
case, by the conjugation action of G to the set of Sylow 5 subgroup, you can
map G into the Sg. This is indeed embedding if we say G is simple. However
|Se| = 720, |G| = 300 we can not realize it via embedding due to the Lagrange
theorem.
Spring 2024 Quedtion 9 A is finite dimensional algebra over k = k. Prove
following statement is equivalent.
(1)A simple A module is 1dimension.
(2) J(A) is set of all nilpotent element of A.
Solution (1) — (2) Fact: All simple A module appears as a submodule of
A/J(A), reason is simple module can be written as A/m for left maximal ideal.
Jacobson radical is the intersection of the all maximal ideal, so using chinese
reminder theorem we get all of maximal ideals as each component. Using Artin
wedderburn we have A/J(A) =~ [[ Mat;(k") where k//k is an algebraic exten-
sion. Since k = k indeed k’ = k, also i = 1 for the hypothesis. We have a
multiplicative structure A/J(A) =~ k™ with each component. Although this ring
is not reduced, no elements are nilpotent, so J(A) contains all nilpotent ele-
ments. Furthermore, A is finite dimensional algbra, so Artinian. In general the
Jacobson radical of the Artinian ring is Nilpotent, so J(A) is the set of nilpotent
elements.

Conversely if some 7 > 2 then there is a nonzero nilpotent element in A/J(A).
If we lift to A, then that gives a nilpotent element of A which is not in J(A).



3 Fall 2023
Problem 1

Let G be a group, let H < G be a subgroup of finite index n > 2 let x € G.
Prove [H : xHx ' n H] <n -1

Solution to the problem 1

Consider

By assumption [G : H| = n, and each cosets of G/H can be represented
by x1H,...xz,H. Pick an element z € G, we will estimate the cardinality of
[H : HnxHx™']. When z € H then statement is trivially true, so we can
assume z ¢ H.
Note xHz ™! is a subgroup of G, and consider the left multiplication action
of h € H to the left coset G/xHxz~!. Since [G : H] = [G : zHxz7!] = n
we can pick representative tHz 1, gyoHx "' ... g,oxHx~!. The stabilizer of the
element xHx ' contains H n zHx~t. So [H : zHx~! n H] < n, however pick
g; = ! so that there is a coset represented as Hx~'. This is a stable under
any action by H. So this has a orbit of length 1. This reduce the bound of
previous inequality as n to n — 1. Thus [H : sHz ' n H] <n—1

Problem 2

Let A be a commutative Noetherian ring. Prove that every nonzero ideal I of
A contains a finite product of nonzero prime ideals.

Solution to the problem 2

Suppose there is an ideal I such that I is not contain a finite product of non
zero prime ideals. Then the set of ideals such that

K ={I|I isanideal I is not contain a finite products of prime ideal} # ¢

. We can introduce a poset structure for K Since A is a Noetherian ring, there
is a upper bound for the chain of ideals. The maximal element I’. We can prove
this I’ is prime itself so that contradict the hypothesis.
If I’ is not prime, pick x,y ¢ I’ but zy € I’ so that I’ + zA and I' + yA
are stricktly larger than I. Note they are not trivial: if I’ + A = A then
ylI' + yrA = yA but yI’ + yxA is contained in I’. So I' + xA and I' + yA is
both proper ideal.

By the maximality of I'+x A and I’ +y A each of them must contain a product
of prime ideals, but then so does (I' + xA)(I' + yA) < I, which contradicts the
choice of I'.



Comment: If I remove the Noetherian hypothesis, can I find counter exam-
ples of the ring?

Problem 2’

Find a commutative ring R that there is a ideal I of R does not contains a finite
product of nonzero prime ideals.

Solution to the problem 2’

Here honestly, I didn’t have idea, so copied from Stack exchanges

We can chose ring R to be R = {(ay)nen € ZN|a, 41 = a, for n sufficiently large
and the ideal I = (0). For all ¢ € N, let e; € R be an element such that

e; = (a;)neny with a; = 1 if i = n and 0 otherwise. Let P be a prime ideal, and

0eP.

If there exists ¢ € N such e; ¢ P. Then since for ¢ # j,e;e; = 0, ¢; € P for all

Jj # 1. So@®;x;Ze; — P.If we choose a finite number of prime ideals P; ... P, with

@®mrjlen, < P, then we have 0 € @;1..mZe; < Py ... P, doesn’t contained

in a product of prime ideals.

As shown above, R is not an integral domain, so 0 is not a prime ideal so 0 is

not prime ideal itself. Thus this shows 0 does not containing a finite product of

prime ideals.

Question 3

Show that there is an isomorphism of Q-algebra Q[t] ®qpe2) Q[t] = Q[x,y]/
(2% = y?).

Solution to the problem 3

Construct the Q—algebra morphism 7 : Q[x, y] — Q[t] ®q2] Q[t] by z — t®1
and y — 1®t. The kernel contains (22 — 3?) because 7(z% — y?) = 2 ®
1-1®t2 =t3(1®1—-1®1) = 0. Hence this morphism factor through
7+ Qr, /(2% — 32) — Qlt] @gpee) QI

We will construct the inverse morphism of 7’/ so that two ring are isomorphic
with each other. Construct morphisms f : Q[t] — Q[z,y]/(z? —y?) by f(t) =«
and g : Q[t] — Q[z,y]/(2* —y?) by g(t) = y. Since f(t*) = a® = y* = g(¢*), by
the universal properties of tensor product, there is an morphism h : Q[t] ®qp2]
Q[t] — Q[z,y]/(z* —y?) such that h(t®1) = f(t) and h(1®t) = g(t). This in an
inverse morphism of 7’. Since ho7'(z) = h(t®1) =z, ho7n'(y) = (1 ®t) = y.
As a Q— algebra, z, y are generators, so this is enough to show the isomorphism
of Q—algebra.

}



Question 4

Let K/F be the finite Galois extensions, pick « € K/F. Let E be a subfield of
K containing F of a largest degree over F' such that « ¢ E. Prove E(«a)/E be
a Galois extension of a prime degree.

The first Solution to 4

First step: Prove E(«)/E is a Galois extension.

E(a)/FE is separable extension because K /F is a separable extension, and
any intermidiate extension of separable extension is separable.

Show the normality, since K/E is Galois, the minimal polynomial of a over
FE, m, split completely on K. We will show that minimal polynomial m,, splite
in E(a). Let 8 be an other roots for m,. If 8 € E(a) then nothing to prove.
Hence without loss of generalities we can assume that is not contained in F(«).
By the maximality of E, F(3) contains . This can be written as >, ¢;8° = «
for ¢; € E. Let N be a normal closure of E(a) over E. By the assumption
of Galois, N ¢ K and there is a ¢ € Gal(N/E) such that o(5) = «a. Let the
order of o be n. Then since > ¢;a’ = o(a). This means o(a) € E(a), and by
keep doing this argument we have o'(a) € E(a). But 0" 1(a) = ¢™(8) = 8 so
B € E(a). Thus m,, splite completely on F,,.
Second Step: Prove E(«)/E is a prime degree. Let G be a Galois group of
E(«a)/E. If the extension is not prime degree, due to the Cauchy theorem, there
is a order p-cyclic subgroup of G. then there is a nontrivial proper subgroup
generated by some element ¢ € G such that < ¢ ># G. By the Galois corre-
spondence, F(«)<?~ correspond to the field containing E. Since o is nontrivial
generator, « was not fixed by o. This means E(a)? but not a containing «. It
contradict to the maximality of the E.

The second Solution to 4

Use Galois correspondence. Let E/F be the largest field not containing . Then,
Gal(K/E) is the smallest subgroup of Gal(K/F') that does not fix . There is
an element o in Gal(K/FE) not fixing «, and the subgroup < o > does not fix
«. However if there is any proper subgroup, this proper subgroup fixes a. By
the minimality of Gal(K/FE) this has to be a cyclic group.

Consider Gal(K/E(a)). If Gal(K/E(a)) = {e} then E(«) is normal, so by
the second step on the first solution this is prime index. This reduce cases,
suppose now that Gal(K/E(«)) is a proper nontrivial subgroup of Gal(K/E)
that fixes a.

If there are any intermediate subgroups 1 ¢ Gal(K/E(a)) € G' < Gal(K/E),
they correspond to a nontrivial field extension of F not containing «, which con-
tradicts the maximality of . Thus, there are no intermediate subgroup, which
means that Gal(K/E(«)) is the maximal subgroup of cyclic group, Gal(K /E(«))
has prime index in Gal(K/FE). Notice Gal(K/E) is a cyclic group as we showed



above, in particular abelian. By the Galois correspondence every abelian sub-
group is realizeable by the subfield of K. Using the Galois correspondence,
E(«)/E is Galois with Galois group Gal(K/FE)/Gal(K/E(a)) which is index p.

Question 5

Let F be a field, and let f(z) = Y., a;z" be a polynomial of degree n > 1
with coefficients a; € F. Show that the splitting field of f(x?) over F contains

a square root of (—1)"apa,,!

Solution to Question 5

Consider the spliting field of f(2?), which we will denote it as K. Without
loss of generality by dividing a,, so that we can replace the polynomial into the
monic f(2?) = 2?" + a/,_,2*"% + ... af, where a} = o and prove /(—1"ao) is
contained in the splitting field.

We can factor f(z) into f(z) = [[(z — a;). Using the relation of root and
coefficient, we have [[(—a;) = ap = [[(a;) = (=1)"ag. Notice \/a; € K as
f(y/ai®) = f(@) = 0. So []+/a; = v/—1ag that prove the statement.

Question 6

For a positive integer n, let C), be the category with objects [1,n] := {1,2,...,n}
and morphisms Mor(i, j) an empty set if ¢ > j and a singleton otherwise. For
positive integers m and n, a nonstrictly increasing function f : [1,n][1,m] can
be viewed as a functor C,, — C,,. Prove that this functor fhas right adjoint if
and only if f(1) = 1.

Solution 6

1 is a initial object of this category, if there is a right adjoint g, then pick
i€ Cp and j € Cp, so that Hom(i,g(j)) = Hom(f(i),j). Notice 7 is initial
object so the morphism exist for all j. This means we must have f(i) < j for
all j. Notice j can be 2 so f(1) = 1.

glks +1) = g(k3) = i3 + 1. We can keep this construction so that we can
construct a adjoint
Comment: I am pretty sure mathematically this is correct construction, but I



am not sure my writing is good enough, I just did the case i=2, but how should
I write for the general cases?
Question 7

Let R be a PID and n > 1. Let M be a finitely generated R™ module, show
that there is a exact sequence

with P, @ finitely generated projective R™ module.

Proof. Since M is finitely generated, there exists my, mo, ..., mg € M such that

{m;} generate M as an R™ module. Let e; = (1,0,...,0),e2 = (0,1,0,...,0),...,¢e, =
(0,0,...,1) be idempotents of R™. Consider the submodule ;M of M for

1 < i < n. Iclaim that e; M has a natural R module structure by rm = (re;)m

for r € R (where R™ is an R-module in the usual way). This gives an R module
structure because e;m = m for all m € e;, since e; is idempotent:

ei(esm) = e2m = e;m

Furthermore, e; M is finitely generated as an R-module by e;m1, e;mo, ..., e;my.
Therefore, we have a short exact sequence of R-modules (for each 1 < i < n):

i

0 —— ker ’(ﬂl Rk eiM 0

Since ker); is a submodule of the finitely generated free module R*, it is a
torsion free and finitely generated module over a PID, and thus is free. There-
fore, there exist nonnegative integers 0 < by, ...,b, < k such that the following
sequence is short exact:

2

0 Rbi £, RK e;M — 0

Suppose that Aj,..., A, are R-modules. Then @, A; has a natural R"-
module structure by

(r1, . rn)(ar, ... an) = (r1a1, ..., Tnay)

Let us show that with this induced action of R", M =~ @._, e;M. Let v :
M — @, e;M by ¢(m) = (exm,...,e,m), which is clearly an R™-module
homomorphism. 1 is injective since if ¥(m) = ¥ (n), then e;m = e;n for all
e;, and thus Y ;e;m = 1-m = 1-n. Also, it is clearly surjective onto each
coordinate and thus surjective. Therefore, we have a short exact sequence of
R™ modules by:

00— P R SN ®;_, R* M ——0



The R™ module @]_, R* is the same as (R")*. Furthermore, we have a con-
gruence of R-modules:

@Rbi ) Rk_bi ~ (Rn)k
i=1

i=1

and therefore @', RY is a sub R"-module of a free module, and is thus pro-
jective. Therefore, we have an exact sequence of the desired form, since (R™)*
is free and thus projective. O

4 Spring 2023

2023S #1 Let F,F' : C — D and G,G' : D — C be four functors F is a left
adjoint to G and F’ be a left adjoint of G’. Establish a bijection between
the natural transformations o : F' — F’ and the natural transformations

B8:G -G
Solution. Consider the commutative diagram

D(F'X,Y) —— C(X,GY)
l(lX* X,y i

g

D(FX,Y) —— C(X,GY)

construct ¢x,y as composition of the isomorphism nxy : D(FX,Y) =
C(X,GY) and 7y y : D(F'X,G) = C(X,G'Y) as ¢xy = nxy oax o
Nxy . We want to show that this ¢y is natural transformation of
representable functor when fixing X. Namely, we will show, given f :
Y — Z then the diagram

cx,av) E9% ox, o' z)

¢X,YJ/ Lﬁx,z

CX.G(Y) g2 CX.G(2))

commute. This can be shown by using the commutativity of



D(F'X, Y)LD(F’X, Z)

) J G'(f), l )

C(X, G'Y)%(X, G'Z)
ax, Oxy Jﬁﬁx,z ox,

~ ~
g

D(FX, Y)LD(FX, Z)

Note the outer rectangle involve ax 4 and f; is commutative because ax
is natural transformation by Yoneda’s lemma. Upper square and bottom
square is commutative because of the adjoint. Using the commutativity
of small squares, composition of blue arrows in a square is same as com-
position of red arrows in the small square. It means the commutativity
of outer rectangle implies commutativity of the red arrows. The last red
arrow is isomorphism, in parituclar this is monic, so

nxy o ¢x,zoG(f)onxy =nxy o G(f)odxy onyxy

implies
dx,.z0G(f)onxy =G(f)odxy onxy

. The nxy is also isomorphism so epi morphism. This means

b¢x,z0G(f) =G(f)odxy

S0 ¢x,y is a natural transformation of representable functor.

This result is not depend on the choice of X, so it make sense to write
¢_y € Nat(C(—,G'(Y)),C(—,G(Y))). By the fullness part of Yoneda
embedding, this natural transformation is coming from the morphism Sy €
C(G'(Y),G(Y)). With this construction, we can define an morphism Sy
for any Y € D. This defines collection of morphisms §.

We already saw G(f)x © (By)s = (Bz)x © G(f)«. These are two same
natural transformation Nat(C(—,G'Y),C(—,GZ)). The faithfulness part
of Yoneda’s lemma claims, as the morphism of C(GY’, GZ), they have to
be same. Due to the functoriality we have the commutative diagram.



2023S #2

ay 2, gy

los s
¢z 2 Gz
commute. This shows [ is indeed a natural transformation.
Now we will show that o and 8 are bijective each other. If o« € Nat(F, F")
is given, then 8 € Nat(G’,G) can be construct. Then apply the same

argument for 3, then we can construct a natural transformation & €
Nat(F, F’). We need to show a = &.

Consider maps

(ax)y : D(F'(X),Y) - Hom(F(X),Y)
[ fax
(ax)s : D(F'(X),Y) — Hom(F(X),Y)

[ foax

We can define this for any object Y € D, and these define two natural
transformations in Nat(C(F'(X),—), C(F(X), -).

By construction, (ax )y, (@x )+ both make the following diagram commute
respect to the By

£
ox,ay) 2% o, ay)

B I2

D(F'X,Y) — D(FX,Y)

Thus, (a,)* and (ax)* are the same map. By Yoneda’s Lemma, there
is a corresponding map ax € C(FX, F'X) that correspond both ax, @x.
Since (ax)* = (ax)* for every X € C, a = &. This shows bijection
between « and f.

O

Let p,q be the distinct prime numbers and consider the number field
K = Q(\/p + y/q). Describe all the subfields of K and the inclusion
between them.

Solution: We have Q(,/p) and Q(,/q) are linearly disjoint, means Q(,/p)n
Q(y/q) = Q, if not, then there is a,b € Q with a,/p+b = |/q. Taking square
for the both side we made /p is rational. Also Q(/p,+/q) is a splitting
field this is Galois. By the disjointness, we have the Galois group Z/2 x Z,/2
there are exactly 3 nontrivial proper subgroup. That has to be correspond
into Q(/p), Q(v/), Q(y/pq) that they are disjoint with each other, and Q
are trivial subfield. Claim: Q(/p + 1/q) = Q(y/p, /). Clearly we have

10



Q(/p,v/a2) < Q(\/P, /q)- On the other hand Q(

there should no intermediate field except for Q(

P+/a) 2 Q(y/pq). But
P:/Q)- So Q(v/P:\/4) =

K (Alternatively we can divide 5127;3;6 =P — /)

s

2023S #3 Given an example of an infinite field extension K < L such that only
finitely many field automorphism fixing K.

Solution: Consider the following examples

(a) Claim: The only surjective ring homomorphism from R — R is the
identity map. Lemma: Any ring homomorphism f : R — R is
uniquely determined by f(1) and this is identity. Proof: First of
all f(1) = 1 because this is a ring homomorphism. For n € Z f(n) =
nf(1). Also for the rational number Z, we have f(%)f(s) = rf(1) and
f(L)sf(1) = rf(1)2. Then by additivity, so f is identity over Q. We
will prove f is indeed a continuous function, so that all continuous
function is determined by the dense set. Indeed, if z > 0 then z = 2
for some real y., hence f(z) = f(y)? = 0 which implies f preserve a
order. And hence |y — x| < L implies |f(y) — f(z)| < L[f(1)], that
implies f is continuous.

[R: Q] is not a finite, the reason is Q is countable but R is uncount-
able. And automorphism fixing Q is identity.

(b) Consider F, < F,(z). This case F,(z) is a transendental extension.
So the degree of extension is o0
Claim: The Gal(F,(t)/F,) is finite group. In general, the Galois
group Gal(k(t)/k) is a PGL(2,k). This solution refered to the Cox
”Galois Theory” proposition 7.5.5 and Theorem 7.5.7 Proposition
7.5.5 Assume « € k(¢) is a rational function not is k and write o = %
where a(t),b(t) € F[t] are relatively prime. Then
1.« is transcendental
2.a(z) — ab(x) € k(a)[z] is irreducible over k(a)[z]
3.k(a) < k(t) is a finite extension of degree [k(t), k(a)] = max(deg(a), deg(b))
If « is algebraic over k then there is an algebraic relationship

a"+a ™+ a4, =0

with n > 1 and a; ...a, € k. Substituting a = béti then by multi-

plying b(t)™ then
a(t)™ = b(t)(p(t))

for some polynomial p. Since k(x) is UFD it contradict they are
relatively prime. Without loss of generalities, we can assume b(¢) is
constant. Then there is a algebraic equation of a(t) that is contra-
dicting for the fact that ¢ is a transcendental over t.

We will prove a(x) — ab(z) is irreducible over k(z,«). a(x) — ab(z)
is irreducible over k[x,a] suppose not, then we can write it as a

11



product p(z, a)q(z, ). The degree of a for a(xz) — ab(x) is one, ei-
ther p(z,«) ¢(z,a) is a polynomial of x. Suppose p(z,a) € k[x]
that means p(x) divide both a(z) and b(z) contradicting a(z) and
b(x) are relatively prime. This shows a(x) — ab(z) is irreducible over
k[a, x]. Clearly a(x) — ab(x) € k(a)[«x] if this decomposed into the
p(z, a, é) and ¢(z, «, é) then by multiplying sufficiently large «, then
a*a(x)—aF+1b(x) is factored into the k[, z]. But again, sine k[a, z]
is UFD, and a(z) — ab(x) is irreducible on k[z, a] ,a(z) — a(t)b(z) is
irreducible in k(a)[z].

Since « is rational function of ¢ we have k(a) < k(a,t) = k(t). ¢ is
vanishes in a(z) — ab(z). Then compare the coefficient of a(z) and
b(x), since « ¢ k these coeflicient doesn’t vanish, so the degree of this
polynomial in terms of x is max(deg(a), deg(h)).

We will claim that given g = (Z b) be a invertible matrix then

d
g-t= Zttis gives automorphism. To be presise there is a morphism
from GL(k,2) — Gal(k(t),k)). This action of g fixes element of F.

We can see ‘jfidb gives a transcendental function. With degree, 1 as

this is a root of (ct + d)z — at — b. This means k(%58) = k(t).

There are inverse automorphism fl;f?;ba .So showed this embedded into

the matrix to the automorphism group of k(¢)/k

This is surjective, because by the above argument we showed, the
degree 1 automorphism must be a smaller than degree one in both
denominators and numerators, so a form of ’clfis :ict;rba is the inverse,
and this to be exist, we have to have ad — bec # 0.

We can compute kernel is multiple of identity by solving the equation
t = 248 This equation implies ¢t — (a —d)t +b=0s0 c=b =0
and a = d.

O

2023S #4 Let M, (K) be the ring of n x n matrix with coefficients in a field K,
describe all possible ring homomorphism M, (K) —» K

Solution: When n = 1, the homomorphism of the field is End(K).

When n > 1, notice that M;; the matrices with a 1 in the (4, j) entry and
other entries are 0. As being a ring, M, (K) are generated by M;; as a
K—module, so ring homomorphisms are determined by how M;; mapped
under f. Moreover, if i # j, then M} =0, so f(M?) = f(M;;)* = 0 —
f(M;;) = 0. Moreover, if f(M;;) # 0, then for ¢ # j, M;;M;; = 0, so
this ensures M;; = 0 at most one diagonal entry can map to something
nontrivial (and it must map to 1, as the identity maps to 1).

However, for n > 1, consider the matrix M, such that 1 all entires are
1 f(M) = f(My) + F(M — Myi) = 1, but then 1 = f(M)? = f(M?) =
f(n-M)=n-f(M) = n. So, there are no ring homomorphisms for n > 1.

12



Extra problem

2023S #5

O

Alternate Solution: Alternatively, since M, (k) is a simple ring, so every
ring homomorphism to the other ring & are injective (otherwise kernel
would be a nontrivial two sided ideal.) So the image under homomorphism
is always noncommutative. However k is commutative, so we cannnot
embeded M, (K). Contradiction.

O

Show there is no homomorphism from ¢ : M,,(K) — M,,(K) for n > m.

According to the argument above, ¢ is injective homomorphism.

1. Restrict to the morphism to the GL,, (k) then this will be a morphism
of the algebraic group whose image is contained in GL,,(k) as invertible
elements map to invertible. We know the (krull)dimension of (n + 1)2 —
2n —1 = n? —n. But the left hand side has dimension less than n? —n so
there is no such a injection.

2. M, (k) are minimally generated by the elementary matrix E;; for 0 <
1,7 < n. And M,,(k) is generated less number of generator, thus generator
maps to generator, this shouldn’t be injective.

Let A be a local commutative noetherian ring and M a finitely generated
A-module such that every exact sequence 0 - M” — M' — M — 0
remains exact after tensoring with the residue field & of A. Show that M
is free.

Solution: Since M is already finitely generated, there exists k£ such that
AF — M is a surjection. In particular, without loss of generalities pick k
is the smallest integer r satisfying the above property. By the statement
of the problem we have the following exact sequence.

0>M — A" —>M—0

Note M"” is a kernel of the map A"™ — M, which is a submodule of
the finitely generated submodule over the Noetherian ring, thus this is
a finitely generated A-module. Tensoring by the residue field A/J(A4) ~ k
gives

0> MRk >A"Qk—>MQk — 0

Since M ®k is a module over vector space, there exist n such that M ®k ~
k™ and k*F ~ k" @ M” ® k. We will claim that n = k. If not we will show
that the module will be generated by fewer elements.

Consider the following form of Nakayama’s lemma for vector spaces. If
M is finitely generated module over A, images of elements my ..., of
M/J(A)M generate as A/J(A) module, then M is spanned by mq ... m,
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2023S #6

2023S #7

Proof. Using the other version of Nakayama’s lemma, M = JM + N —
M = N for N ¢ M. Then this claim is same as N = | Rm,. O

Apply the above Nakayama’s lemma, n = k, so the M"” ® k = 0. Again
using the Nakayama’s lemma for M”, implies M” = 0. This implies
A" =~ M so that M is free. O

Let A be commutative ring, and let s € A. Let S = {1,s,s?,...}. Show
the following are equivalent.

(a) The canonical morphism A — S~14 is surjective

(b) There is N > 0 such that s"A = sV A for all n > N.

(c) For n large enough, the ideal s™A is generated by an element e with

62:€

Solution

(c) = (b): There is some N for which ¥n > N then s¥4 o S"A.
By hypothesis there is an idempotent eA = SN A. Since e = ¢, SN A =
eAd =e?A =eSNA = 89NeA = S2VA. If we take k large enough so that
n < 28N then we have S2°NA c S" = SV A so that we have SN A = S™.
(b) = (a): sV e sNVA =sN*T1A So, sV = sV*1q for some a € A. In
other words,
sN(1—sa)=0

Thus, § = % in S~1A. So, the canonical morphism A — S~!A is surjective
on ST'A.

(a) = (c): If the canonical morphism is surjective, then there is some

a € A such that § = % So, there exists some sV such that sV = sV+lq.

Set e = sVaV. Then,

(SN)(IN _ <SN+NaN)aN _ (SNaN)2
Moreover, sV a” generates all of s’ A (which is equal to s" A for alln > N
by a simple inclusion argument), as sV = sV (sVaV) e sV A.

Let k be a field and let A = k[, y]/(2?, vy, y?).
(a) Determine the invertible elements of A

(b) Determine the ideals of A
(¢) Determine the principal ideals of A

Solution: (a) The invertible elements are {12 + asy + a3 : as # 0}.
(b) The full list of ideals are all of the principal ideals, 0, A, and {z,y).

(c) The principal ideals are those of the form (), {y), and {z + }y) for
any a,b # 0.

O
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2023S #9 Let GG be a non-abelian finite group of order pg where p and ¢ are prime
numbers with ¢ > p. Determine the degrees of the irreducible characters
of G, and determine the number of irreducible characters of a given degree.

Solution: The dimension of the irreducible representation divide the or-
der of the group. The order of the group is pg for two primes p and ¢
where ¢ > p. We couldn’t have the degree ¢ and pq representation be-
cause ¢> > pq as well as (pg)? > pg. Thus it is enough to count the
number of the representation of degreee p and 1. Note that the number
of the 1 dimensional irreducible representation is same as the |G/[G, G]|.
We will count the cardinality of [G,G]. We shouldn’t have [G,G] = {e}
because of the non-abelian hypothesis. So |G/[G, G]| = p,¢,1. We cannot
have 1, because let n be the number of the conjugation classes then the
dimension, group order formula of G gives 1 + p?n = pg.But since right
hand side is 0 modp but left side is 1. That cannnot be happen.

If |[G,G]| = p, then there is a normal subgroup [G, G] of order ¢, also
notice by the Sylow’s theorem, there are unique normal sylow ¢ group. By
the internal direct product theorem, it would be a internal direct product
between g—sylow subgroup P, and [G, G]. Both group is commutative, so
group would be a abelian.

Thus |[G, G]| = ¢q and there are p different 1-dimensional irreducible rep-
resentation. There are % degree p irreducible characters. This also
indirectly shows that such a non-abelian pq group exist only if ¢|p — 1.
Note that you can also use the fact strcture theorem of the non-abelian

pq group. ]

2023S #10 Let A be an artinian ring and let M be an A-module. Let B = End 4 (M).
Let f € B such that f(M) c J(A)-M, where J(A) is the Jacobson radical.
Show that f e J(B).

Solution: There are four steps.
(a) Show J(A) is nilpotent.
(b) I={f]| f(M)c J(A)- M} is an ideal.

(c) We want to show that 1 — hf is invertible for all h € End (M), but
hf € I because I is an ideal, so it suffices to show 1 — f is invertible
for all fel.

(d) f is nilpotent. Then
I+f+f2+.  +MNA-H=1-f""=1
so 1 — f is invertible.

Here once see step (a) and (b), rest is just following (c) and (d) so just
see a nontrivial claims of (a) and (b). Lemma. Jacobson radical J(A) of
Artinian ring A is nilpotent ideal.

15



Proof. J(A) is an ideal of Artinian ring, so the chain J*(A4) < Ji*1(A)
would stablize. Let K be an ideal that stablize, I = J'(A) = JiT1(A) =
.... If I # 0 then nothing to prove,

F = {I c R|Kan ideal and TK # 0}

F is not empty because I € F, and by Artinian condition there is an
minimal ideal, put it K. We will show that K is finitely generated. 1K #
0 now choose element z € K such that Ix # 0, such element z exist,
otherwise JK = > Iz = 0, so Iz = 0 and indeed by the hypothesis of
being minimal of (z) = K. This shows not just finitely generated, but K
is principally generated. Since K is finitely generated, IK = K we can
use Nakayama’s lemma(Note I < J(A).) So K = 0. This means that
there is no notrivial element in the family so I = 0. O

Returning to the problem, consider the set
I'={geB|g(M)c J(A) M}

By construction, this is a left ideal. Moreover, for any g € I, we know g is
nilpotent. This is because for any n > 1

fr(M) < fFI(A)"TIM) < J(A)"M

16



5 Fall 2022

2022F #1

2022F #2

Find all the subfield of F = Q(+/2, V/3)

Solution. Consider the normal closure N of F', denote their Galois group
G := Gal(N/Q).
Claim: G = (Z/3Z)? x 7/2Z.

Proof. 3 —2 and 23 — 3. Since F does not contain 3rd root of unity w,
F is not a splitiing field for 2 — 2 or z3 — 3. Notice F is totally real
field, so F' n Q(w) = Q. These polynomial split on Q(4/2, V/3,w). Since
[Q(4/2, ¥/3,w), F] = 2 there is no intermediate field between them, we can
see N = Q(4/2, ¥/3,w). Consider the Galois group Gal(N/F) = Z/27. Tt
is generated by an action p € G p : w — w™!. Since ¥/2 and /3 are
linearly disjoint, [N : Q] = 18. Let 0,7 € G be elements permuting roots
of 23 —3 and 23 —2 respectively o : V2 - Y2wand T: V3 > /3. Notice,
F = Q(w, v2)Q(w, ¥/3), and Q(w, V/3) n Q(w, V/2) = Q(w). So the Galois
group of Gal(N/Q(w)) = Z/37Z x Z/37. By considering the actions of w,
we can compute relation pop~! = o~ ! and prp~! =771, O

By the Galois correspondence, any intermediate field E such that Q C
E C F < N correspond to the subgroup H such that {e} = {p} C H C G.
As pis order 2 and G is order 18, the only possible order for H is 6. Since

{py € H, H is semi-direct product between (p) and order 3 elements of

G.There are 6 order 3 elements in G.{o, T, o7, 0?72, 07, 072}. There are 4
9 9 9 9 9 9

different groups generated by these elements namely (o, p,{T, p),{oT, p) =

<U2T27 P>7 <027—7 p> = <TJ27 p>'
Counting {p) and G together, we see there are 6 subfields. O

Let P(X) =2%+3

(a) Determine the splitting field over Q

(b) Determine the isomorphism type of the Galois group of P(X) over
Q.

Solution: (a) Let ¢ = e’ then the splitting field is Q(¢,v/—3) for 1 <

i < 6. Since ¢ = 3+ 13 e Q(V=3) thus indeed Q((, ¥/=3)
Q(54/=3). This implies extension is generated by 64/—3. Q(+/—3) is
6 dimensional over QQ vector space, we have [Q(+v/—3) : Q] = 6.

(b) The group of order 6 is either Z/6Z or S3. The Galois correspond
says normal subgroup correspond normal subfield. Here Q(+/3) is a
subfield but not Galois over Q so this is not abelian. Thus Galois
group is Ss.

O
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2022F #4

2022F #5

List all conjugacy classes of GL(2, F},).

Solution: The matrix on the vector space has rational canonical form

<C(gl) C((}z))

with f1]f2 or C(f1). In the former case, fi and fo has both degree 1 so
that rational canonical form is a diagonal matrix so there are p—1 different
conjugacy classes. In the latter case, f; = 2 + azx + b and

e = (7 )

This matrix is invertible iff b # 0 so that there are p(p — 1) different
conjugacy classes. To sum up, there are p(p—1) +p—1 = p?—1 conjugacy
classes. O

Let G be the group presented by
G = {a,bla* = 1,0*> = a®, bab~! = a1
You may use that G has order 8. Compute the character table of G.

Solution: Since G has order 8 and is not abelian, as a=! # a (a is of
order 4), we know G is either D4 or the quaternion group. (If you are
familiar with the quaternions, you could see immediately that this is the
quaternion group presentation). We note that this assumption (along with
a # b) gives us the 8 elements directly

G = {ab,ba,a,a ", b,b"" a* = b?, e}

(or alternatively) We have a unique presentations of the elements of group
by a'¥’ so that we can easily figure out that {(a?) is normal subgroup.
We can compute the commutator group by quotienting out by a?) so
that we have a presentation of G/{a?) =~ (a,bla® = b? = 1,bab = a) =
Z7)27 x 7)2Z.

From the group presentation we have the following conjugacy classes
(which gives us the number of irreducible representations)

bab~t =a~! (1)
aba™t =b"! (2)
bbab™! = ba~? (3)

We note that a? = b? is its own conjugacy class, as this commutes with
both a and b so is in the center of the group. Since e is also its own
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conjugacy class, we have 5 conjugacy classes 2 containing one element
each and 3 containing 2 elements.

To compute the character table, we will start by noting that there must
be an identity character. We note that the sum of the dimensions of
the characters squared must equal the size of the group, and we note
that we must have a character for each conjugacy class. This means 8 =
1+1+1+1+22is the only way to allocate dimensions. For 1-dimensional
characters, we can make a guess. Let’s compute the character that takes
a to —1 and b to 1. We know that this is irreducible if it is well defined, as
it has dimension 1. This gives us a® — —1, b — 1 and ab, ba — —1, and
a’,b?,e — 1, and thus is well defined. Similarly, we look at the character
that takes b — —1 and a — 1. Finally, we take the characters b — —1 and
a — —1. All three of these are well-defined 1-dimensional characters (one
can compute that these are in fact linearly independent). So we have

{e} | {a®} | fa,a™'} | {6,071} | {ab,ba}
E 1 1 1 1 1
Ry 1 1 -1 1 -1
Ry 1 1 1 -1 -1
Rs 1 1 -1 -1 1
R4 2 I Z9 I3 T4

To calculate the last row, we use the following orthogonality relation
1 _
0= (xa X8) = 157 2, (9)B(9)
Gl &

We can compute inner products:

1
(E,Ry) = §(2 + 1 + 2x9 + 225 + 224) =0

1
(R1,R4) = §(2 + o1 — 2w9 + 205 — 224) =0

1
<R2,R4> = §(2 + 1 + 229 — 223 — 2.’134) =0

1
<R3,R4> = §(2 + 21 — 209 — 223 + 23’34) =0

Adding all 4 of these equations, we get:

1
1+§x1=0 == x; = —2
\17Vhich tells us 1 = —2. Now, we use the normality condition: ﬁ@(a? Xa) =

1
(R, Ry) = S(4+4+ 20a|* + 2|zs| + 2fx4l?) = 1
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This means: )
1+ Z(|gc2|2 + lzs|? + |za]?) =1

Noting that the magnitudes need to be greater than or equal to 0, and
thus all three of them must be 0. The final character table is:

e} | fa?} | fa,a™'} | (5,67} | {ab,ba}
E 1 1 1 1 1
Ry 1 1 -1 1 -1
Ry | 1 1 1 -1 -1
Ry | 1 1 1 -1 1
Ry 2 -2 0 0 0

O

2022F #6 Let G be a finite group, let V' be a finite-dimensional complex vector space
and let 7 : G — GL(V) an irreducible representation. Let H be an abelian
subgroup of G. Show that dim(V) < [G: H] .

Proof. Let p: G — GL(V) be a irreducible representation. Then it defines
the restriction to the py. Let W be a irreducible representation of H,
which is one dimensional. Let V'’ be the subvector space of V such that
generated by the images of @,ecgW. Note that this V' is invariant undet
the action of G, so this is also a subrepresentation of V. However V is
irreducible, and V' # 0 so V = V’. Given two different vector spaces
to be coincide ¢'W = gW, this is equivalent ¢~ '¢’W = W that means
¢ 'g € H. In other words, there is some h € H such that g = g'h. It
means the image under G is determined by the representative class of
G/H. Since the number of different images are atmost [G : H| because it
is so the dimension of V' is at most [G : H].

Alternatively let xgy be a restriction of V' to the subgroup H.

Claim. {xm,xuy > xv(l)

Proof. The character restrict to H can be written as the direct sum of
irreducible representation \; of H, xg = Y,m;\;. Since xpm is a just
restriction of H, we have xy (1) = xg(1). In particular the representation
of the abelian group is A; : G — C*. And order is finite, all x;(g,)are root
of unity. xm (1) = xv (1) = X, m; where m; are integers. Taking the inner
product, {xm, xu) = X mim;(hi, Aj) = (X m}) = Y. O

Since xv is irreducible character, we have >} .o Ixv(g)|*> = |G| by the
orthogonalities. So the restriction to the H gives Y., . [xv(h)|* < |G|

— \XV\Q

Since {xH, XH) T we have xv (1) < {xw, xH) < % O
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2022F #7 Let S be a multiplicatively closed subset of a commutative ring R. Show

2022F #8

that for a prime ideal p in R disjoint from S, the ideal pR[S~!] in the
localization R[S™!] is prime. Show that this gives a one-to-one correspon-
dence between prime ideals in R that are disjoint from .S and prime ideals

in R[S™1].

Solution. Let m: R — R[S™'] be the localization, defined by a — %.
Lemma 1. For any ideal J = R[S™!], (x(x=1(J))) = J.

Proof. 1t is clear {m(7~'(J)))  J. For the reverse inclusion, let ¢ € J.
Then s% € J, with a € R, thus a € 7~ 'J. This means ¢ € w(7~'(J)). So
that (1)(2) = % € (n(x 1)

O

Lemma 2. For any ideal I ¢ R, 7= 1((x(I))) ={a€ R:3s€ S :sae I}.
Also (n(I)y=R[ST o InS# &

Proof. Let I' ={ie R:3s€ S :sieI}. Suppose i€ I, there exist s € S :
si=acl Then +=%exl. Soien '(nl). Conversely, let i € 7~ *(nI),
so that £ = ¢ for some a € I and s € S. Then 3t € S : t(si —a) = 0 so
tsi = ta € I and we can find ts € S, so that its € I, which means i € I'.
Now 7l = R[S7!] <> 2 e 7] < 1 € m~(xI) In particular if I is any prime

ideal disjoint with S the p’ = p O

Returning to the original problem, pick an ideal ¢ = R[S~!] then prove
m1q is a prime ideal that is not intersecting with S. First of all this does
not intersect with S, otherwise contradicts with lemma 1. This is prime
ideal because preimage of prime ideal is prime.Suppose pc R i§ a prime,
such that p n S = . Let ¢ = mp. Suppose 2% € ¢ then 2% = £ for
some p € p and u € S. Then there is some t € S : t(uaa’ — ss'p) = 0 Since
pnS = and p is prime, we get aa’ € p so either a € p or @’ € p. This
shows bijective correspondences. O

Let A be a commutative ring. Show that the following are equivalent.

(a) Every prime ideal of A is equal to an intersection of maximal ideals
of A.

(b) For every ideal I, the intersection of all prime ideals of A/T is equal
to the intersection of all maximal ideals of A/I.

Solution Sketch: (a) = (b): the intersection of prime ideals of A/T
corresponds exactly to the intersection of all prime ideals of A that contain
I. Since every prime ideal of A (containing I) is equal to an intersection of
maximal ideals of A (containing I), this is exactly equal to the intersection
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2022F #9

2022F #10

of all maximal ideals of A that contain I (as maximal ideals are prime),
which then corresponds to the intersection of all maximal ideals of A/I.

(b) = (a): Let I = P c A be a prime ideal. Then, A/I is a domain,
so (0) is a prime ideal of A/I. Thus the intersection of all prime ideals
of A/I is (0), and must be equal to the intersection of all maximal ideals
of A/I. This corresponds to saying the intersection of all maximal ideals
containing P is equal to P. O

Let ¢ : Ab — Gp be the inclusion/forgetful functor. Show that ¢ has a
left adjoint c. Does « have a left adjoint? Does ¢ have a right adjoint?

Solution Sketch o : Gp — Ab the abelianization functor is left adjoint to
¢. ¢ has no right adjoint because it does not commute with colimits. As a
counterexample, consider the coproduct Z x Z in the category of abelian
groups. Then, ¢(Z x Z) = Z x Z remains abelian. However, taking the
coproduct last gives us ¢(Z) = ¢(Z) = Z * Z which is not abelian.

Moreover, o does not have a left adjoint because it does not commute with
limits. Consider the inclusion f : A3 — S3. Then, o does not preserve
this inclusion. «(f) : Az — Z/2Z is the trivial homomorphism. So in
particular, o does not preserve the fiber product of the diagram Az — S3
consisting of two f arrows. If we take the fiber product first, we get As.
If we take the fiber product last, we get Az x Ag.

Note: any functor that preserves limits must preserve monomorphisms be-
cause of this. Similarly, any functor that preserves colimits must preserve
epimorphisms.

Compute the Jacobson radical J(R) for the following rings R.

(a) Let R = Endr(V), for a real vector space V of countably infinite
dimension. Compute J(R).

(b) For any finite extension field F' of Q, let R be the integral closure of
Z in F. Compute J(R).

Solution. (a) (a)We claim J(R) = 0. Pick z € J(R), prove there exist
a € Endg(V) such that 1 — ax is not invertible. Let the basis of
vector space be {e; ...} and x maps {z(e1) ...} to other basis. Define
a linear operator y such that y(z(e1)) = e; and y(z(e;)) = x(e;). In
particular, (1 — y(x))e; = 0 so this is not injective, so it shouldn’t
have a left inverse. Note: even though the linear operator is not
injective, it could still have a right inverse. So Jacobson radical is 0
because it is asking only the left inverse.

(b) (b) Note that R is Dedekind domain, in particular all prime ideals
are maximal ideal.
Lemma: R has infinitely many prime ideals.
Proof: There are infinitely many nonzero primes of Z. Let p,q are
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distinct primes of Z, then pR + qR = R. This means pR and gR
are relatively primes, as being ideal of Dedekind ring, we have the
unique decomposition to product of prime ideals that means pR and
qR is contained in all distinct prime ideals.

If J(R) # 0 then as a prime ideal decomposition of J(R) we can
decomposed into a product of finitely many prime ideals. That means
J(R) is contained in only finitely many maximal ideals. But we just
show that R has infinitely many prime ideals. Contradiction.

O
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6 Spring 2022

20228 #1 Let F be a field of characteristic not 2 and let the symmetric group Sn
act on the polynomial ring F[X7,..., X, ] by permuting the variables, for
n =2 Let A= (F[Xy,...,X,])* and B = (F[Xy,...,X,])° be the
fixed subrings, where A,, < S, is the alternating group.

(a) Show that A is an integral extension of B.
(b) Show that A = B[d] for some § € A such that A := §2 belongs to B.

(¢) For n = 2 ,describe A as a polynomial in e; = X; + X5 and ep =
X1 Xs.

Solution: (a) We can show in general F[X; ... X, ] is integral over F[X; ...

because for given polynomial p € F[X7 ... X,,] then ngG (y—g-p) has
G —invariant coefficient. Note that F[X; ... X,]%" < F[X; ... X, ]
F[X: ... Xn].

(b) Claim. § =[[,_;(z: — ;)
Let f € A. Then define g = (1,2)f. Note that we get same g for the
any permutation (i,7) because (1,2)f = (1,2)(1,2)(¢,5)f = (i,4)f.
We can decompose function as f = £(f+g)+3(f—g). We will prove
that f + ¢ is symmetric and f — g is divisible by ¢§. If we act m which
is product of even permutations, then 7w(f +¢g) = f +x(1,2)f. Since
the cycle length is preserved under the conjugacy, we can find some
2 cycle by m(1,2)7~! = (4, j) so we have 7(1,2)f = (i,j)rf = g. For
the similar argument, we see invariance of the odd cycle. On the other
hand, we can check f—g change sign under the action of the odd cycle,
and preserve sign under the even sign. Any polynomial whose action
by the transposition change the sign is divided by the §. Because

h(...z;...zj...) = —h(. .x;...) implies A(...2;...2;...) =
0 and since polynomial is U F D that is divided all factors (x; — xj)
with i < j.

Alternatively Lemma:We can use the fact that invariant ring and the
localization are commute, namely if we are given the R = F[x1...2,]
domain(here we actually not need to be domain though) then Frac(R®) =

Frac(R)® according to Atiyah Macdonald Exercise 12, Chapter 5.
Take ¢ € Frac(A)®. Then % = ‘;—: With this new expression,
o _ o(a)

denominator is G—invariant. Let the action of o € G then & = ()"

Since this is integral domain we have a’ = o(a’) so ¢ = ‘S’—: € SYAY where
S = R/{0}.

According to lemma we have Frac(R4") = Frac(R)*" and Frac(R%) =
Frac(R)%". By Galois correspondence [Frac(R)* : Frac(R)%"] = [S, :
A,]. Degree 2 extensions, the elements to add is discrimnant . Since
0 € R we showed the statement. O
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2022S #2 (Omit the text of the problem)

Solution: 1 guess it wouldn’t asked it again, idea is we can take left
derived functor — Tor(Z, M) — Tor(Z,N) —. Since M is free so flat,
Tor(Z,M) = 0. By hypothesis coker(Tor(Z,M) — Tor(Z,N)) = 0 that
means Tor(Z,N) =0 O

20228 #3 Let G be a finite p-group and let H < G be a proper subgroup. We write
as usual H9 = g~ 1 Hg for every g € G.

(a)
(b)

Show that the normalizer Ng(H) of H in G is strictly larger than H.

Show that if H is not normal in G then there exists another proper
subgroup H < K < G and g € G such that K9 = K but HY # H.

Solution: (a) Let H act on the right cosets G/H by right translation.

Since H is proper subgroup, the number of such cosets is divisible by
p. At least one of these is fixed by H, namely the coset H. By the
fixed point theorem the number of the different orbits fixed by H is
divisible by p. Hence there is some g € G/H such that Hgh = Hg
for all h € H. This implie ghg~' € H for all h e H so gHg™' < H.
Since they have same cardinalities we have gHg~™! = H. Hence
g€ Ng(H)/H and Ng(H) > H.

Alternative solution:(At least this solution feels me more natural)
Prove by induction, when G = Z/pZ, there is only one proper sub-
group {e} and in this case, normalizer is entire group, so statement is
true. Assume the case for p”~! and prove for p”. There exist a group
H < @ such that Ng(H) = H. Note that p group has a nontrivial
center Z, and for any element of center z € Z, H* = H so Z < Ng(H)
so Z < H. Thus H/Z < G/Z. By the induction hypothesis, the nor-
malizer of H/Z in G/Z properly contained in the normalizer. This
means there is T ¢ H/Z such that H/Z7~! = H/Z.

Let h € H we have ThZzZ ! = h'Z for some h' € H. Therefore
zhx™'Z = WZ so xhe™'z = Wz implies zha™' = h'2'z~! since
2, 2" € H we have zha~' e H

Take the normalizer, then G > Ng(H) > H and since H is not
normal G # Ng(H). Pick K = Ng(H), Then Ng(Ng(H)) is strickly
contain Ng(H) by (a). So pick g € Ng(Ng(H))/Na(H) so statement
holds.

O

2022S #4 Let R be commutative, M € R — Mod.

(a)
(b)

Show Hompg(—, M) : (R — Mod)°? — R — Mod admit a left adjoint.

Show that for every R—module X ,the module Homp (X, M) is a di-
rect summand of Homg(Hompg (Homg (X, M), M), M).

25



We note

For Hompg(—, M) : R —mod — (R — mod)° So it is self adjoint functor.
(a) Consider the unit 7 and counit e for the functor Hom(—, M) so that
nx : Homg(X, M) — Homper (M, Homp(X,M))) = Homg(Homp(X, M), M)

ex : Homgp(Homp(X), M), M) - Homp(X, M)
such that € on = Id.Thus there is an exact sequence

— 1

0 —— Homg(X,M) "

Hompg(Hompg(Homg(X, M), M), M) — Cokern —+ 0

since this split, Hompg(X, M) is a direct summand.

20228 #5 Let R be a commutative ring and let G be a finite group. Prove that
R with trivial G action is a projective RG-module if and only if the
order of G is invertible in R.

Solution: There is a surjective RG-module homomorphism ¢ : RG —
R where ¢(>)a;g;) — > a;, so R is projective if and only if ¢ has a
injective right inverse.

If R is projective R[G] module then 6 : R — RG is a injective right
inverse, so that ¢f = idr. Since we have the trivial action for R to be
an homomorphism, (g-1) = 6(1) for all g € G. As G act R trivially,
so (1) contain all terms of g; because that is the only way to make
action ¢ invariant, so 8(1) = b)Y, g; for some b € R. Note this is a
injective as a R—module, and to make ¢0(1) =1 b = ﬁ which can
only occur when |G| is invertible in R.

Assume |G| is invertible in R then above 6 is well defined, and we
can repeate above argument so that see 6 has left inverse and splite,
this means R is projective R[G] module O

2022S #7 Let K/F be a finite separable field extension, and let L/F be any field extension.
Show that K ®p L is a product of fields.

Solution: Since K is a finite separable extension, we can find an element « €
K such that F(a) = F[z]/ms. Since mg, is separable, we can use Chinese
remainder theorem to we can factorize into a product of irreducible polynomials.

Flz]/ma® L = HL[x]/ma/

Since L[] is PID, all prime ideals are maximal ideals. So L[z]/m isafield. O
2022S #9 Let A be a (unital) algebra of dimension n over a field F. Prove that there is a

(unital) F' -algebra homomorphism from A ®p A°P to the F -algebra of n x n
matrices, where A°P is the opposite algebra.
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2022S #10

Solution. We have the morphism (a,b) € A ®r A? — M, (F) =~ Endr(A) 3
Gap(x) bY dop(z) = (axb). This morphism is is F—algebra homomorphism
because (a ®b) - (c®d) = (ac® db). ¢c,a© Pap(x) = acxdb = ¢gc,ap(z). The
image of this homomorphism is not trivial, because if ¢, (x) = axb = z for all
x then for example ¢, (1) = ab =1 so a is a left inverse of b. ¢qp(a) = a =1,
so a = 1 similarly for b.

The explicit way of seeing map is we can take an basis as a F'—vector spaces
e;, then multiplication of a = ) a;;e; and b = > b;;je; can be written as ae;b =
> Aijej. We can collect a data for A;; so that we can form a matrix.

When ring is simple so the morphism is isomorphism for the dimension rea-
son. (Note, this can be solved with Jacobson density theorem as well without
assuming tensor product of simple module is simple.)

O

Let F be a field characteristic not 2 and let K = F(y/a,+/b) be a biquadratic
field extension (of degree 4) of F, for a,b € F* not squares. Suppose that
b = r? — as? for some r,s € F (i.e., b is a norm for the quadratic extension
F(4/a)/F). Prove that there is a field extension L of K that is Galois over F'
with Galois group the dihedral group of order 8.

Solution: Consider the extension F[+/r — +/as], first we will see that F[/a] #
F[+/r — y/as]. That can be seen by the field norm as follows. Suppose not, then

we have 4/7 — 1/as = ¢1 + c24/a taking norm

Nr(yam\/ 1= Vas = Vb

But by the definition of norm that implies v/b € F.That is contradiction. Few
words for why norm being Vb, Take square for \/r — sy/a so that this will be
r — sy/a, taking norm on this, we get b, so the norm should be the square root
of b

We can also use this method to prove F'(1/7 — sy/as) # F(+\/7 — \/as, /T + +/as).
Suppose otherwise, then we have +/r —\/as = ¢1 + car/T + 84/s for c1,¢0 €
F(y/a). Taking field trace over F(\/a,+/r — sy/a)/F(1/a) then we figure out
1 = 0 Few words for why ¢; should be 0, assumption is F(4/r — sy/as) =
F(\/7 — \/as,+/T + y/as) but hypothesis is both side field of degree 2, this
means since F'(4/7 — s4/a) is also degree 2 extensions. So the trace of /1 — /as
over F(\/r — sy/a)/F(y/a) is 0. Similarly, trace of \/7 + sy/a over F(\/1 + s4/a)

is 0.

because they are basis of vector space. On the other hand, we can multiple
A/T + sy/a again, then we have v/b € F(y/a) again. That is a contradiction. We
figured out this as the Galois extension of order 8 with non-Galois intermediate
field(Which is F(4/r — sy/a) as being minimal polynomial 7% —2rT?+b, as third

terms of polynomial vanishes because+- conjugation killing each other second
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https://en.wikipedia.org/wiki/Field_norm#Composition_with_field_extensions
https://en.wikipedia.org/wiki/Field_trace

terms are form of all sums of products of two roots combinations are products of
each + conjugations and real conjugations. in case products of + conjugations,
their sums are —2r = —(r + s4/(a)) — (r — sy/a) In case of real conjugations
their sums are 0 = v/b — v/b. For the case of 1st coefficient, it has to have v/b
and just suming all the rest in different way so multiplication of 1st coefficient
so this is the polynomial.

Furthermore, we didn’t show the top field is not Galois, this is obviously the
splitting field, so enough to show this is a separable extensions. Notice, that
characteristic is not 2 so the derivative is not vanishing. The root is +4/r and
0 and we can check r? — 2r2 + r? — as? # 0 so separable extensions. That
implies the Galois group is order 8 with a nonnormal subgroup. Relying on the
classification of the group of order 8 that is a dihedral group. O
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7 Fall 2021

Fall 2021 Question 2 Let K be a field, and consider the ring R =
K[z]/(z?%). Show that every free submodule N of an R—module M is a
direct summand of M.

Solution Sketch k[z]/(z?) is injective module on its own. Any products
of injective module is injective, thus exact sequence splits.

Solution

Lemma 1: If R is PID, and I is nonzero proper ideal, then R/I is injective
left R/I module.

Proof: By Baer’s criterion, it suffice to extend a map f : J/I — R/I to the
R/I — R/I such that J is an ideal containing I. Since R is PID I = Ra,
and I < J = Rb thus we find ¢ € R such that bc = a. The R/T—module
R/I is generated by x = 1 + I and J/I is generated by bz.

Now let the homomorphism f be f(bx) = sx for some s € R. Since
bex = ax = 0 we have 0 = ¢f(bz) = csz. This implies ¢s € Ra. Therefore
¢s = ra = rbc for some r € R. since R is domain cancelling ¢ gives s = rb
so that f(bx) = sx = rbx. Define g : R/I — R/I to be multiplication by
r. Now g extend f for g(bx) = rbx = f(bx). Thus R/I is self injective.

Lemma. Any direct sum of injective module over Noetherian ring is injec-
tive.

Proof: Show for family of injective module I; and finitely generated mod-
ule M, we have Hom(M,®I;) =~ @Hom(M,I;). First notice in general
there is an injective @Hom(M, I;) — Hom(M,®I;) by coordinate wise
embedding. M is finitely generated, the image of a homomorphism from
M to @;N; is contained in the direct sum of finitely many I;. Since Hom
commutes with forming finite direct sums, ¢ is surjective as well. For
Noetherian ring, ideal is finitely generated. Homg (R, I;) — HomR(a, I;)
is surjective. Since a is finitely generated, the above isomorphism implies
that Hom(R,®;) — Hom(a,®I;) is surjective as well. Baer’s criterion
now implies that @F; is injective.

Here, the argument of finitely generatedness then preserve colimit is in-
deed rephrased as compact object preserve colimit as a hom(M, —). The
compact object is the object M such that Hom(M,—) preserve direct
sum.

Proof of the claim: N is free submodule of M. Since R is PID, N is
injective by above two claims. We have the exact sequence 0 — N —
M — coker — 0. Since N is injective the sequence split so N is direct
summand of M.

So injective module preserved by the product over any rings
Lemma. Any direct product of injective module is injective.
Proof: If I; is injective, then given a morphism from a module A — I; and
injection A — B. We have the unique lift of the morphism to B — I,.
Thus if A has morphism to the all I;, it raise morphism to the A — [] ;.
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Then any injection A — B lift into B — [ [ I;. So any product of injective
modules are injective.

Alternate Solution

Consider the family of R-submodules of L < M with L n N = 0. When
ordered by inclusion, these submodules. If we take the union of these
modules there are upper bound so this satisfy the conditions of Zorn’s
Lemma. There exists a maximal such submodule Ly < M such that
Ly n N = 0. Suppose for the sake of contradiction that M # N @ L.
Then we can pick m € M with m ¢ N@® Ly. f Rmn (N® Ly) = &
then (Rm + Lo) n N = & that contradict to the maximality of Ly. Thus
(Rm + Lo) n N # . In particular there is l; € Lg,n € N such that
(kox + k1)m + 13 = n.Here k1 = 0 because otherwise x(kym + 13 —n) =0
means m € N @ Lg. We have xm + 11 = n. Ann(n) = z because if zn # 0
then xl; = xn # 0 contradict to Lo n N = . Thus we can find n € N
such that zn # 0 and [ € Lo such that zm = xn+1 so that x(m —n) € Lo.
Claim: (R(m—n)+Lo) n N =

Again since n ¢ N @ Lo, there is no k1 € k ky(m —n) + 1 = n’ for some
n’ € N. So if intersect it must be a form of kex(m —n) +1 = n’. But
since kax(m —n) € Lo and Lo doesn’t intersect with N we have an empty
intersection with (R(m —n) + Lo) and N. Due to the maximality of N
we have R(m —n) < Ly but it contradict to the fact m ¢ Lo @ N.

Fall 2021 Question 3 Show that there are no simple groups of order
24p, where p is a prime number greater than 11.

Solution First of all, for p > 23 there would be a unique sylow p group,
so it would be impossible. All prime p > 11 and p # 23 the matter is
same.So matter is when p = 23. In this case, we can have ng3 = 1,24
and prove mgz = 24 is impossible. Assume ng3 = 24. In this case, [G :
Ng(Py3)] = 24 for a Sylow 23 subgroup Pe3 of G. So Poz = Ng(Pas) by
the order counting. There are 23-24 —22-24 = 24 elements whose order is
not 24. Let X be the set of elements whose order is not 23. Consider the
orbit stabilizer on this set by the conjugate action by the Ps3. This action
is well defined because action by the conjugation preserve the order.Then
| X| = | X23|(mod23). That is | X 23| is either 1 or 24.

In case of 1, X2 = {e}. Means that only fixed element by the conjugation
is 1, and by the orbit stablizer the orbit of X — e is single orbit. But it
will contradic to the Cauchy’s theorem where it claim there is an element
of order 2 or 3 and order is invariant under the conjugation map. That
means action by the conjugation fixes everything. But then for element
x € X, pr = xp for all p € Py3 this means x € Cg(Pa3) the centeralizer
of Py3. That contradict for the fact we can take some x ¢ Ps3 such that
z € Ng(Pa3).

Alternatively We can simplify this steps by computing the number of
Sylow 23 group which is 24, then consider the sylow 3 group, that can
have ng = 4,46 and here ng = 4 is impossible because if so G permute
Sylow 4 subgroup by the conjugation action, and that yeilds nontrivial
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homomorphism ¢ : G — S4 and that has a kernel as 4! = 48 and |G| =
24 % 23. If ng = 46 the order of the group is much bigger.

Fall 2021 Question 5 Consider a sequence of sets S; for i = 0 and maps
¢; +S; = S;—1 for i = 1. Suppose that there exists a positive integer N
such that the orders of the images of the maps ¢; are bounded above by
N. Show that @Si is finite.

Solution

Let’s define T; = n®_,Im(¢; o ...¢irm). By the given hypothesis, we
have |T;_1] < |T;| < N, and ¢;(T;) = T;—1. Let’s denote S = lim S; and
T = limT; We will now show S = T. Let’s m; : § — 5; and T — T,
be a projection for the each component. Since T; < S;, and the image of
m; will factor through T; so there is a set of morphisms ¢;, ¢; : S — T;
such that m; = p; og; that lift to the surjective morphism S — T on to the
image. Conversely we have 7} : T'— T; we have p; : T; — S; is injective.
There is a morphism p : § — T by the universal property of the limit
Claim: p is injective.

Limit is the right adjoint of the diagonal functor, so it is enough to prove
that any right adjoint functor preserve monomorphism. f : X — Y is
a monomorphism if for every Z the hom-functor Hom(Z, —) takes it to
an injective function between hom-sets f* : Hom(Z,X) — Hom(Z,Y).
Since lim is a right adjoint functor, Hom(AZ, —) =~ Hom(Z,lim—). f:
Hom(AZ,X) — Hom(AZ,Y) is injective. So lim(f): Hom(Z,lim X) —
Hom(Z,1imY') is also a injective. Thus limit preserve a monomorphism(injective).
For the surjectivity, in the category of the set, limit can be written as the

S = {(si)ien|di(si) = si—1}

so all elements of S is inside of the 7', thus this is also surjection. For
proving the finiteness, we can observe that almost all of T; are isomor-
phism (means that cardinalities of T; are the same). That is because the
cardinalities of T; are bounded by N. So we can identify isomorphic pair
of T;’s. Under this identification,we can rename 7). T} are finite distinct
sets, think {T7}; as the finite sequences with cardinalities at most N. T
is subset of [ [ T; so this is a finite set.

Alternatively Let T; be given and for large n

Fall 2021 Question 7 Define commutative Q-algebras A = Q, B = Q|z],
and C = Q[z]/(x(z—1)). Let A — C and B — C be the unique Q-algebra
homomorphisms such that x in B maps to x in C. Describe the pullback
(also called “fiber product”) R = A x¢ B in the category of commutative
Q-algebras, as the quotient by an explicit ideal of the polynomial ring over
Q on some set of generators. Is R noetherian?

Solution R = {(a,b) € Q x Q[z]|(a,b),a = bmodx(x — 1)} < {f €
Q[x]|f(0) = f(1) = a}. Find out the generators by surjection

@[Ii,j]/{(xi,jxk,l - $i+k,j+l), (x” — Tit1,j—1 — Ii,j—l)} — R
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by mapping z; ; — x(x —i)7. We can easily see this is a surjective mor-
phism and and well defined morphism because {(x; jTi,1— itk j+1), (@i —
Tit1,j—1 — Tij—1)} maps to 0 in R by chasing relations. We want to show
that there is no kernels hence isomorphism. Observe any term of degree
higher than 1, can reduce the degree by the first relation, so without loss
of generalities, we can put ) »)¢;;j;;. Furthermore, using the second re-
lations, we can reduces indecies of j. So we can assume j = 1. Mapping
> qjz;1 into R make relation (z — 1)(3 ¢;2?) = 0 — ¢; = 0 thus there is
no kernel.

We haven’t figured out why this is a Noetherian.

Fall 2021 Question 8 Let A be a commutative ring and 7" an A—module.
Define a functor from A— modules to A—modules by F(M) =M ®4 T .
What is the right adjoint functor of F'? Show that if F' has a left adjoint,
then 7" must be a flat A-module, and also a finitely generated A-module.

Solution: By the Hom-tensor adjunction Hom is the right adjoint of the
tensor product Hom(M ® T, N) =~ Hom(M, Hom(T, N)) If F has a left
adjoint then it is also left exact. As tensor products are already right
exact, this implies — ®4 T is an exact functor, thus 7" has to be a flat
module. As being right adjoint It must preserve a limit. Consider the

natural map
T ®a HA — HT@AA ~ HT
el el

For any index set I. Setting I = T, the right hand side has a natural
elements | [, t which lists every elements 7" and by hypothesis this map
is an isomorphism so there must be elements 377, t;®([ [;c1 ai;) mapping
to it. This element expresses every elements ¢t € T' as a linear combination
of a finite collection of elements t;, because

2 tj ® (Haij) > H Z aijtj = Ht
J=1

€T €T j=1 teT

It follows that T is finitely generated.

Appendix: Proof of the functor admit left adjoint is left exact
Prove F preserve zero object and equalizer. For proving preserve zero
object Z let G be their left adjoint n : Hom(G(A),Z) =~ Hom(A, F(Z))
is a bijective, thus there is only a unique morphism from Hom(A, F(Z)).
Preserve equalizer for the morphsim ¢1, ¢2. Let f be a equalizer and there
is a morphism 7 such that G¢; o 7 = G¢o o 7. By the naturality of n~!,
¢10 77_17' = g0 17_17', so there is 7y such that fory = 17_17' and we have
Gfonm=r.

Fall 2021 Qustion 9 The outer automorphism group of a group H is the
quotient of the group of automorphisms of H by the subgroup of inner
automorphisms. It is known that the outer automorphism group of every
finite simple group is solvable. Using that, show that if G is a finite group
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with a normal subgroup N such that both N and G/N are nonabelian
simple groups, then G is isomorphic to the product group N x (G/N).
Solution Note that left splite of the exact sequence implies group will be
decomposed into the product of the group, but right splite of the group
may implies group will splite as a semidirect product.

https://web.math.ucsb.edu/ atrisal/Group

We have the exact sequence 1 - N - G — G/N — 1. We will claim
this is left split. Since N is a subgroup, there is a injection i : N — G.We
have the morphism f : G — Aut(N) by the conjugation action. The
inner automorphism ¢ : N — Inn(N) is injective as N is simple so
there is nonontrivial kernel so image is either identity or itself, and it
is not identity because N is nonabelian. Thus we can define the map
G/N — Aut(N)/Inn(N) = Out(N). By the hypothesis Out(N) is solv-
able and G/N is simple. Note that the kernel of the map would be a
normal subgroup, and image must be {e} or G/N. Note the image of
this map is trivial because if the kernel was {e}, then G/N would be iso-
morphic to a subgroup of a solvable group, and so G/N solvable. But
nonabelian solvable group has to have a nontrivial normal subgroup such
that quotient by that is abelian. But since G/N is simple such an normal
subgroup doesn’t exist. Which means f(G) = Inn(N) by the conjugation.
Fix isomorphism % : f(G) = N we have an isomorphism (ko f) o f = Id.
Left split of the group gives direct product, so we showed what we want.
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8 Spring 2021

Spring 2021 Problem 1 Prove that the direct sum [[Z/pZ over all
prime integers p is not a direct summand of the product [ [ Z/pZ.

Solution Suppose it is the direct summand. Notice [ [Z/pZ is an abelian
group. This means that all subgroup is normal. We can write [ [Z/pZ =
[1Z/pZ ® K. Taking the quotient by the [ [Z/pZ, we would figure out
the module K =~ [[Z/pZ/]]Z/pZ. We will prove K is not a subgroup.
Suppose this is a subgroup, then notice, every elements of K is divisible.
Pick (b;) € [ [ Z/pZ. For every n, we can pick (a;) € [ [ Z/pZ as the element
such that 0 everywhere for the prime nondivide p and 0 for prime dividing
n, we put (—b,). So as the representative of K we can take (b, — a;).
This is divisible by n. However, any elements of [ [ Z/pZ is divisible by
p because fix (b;), if for all p there is elements (¢;) such that (b;) = p(c;)
then each entry of p part is 0. So it is impossible.

Spring 2021 Problem3 Prove that every group generated by two invo-
lutions (elements of order 2) is solvable.

solution Let group G is generated by = and y order 2.Consider (xy). Note
that (zy)~! = yx. Therefore, z(zy)z~! = yx,yryy~! = yx that implies
this is a normal subgroup. Let put that as N Since [z, y] = zyzy € {xy) so
quotient is abelian. Also is generated by N and y/N. On the other hand,
if x € N then there exists n € Z such that x = (zy)", and since z has
order 2 we may assume n > 0. Pick n, so (yz)" 'y = 1. And (yz)"~ !,
so y(xy)" 2z = y. Therefore,(zy)" 2 = x. Contradicting the minimality,
so n must be 1,2. If n = 1, then y = (yx)? = 1, which contradicts the
assumption that y has order 2.. Therefore, n = 2. But then yz = y, so
x =1, again a contradiction. Thus = ¢ N. Symmetrically, y ¢ N. Thus,
G/N is abelian, nontrivial, generated by two elements of order 2. But
since N = yN is cyclic of order 2. So show what we want.

Spring 2021 Problem 5 Let G be a finite group and let g € G. Suppose
for every irreducible complex character x of G we have |x(g)| = |x(1)].
Prove that ¢ is in the center of G.(Here I naturally interpret field has
characteristic 0)

Solution Let p;(g) be a irreducible representation of G. Let g € G be
IXp: (9)] = |xp;(1)] for all irreducible representation p;. p(g) has a finite
order p” = I for some n € Z. In particular this implies that minimal
polynomial is separable polynomial. So the matrix is diagonalizable. Also
eigenvalues are root of unity because it is finite order. For the irreducible
representation x(1) is a dimension of the vector space. Let &; be a distinct
eigenvalues, then | Y &;| < > |&| = dimV by triangle inequalities. Equal-
ity hold only if they are colinear. That is all & are same. In that case
pi(g) is diagonal matrix.

For that reason p;(gh) = p;(hg) for any element h in G. Let the reg-
ular representation be pr. pgr can be decomposed into a direct sum
of irreducible representations pr = > a;p;. pr(g) still commute with
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all elements h € G. Regular representation is faithful so in particular
p(gh) = p(hg) implies gh = hg. Thus g € Z(G).

Solution 2: Pick element g € G such that |x;(g)| = |xi(1)| for all irre-
ducible character . Using the column orthogonality, we have |Cg(g)| =
2 xi(9)l = X [xi(1)] = |G| means g commute all the element of G so it
is in the center.

Spring 2021 Problem 7 Let p be a prime number, k a field of char-
acteristic p and G be a (finite) p-group. Let M be a finitely generated
kG-module that admits a k-basis B such that G- B < B u —B (i.e.
Vg € G,VYb € B, we have g-b = ¥ for ¥ € B). Show that M admits a
k—basis B’ invariant under G (i.e. G - B’ ¢ B’ without sign).

Solution: When p = 2 then the statement is trivially true(because 1 =
—1) so assume p is a odd prime. Consider a cycle of the group action by g
to the basis. Then for any orbit of the action doesn’t map b to —b. Because
otherwise, the group will be even order, which contradicts the hypothesis
of being p group. Thus B will be separated into the nonintersecting union
of the orbits B U —B = UpegGb U Upep — Gb. In that case, uGb generate
the entire vector space.

Spring 2021 Problem 9 Let R be a commutative ring and A, B be two

(not necessarily commutative) R-algebras. Consider the functor Homp_ 44 (A®r
B,—): R— Alg — Sets, from R-algebras to sets. Construct two homo-
morphisms f: A - A®gr B and g : B - A®pr B and show that they
induce an injection

ne : HOHlR_Alg(A ®R B,C) - HOHlR_Alg(A,C) X HOIHR_Alg(B,C)

natural in C € R — Alg. Identify the image of n¢ explicitly.

Solution: Define f(a) = a®1 and g(b) = 1®b. This induces a map h —
(ho f,hog). Suppose (ho f,hog) = (0,0). Then, h(a®1) = h(1®b) = 0.
Then, h(a®b) = h((a®1)(1®D)) = h(a®1)h(1 ®b) = 0. As every
tensor is a sum of multiples of simple tensors, this implies h = 0, thus n¢
is injective.

Suppose f1 : A - C and fo : B — C are given. In order to define
h: AQrB — C'such that nc(h) = (f1, f2), we require h(a®1) = f1(a) and
h(1®b) = f2(b). However, note that as (a®1)(1®b) = a®b = (1®b)(a®1),
in order for h to be well-defined, we also need f1(a)f2(b) = f2(b) fi(a). So
this is a necessary condition.

We then see this is sufficient as if we can define h on all simple tensors
a® b, then we can define h for any tensor in A ®g B. Thus,

im ne = {(f1, f2) € Homp_a14(A, C)xHomp_14(B,C) | fi(a)f2(b) = f2(b) fi(a) for all ,a € A,be B}.

Spring 2021 Problem 10 Let A be a ring. Let m,n > 1 and P be a
right A-module such that P* =~ A™. Show that S — P ®4 S defines a
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bijection between the set of isomorphism classes of simple A-modules and
that of simple End(P)-modules.

Solutions

Let S be a simple right A modules, then prove P®S is simple left End4(P)
module. Prove the categorical equivalence between left End(P) mod-
ule and right R-module. To do that functor P ®4 — has quasi-inverse,
Hom(P,A) ® —. We will denote @ = Homp(P, A). Which means given
any module left R module M, we need to show Q®gyq(a) P ®4 M = M.
To do that we can show Q ® P ~ A.

Let define tr(P) = Y, g; P with g € Hompg(P, A). We will claim tr(P) = A.
This is true because P" =~ A™ ! @ A and this give a spliting exact se-
quence is a surjective morphisms Y} g; : P" — A.

Define the pair of f € Enda(P),p € P,af®p = f(p) this morphism define
a surjection. To show injecitivity, any element of Q ® P can be written
as Y, ¢; ® p;. Suppose this maps to 0, then 0 = (>, ¢, ®p}) = >, ¢;(p}).
Since we showed the surjection, we have > ¢;(p;) = 1, then > ¢} ®pj =
ZZ(qi(pi))q; ®p; = >¢i() - pi 0 ¢; ® pj. Using left Endg(P) strcture,
we have >, ¢; ®p; - ¢;()p; = >, ¢ ® pi(0) = 0. This shows one direction of
Morita equivalence(Actually you need to show the other direction, but it
is not appropriate problem in qual...
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9 Fall 2020

Fall 2020 Problem 6 Let K; ¢ Ky < K3 be fields with K3/K5 and
K5/K; both Galois. Let L be a minimal Galois extension of K; contain-
ing K3. Show that if the Galois groups Gal(K3/K>) and Gal(K>2/K;) are
both p-groups, then so is the Galois group Gal(L/K}).

Solution

Define N3 = Gal(L/K3), Ny = Gal(L/K3), and N; = Gal(L/K;). By the
Galois correspondence, we have a chain or normal subgroups N3<tNo<1 N .
(Although we don’t know whether N3 <t Ny. In fact, if N3 is normal then
it must be trivial by the following claim.)

Claim: If H < Nj is a subgroup of N3 which is normal in N7, then
H = {e}.

Suppose H — N3 is normal in N;. Then there is a fixed field K3 < L7 < L,
and because H <« N7 is normal we know H is a normal extension of K.
And since L is separable, the subfield L is also separable. Therefore, L¥

is a Galois extension of K containing K3, so by construction L = L and
H = {e}.

Claim: There is an injective homomorphisms ¢ : Ny < Sy, /n,. In par-
ticular, for any g € N7, the order of g is the least common multiple of all
cycles in the cycle decomposition of (g).

This comes because Ny acts on N1/N3. (Note that N;/N3 is not a group,
but just a set of cosets.) This group action defines a homomorphisms
N1 — Spn,/n,, and the kernel is contained in N3, because kernel mean
g€ Ker < hN3 = ghNs for all h € G i.e h~'gh € N3, in particular h = e
gives g € N3 . Since kernel is normal subgroup, and h~'gh is contained
in N3 for all h, we see ker — N3. It is trivial by the previous claim. The
second claim follows because an injective homomorphism preserves order.

Now for a given g € N1, we argue that the length of every cycle in the
cycle decomposition of ¢(g) is a power of p. Since the cycle decomposition
of ¢(g) partitions Ny/Nj3, choose a coset hN3 for some h € Ny. g acts on
hN3 by mapping to

hN3 % ghN3 5 ¢>hNg 2> ... L gFhN3 = hN;

and eventually this cycle must end, so there is some k such that ¢g*h N3 =
hN3. This is the length of the cycle containing hN3 in the cycle decom-
position of ¢(g), and we show that k is a power of p.
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Claim: k is the minimal positive integer such that ¢g* € hNsh~ 1.

This just comes from rearranging ¢g*hN3 = hN3 to h~'g¥hN3 = N3, so
h=lg*h e N3, and ¢* € hN3h 1.

Also, note that because Ns is a normal subgroup of Ny, we have hN3h ™!
a normal subgroup of No, and No/N3 =~ No/hN3h~! by conjugating by h.
We will write Nj = hN3h~1,

Now let n be the order of gNs in Ni/Na, and let m be the order of
g" N} in No/Nj. Because Ni/Ny = Gal(K3/K1) and Ny/N, = No/N3 =
Gal(K3/K3) are p-groups, both n and m are powers of p.

Claim: k£ = nm.

First, we see that g"™ € N}, because (¢"N§)™ = ¢g"™Nj = Nj in No/Nj
by the definition of m.

Now suppose the g? € Nj. Because N} < N, this means g? Ny = Ny, and
so n divides d by the definition of n. So we can write d = n%.

But this means that g?Nj = (g”Né)% = N, so m divides % by the defi-
nition of m. So we see nm | d.

This exactly proves that k is the smallest positive integer such that ¢* €
N}, and so we conclude that the length of the cycle that contains hN3 in
the cycle decomposition of ¢(g) is a power of p. Because this is true for
all g and all h € N7, we see that N7 is a p-group, as desired. [

Alternatively(May be this is better and theoretically motivated)
Up to the point showing there is no normal subgroup H that is not con-
tained in N3 are same. We will show that using that fact, G is solvable
group.

Consider the commutator sequeuence Ni := [Ny, Ni], Nj := [Ni~!, Ni™1],
first of all N1/Ns is a solvable group as being pgroup are solvable. Thus for
sufficiently large i we have N{/N, = {e} means N{ < N,. Moreover N»/Nj
is solvable by same argument, so there is j such that N;™/ < NJ < Ns.
But since there is no normal subgroup of N3 is normal, but NlHj is a char-
acteristic subgroup, so Nliﬂ is normal subgroup of N3 — Nli” = {e}. In
particular Nj is solvable group.

Then by Spring 2019 Problem 1, the minimal normal subgroup of finite
solvable group is a product of Z/qZ and there exist a normal subgroup of
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N7 such that contains N3, for example Ny is an example of normal sub-
group. Let N be a minimal normal subgroup contains N5. |Nay/N3| = p™
for some n as this is a p group. [Nz : N3] = [N2 : N][N : N3] where
[N : N3] can only have a product of some prime ¢ as ¢ = [N : ¢] = [N :
Ns][N3 : e] and N # Nj this means p = q.

Fall 2020 Problem 7 Let R be a Dedekind domain with quotient field
K and I a nonzero ideal in R. Show both of the following.

(a) R/I is a principal ideal ring

(b) If J is a fractional ideal of R, then there exist « such that I +x.J = R.
Solution a) We claim that if R is a Dedekind domain and p < R is a prime
ideal, then the ideals of R/p™ take the form p*,0 < k < n and are in fact
principal. Indeed, by the ideal correspondence theorem, any ideal of R/p™
corresponds to an ideal J of R that contains p™. But since R is Dedekind,
the prime factorization for J must divide the prime factorization for p™,
ie. J=pFfor0<k<n.
First we show A/p" is Principal ideal ring. Note since A/p™ has unique
maximal ideal P, so this is a local ring. Pick a € p\p?, this is possible if not
p = p2. The ideal of Dedekind ring is finitely generated, so by Nakayama’s
lemma p = 0, contradiction. So we can take a. Then @ is proper ideal of
A/p™ that is nonzero. Also it is not contained in p2. This shows A/p™ is
principal ideal ring generated by (a)¥ for 1 > k> n — 1.
Moreover, by the Chinese Remainder Theorem, if I = p,"'..p"* < R,
then

R/I = R/p," ... x R/p¢}.

Thus, any ideal of R/I takes the form (a)™... x (ag)™*, where a; € p;\p?.
This shows that every ideal of R/I is generated by a single element, i.e.
R/I is a principal ideal ring.

b)Without loss of generalities, we can treat J as an ideal of R by multi-
plying ' = dz. Let a € J so we can find ideal ¢ such that ¢J = aR.(This
is allowed for example Merkuriev’s note define a Dedekind ring as such we

can find ¢.) Moreover R/cI is a principal ideal ring so ¢/cI = (b). Thus
¢ = ¢l + bR. Multiplying J for bothside we have

Je=¢JI +bJR
aR =al +bJ
divide by a we get
b
R=1I+-J
a

Comment: This is similar to the technique to prove that (fractional)ideal
of Dedekind domain is generated by at most two element. Proof is fol-
lowing, given an ideal I and element a € I, the ring O/a is principal ideal
ring, so the ideal I/a is generated by at most one element.
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Fall 2020 Problem9 Let G be a finite group, F' a field, and V a fi-
nite dimensional F-vector space with G — GL(V) a faithful irreducible
representation. Show that the center Z(G) of G is cyclic.

Solution When F' is algebraically closed, then due to the Schur’s lemma,
Z(@G) map to a scaler multiplication, and the group is finite so image of
Z(G) will be a root of unity of F*. For every integer m there are at
most m distinct elements of order m because they are roots of ™ — 1 and
because F'[z] is UFD.

We will prove the subgroup generated by root of unity of the F'* is cyclic.
Note F'* is abelian, so we can apply the structure theorem of finitely
generated abelian group so that it can be written as the | | Z/}Diqu for primes
and the subgroup generated by m—th roots of unity be g, =[] Z/pfi. It
is enough to prove these primes are distinct so that group will be cyclic.
Let q; ... g, be distinct primes appear on p;’s and [; be a largest exponents
among same primes, then any elements ¢ € fiy,, g!! 4" = 1 and this is the
smallest number that makes possible, so [ | qﬁ = m. However, the |u| = m
and since there are at most m—th root of unities to be exist, so all primes
are the same. In particular, if p is faithful, Z(G) is embedded as a cyclic
subgroup.

If the non-closed case, still by the Schur’s lemma, we can embed Z(G) to
the a division algebra Endp(F[G]) contains F.

We will prove following claim, finite abelian subgroup of multplicative
group of the division algebra is cyclic. Let D be a division ring with
the center Z. Let A be a finite abelian subgroup of D* and put k =
deA Zg. Center of division ring is field, so k is Z algebra as well as A is
a commutative domain and A < k. k is a finite dimensional vector space
over Z and thus every element of H is algebraic over Z. Let 0 # ¢ € k and
suppose that ¢(x) = 2™ +...+ a1 + ap € Z[z] is the minimal polynomial
of cover Z. Then ag # 0 and so ¢(¢™ ' +...+a;)(—ag ') = 1. This means
every element ¢ has multiplicative inverse, therefore F is a field. As we
show the case of field, every finite abelian subgroup of multiplicative group
of field is cyclic. In particular A ¢ F'*.

Fall 2020: Problem 10 Let C, D be categories, where C' admits co-
equalizers. Let F' : C' — D be a functor that preserves coequalizers. F
also satisfies if h an arrow such that F'(h) is an isomorphism, then & is an
isomorphism. Show F is faithful.

Solution Suppose F' is not faithful. Then there exists f # g: X —» Y
such that F(f) = F(g) : F(X) —» F(Y).

Recall that the coequalizer of two arrows is the object resulting from taking
Y and identifying {f(z) ~ g(z),Yx € X}. Let 7 : Y — coeq(f, g) be the
projection onto the coequalizer. Since f # g, coeq(f,g) must be strictly
smaller than Y. So, 7 is not an isomorphism.

Since F' preserves coequalizers, F(m) : F(Y) — coeq(F(f), F(g)). And,
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since F(f) = F(g), the coequalizer is exactly F(Y). Thus F(7) is an
isomorphism. This is a contradiction, as 7 is not an isomorphism.

So, F' is faithful.
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10 Spring 2020

Spring 2020: Problem 2Let G be a finite group of order n > 1 and
consider its group algebra Z[G] embedded in Q[G]. Let A = Z[G]/a for
the ideal a generated by g — 1 for all g € G.

(a) Prove that the algebra Q[G] is the product of Q and Q- a, where Q- a
is the Q—span of a in Q[G].

(b) Let B be the projected image of Z[G] in Q-a. Prove that AQz;¢1B = G
as groups if and only if G is a cyclic group.

Solution

(a)We need to cook up isomorphism as a ring, so for the (central) idem-
potent ey = ﬁ deG g and ey := 1 — e define a projection to the subring
Q[G] to Q and Q - a. We can easily check e; is idempotent. We have
gz = x so the image of e;Q[G] = Qz. = Q.

On the other hand, g(1 —e) = g — e. Since g — e and as aug(g — e) = 0,
g —e € Qa. On the other hand (g — 1)es = g — 1, so ey is central idempo-
tent. We have a decomposition as a ring of Q[G] = Q x Qa.

(b) There is an natural isomorphism of the ring defined by Z[G]/9 ®zc
B =~ B/aby by sending [a]®b — [ab]. Furthermore, we have Z[G] — B —
B/a where the first surjection is the multiplication map by e;. Let 7 be
the composition of these surjective ring homomorphisms, 7 : Z[G] — B/a,
defined on elements by 7(I) = [e-{]. Since Z[G] is generated as a Z module
by g for g € G, let us consider the image of g for g € Z[G]. We have:

m(g)=[g9—e] =[1—¢]

Therefore, (g) = w(h) for all g,h € G, and since 7 is surjective, B/az
is cyclic as an abelian group and is thus isomorphic to Z/nZ for some n.
Furthermore, 7(|G|) = [2;1 — ¢;] = 0, so n divides |G|. We have that
n is exactly equal to |G/, since [e],[2¢],...,[|G]e] are all distinct modulo
az, as the difference are element of group ring with rational coefficient.
Therefore, A ®z;c1 B = Z/|G|Z as a group and is thus congruent to G' if
and only if G is cyclic.

Spring 2020: Problem 4 Compute the dimension of the tensor products
of two algebras Q[v2] ® Q[v/2] over Q and Q[v/2] ®z R over R. Is R®z; R

finite dimensional over R?
solution

Spring 2020: Problem 7 Let G be a p—group and N be a non-trivial
normal subgroup.

(a) Show that N contains a non-trivial element of the center Z(G) of G.
(b) Give an example where Z(N) ¢ Z(G).

solution (a) Consider the G conjugate action of N. Then the fixed point
of N@ is the intersection of Z(G) and N, as they commute with the all
the element of G. e € N¢ and see if there is nontrivial element. By the
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orbit stabilizer for the action of p group, |N| = |N%|(modp) but since
|N| = 0(modp) so |[N¢| = p > 1.

(b) For given p, we can construct examples, when p? it is abelian so p? is
the minimum examples of such a group exist. Consider (C), x Cp) x C,
or (Cp2) x Cp both works. Where x are nontrivial semi direct product.
Nontrivial semidirect product exist, because Aut(Cy, x Cp) = (p* —1)(p* —
p) and Aut(C)2) = p* —p so both are multiplication of p and the nontrivial
multiplication exist. This product is noncommutative and in particular as
being nontrivial homomorphism Cp 3 r — ¢ € Aut(C), x Cp) there is an
a € Cp x Cp (or similarly on C)p2 cases) ¢(a) = b # a. So multiplication
of (a,r%)(0,7) = (b,7**1) but (0,7)(a,r*) = (a,7**1). So (0,7) ¢ Z(G).
But (0,r) € Z(N) as being C,, cyclic.

Spring 2020: Problem 8Let R be a ring.

(a) Show that an R—module X is indecomposable if Endgr(X) is local.
(Recall that a ring is local if the sum of non-invertible elements remains
non-invertible).

(b) Suppose that every finitely generated R-module M is isomorphic to
X180 @ X, with all Endg(X;) local. Show that such a decomposition
is unique: f X1 ®--- - ®X,, =2 Y1 ® - @Y, then m = n and there is a
bijection o € S, and isomorphisms X; = Y.

(c) Give an example of an isomorphism X; @ Xy =~ V) @Y with End(X;)
and End(Y;) local that is not the direct sum of any isomorphisms X; ~ Y,
even up to renumbering the Y;.

Solution

(a) Prove if R-module X is decomposable then Endg(X) is not local. Sup-
pose X = X;® X, for proper submodule X;. Then consider the projection
m; + X — X, so they are not invertible. However, m 4+ 7 is invertible, as
being identity. This means Endg(X) is not local.

(b) Consider mapping from Hom(®X,;, ®Y;) = ®;;Hom(X;,Y;). So the
isomorphism from @X; =~ @Y, can be written in the form of matrices.

o1 ... O1p 511 51,m

(6 A6 - . .
A=|"2% 2n and B = Pa1 Ba.m Sinceeacht BA =1

(67951 .. Qpm 6n1 DR ﬁmn

so for each ¢ we have 1 = )} Bj;cdj. This is an invertible endomorphism
from X; to X;, By the (a) and assumption one of the element has to be
invertible, Let denote that §j;a;; is invertible then it means there is an
exact sequence 0 — kerf3;; — Y; — X; — 0 which is splite. By hypothesis
we can assume to take Y; is indecomposable so «;; induces isomorphism
of X; =Y. Let permute the modules and without loss of generalities put
X1 maps Y.

Prove by induction, since o;; has inverse,we can define a automorphism
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1 0

—Q1 O Oll_ll 1

A = So we have A’A has as a first row,

— o o O

—apioa;] 0 ...
mapping identitcally on X; to Y;. We have module decomposition of
Xo® DX, =2Yo® - PY,,. This gives by induction, isomorphism of
the modules.

(¢) Think about the decomposition of the vector space as X = e; @es and

- . 1 1\ . . .
same decomposition as Y. Then the matrix (0 1) gives isomorphism
between X but it doesn’t give componentwise isomorphism.

Spring 2020: Problem 9 Let R be a commutative ring, let S < R be a
multiplicative subset. Construct a natural transformation (in either direc-
tion) between the functors Homg-1z(S™1M,S™IN) and S~ Hom,(M, N),
considered as functors of R-modules M and N, and prove it is an isomor-
phism if M is finitely presented.

Solution Sketch:

We define the following natural transformation

ayn S Hom.(M,N) — Homg 15(S™*M,S™'N)
[ (m  fm)
s! s s's

If M is finitely presented, then there exists m,n € N such that
R" > R'"->M—0

is an exact sequence. The contravariant Hom functor is a right adjoint
and thus preserves left exact sequences. Also, localization is exact, so we
get the following exact sequence

0— S '*Hom(M,N) — S~ *Hom(R",N) — S~ 'Hom(R™, N)

Since « is a natural transformation, it preserves exact sequences, and
applying it we get

0— Hom(S™*M,S™'N) — Hom(S™'R",S™'N) — Hom(S~'R™,S™'N)

By the five lemma, it suffices to show « is an isomorphism for the last two
terms. Thus we have been reduced to the case of M = R™.

fg(:)o <= f(r) =0for all r € R™. Then, f =0 and in

« is injective, as
particular f =0.

For surjectivity, let g : ST!R™ — S~'N and let ey, ..., e,, be the standard
basis for R™. Then g(e;) = % for each i € [m]. Let s = s1---5p,, and

44



define

f:R"—> N

€i'—’ﬂi31"'§z’"'3m

Then, % maps via « to g. So, this is an isomorphism.
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Fall 2019 Problem 4 Find all isomorphism classes of simple (i.e., ir-
reducible) left modules over the ring M, (Z) of n-by-n matrices with
Z—entries with n > 1.

Solution Appeal to the Morita equivalence: According to the Morita equiv-
alence, there is a bijection between simple Z-module and simple M,,Z mod-
ule by the tensor product Z™ ® —. Simple module over Z is of the form
Z/pZ, as any simple module can be represented by Zx as there is no sub-
module, equivalently Zz =~ Z/Annx, and by existence of the maximal ideal
m contain ideal Annx so if Annz is not maximal, there is a submodule in
Z/Annz by m/Annz. Thus all simple submodule is Z" ®Z/pZ = (Z/pZ)".

Fall 2019: Problem 5 Let R # 0 be a commutative ring. Let tp :
R — Mod — R — Mod be the functor that sends tg(M) = M ® B.

(a) Show that tp commutes with colimits

(b) Construct an R-module B for every R such that t5 doesn’t commute
with limits in R — Mod.

Solution

(a) Hom(B, _.)isright adjoint to ¢ g, with a natural isomorphism Hom(M®
B,N) >~ Hom(M, Hom(B, N)).

So, tp is a left adjoint, and thus commutes with colimits.

(b) (This solution secretely assume R is not a field, indeed when R is
a field this is most difficult because any R module will be a flat so
tensor is preserved)Since R # 0, let @ € R be a nonzero element.
Then, B = R/aR. Consider the map

f:R—R

T ar

Consider the fiber product of two instances of f : R — R. Since
a # 0, f # 0, so the fiber product is not direct product # R x R.
On the other hand, if we apply tp we get

tg(f): RQ R/aR - R® R/aR
bRcr— alb®c) =b®ac=0

Since tp(f) is the trivial map, the fiber product after applying tp
becomes

tg(R)x stg(R) = {(a1,az2)|a; € R®B, f(a1) = f(a2)} = ROR/aRx RYR/aR = (RxR)QR/aR

So, tp does not commute with the fiber product.

46



(seems like assuming R = Z) Alternative examples: Direct product
and direct sum is same concept in the finite cases, so if we want to
construct the examples of noncommuting with direct product and
tensor product, we have to do with infinite.

Show infinite direct products ([[Z/p"Z) ® Q 2 [[(Z/p"Z ® Q).
Because right hand side is 0. Left hand side, there is a nontorsion
element, for example, (1,1,...). Suppose this is torsion there is n
such that n(1,1,1,...) = 0. But since n is finite, it doesn’t kill
all entries. Thus this is not a torsion. (otherway of saying, this
is element of order infinite). This means as a equivalent classes
(1,1...)®1 # 0 so as a module this doesn’t commute with infinite
direct product.

(genuine alternative example): Pick B as non-finitely generated
A module, then if it commute with direct product then it pre-
serve [[A! ® B ~ B! for any indices I. In particular we have
an isomorphism ¢ : Al®l ® B ~ B® Considering the identity map
id : B — B as an element of the product B? by putting same
index as an same element. Pick an Id € Hom(B,B) = BP then
there is an element Y f; ® m; € ABl® B = Hom(A, B) ® B. Thus
Id = ¢(> m; ® fi) = >, fim; for some finite collection of elements
m; € B and f; : B —» A. Evaluating both sides of this equation
at an element m € M we find m = >, m;f;(m). This implies B is
finitely generated by m; as A-module, contradict with the fact B is
not finitely generated as A module.

Fall 2019 Problem 6 Classify all finite subgroups of GL(2,R) up to
conjugacy.

Solution Let G be a finite subgroup of GL(2,R),take g € G so that
g" = I. Take the determinant, so detg” = 1 < (detg)™ = 1. Since g
is a matrix of real component, detg = +1. So we have two cases, either
G < SO(2) or G < O(2). The case of SO(2), consider the finite subgroup
of G < SO(2). This is cyclic group C,,. The simplest way is claim any
finite subgroup of mulitplicative group of the field is cyclic. More directly,
G is generated by some finite elements {€>7%% } In particular 6 are rational
number as being finite order. Indeed we can reduce generators, for example
let §; = z—j, 10, = Z—: be two different generators where p;, g, and py, i, are
relatively prime, then by Bezout theorem we can find some m, n such that

m(praj)+n(piar) _ 9ed(Prd; piqr) Obviously 9cd(Pr4;:P; qk) generate both of
ajan ajan ajan
elements, 8;, 6y cyclically. So all finite subgroup of S0(2) is C,,.

Since SO(2) is a kernel of the determinant map from O(2), so there is an
isomorphism O(2) = SO(2) X4 Z/2Z so that same as semi direct product
of dihedral group.

Fall 2019 Problem 8 Let M be a finitely generated module over an
integral domain R. Show that there is a nonzero element u € R such that
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the localization M[1/u] is a free module over R[1/u].
Solutions Let K = Frac(R) so that M ® K is a finite dimensional vector
space. Thus we can choose the bases for the vector space M ® K as

m; ®1...m, ®1. Due to the finitely generatedness we have the map
¢: R™ — M by ¢(e;) = m;.

0 — ker¢p - R" > M — cokerep — 0

Since the fractionalization is exact, ® K is an exact functor, so

O—)k@'{‘¢®K—>K”—>M®K—>CO}{Z€T¢®K—>O

is still exact. Since by the choice of m;, middle is an isomorphism. This
implies Ker¢® K and coker¢p@ K is 0 so that Ker¢ and coker¢ are torsion
modules. Here since Ker¢ is a submodule of the free module, so torsion
free and ker¢ = 0. On the other hand, coker¢ is also finitely generated
module because they are quotient of finitely generated module. Let the
generators be {77 ... 7%} and since they are torsion, there exist f; € R/{0}
such that fin; = 0. Let u = [] f; then localization at f will garunteed
to vanish coker¢, as each f are units so n; = %u = 0 then these image is
always vanishing. Thus M[1/u] is free R[1/u] module.

Fall 2019 Problem 9 Let A be a unique factorization domain which
is a Q-algebra. Let K be the fraction field of A. Let L be a quadratic
extension field of K. Show that the integral closure of A in L is a finitely
generated free A-module.

Solution: Let B be a integral closure of A in L. Since A is Q-algebra, K is
characteristic 0. Then by the quadratic formula(alternatively, since —1 €
K we can use Hilbert theorem 90) we can find a square free element b € K
such that L = K(v/b). Furthermore since A is UFD, b can be uniquely
represented as a fraction %, we can multilply appropriate elements so that

we can claim b e A. We claim B ~ A @ Av/b.

Consider the A-module map A @® A+v/b — B sending (z,yv/b) to = + y+/b.
This map really lands in B, since if z,y € A then the trace —2z and norm
2% — by? which both lie in A, so that the minimal polynomial of this has
coefficients in A that is

2 —2xt+ 2% — by’ =0

The map is clearly injective if not (z + yv/b) = z1 + y1V/b for z; # = and
y1 # y. But v/b and 1 is linearly independent so this map is injective.

To show an isomorphism of module, we will show the morphism is sur-
jective. Let  +yvb e B for z,y € K. Then we will show o = = + yvb
is a solution of a monic polynomial of coefficient A then in fact z,y € A.
We will prove the minimal polynomial over field K will be same things as
irreducible polynomial over A. Let m, be a minimal monic polynomial
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over K and k, be a monic polynomial of minimal degree which has a root
as . We have mg |k, We can multiply appropriate number d so that we
can make dm, € A[z] and their contents 1. dm,, is irreducible as K[z] so
irreducible as A[z].By the Gauss lemma state A is a UFD K is a fraction
field,. Then a non-constant polynomial m,, is irreducible if and only if it
is irreducible in A[z] and contents 1. Thus ky|dm,. So they have same
degree. By the choice of m we chose m,, is monic so indeed k, = mq.

If the minimal polynomial polynomial of « has degree 1 then since A is
integrally closed in K then z 4+ yv/b € A. If the The minimal polynomial
of  + yvbis f(t) = t? — 2t + (x> — by?). Since = + yv/b is integral over
A there is a irreducible polynomial m such that z + v/by is a root of m.
its trace and norm lie in A. The trace is —2z, which of course lands in
A whenever x = § for some a € A.A is a Q-algebra, so if a € A then
5 € A also, and we conclude z € A. To show y € A, we look at the norm
2% —by?, which must lie in A as well. Since we already know = € A, we get
that by? € A. Then y? = 7 for c € A. But b is squarefree, so by looking at
irreducible factorizations we see that b has to divide a, so since y € K but
there is no denominator y € A that A® AVb — B is surjective, hence an
isomorphism.

O

Fall 2019 Problem 10 Compute the Galois groups of the Galois closures
of the following field extensions:

a. C(z)/C(z* + 1),

b. C(x)/C(z* + 2% + 1), where C(y) denotes the field of rational functions
over C in a variable y.

Solution: a. Compute the minimal polynomial respect to the . That
is t* + 1 — (z* + 1) = t* — 2*. That is clearly irreducible over C(z* + 1).
C(x) has all roots of t* — 2%, i.e £z, +ix. This means C(x) is a split
field of t* — z* thus normal. C(z* + 1) is characteristic 0, so perfect
and any extension separable. Sum both we have a Galois extension.The
Galois group is generate to permute among roots that is ¢ : z — iz
and o° transitively maps between roots of C. o generate Galois group so
Gal(C(x)/C(z* + 1)) = Z/AZ

b. Compute the minmal polynomial, that is t* +#2 + 1 — (2% + 22 + 1) =
th—at+12—2? = (t—2)(t+z)(t—ivaZ + 1)(t+iva2 + 1). Va2 + 1 ¢ C(x)

because if so
Vri4+l=ax+b

22+ 1 = a’z? + 2abz + b>

a = +1,b = £1 both case 2ab # 0.(or we can see that 22 +1 = (z—i)(z+1)
and since UFD, we can see this is square free) Thus the normal closure over
C(x) is C(x,vx2 +1). C(z,v/x2+1)/C(x) is a degree 2 extension with
the minimal polynomial 2 — 2% + 1. Then C(z,vz2 + 1)/C(z* + 22 +1) is
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a degree 8 extension. So here there are few ways to see what is the Galois
group of this extension.

Ist way: Since C(x)/C(x* + 22 + 1) is not Galois so the corresponding
Galois group is nonabelian. The nonabelian group of order 8 is either Dy or
quaternion group. But in particular since there is non Galois intermidiate
extension, there is a nonnormal subgroup and all subgroup of quaternion
group is normal. By the classification of the group of order 8 with a
nonnormal subgroup is Dg

OK T am not sure this is actually working. (2nd way: There is a Galois

action on C(z,/x2 4+ 1)/C(x) such that
o:vVz2+1—-> /22 +1

g.:r —>T

Extend this action to C(v/22 + 1,2)/C(z* + 22 + 1). Since Galois group
permute roots of minimal polynomial, we can map of order 4

Tix—ivzZ+1
under this map 7: —x — —ivx2 + 1 and
r(ivVa2 +1)? = —7(2? + 1) = —(7(2)?) — 1 = 27

so T(iva? +1) = tx. If 7(ivz? + 1) = z. Then there is also a automor-
phism p(z) = —z and k(x) = —ivz2 + 1

, T(iVa? +1) = —x.

o # 72, and check if o706 = 73

oro(z) = —x = 7°(x)

oro(Vr2+1)=or(—vVa2+1)=o0(z)=2x

and
PWr+1)=12(—x) =7(—iva + 1) ==
This is a relation of dihedral group, so Dy) O
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Spring 2019 Problem 1 Let G be a finite solvable groupand 1 # N < G
be a minimal normal subgroup. Prove that there exists a prime p such
that N is either cyclic of order p or a direct product of cyclic groups of
order p

Solution First see N is an abelian group: The commutator group [N, N]
is a characteristic subgroup of N, let ¢ € Aut(N) then aba=1b~! € N, ¢(aba='b~1) =
d(a)p(b)p(a)~1p(b)~1 € [N, N]. The characteristic subgroup of a normal
subgroup is normal, as there is an embedding into ¥ : G — Aut(N) by
the conjugation, and by the conjugation, characteristic subgroup are pre-
served. So [N, N]is normal in G. Since N is the minimal normal subgroup
[N, N] is either N or {e}. If {e} then N is abelian and showed what we
want. If [N, N] = N, then as subgroup of solvable group is solvable,
there is a proper normal subgroup Ny in N such that N/Nj is normal,
but by the universality of the abelian quotient N = [N, N] < N; shows
N/N; = {e}, contradiction for the properness of Nj.

Let p be the prime order dividing N, then by Cauchy’s theorem, there is
an element x € N such that 27 = e. Let N’ be a subgroup of N such that
{z € N|aP = e}. Note N’ is a subgroup because N is abelian group. Then
N’ is a characteristic subgroup, because for ¢ € Aut(N),z € N', ¢(x) has
order 1 or p. This means N’ is a nontrivial normal subgroup of G that
contained in N. By the minimality of N, N = N’. By the structure the-
orem of the abelian finite abelian group this is cyclic of order p or direct
product of cyclic groups of order p.

Spring 2019 Problem 2 An additive group (abelian group written ad-
ditively) @ is called divisible if any equation nz =y with0 #ne Z,y € Q
has a solution z € Q. Let @ be a divisible group and A is a subgroup of
an abelian group B. Give a complete proof of the following: every group
homomorphism f : A — @ can be extended to a group homomorphism
B — Q.

Solution We use Zorn’s Lemma. Consider the partially ordered set P of
all pairs (C, g) where C' is a subgroup of B containing A and g : C - G
is an extension of f. Let (C,g) < (D,h) if C < D and g = h|C. The set
P is nonempty since it contains (A, f). Also any tower (Cy,¢ga) in P has
an upper bound (UC,,Ugs) € P . By Zorn’s Lemma, P has a maximal
element, say (C,g). We claim that C = B and g is the desired extension
of f to B. Suppose C < B. Then there exists an « € B so that = ¢ C.
Either 2 + C has finite order in B/C or it has infinite order.

In the second case, <C,z> = C ®{x) so g : C — G can be extended to
g®0: Cd{(x)— G contradicting the maximality of (C, g).

In the first case, let n be the order of  + C in B/C, i.e., n > 0 is smallest
positive integer so that nx € C. Since G is divisible there is a z € G so
that nz = g(nx). We can linearly extend g : C' — G by homomorphism
g+ h:C+<{x)— G where h:{x) — G is given by h(z) = z(This + sign
means not addition but nondisjoint sum as a set). This contradicts the
maximality of (C,g). They can extend to a morphism.
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Spring 2019 Problem 7 Let F be a field and let R be the ring of 3 x 3

F F F
matrices over F' with (3,1) and (3, 2) entry equal to 0. Thus | F F F
0 0 F

(a) Determine the Jacobson radical J of R.
(b) Is J a minimal left (respectively, right) ideal?

Solution (a) First way(?): The element of R preserve span{e;,es}. If
the first 2 x 2 block matrix of z € J(R) 2 x 2 block of matrix is not zero
matrix, then either Aey, Aes # 0. Without loss of generalities, Ae; # 0
then we can find the matrix B € R such that BAe; = e;. So 1 — BA is
not invertible matrix as there is a kernel.

Also (3,3) component ass has to be 0 as well, because if not we can find
the matrix with whose (3,3) component is é so mapping es to es. So

0 0 ais
hastobe [0 0 as3
00 O
(b) J is the minimal left ideal but not minimal right ideal. Pick x =
0 0 1 0 0 ais
0 0 1| Claim: J = Rx. Pick any element in {0 0 as3 ]| € J.
0 0 0 0 0 O
0 0 a13 a3 0 0 0 0 1
Then [0 O as3 | = 0 a93 0 0 0 1
00 O 0 0 O 0 0 0
0 0 1 0 0 1 apy
So Jis generated by [ 0 0 1 Jontheotherhand, [0 0 1]=1| 0 a3
0 0 0 0 0 O 0

so J is minimal ideal.

thus minimal. On the other hand this is not minimal right ideal, as
0 0 ais

0 0 0 |isa proper right ideal contained in J i.e
0 0 O

0 0 a3\ fair a2 ais 0 0 aizass

0 0 0 a21 Q22 Q23 | = 0 0 0

0 0 O 0 0 ass 0 0 0

Spring 2019 Problem 8 Prove that every finite group of order n is iso-
morphic to a subgroup of GL,,_1(C).

Solution Let G be a group of order n, then this group can be embedded
into S,,. Then S,, can be embedded into GL,(C) by the regular rep-
resentation. Regular representation can be decomposed into the n — 1
dimensional tautological representations and trivial representation. Then
restrict representations to the tautological subspace, we define a represen-
tations of Sy, to GL,,—1(C). Show this representation is a faithful represen-
tation i.e define an embedding. Suppose there is an element mapped into
identity in res : © € GL,(C) - GL,—1(C),I = res(x) € GL,_1(C).
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Then the restriction of x to the one dimensional complement is also
mapped to identity, as one dimensional complement is a trivial repre-
sentation. As z € GL,(C) it is a identity matrix. Thus all the map from
G — S, —» GL,(C) - GL,_1(C) are embedding so by composing it G is
embedded into the GL,,_1(C)

Spring 2019 Problem 9 a) Find a domain R and two nonzero elements
a,b € R such that R is equal to the intersection of the localizations R[1/a]
and R[1/b] (in the quotient field of R) and aR + bR # R.

b) Let C be the category of commutative rings. Prove that the functor
C — Sets taking a commutative ring R to the set of all pairs (a,b) € R?
such that aR + bR = R is not representable

Solutions (a) Lemma: We pick R = Z[z,y],a = z,b = y then Z[z,y,y " ]n
Zlz,x~ 1 y] = Z[z,y]. But 2Z[z, y]+yZ[z,y] # Z[z,y]. The second state-
ment is obvious: we can take 1 € Z[z,y] but not in 2Z[z, y] + yZ|z, y].For
the first statement, we have k[z,y] < k[z,y,27'] n k[z,y,y~!]. Con-
versely, pick anything p € k[z,y,27 1] n k[x,y,y~!], then we can wrote
p= Lin = yim. That means fy" = gx™ so y divides g, so yim =pe€ k[z,y].
(b) Observe, the statement (a), then consider the fiber product

klz,y] —— klz,y,y7 ]

l |

k[(E, yvxil] — k(xvy)

Now prove by the contradiction, suppose F' is representable. Then repre-
sentable functor preserves limit and moreover F' preserve inclusions so in
particular the following diagram is also a fiber product,

F(k[z,y]) —— F(k[z,y,y7'])

l |

F(k‘[m,y,m_l]) — F(k(x’y))

By assumption, as the fiber product over sets of inclusion map is intersec-
tion, we have F(k[z,y]) = F(k[z,y,27]) n F(k[z,y,y"!]). We see from
(a) (z,y) ¢ F(k[z,y]) But we have (z,y) € F(z,y,y™") n F(k[z,y,y""])
because zk[z,y,y | + yk[z,y,y~'] = klz,y,y~'] and zk[z,y,27'] +
yklz,y, 2] = klz,y,y~"]

Spring 2019 Problem 10 Let C' be an abelian category. Prove that
TFAE:

(1) Every object of C' is projective.

(2) Every object of C is injective.

solution Suppose all objects are projective, let there be a monomorphism
¢ : M — N and morphism ¢ : M — [.Construct morphism ¢ : N — [
such that i = ¢ o ¢. Since all objects are projective, exact sequence splits,
so N = M @ cokerg so define ¢ = ¢|pr and 0 for cokerp. Then any
morphism lift so I is injective.
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Fall 2018 Problem5 Let R be a commutative ring. Show the following:
(a) Let S be a non-empty saturated multiplicative set in R, i.e. if a,b€ R,
then ab € S if and only if a,b € S. Show that R — .S is a union of prime
ideals.

(b) (Kaplansky’s Theorem for UFDs): If R is a domain, show that R is
a UFD if and only if every nonzero prime ideal in R contains a non-zero
principal prime ideal.

Solution: One direction R —S D Up~g5—gp is true. On the other hand,
Let x ¢ S . We want = to be in the union of prime ideals. We want to
find a p prime ideal not meeting S such that x € p. Now, consider

A= {I|xelandl n S = &}

with the partial order c.

Claim: (z) € A. Proof. We need to check (z) n S = . If not; let
rxz € (x) be such that rz € S. Then, since S is saturated, z € S, which
contradicts that z ¢ S. So A # . We can apply Zorn’s lemma to
A to find a maximal element. Let {I,}sea be a chain of ideals in A.
Thus, by Zorn’s lemma, A has a maximal element m € A. This m is a
prime ideal. Let a,b ¢ m show ab ¢ m. Then, m C m + (a),m + (b), so
(m+(a)),(m+(b))nS # . Choose s € (m+(a))nSandte (m+(b))nS.
Then, st € (m+ (a))(m+ (b)) < m+ (ab). If ab € m, then st € m+ (ab) = a
and st € S. It contradict to the S nm = &

(b) = If Ris a UFD and P is a prime containing a nonzero r =
pi'ps? ... py~ , then at least one p; belongs to P. <= Show that if
every prime ideal contains principal prime ideal, then UFD. Let § =
R* U {pipa...pr|p; are primes elements }. S is a set of all elements of R
that can be uniquely factorlizeable

This is also the satured multiplicative subset generated by primes and
units. We want to show that R — S = (0). 0 is prime which doesn’t
intersect with .S, we have R — S © {0}. Suppose R — S contains an r # 0.
Then, by part a), there exists a prime ideal p ¢ R — S such that r € p.But
then, p contains a principal prime (p) € p. The principal prime ideal
is generated by a prime element, so p € S, contradicting the fact that
g # (p)nS < pn S = (. Therefore, every non-zero non-unit a R has a
factorization into a finite product of prime and, thus, irreducible elements.
Since an irreducible element will be a product of prime elements, it must
be a product of one prime element. Irreducible elements of R are prime
so R is a UFD, as quoting the following theorem. Theorem R is a UFD
if and only if every irreducible element is prime.

(The idea of last part is the existence of the element r guaranteed the
existence of the prime ideal that disjoint with R — S. But by hypothesis
such a prime ideal associate with the prime element p € S.) O
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Fall 2018: Problem 7 Let F' : C — D be a functor with right adjoint
G : D — C. Show that F is fully faithful iff the unit n: Idc — GF is an
isomorphism

Solution Suppose ny : Y — GF(Y) is an isomorphism for Y € C. Then,
as functors preserve isomorphisms,

RX(ny): Hom(X,Y) — Hom(X,GF(Y))
gives an isomorphism by precomposition of 7y. By adjunctness, we have
Hom(X,Y)~ Hom(X,GF(Y)) ~ Hom(F(X),F(Y))

for all X,Y. Moreover, if ¢ is the adjunction isomorphism, we know by
naturality of the unit that ¢ o F(f) =no f. So, the above isomorphism is
exactly by the functor F'. Thus, F is fully faithful.

Conversely, if F' is fully faithful, then we have
Hom(X,Y) =~ Hom(F(X),F(Y)) = Hom(X,GF(Y))

for all X € C. By (contravariant) Yoneda’s Lemma, this implies that the
map 7y : Y — GF(Y) inducing this isomorphism is an isomorphism.
Fall 2018 Question 10 Consider the real algebra A = R[z,y] = R[X,Y]/(X?+
Y? — 1) where 2 and y are the classes of X and Y respectively. Let
M = A(1 + z) + Ay be the ideal generated by 1+ x and y. (This is the M
obius band.)
(1) Show that there is an A-linear isomorphism A% =~ M @ M mapping
the canonical basis to (1 + z,y) and (—y,1 + ).
(2) Show that there is an A-linear isomorphism A ~ M ® 4 M mapping 1
to (1+2)@(1+1))+ (y®y).
l+xz -y Y

Y 1+ 3:) @: A" —
M@M. That map canonical basis of e1, e2 to M by (1,0) — (1+z,y) € M
and (0,1) - (—y,1 +2) c M.
Injectivity: Since z? + y2 — 1 is a prime ideal, so A is integral domain.
So the quotient field exist, let denote it as F'. Let (a,b) € KerQ ® F for
a,b e F. Which satisfies

(a) Consider the linear transformation @ = (

a(l+z)—by=0
ay+b(1+xz)=0

Thus a = 1’1—”1 substitute the equation lb% +b(1 + z) = 0 multiple (1 + x)
for both side then by? + b(1 + z)? = 0 making equation easier we have
2b(x+1) =0s0 b =0 so as a = 0 since there is no solution on F', so there
is no solution on A as well. Thus injective.

For surjective, we have Q(1 — x,0) = (y2,y(1 — x)),Q(0,y) = (—y*, y(1 +
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). 50 Q(1 — 2,0) + Q(0,5) = (0,29).(0,) € Im(Q), similarly Q(0,1 —
z) + Q(—y,0) = (2y,0) € Im(Q),Q(1 + 2,0) + Q(0,—y) = (2 + 22,0) €
Im(Q), Q0,1+ x) + Q(y,0) € (0,27 + 2) € Im(Q)
Alternatively, we can show by the inverses: It is obvious that Q maps A? to
2(1+x) —y 1+x
that Q~1(M @ M) = A? the general elements of M @ M can be written as

pi(z,y)(1+2) + q(z, y)y> :

for p;, q; € R|z,y]. When it acts @ we have
(pz(%y)(l + ) + g2, y)y pis @i € Rz, y] @
1 1+z y p1(z,y)(1+ ) + q1(z,9)y

) \ —y L4z \p2(z,y)(1 +2) + @2(z,9)y
1 pi(l+2)* + (1 +2)y + p2(l + 2)y + g2y

205\ —p1(L+ 2)y — @y + p2(l + @)% + @2(1 + )y
so y? is divisible by (1 + z) so the image is on A2. Since @ and Q! is
well defined inverse map each other, they are isomorphism.

M@®M , conversely construct the inverse matrix Q! =

) since y? = 1—a2

(b) Construct the inverse image as the composition of

MeM 5 F T, o

where p is a multiplication maps a®b — ab. Denote g as the compositions
of p and multiplication map ﬁ

The generators of MM are (1+2)®y, (1+2)R®(1+x), (¥)®(1+2), y®y.
The reason is, M is a projective A module, so the tensor by M preserve
inclsuion. First we need to check g is in the image of A. g((1 +z) ®y) =
ﬁ(y(l +1x)) = %(y) eA samefory® (1+x). g(1+2)® (1 +x)) =
s (L4 2) (14 2) = L1 +2) € A, g(y®) = yry? = 11— ). Let
f be the given map,

Show gf(1) =1 g(1+2)@(1+2) +y®
Show fg = Id there are 2 cases: f(§) = §
H(1+2)®y(1+z)+y*Qy) = L(1+2z+2
F(52) = 3((A+2)@ (1 +2)) + (y@y))
(422 +2)@(1+2)+ (¥?)® (L £2)

=ll+2)+3i1-2)=1
142)®@(l+2)+y®y) =
y+(1-2°)®y) = (1+2)Qy
(1+2)®(1+2))+(y®y)) =
t1+2z+22+(1-2%)Q®
) ® (1 + z) when — it is
®y.

I+
N8 o
—

: —~

— —

(I+2)=1+2)(1+x) when + it is (
l+2)@(1-2)=1-22)®1=9*®1

< 4+ |
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Spring 2018: Problem 3 Let Z", (n > 1) be column vectors with inte-
ger coefficients. Prove that for every non-zero left ideal I of M, (Z), IZ"™
(the subgroup generated by products av with « € T and v € Z™) has finite
index in Z".

Solution Let A € I since A is a nonzero matrix, there is a vector Av # 0.
Then there is a matrix B; € M,(Q) such that B;(Av) = e;. Since B;
are n X n matrices, so there is an integer b; such that b;B; € M,(Z)
and b;B;Av = b;e;. Since [ is ideal, b;B;A € I, so we saw each b;e; €
IZ"™. We have spanibie;...bpeny < IZ™. We have finite index [Z" :
(biey ...bpeny] =b1...b, as well as we have a projection(surjection) from
Z"[(brey ... bpey) to Z™/IZ™ by 3rd isomorphism theorem

(Z"[(brey ... bpeny)/(IZ™ [(brey ... bpen)y) = Z"/IZ™. Thus the index [Z™ :
I7"™] is bounded above by by ...b,

Alert You may also think naively try to pick an element f € I where fZ"
is full dimensional sublattics, and compare the index(which is a covolume)
by compare the determinant. However, in this case index is detf. How-

. 1 .
ever for example ideal generated by (8 0) may not have a element with
nonzero determinant.

Spring 2018: Problem 4 Let p be a prime number, and let D be a
central simple division algebra of dimension p? over a field k. Pick € D
not in the center and write K for the subfield of D generated by «. Prove
that D ®y K =~ M, (K).

Solution: Note there is a two fact: Z(A®,B) = Z(A)® Z(B) and tensor
of simple algebra and central simple algebra is simple(in the note).Since
K is a field extension of k, D ®; K is a central simple algebra over K.
Moreover, dimg D ®; K = dimy D = p?. So, it must be of the form

D@ K =~ M,(D')

for some finite dimensional division ring D’ over K. Let the dimension of
D' over K be n. Then, dimp: My(D') = s? so dimgx My(D') = s°n = p.
Thus, n must be a square i.e n = m? and sm = p. As p is prime, either
s=1lorm=1.

If m=1,thenn=1s0o D' = K and we have D ®; K = M,(K), which is
what we want.

Otherwise, s = 1, and D®y, K =~ D’ is a division ring. Note since K is free
k module, the tensor product ®; K is exact functor. Thus this preserve
inclusion, K @ K ¢ D Q@ K

We show that this is a contradiction by showing the existence of nonzero
zero divisors in K @, K ¢ D ®;, K.

(ma)

®Qr K = Klz] =~ Klz] ~ K] NI Klz]

K Q@ K = = (ma) (flf@) (f1> (f()
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The second line comes from the fact that m, is no longer irreducible
over K, as o € K. Then, since K is a field, K[z] is a PID and any
two irreducibles are coprime. So, by Chinese Remainder Theorem, we can
decompose into a product of quotients in the last line. In particular, ¢ > 2,
so erea = 0 are nonzero zero divisors. So, D ®; K cannot be a division
ring and s # 1.

Spring 2018: Problem 7 Let B be a commutative Noetherian ring, and
let A be a Noetherian subring of B. Let I be the nilradical of B. If B/I
is finitely generated as an A-module, show that B is finitely generated as
an A-module

Solution: Since B is commutative, I is actually a nilpotent ideal. Let
n € N be the smallest such that I™ = 0. Then consider the filtration

IoP>...o "
I 2
I;ﬁ@l
I 1
:ﬁ@...@ I

So, it suffices to show that % is finitely generated over A. Then [ is
finitely generated over A, and B =~ B/I @I is finitely generated over A.

Notice that since B is Noetherian, every ideal is finitely generated. So, I is
finitely generated over B. Let {x1,...,z,} generate I over B. Then, I/I>
is finitely generated by the same generators over B/I. Similarly, these

generators yield finite generators for I,{% over B/I. So, I,{% is finitely

generated over B/I, which is finitely generated over A. So, Ii% is finitely
generated over A and we are done.

98



Fall 2017: Question 2 Let G be a finite group of order a power of a
prime number p. Let ®(G) be the subgroup of G generated by elements
of the form ¢? for g € G and ghg='h~! for g,h € G. Show that ®(G) is
the intersection of the maximal proper subgroups of G.

Solution Let H; are all maximal proper subgroup of G.

Show ®(G) < n;H;. First, show all maximal subgroup H; are normal.
When |G| = p then statement is trivial, so assume |G| = p™ all maximal
proper subgroup are normal then prove it for |G| = p™*!. Note all the in-
dex p subgroup is normal for index p subgroup H;, [G : Ng(H;)|[Ng(H;) :
H;] = p. Well known fact: subgroup of smallest prime index is normal.

Also apply the well known fact: A normal subgroup of p-group H intersect
nontrivially to the center Z(G). This can be seen by the conjugation action
to G to H, so

[H| = [H| + [G : stab(x)]

and H = H n Z(G). By the fixed point theorem for p-group H # {e}.

Thus there is an intersection with Z(G). Apply Cauchy’s theorem, pick
order pelements x € Z(G) n H;, H/x < G/{x) is a maximal subgroup
of G{x) then by the induction hypothesis |H/{(z)| = p™~! so |H| = p™.
Quotient G/H; =~ Z/pZ means any H; contains commutator [G,G] as
Z/pZ being abelian. Any p-th power of G contained in H;. ®(G) c n;H;.

On the other hand, prove n;H; < ®(G). Suppose z ¢ ®(G). Note ®(G)
is a characteristic subgroup as all bijection of the group preserve the form
g? and ghg='h~l. Then G/®(G) =~ [[Z/pZ, as ®(G) contains all p-th
powers. Then as a right hand side isomorphism z®(G) is represented
by (x1,22...x,) and at least one of the coordinate xz; # 0. Let C; =
HLM# Z/pZ are maximal proper subgroup of G/®(G). So z®(G) is
not contained in C;. Let 7 : G — G/®(G) be a projection, due to the
the subgroup correspondence preimage of the proper maximal subgroup

is maximal, so z ¢ 7~ !(C}) this shows z ¢ ®(G).

Fall 2017 Question 3 Let k& be a field and A a finite dimensional
k—algebra. Denote by J(A) the Jacobson radical of A. Let ¢t : A — k
be a morphism of k—vector space such that ¢(ab) = t(ba) for all a,b e A.
Assume ker(t) contains no nonzero left ideal. Let M be the set of elements
a in A such that t(xa) = 0 for all z € J(A). Show that M is the largest
semi-simple left A-submodule of A.

SolutionSince ker(t) contains no-nozero left ideal of A, it is either ker(t) =
A or 0. In case of ker(t) = A then A doesn’t have a nontrivial left ideal so
A is a simple ring. So A itself is the largest semisimple submodule of A.
A is simple so J(A) = 0.

In case ker(t) = 0 in this case ¢ is injective morphism of vector space,
so this is isomorphism.(As a vector space A =~ k™ so injection has to be
k — k). So M = A because J(A).Thus J(A) = 0 and A is Artinian
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because finite dimensional k—algebra. A is semisimple so M is largest
semisimple left A module.

(Otherway of showing J(A))Then M = A because otherwise there is an
b € A such that t(xb) = k; for some k; € k, k1 # 0. We have t(l—xk%) =0

implies 1 — x%
Fall 2017: Question 5 Let A be a ring and M an A—module that
is a finite direct sum of simple A—module. Let f € Endz(M). Assume
fog=go fforall ge Enda(M)

(a) Show that the map f, : M™ — M" defined by f,(mi...my,) =
(f(mq)...f(my)) commutes with all elemets of End(M™).

(b) Deduce that given any family (mq...m,) € M™ there exists a € A
such that f,(m1...my) =a(my...my,).

Solution (a)Since g € Enda(M™) = Hom(®;M,®; M) = @;Hom(M™, M)
so any morphism from j-th entry g; € Hom(M", M) = Hom(M,M)"™ so
g(my...my) = 3, gij(m;) for each g;; € Hom(M, M) = End (M) so can
be identify as the n x n matrix with the A coefficient. In particular fix
each entry ¢ we have n different ways to map to the M of codomain. Thus
once I apply the matrix we get

is noninvertible.

M=

f(mi)))

i=1

Galmay - a)) = <gl<i=§n]1f<mi>>, s
- (;gm(mi)),...égmu(mm)
- (2 f(gn<mz»>>7...,;leﬂgm(mi)))
~ (izlgmi» . .,igin<mi>>

= fn(g(mh B vmn))

Therefore, f commutes with all elements of End 4 (M™). so it commute.
(b) Let denote m = (my ...my,). M™ is semi-simple, and Am is a submod-
ule. Since any semisimple module is projective, we can find a complement
B to make a direct sum Am @ B ~ M. Let 7w, be a projection, to the
M™ — M™ where (a,b) — (a,0). Note that 7, is identity on Am. Then
fu(m) = fu(mmm) = 7 fo(m) € Am.

Fall 2017 Question 8Let F be a field and f,g € F[z] be a noncon-
stant relatively prime elements with d = maz{f, g}. Prove the degree of
extension [F(z) : F(£)] = d.

solution It is clear that minimal polynomial has degree < d as p(z)

gg(T)—f(T) Lemma: Suppose we have Y P(x); f'g?~" = 0 and deg(P(x)) <

d then P;(z) = 0.
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Proof: Without loss of generalities, deg(g) = d. Then Y'=' NP, fd—igi
can be divisible by g. So Py cannot be divisible by g by degree. Hence
by induction, we have the statement.

P
~ Q:i(4)

nominators so we can write with > Pi(g)xi. Moreover we can kill off the

Given a minimal polynomial of z over F' (5) = > x;. Kill off de-

denominator g so that we will have > > (a;;x2%) fig?~%. Note the degree
of x is at most d — 1 so it satisfies hypothesis of lemma so all coefficient
ai;jr = 0 and so polynomial itself is also 0 minimal polynomial has to have
degree d.

Spring 2017: Question 2 Let G be a group with representations G :=
{z,y|lz* = y° = e,zyr~! = y?} with order 2. Compute the character
table.

solution Compute the number of 1-dimensional representation by seeing
commutator group. {y) is an normal subgroup. The quotient of G by {y)
is group of order 4 thus abelian. Since group of order 5 is cyclic, so {y®)
has to be the commutator subgroup.

One conjugacy class is (y,y?, y>,y*).Also notice by the conjugation by
x, the number of x factor will not change, i.e y 'zy = y?z. Moreover
y‘ly%y = yxry = y?’x,y_ly3xy = yza:y = y4a: etcetc we figure out all
conjugacy classes so that using orthogonalities, we will see the character
table.

Spring 2017: Question 3 Find the number of subgroups on index 3 in
the free group Fy = (u,v) on two generators

Solution I just copypast a personal dialogue with Harahm Park Thanks
for sharing the solutions!
i think maybe one way to make the argument more precise is to say that conjugacy classes ot index

3 subgroups of a group G are in bijective correspondence with transitive actions of G on a 3 point
set, up to isomorphism as G-sets

if H<Gis index 3 then as 3 is prime, either N_G(H) = H or N_G(H) = G, accordingly either H has 3
conjugates or 1 conjugate in G

if H is normal, then the corresponding G-set is isomorphic to the group G/H with the natural left G-
action. Conversely if H < G is so that the coresponding G-set X admits a group structure so that g —>
g*e_Xis a group homomorphism, then H is normal

in total there are 7 isomorphism classes of transitive actions of F_2 on a 3 element set, and of these

4 correspond to normal subgroups of F_2, coming from the 4 surjective homomorphisms F_2 —>
C_3 up to automorphism of C_3
this gives 3*(7 - 4) + 4 = 13 subgroups of F_2 of index 3 (edited)
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if I think of the free group on 2 letters as being generated by a & b, then you can split into cases
based on the cycle type of the permutations that a and b are sent to

if a is sent to the identity, then in order to have a transitive action b has to be sent to a 3-cycle. up
to permutting the indices, this gives one isomorphism class:

if ais sent to a transposition, then b has to be sent to either a different transposition, or a 3-cycle.
again up to permuting indices, there is one isomorphism class for each of these choices, which gives
2 additional isomorphism classes

b

—(12),b— (123)
b

o o dke

if ais sent to a 3-cycle, then either b can be sent to the identity, a transposition, the same 3-cycle,
or the inverse 3-cycle. this gives 4 additional isomorphism classes

62



a— (123),b—e
b

a— (123), b (123)
a

a—(123),b— (1
a

Harahm o2 24 11:34 AM
the actions which correspond to normal subgroups are the the ones where one of a or b is sent to a
3-cycle. you can see the corresponding covering spaces have a symmetry to them

Spring 2017: Question 8 Let M be an abelian group. Prove

F : Rings? — Sets
R — {left R — Mod structures on M}

is a functor. Is F' representable?
Solution Need to define what F' takes morphisms to, and check F/(fog) =
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F(g) o F(f) and F(Id) = Id.
If f: R — R, then

F(f): F(R) — F(R')
vt m ey m=f(r) -y m

gives an R’- Mod structure.

If we also have g : R” — R/,

F(g)o F(f) : F(R) — F(R")

V= B gor(nm) M = 9(") i) M= fog(r") 4 m
so F(g) e F(f) = F(fog).
Finally, F(Idg) : F(R) — F(R) simply takes an R-module structure 7 to

one that acts by applying Ig, giving 7. So, F(Idr) = Idp(r), and this is
a contravariant functor.

F is corepresented by End(M). Let a: F — Rgnq)-
agr: F(R) - Hom(R, End(M))
v (re )

where f,. : M — M is left multiplication by 7.

Spring 2017 Question 9: Let R be a ring. Prove that if the left free
R-modules R™ and R™ are isomorphic for some positive integers n and
m, then R™ and R™ are isomorphic as right R-modules.

Solution: Let ¢ : R — R™ be a left R-module isomorphism.
Claim: Hom(—, R) : Left — RMod — Right — RMod is a functor.

Proof of claim: Let M be a left R-module, we first show that Hom(M, R)
is a right R-module. As the category of left R-modules is an abelian
category, Hom(M, R) is an abelian group. We then see, with the group
action (¢ - r)(m) = ¢ (rm), Hom(M, R) is a right R-module as

((Yr+92)-r)(m) = (Pr+1p2)(rm) = Pr(rm)+ia(rm) = (r-r)(m)+(2-7)(m)

and

(Y- (r1+72))(m) = P((r1+r2)m) = Y(rim+ram) = P(rim)+(ram) = (Y-r1)(m)+(p-r2)(m)

and

(Y:(r172))(m) = P ((rir2)m) = Y(ri(ram)) = (Y-r1)(ram) = ((¢-r1)1r2)(m)

and

(¢ - 1r)(m) = Y(1rm) = ¢(m).
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We now show that, for any f : M — N, where M, N are left R-modules,
the map Hom(f, R) : Hom(N, R) — Hom(M, R) where g — go f is a right
R-module homomorphism. However, we see that

((g1+g2)of)(m) = (g1+92)(f(m)) = g1(f(m))+g2(f(m)) = (g10f)(m)+(g20f)(m)

and

((go f)-r)(m) = (g(f(rm)) = g(r- f(m)) = (g-7)(f(m)).

Thus, Hom(f, R) is a right R-module homomorphism.

As Hom is additive, we note that Hom(®;M;, R) = @;Hom(M;, R). We
then see that Hom(R, R) =~ R via the map ¢ — (1) and its inverse a — ¢,
given by £,(r) = ar and by additivity of Hom, we have Hom(R"™, R) = R"
and Hom(R™, R) = R™. As functors send isomorphisms to isomorphisms,
we have that Hom(¢, R) : R™ — R™ is an isomorphism of R™ and R™ as
right R-modules.
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Fall 2016: Problem 5 Let f € F[X] be an irreducible separable poly-
nomial of prime degree over a field F and let K/F be a splitting field of
f. Prove that there is an element in the Galois group of K/F permuting
cyclically all roots of f in K.

Solution: Consider Gal(K/F) S, where p is prime. Note that, letting
a be a root of f, p = [F(a) : F], and F(a) € K. So by the tower
lemma, p | [K : F] = |Gal(K/F)|. Thus, by Cauchy’s theorem, there
exists an element o of order p in Gal(K/F). However as p is prime, the
only elements of order p are exactly p-cycles. Thus, o permutes the roots
of f cyclically.

Fall 2016: Problem 6 Let F' be a field of characteristic p > 0. Prove

that for every a € F, the polynomial 2P — a is either irreducible or split
into a product of linear factors.

Solution: There are two cases. Let o be a root of 2 — a in some field
extension L of F. Then, f(z) = 2P — a? = (x — a)? € F[X]. Suppose
that f is not irreducible. Then, f = gh for some non-unital g,h € F[X].
However as F[X]| < L[X], we also have f = gh as a factorization in L[ X].
Thus, as f(z) = (r—a)P, we have g = (z—a)" = 2" —rax" 1 +--- € F[X].
In particular, ra € F' but as g and h are non-unital, 1 < r < p — 1, thus
r~lra = a € F, which implies  — a € F[X], and as f = (z — )P, f splits
into a product of linear factors over F[X].

Fall 2016: Problem 7 Let f € Q[X] and £ € C a root of unity. Show
that f(&) # 2Y/4.

Solution: Suppose f(£) = 2Y4. This implies that 2%/* e Q(¢), and
thus Q(274) c Q(£). As £ is a root of unity, Q(£) is a cyclotomic (and
thus cyclic) extension. Thus, Gal(Q(£)/Q) is cyclic, and thus abelian. As
Q(2%4) is a subfield of Q(¢), by assumption, Gal(Q(2'/4)/Q) is a subgroup
of Gal(Q(€)/Q). As Gal(Q(¢)/Q) is abelian, Gal(Q(2'/4)/Q) must be a

normal subgroup, implying Q(2'/4)/Q is a normal extension.

However, note that the minimal polynomial of 2%/4 over Q is z* — 2 (by
Eisenstein), which has complex roots, but Q(2'/4) = R. Thus, Q(2/4) is
not a normal extension, which is a contradiction.

Fall 2016: Problem 9 F a field, a € F. Define the functor

G : Comm F-Alg — Sets

o (@)

Show G is representable.

Solution G is represented by

F[$1, $27y17y2]

A=
(z1y1 + azoys — 1, xoy1 + 21Y2)
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Let a : G — R be the natural isomorphism.

agr: G(R) — Hom(A, R)
b1+b2$'—>flA—>R

where if ¢; + cox is the inverse to by + box,

fiASR
T, — by
T > bo
Yyr— G

Yz — C2

The motivation behind this comes from representing R[z]/(z? — a) =
R x R. Notice that

7_a:{b1+b2$:bl,b2€R}§RXR

Then, (b1, bs) and (c1,c2) correspond to a unit pair in R[z]/(2? — a) iff

(b1 + bQﬂJ)(Cl + CQ.T) = by1cy + abacy + x(b261 + blcg) =1

This induces exactly two relations on the pairs: bic; + absce = 1, bacy +
blcg = 0.

Thus, an element of G(R) corresponds exactly to some homomorphism
from A to R which maps 21, 2 to the unit (b1,bs) and y;, y2 to the inverse
(c1,¢2).

Notice that F' can map to any F-algebra. In adding these variables and
inducing restrictions on where they can map to, we are limiting our ho-
momorphisms precisely up to a choice of unit.

Spring 2016 Show that if G is a finite group acting transitively on a set
X with at least two elements, then there exists g € G which fixes no points
of X

Solution Suppose any elements g € G fixes some elements of X then
given g € G we can find z € X such that g € Stab(z). Since identity fixes

x so that means ) _ |stab(z)| > |G|. However by the orbit stabilizer
|stab(z)| = %(L) = % We have ) _, % = |G| that is contradiction to
our hypothesis.
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Spring 2015 problem 3 Let R be the unital ring, prove that R is division
ring iff all R module is free

Solution

I will provide two solutions of if all R module is free then R is a division
ring. R be a unital ring such that all R module is projective, R is a semi-
simple ring. By the Artin Wedderburn theorem, R is a direct product
of the matrices R =~ [[ M;(D;) for some division algebra D;. Regard
M;(D) itself as a R module. If R is decomposed into the product of
more than 2 matrix ring. Note free module is torsion free, so there is no
element r € R such that such that »M;(D) = 0. But here we can chose
r=(ry...74-1,0,741...7,) is an anihilator. So we have R =~ M, (D)
for just one division ring D;. We will also show n = 1 so that we can
claim actually it is a division ring. Claim when n # 1, D™ is a M, (D)
module which is not free, if D™ is a free then D™ ~ M, (D)™ for some
m € Z. Compare the dimension of both side over D. We have n dimension
over D for the left hand side, but as a D module right hand side is (n?)™
dimension, they have wrong dimensions.

The second solution: Let I be a maximal left ideal of R and put M = R/I.
Then M is a simple left R-module: it has no nonzero proper submodules.
By assumption M is free: there is a basis {x;}. M has to be isomorphic
to Rxy if not, M ~ @Rx; then because M is simple, if 7 > 2 then module
wouldn’t be simple. Moreover, since z; is a basis element, we have Rz =~
R as R-modules. This means R is a simple also left R-module. This means
it has no nonzero proper left ideals and is thus a division ring.

Spring 2015: Problem 7 Determine the ring endomorphisms of Fo[t, 1],
where ¢ is an indeterminate.

Solution:

The ring endomorphisms must send 1 — 1 and 0 — 0. The only restriction
is that ¢ must map to a unit of the ring, as t~! must map to its inverse.
So, it suffices to find all the units of the ring.

If two Laurent polynomials are inverses, then their leading terms will
multiply to give the leading term of the product. Since this is equal to
1, the sum of their degrees is equal to 0. Similarly, their last terms will
multiply to give the last term of the product, which must also be 1. Thus,
the sum of their smallest exponents is also 0. So, p(t) can actually only
have one term ¢". So, the set of units of R is just {t" : n € Z}. This
determines all ring homomorphisms.
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Spring 2015: Problem 9 Let G be a finite group of order p™. Show
that F,[G] has a unique maximal 2-sided ideal.

Solution Sketch: First we find a maximal 2-sided ideal. An ideal is
maximal iff R/T is a field. Since F, is a field, we can take the augmentation
map

e:Fp[G] - F,

Z“g'gHZ%
g g

which is clearly surjective. Then I := ker(e) is a 2-sided maximal ideal.
For the uniquness, since I is two sided maximal ideal, for a Jacobson
radical J(R) we have I o J(R). We will prove I is nilpotent ideal so that
I is contained in J(R).

We can prove the fact by an induction. If |G| = p™ then augemented
ideal will be vanish by the p™ power. When n = 1 then G is cyclic, in
particular commutative. I is generated by (e — g) for all g € G. As
Yaggel — Y ag(g—e) as Y ay = 0. And since

(e—g)l=e—g"=

so I? = 0, and [ is nilpotent. Assume the statement is true for n — 1 and
prove the statement for n. For a p-group G, there are non-trivial center
C exist. C is also a p-group. Thus by the Cauchy theorem there is an
element x € C of order p. Let Z be a group generated by x. We will define
a map F,[G]| — F,[G/Z] induced by the morphism G — G/Z.

lemma: There is a canonical morphism 7 : F,[G] — F,[G/Z] and the
kernel is Iz F,[G] = F,[G]Iz where Iz is unique maximal two sided ideal
for F,[Z].

Proof: Surjectivity and the equality are obvious because Z is normal
subgroup. We will prove kerm = Ig/z, let Z = {z;} and {k;} = G/Z.
Any elements of G' can be uniquely representable with z;k; = g¢;; . Let
§ € Kerm, then § = X r; jgi,; for r; € Fp,. Then (&) = 35;(3;7i,5)z =0
so >}, ri,j = 0 therefore & = >3, (3; rij2:)k;j € IzF,[G]. Other inclusion is

obvious.

Since Z is the center of G, any ideal I < F,[Z] will be commute with the
ideal in F},[Z]. Now Iy is generated by (g —e), so n(Ig) — Iz is surjec-
tive. By the induction hypothesis 7T(IC,~)”"_1 = 0 this means Ign_l c kerm.
Again by the hypothesis and the they are center Ker(m)? = I2F,[G]P =0
so I is nilpotent ideal. Thus I% = 0
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Spring 2014 Problem 5 Let G be a finite group acting transitively on
a finite set X. Let x € X and P be a Sylow subgroup of the stabilizer of
x in G. Show that Ng(P) acts transitively on X%

Solution Let S := stab(z). Then pick y € X¥, stab(y) = gSg~*. Since
P acts y trivially, P < Stab(y) = gSg~!. Means g '1Pg < S, g pre-
serve P in S. Take by Sylow’s theorem we can take ¢’ € S such that
g'Pg~!' = g 'Pg, so that ¢'"'¢g~! normalize P. Since normalizer is a
group (¢'"'g7")~! € Ng(P) and gg'z = y.

Fall 2014: Problem 1 Let G be a finite group. Let Z[G] be the group al-
gebra with augmentation ideal A. Show that A/A% ~ G/[G, G] as abelian
groups.

Solution Sketch: Define the following group homomorphism

G A
fim—’ﬁ[g] — [e—g]

[To% < >i-ag-9g
g g

Just check that each are well defined, and is a group homomorphism. And,
that they are inverses of course.

Fall 2014: Problem 2 Let F,, denote the field of p elements. Consider the
covariant functor F' from the category of commutative F,-algebras with a
multiplicative identity to abelian groups sending a ring R to FI(R) = {C €
R:¢? =1}

(a) Give an example of a finite local ring R such that F(R) has p?
elements

(b) Let Aut(F') be the set of natural transformations of F' to itself in-
ducing a group automorphism of F'(A) for all commutative rings A
with identity. Prove F' is representable and compute the order of
Aut(F) using Yoneda’s Lemma

Solution Sketch

a) For p >3, take R = T2l For p = 2, take R = [
(z3) (=9
(b)

F(R) =~ Hom (%,R)

Let A = 221 By Yoneda’s Lemma, Nat(F, F) = Nat(R*, R4) =
Hom(A, A). Moreover, A — R4 is a fully faithful functor, so it

preserves and reflects isomorphisms.
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Since Aut(F) is the set of natural isomorphisms a : F — F, the
order of Aut(F) is exactly the number of automorphisms of A (by
Yoneda’s isomorphism).
Notice that
FP[CE] ~ Fp[x] ~ Fp[x]
(@r=1) = ((x=1)p) ~ (a7)

So, it suffices to find the number of automorphisms of A" = ]PE’; E,"L)]

Let f: A — A’  and let

y=f(x)=ap12? '+ +a1z+ag

f is an automorphism iff there exists an inverse f~' that will send
I y) = bp_1y?P ™t + - + by + by = x. Notice that x is of order
p, and automorphisms preserve order, so y must be of order p as
well. So, we must have ag = 0. Moreover, if we look at the linear
term of f~1(y), we get the coefficient bja; = 1, so a; # 0. Now we
show these conditions are sufficient. Each polynomial term gives us
a condition, where the quadratic term gives byag + baa? = 0. The
expression for the z? coefficient uniquely determines the value of b;.
By induction, this system can be solved for each b; if a; # 0 and
apg = 0.

So, there are exactly (p — 1)pP~2 automorphisms in Aut(F).

Fall 2014: Problem 8 Let A be a ring. Assume there is an infinite chain
of left ideals Iy ¢ Iy < --- < A such that I; # I;; for all i > 0. Show
that A has a left ideal that is not finitely generated as a left A-module.

Solution Sketch:

Let I = U?OZO I;. This is a left ideal of A, and it is nontrivial, otherwise
1 € I, which means 1 € I,, for some n, which would stop the ascending
chain.

Moreover, it cannot be finitely generated, otherwise it suffice to let I be
only a finite union of the I,, ideals in the chain, again contradicting the
infinite ascending chain.

Spring 2013 Problem 7Let F' = F5 be the field with 2 elements. Show
that there is a ring homomorphism F[GL2(F)] — My(F) that sends the
element g in the group ring to the matrix g € My(F'). Show that this
homomorphism is surjective. Let K be the kernel; since it is a left ideal, it
is a (left) GL2(F)—module. Is this module indecomposable? (Reminder:
a module is indecomposable if it is not the direct sum of two proper
submodules.) Describe the simple modules in its composition series.

solution Surjection can be proved by observing there are 6 elements for

1 0 11 1 0 0 1
F[GLQ(F)]suchthatq:(O 1) €2=(0 1) €3=(1 1) e4=<1 0)
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e5 = ((1) 1) eg = (1 (1)) as a vector space, and mapping to a 4dimensional

vector space spanned by the elementary matrices. For example, e; — e,
el —eg,eqs — e5,e4 — eg are basis. The Kernel is vy := e1 + e5 + eg, V9 :=
e + ez + ey easily check linearly independent, and by rank nullity kernel
has to be 2—dimension.

G Ly (F) permute among the vectors (é) <(1)) <1> so there is an isomor-

phism between GLy(F) and S5. So without loss of generalities, we regard
it as a S representation on F2 vy + v, is invariant under the all the repre-
sentation, and we can show that there is no invariant space outside of the
kernel. For arbitrary elements in kernel can be written as avy + bvg. If we
permute vy and v then would be b,1 + a,2 adding each other then would
be in the kernel. So there is only one S3 module inside of the K. Quotient
of K by v1 + v2 we have some ldimensional S3 module represented by
vy (or vy). ldimensional representation of S3 are trivial or sign, but since
this is F5 these are coincide.
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