
Algebra Qual solutions

Tomoki Oda

1 Introduction

This document cover solution for recent problems, with other people’s solu-
tion, it covers all the correct solutions except for Fall 2021 problem 7 which we
couldn’t figure out if Noetherian or not. For the solution part, I would like to
appreciate Spencer Martin and Jung Joo Suh for the countless of discussions.
I would like to credit all the people who attribute for making credit Emil Geisler,
Emmy Van Rooy, Harahm Park, Matthew Tyler, Robert Miranda Thomas Mar-
tinez and William Chang.
I would like especially thanks to Ariana Chin and Stepan Malkov.
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2 Spring 2024

I think only problems need to argue on here for this year are 3, 6 and 9. I can
explain briefly how to solve others, 1.it is almost identical to Fall 2022 problem
2
2. It is just a Nullstellensatz
4. Basic property of Tor functor, quite similar to Spring 2022 Problem 3
5. Asked so many times
7. Basic properties of Nilpotent group
8. This is nontrivial but I gave as an alternative solution as 2022 Fall 6
10. construction of the colimit
Spring 2024 Question 3 Find all positive integers n such that cosp 2πi

n q is
rational
Solution sketch When n “ 1, 2 this is rational and omit those cases.
Assume n ‰ 1, 2 so that e

2πi
n R R. Suppose Qpcos 2πin q “ Q, then the nontrivial

extension Qpe
2πi
n q{Qpcos 2πin q has degree 2, as the minimal polynomial being

x2´2cosp 2πi
n q`1, so the extension of Qpe

2πi
n q{Q is also degree 2 extension. This

is same things as calculating the degree of cyclotomic polynomial. The degree of
cyclotomic polynomial can be calculate by the Euler’s tortient function. Tortient
function is multiplicative when prime is relatively prime. Also we can exclude
all prime bigger than 2, 3 by estimate it below. Only possibilities are 1, 2, 3, 4, 6
Spring 2024 Question 6 Analysing the structure of the Sylow 5 group, prove
finite group G of order 300 is not simple.
Solutionn5 “ 1, 6 when n5 “ 1 this is not simple, so assume n5 “ 6. In this
case, by the conjugation action of G to the set of Sylow 5 subgroup, you can
map G into the S6. This is indeed embedding if we say G is simple. However
|S6| “ 720, |G| “ 300 we can not realize it via embedding due to the Lagrange
theorem.
Spring 2024 Quedtion 9 A is finite dimensional algebra over k “ k. Prove
following statement is equivalent.
(1)A simple A module is 1dimension.
(2) JpAq is set of all nilpotent element of A.
Solution (1) Ñ (2) Fact: All simple A module appears as a submodule of
A{JpAq, reason is simple module can be written as A{m for left maximal ideal.
Jacobson radical is the intersection of the all maximal ideal, so using chinese
reminder theorem we get all of maximal ideals as each component. Using Artin
wedderburn we have A{JpAq –

ś

Matipk
1q where k1{k is an algebraic exten-

sion. Since k “ k indeed k1 “ k, also i “ 1 for the hypothesis. We have a
multiplicative structure A{JpAq – kn with each component. Although this ring
is not reduced, no elements are nilpotent, so JpAq contains all nilpotent ele-
ments. Furthermore, A is finite dimensional algbra, so Artinian. In general the
Jacobson radical of the Artinian ring is Nilpotent, so JpAq is the set of nilpotent
elements.

Conversely if some i ě 2 then there is a nonzero nilpotent element in A{JpAq.
If we lift to A, then that gives a nilpotent element of A which is not in JpAq.
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3 Fall 2023

Problem 1

Let G be a group, let H Ă G be a subgroup of finite index n ě 2 let x P G.
Prove rH : xHx´1 XHs ď n´ 1

Solution to the problem 1

Consider
By assumption rG : Hs “ n, and each cosets of G{H can be represented

by x1H, . . . xnH. Pick an element x P G, we will estimate the cardinality of
rH : H X xHx´1s. When x P H then statement is trivially true, so we can
assume x R H.
Note xHx´1 is a subgroup of G, and consider the left multiplication action
of h P H to the left coset G{xHx´1. Since rG : Hs “ rG : xHx´1s “ n
we can pick representative xHx´1, g1xHx

´1 . . . gnxHx
´1. The stabilizer of the

element xHx´1 contains H X xHx´1. So rH : xHx´1 X Hs ď n, however pick
gi “ x´1 so that there is a coset represented as Hx´1. This is a stable under
any action by H. So this has a orbit of length 1. This reduce the bound of
previous inequality as n to n´ 1. Thus rH : xHx´1 XHs ď n´ 1

Problem 2

Let A be a commutative Noetherian ring. Prove that every nonzero ideal I of
A contains a finite product of nonzero prime ideals.

Solution to the problem 2

Suppose there is an ideal I such that I is not contain a finite product of non
zero prime ideals. Then the set of ideals such that

K “ tI|I is an ideal I is not contain a finite products of prime idealu ‰ H

. We can introduce a poset structure for K Since A is a Noetherian ring, there
is a upper bound for the chain of ideals. The maximal element I 1. We can prove
this I 1 is prime itself so that contradict the hypothesis.
If I 1 is not prime, pick x, y R I 1 but xy P I 1 so that I 1 ` xA and I 1 ` yA
are stricktly larger than I. Note they are not trivial: if I 1 ` xA “ A then
yI 1 ` yxA “ yA but yI 1 ` yxA is contained in I 1. So I 1 ` xA and I 1 ` yA is
both proper ideal.

By the maximality of I 1`xA and I 1`yA each of them must contain a product
of prime ideals, but then so does pI 1 ` xAqpI 1 ` yAq Ă I 1, which contradicts the
choice of I 1.
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Comment: If I remove the Noetherian hypothesis, can I find counter exam-
ples of the ring?

Problem 2’

Find a commutative ring R that there is a ideal I of R does not contains a finite
product of nonzero prime ideals.

Solution to the problem 2’

Here honestly, I didn’t have idea, so copied from Stack exchanges
We can chose ringR to beR “ tpanqnPN P ZN|an`1 “ an for n sufficiently large u

and the ideal I “ p0q. For all i P N, let ei P R be an element such that
ei “ paiqnPN with ai “ 1 if i “ n and 0 otherwise. Let P be a prime ideal, and
0 P P .
If there exists i P N such ei R P . Then since for i ‰ j, eiej “ 0, ej P P for all
j ‰ i. So ‘i‰jZej Ă P .If we choose a finite number of prime ideals P1 . . . Pk with
‘m‰jZem Ă Pm then we have 0 Ă ‘j‰1...mZej Ă P1 . . . Pm doesn’t contained
in a product of prime ideals.
As shown above, R is not an integral domain, so 0 is not a prime ideal so 0 is
not prime ideal itself. Thus this shows 0 does not containing a finite product of
prime ideals.

Question 3

Show that there is an isomorphism of Q-algebra Qrts bQrt2s Qrts – Qrx, ys{

px2 ´ y2q.

Solution to the problem 3

Construct the Q´algebra morphism π : Qrx, ys Ñ Qrts bQrt2s Qrts by x Ñ tb 1
and y Ñ 1 b t. The kernel contains px2 ´ y2q because πpx2 ´ y2q “ t2 b

1 ´ 1 b t2 “ t2p1 b 1 ´ 1 b 1q “ 0. Hence this morphism factor through
π1 : Qrx, ys{px2 ´ y2q Ñ Qrts bQrt2s Qrts
We will construct the inverse morphism of π1 so that two ring are isomorphic
with each other. Construct morphisms f : Qrts Ñ Qrx, ys{px2 ´ y2q by fptq “ x
and g : Qrts Ñ Qrx, ys{px2 ´ y2q by gptq “ y. Since fpt2q “ x2 “ y2 “ gpt2q, by
the universal properties of tensor product, there is an morphism h : Qrts bQrt2s

Qrts Ñ Qrx, ys{px2´y2q such that hptb1q “ fptq and hp1btq “ gptq. This in an
inverse morphism of π1. Since h ˝ π1pxq “ hptb 1q “ x, h ˝ π1pyq “ hp1 b tq “ y.
As a Q´ algebra, x, y are generators, so this is enough to show the isomorphism
of Q´algebra.
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Question 4

Let K{F be the finite Galois extensions, pick α P K{F . Let E be a subfield of
K containing F of a largest degree over F such that α R E. Prove Epαq{E be
a Galois extension of a prime degree.

The first Solution to 4

First step: Prove Epαq{E is a Galois extension.
Epαq{E is separable extension because K{F is a separable extension, and

any intermidiate extension of separable extension is separable.
Show the normality, since K{E is Galois, the minimal polynomial of α over

E, mα split completely on K. We will show that minimal polynomial mα splite
in Epαq. Let β be an other roots for mα. If β P Epαq then nothing to prove.
Hence without loss of generalities we can assume that is not contained in Epαq.
By the maximality of E, Epβq contains α. This can be written as

ř

ciβ
i “ α

for ci P E. Let N be a normal closure of Epαq over E. By the assumption
of Galois, N Ă K and there is a σ P GalpN{Eq such that σpβq “ α. Let the
order of σ be n. Then since

ř

ciα
i “ σpαq. This means σpαq P Epαq, and by

keep doing this argument we have σipαq P Epαq. But σn´1pαq “ σnpβq “ β so
β P Epαq. Thus mα splite completely on Eα.
Second Step: Prove Epαq{E is a prime degree. Let G be a Galois group of
Epαq{E. If the extension is not prime degree, due to the Cauchy theorem, there
is a order p-cyclic subgroup of G. then there is a nontrivial proper subgroup
generated by some element σ P G such that ă σ ą‰ G. By the Galois corre-
spondence, Epαqăσą correspond to the field containing E. Since σ is nontrivial
generator, α was not fixed by σ. This means Epαqσ but not a containing α. It
contradict to the maximality of the E.

The second Solution to 4

Use Galois correspondence. Let E{F be the largest field not containing α. Then,
GalpK{Eq is the smallest subgroup of GalpK{F q that does not fix α. There is
an element σ in GalpK{Eq not fixing α, and the subgroup ă σ ą does not fix
α. However if there is any proper subgroup, this proper subgroup fixes α. By
the minimality of GalpK{Eq this has to be a cyclic group.

Consider GalpK{Epαqq. If GalpK{Epαqq “ teu then Epαq is normal, so by
the second step on the first solution this is prime index. This reduce cases,
suppose now that GalpK{Epαqq is a proper nontrivial subgroup of GalpK{Eq

that fixes α.
If there are any intermediate subgroups 1 Ă GalpK{Epαqq Ă G1 Ă GalpK{Eq,

they correspond to a nontrivial field extension of E not containing α, which con-
tradicts the maximality of E. Thus, there are no intermediate subgroup, which
means thatGalpK{Epαqq is the maximal subgroup of cyclic group, GalpK{Epαqq

has prime index in GalpK{Eq. Notice GalpK{Eq is a cyclic group as we showed
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above, in particular abelian. By the Galois correspondence every abelian sub-
group is realizeable by the subfield of K. Using the Galois correspondence,
Epαq{E is Galois with Galois group GalpK{Eq{GalpK{Epαqq which is index p.

Question 5

Let F be a field, and let fpxq “
řn
i“1 aix

i be a polynomial of degree n ą 1
with coefficients ai P F . Show that the splitting field of fpx2q over F contains
a square root of p´1qna0a

´1
n

Solution to Question 5

Consider the spliting field of fpx2q, which we will denote it as K. Without
loss of generality by dividing an so that we can replace the polynomial into the
monic fpx2q “ x2n ` a1

n´1x
2n´2 ` . . . a1

0 where a1
i “ ai

a0
and prove

a

p´1na0q is
contained in the splitting field.
We can factor fpxq into fpxq “

ś

px ´ αiq. Using the relation of root and
coefficient, we have

ś

p´αiq “ a0 ñ
ś

pαiq “ p´1qna0. Notice
?
αi P K as

fp
?
αi

2
q “ fpαq “ 0. So

ś ?
αi “

?
´1a0 that prove the statement.

Question 6

For a positive integer n, let Cn be the category with objects r1, ns :“ t1, 2, . . . , nu

and morphisms Morpi, jq an empty set if i ą j and a singleton otherwise. For
positive integers m and n, a nonstrictly increasing function f : r1, nsr1,ms can
be viewed as a functor Cn Ñ Cm. Prove that this functor fhas right adjoint if
and only if fp1q “ 1.

Solution 6

1 is a initial object of this category, if there is a right adjoint g, then pick
i P Cn and j P Cm so that Hompi, gpjqq “ Hompfpiq, jq. Notice i is initial
object so the morphism exist for all j. This means we must have fpiq ă j for
all j. Notice j can be 2 so fp1q “ 1.

Conversely suppose fp1q “ 1, f is increasing function. Let t1, fpi2q . . . fpiaqu Ă

t1, . . . ,mu such that fpr1, nsq “ tfp1q . . . fpiaqu and 1 ă fpi2q ă fpi3q ă

. . . fpiaq “ fpnq. Let fpi2q “ fpi3´1q “ k2 and fpi3q “ k3, so thatHompfpi2q, jq ‰

H, j ě k2 ` 1. To construct an right adjoint we need to have Hompi2, gpjqq “

Hompi2, gpjqq “ t˚u. Thus we need to construct gp1q “ ¨ ¨ ¨ “ gpk2q “ 2 and
gpk2 ` 1q “ gpk3q “ i3 ` 1. We can keep this construction so that we can
construct a adjoint
Comment: I am pretty sure mathematically this is correct construction, but I
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am not sure my writing is good enough, I just did the case i=2, but how should
I write for the general cases?

Question 7

Let R be a PID and n ě 1. Let M be a finitely generated Rn module, show
that there is a exact sequence

0 Ñ P Ñ Q Ñ M Ñ 0

with P,Q finitely generated projective Rn module.

Proof. SinceM is finitely generated, there exists m1,m2, . . . ,mk P M such that
tmiu generateM as anRn module. Let e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, . . . , en “

p0, 0, . . . , 1q be idempotents of Rn. Consider the submodule eiM of M for
1 ď i ď n. I claim that eiM has a natural R module structure by rm = preiqm
for r P R (where Rn is an R-module in the usual way). This gives an R module
structure because eim “ m for all m P ei, since ei is idempotent:

eipeimq “ e2im “ eim

Furthermore, eiM is finitely generated as an R-module by eim1, eim2, . . . , eimk.
Therefore, we have a short exact sequence of R-modules (for each 1 ď i ď n):

0 kerψi Rk eiM 0
ψi

Since kerψi is a submodule of the finitely generated free module Rk, it is a
torsion free and finitely generated module over a PID, and thus is free. There-
fore, there exist nonnegative integers 0 ď b1, . . . , bn ď k such that the following
sequence is short exact:

0 Rbi Rk eiM 0
ρi ψi

Suppose that A1, . . . , An are R-modules. Then
Àn

i“1Ai has a natural Rn-
module structure by

pr1, . . . , rnqpa1, . . . , anq “ pr1a1, . . . , rnanq

Let us show that with this induced action of Rn, M –
Àn

i“1 eiM . Let ψ :
M Ñ

Àn
i“1 eiM by ψpmq “ pe1m, . . . , enmq, which is clearly an Rn-module

homomorphism. ψ is injective since if ψpmq “ ψpnq, then eim “ ein for all
ei, and thus

řn
i“1 eim “ 1 ¨ m “ 1 ¨ n. Also, it is clearly surjective onto each

coordinate and thus surjective. Therefore, we have a short exact sequence of
Rn modules by:

0
Àn

i“1R
bi

Àn
i“1R

k M 0
ρ ψ
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The Rn module
Àn

i“1R
k is the same as pRnqk. Furthermore, we have a con-

gruence of R-modules:

n
à

i“1

Rbi ‘

n
à

i“1

Rk´bi – pRnqk

and therefore
Àn

i“1R
bi is a sub Rn-module of a free module, and is thus pro-

jective. Therefore, we have an exact sequence of the desired form, since pRnqk

is free and thus projective.

4 Spring 2023

2023S #1 Let F, F 1 : C Ñ D and G,G1 : D Ñ C be four functors F is a left
adjoint to G and F 1 be a left adjoint of G1. Establish a bijection between
the natural transformations α : F Ñ F 1 and the natural transformations
β : G1 Ñ G

Solution. Consider the commutative diagram

DpF 1X,Y q CpX,G1Y q

DpFX, Y q CpX,GY q

–

αX˚

–

ϕX,Y

construct ϕX,Y as composition of the isomorphism ηX,Y : DpFX, Y q –

CpX,GY q and η1
X,Y : DpF 1X,Gq – CpX,G1Y q as ϕX,Y “ ηX,Y ˝ αX ˝

η1
X,Y

´1. We want to show that this ϕX,Y is natural transformation of
representable functor when fixing X. Namely, we will show, given f :
Y Ñ Z then the diagram

CpX,G1Y q CpX,G1Zq

CpX,GpY qq CpX,GpZqq

G1
pfq˚

ϕX,Y

Gpfq˚

ϕX,Z

commute. This can be shown by using the commutativity of
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Note the outer rectangle involve αX˚ and f˚ is commutative because αX
is natural transformation by Yoneda’s lemma. Upper square and bottom
square is commutative because of the adjoint. Using the commutativity
of small squares, composition of blue arrows in a square is same as com-
position of red arrows in the small square. It means the commutativity
of outer rectangle implies commutativity of the red arrows. The last red
arrow is isomorphism, in parituclar this is monic, so

ηX,Y ˝ ϕX,Z ˝Gpfq ˝ η1
X,Y “ ηX,Y ˝Gpfq ˝ ϕX,Y ˝ η1

X,Y

implies
ϕX,Z ˝Gpfq ˝ η1

X,Y “ Gpfq ˝ ϕX,Y ˝ η1
X,Y

. The ηX,Y is also isomorphism so epi morphism. This means

ϕX,Z ˝Gpfq “ Gpfq ˝ ϕX,Y

so ϕX,Y is a natural transformation of representable functor.
This result is not depend on the choice of X, so it make sense to write
ϕ´,Y P Nat(Cp´, G1pY qq, Cp´, GpY qq). By the fullness part of Yoneda
embedding, this natural transformation is coming from the morphism βY P

CpG1pY q, GpY qq. With this construction, we can define an morphism βY
for any Y P D. This defines collection of morphisms β.

We already saw Gpfq˚ ˝ pβY q˚ “ pβZq˚ ˝ Gpfq˚. These are two same
natural transformation NatpCp´, G1Y q, Cp´, GZqq. The faithfulness part
of Yoneda’s lemma claims, as the morphism of CpGY 1, GZq, they have to
be same. Due to the functoriality we have the commutative diagram.
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G1Y GY

G1Z GZ

βY

G1f Gf

βz

commute. This shows β is indeed a natural transformation.
Now we will show that α and β are bijective each other. If α P NatpF, F 1q

is given, then β P NatpG1, Gq can be construct. Then apply the same
argument for β, then we can construct a natural transformation α̃ P

NatpF, F 1q. We need to show α “ α̃.

Consider maps

pαXq˚ : DpF 1pXq, Y q Ñ HompF pXq, Y q

f ÞÑ fαX

pα̃Xq˚ : DpF 1pXq, Y q Ñ HompF pXq, Y q

f ÞÑ f ˝ α̃X

We can define this for any object Y P D, and these define two natural
transformations in NatpCpF 1pXq,´q, CpF pXq,´q.

By construction, pαXq˚, pα̃Xq˚ both make the following diagram commute
respect to the βY

CpX,G1Y q CpX,GY q

DpF 1X,Y q DpFX, Y q

pβY q
˚

– –

Thus, pαxq˚ and pα̃Xq˚ are the same map. By Yoneda’s Lemma, there
is a corresponding map αX P CpFX,F 1Xq that correspond both αX , α̃X .
Since pαXq˚ “ pα̃Xq˚ for every X P C, α “ α̃. This shows bijection
between α and β.

2023S #2 Let p, q be the distinct prime numbers and consider the number field
K “ Qp

?
p `

?
qq. Describe all the subfields of K and the inclusion

between them.

Solution: We haveQp
?
pq andQp

?
qq are linearly disjoint, meansQp

?
pqX

Qp
?
qq “ Q, if not, then there is a, b P Q with a

?
p`b “

?
q. Taking square

for the both side we made
?
p is rational. Also Qp

?
p,

?
qq is a splitting

field this is Galois. By the disjointness, we have the Galois group Z{2ˆZ{2
there are exactly 3 nontrivial proper subgroup. That has to be correspond
into Qp

?
pq,Qp

?
qq,Qp

?
pqq that they are disjoint with each other, and Q

are trivial subfield. Claim: Qp
?
p `

?
qq “ Qp

?
p,

?
qq. Clearly we have
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Qp
?
p,

?
qq Ă Qp

?
p,

?
qq. On the other hand Qp

?
p`

?
qq Ą Qp

?
pqq. But

there should no intermediate field except for Qp
?
p,

?
qq. So Qp

?
p,

?
qq “

K(Alternatively we can divide p2´q2
?
p`

?
q “

?
p´

?
q)

2023S #3 Given an example of an infinite field extension K Ă L such that only
finitely many field automorphism fixing K.

Solution: Consider the following examples

(a) Claim: The only surjective ring homomorphism from R Ñ R is the
identity map. Lemma: Any ring homomorphism f : R Ñ R is
uniquely determined by fp1q and this is identity. Proof: First of
all fp1q “ 1 because this is a ring homomorphism. For n P Z fpnq “

nfp1q. Also for the rational number rs , we have fp rs qfpsq “ rfp1q and
fp rs qsfp1q “ rfp1q2. Then by additivity, so f is identity over Q. We
will prove f is indeed a continuous function, so that all continuous
function is determined by the dense set. Indeed, if x ě 0 then x “ y2

for some real y., hence fpxq “ fpyq2 ě 0 which implies f preserve a
order. And hence |y ´ x| ď 1

n implies |fpyq ´ fpxq| ď 1
n |fp1q|, that

implies f is continuous.

rR : Qs is not a finite, the reason is Q is countable but R is uncount-
able. And automorphism fixing Q is identity.

(b) Consider Fp Ă Fppxq. This case Fppxq is a transendental extension.
So the degree of extension is 8

Claim: The GalpFpptq{Fpq is finite group. In general, the Galois
group Galpkptq{kq is a PGLp2, kq. This solution refered to the Cox
”Galois Theory” proposition 7.5.5 and Theorem 7.5.7 Proposition

7.5.5 Assume α P kptq is a rational function not is k and write α “
aptq
bptq

where aptq, bptq P F rts are relatively prime. Then

1.α is transcendental

2.apxq ´ αbpxq P kpαqrxs is irreducible over kpαqrxs

3.kpαq Ă kptq is a finite extension of degree rkptq, kpαqs “ maxpdegpaq, degpbqq

If α is algebraic over k then there is an algebraic relationship

αn ` a1α
n´1 ` . . . an “ 0

with n ě 1 and a1 . . . an P k. Substituting α “
aptq
bptq then by multi-

plying bptqn then
aptqn “ bptqppptqq

for some polynomial p. Since kpxq is UFD it contradict they are
relatively prime. Without loss of generalities, we can assume bptq is
constant. Then there is a algebraic equation of aptq that is contra-
dicting for the fact that t is a transcendental over t.
We will prove apxq ´ αbpxq is irreducible over kpx, αq. apxq ´ αbpxq

is irreducible over krx, αs suppose not, then we can write it as a
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product ppx, αqqpx, αq. The degree of α for apxq ´ αbpxq is one, ei-
ther ppx, αq qpx, αq is a polynomial of x. Suppose ppx, αq P krxs

that means ppxq divide both apxq and bpxq contradicting apxq and
bpxq are relatively prime. This shows apxq ´αbpxq is irreducible over
krα, xs. Clearly apxq ´ αbpxq P kpαqrxs if this decomposed into the
ppx, α, 1

α q and qpx, α, 1
α q then by multiplying sufficiently large α, then

αkapxq´αk`1bpxq is factored into the krα, xs. But again, sine krα, xs

is UFD, and apxq ´αbpxq is irreducible on krx, αs ,apxq ´αptqbpxq is
irreducible in kpαqrxs.

Since α is rational function of t we have kpαq Ă kpα, tq “ kptq. t is
vanishes in apxq ´ αbpxq. Then compare the coefficient of apxq and
bpxq, since α R k these coefficient doesn’t vanish, so the degree of this
polynomial in terms of x is maxpdegpaq, degpbqq.

We will claim that given g “

ˆ

a b
c d

˙

be a invertible matrix then

g ¨ t “ at`b
ct`d gives automorphism. To be presise there is a morphism

from GLpk, 2q Ñ Galpkptq, kqq. This action of g fixes element of F .

We can see at`b
ct`d gives a transcendental function. With degree, 1 as

this is a root of pct` dqx´ at´ b. This means kpat`bct`d q “ kptq.

There are inverse automorphism dt´b
´ct`a .So showed this embedded into

the matrix to the automorphism group of kptq{k
This is surjective, because by the above argument we showed, the
degree 1 automorphism must be a smaller than degree one in both
denominators and numerators, so a form of at`bct`d .

dt´b
´ct`a is the inverse,

and this to be exist, we have to have ad´ bc ‰ 0.
We can compute kernel is multiple of identity by solving the equation
t “ at`b

ct`d . This equation implies ct2 ´ pa ´ dqt ` b “ 0 so c “ b “ 0
and a “ d.

2023S #4 Let MnpKq be the ring of n ˆ n matrix with coefficients in a field K,
describe all possible ring homomorphism MnpKq Ñ K

Solution: When n “ 1, the homomorphism of the field is EndpKq.

When n ą 1, notice that Mij the matrices with a 1 in the pi, jq entry and
other entries are 0. As being a ring, MnpKq are generated by Mij as a
K´module, so ring homomorphisms are determined by how Mij mapped
under f . Moreover, if i ‰ j, then M2

ij “ 0, so fpM2
ijq “ fpMijq

2 “ 0 Ñ

fpMijq “ 0. Moreover, if fpMiiq ‰ 0, then for i ‰ j, MiiMjj “ 0, so
this ensures Mjj “ 0 at most one diagonal entry can map to something
nontrivial (and it must map to 1, as the identity maps to 1).

However, for n ą 1, consider the matrix M , such that 1 all entires are
1. fpMq “ fpMiiq ` fpM ´ Miiq “ 1, but then 1 “ fpMq2 “ fpM2q “

fpn ¨Mq “ n ¨fpMq “ n. So, there are no ring homomorphisms for n ą 1.

12



Alternate Solution: Alternatively, sinceMnpkq is a simple ring, so every
ring homomorphism to the other ring k are injective (otherwise kernel
would be a nontrivial two sided ideal.) So the image under homomorphism
is always noncommutative. However k is commutative, so we cannnot
embeded MnpKq. Contradiction.

Extra problem Show there is no homomorphism from ϕ :MnpKq Ñ MmpKq for n ą m.

According to the argument above, ϕ is injective homomorphism.
1. Restrict to the morphism to the GLnpkq then this will be a morphism
of the algebraic group whose image is contained in GLmpkq as invertible
elements map to invertible. We know the (krull)dimension of pn ` 1q2 ´

2n´ 1 “ n2 ´n. But the left hand side has dimension less than n2 ´n so
there is no such a injection.
2. Mnpkq are minimally generated by the elementary matrix Eij for 0 ď

i, j ď n. AndMmpkq is generated less number of generator, thus generator
maps to generator, this shouldn’t be injective.

2023S #5 Let A be a local commutative noetherian ring and M a finitely generated
A-module such that every exact sequence 0 Ñ M2 Ñ M 1 Ñ M Ñ 0
remains exact after tensoring with the residue field k of A. Show that M
is free.

Solution: Since M is already finitely generated, there exists k such that
Ak Ñ M is a surjection. In particular, without loss of generalities pick k
is the smallest integer r satisfying the above property. By the statement
of the problem we have the following exact sequence.

0 Ñ M2 Ñ Ar Ñ M Ñ 0

Note M2 is a kernel of the map Ar Ñ M , which is a submodule of
the finitely generated submodule over the Noetherian ring, thus this is
a finitely generated A-module. Tensoring by the residue field A{JpAq – k
gives

0 Ñ M2 b k Ñ Ar b k Ñ M b k Ñ 0

SinceMbk is a module over vector space, there exist n such thatMbk –

kn and kk – kn bM2 b k. We will claim that n “ k. If not we will show
that the module will be generated by fewer elements.

Consider the following form of Nakayama’s lemma for vector spaces. If
M is finitely generated module over A, images of elements m1 . . .mn of
M{JpAqM generate as A{JpAq module, then M is spanned by m1 . . .mn

13



Proof. Using the other version of Nakayama’s lemma, M “ JM ` N Ñ

M “ N for N Ă M . Then this claim is same as N “
ř

Rmi.

Apply the above Nakayama’s lemma, n “ k, so the M2 b k “ 0. Again
using the Nakayama’s lemma for M2, implies M2 “ 0. This implies
Ar – M so that M is free.

2023S #6 Let A be commutative ring, and let s P A. Let S “ t1, s, s2, . . . u. Show
the following are equivalent.

(a) The canonical morphism A Ñ S´1A is surjective

(b) There is N ą 0 such that snA “ sNA for all n ě N .

(c) For n large enough, the ideal snA is generated by an element e with
e2 “ e

Solution

(c) ùñ (b): There is some N for which @n ě N ,then sNA Ą SnA.
By hypothesis there is an idempotent eA “ SNA. Since e2 “ e, SNA “

eA “ e2A “ eSNA “ SNeA “ S2NA. If we take k large enough so that

n ď 2kN then we have S2kNA Ă Sn Ă SNA so that we have SNA “ Sn.

(b) ùñ (a): sN P sNA “ sN`1A. So, sN “ sN`1a for some a P A. In
other words,

sN p1 ´ saq “ 0

Thus, a1 ” 1
s in S

´1A. So, the canonical morphism A Ñ S´1A is surjective
on S´1A.

(a) ùñ (c): If the canonical morphism is surjective, then there is some
a P A such that a

1 ” 1
s . So, there exists some sN such that sN “ sN`1a.

Set e “ sNaN . Then,

psN qaN “ psN`NaN qaN “ psNaN q2

Moreover, sNaN generates all of sNA (which is equal to snA for all n ě N
by a simple inclusion argument), as sN “ sN psNaN q P sNA.

2023S #7 Let k be a field and let A “ krx, ys{px2, xy, y2q.

(a) Determine the invertible elements of A

(b) Determine the ideals of A

(c) Determine the principal ideals of A

Solution: (a) The invertible elements are tα1x` α2y ` α3 : α3 ‰ 0u.

(b) The full list of ideals are all of the principal ideals, 0, A, and xx, yy.

(c) The principal ideals are those of the form xxy, xyy, and xx ` a
b yy for

any a, b ‰ 0.
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2023S #9 Let G be a non-abelian finite group of order pq where p and q are prime
numbers with q ą p. Determine the degrees of the irreducible characters
of G, and determine the number of irreducible characters of a given degree.

Solution: The dimension of the irreducible representation divide the or-
der of the group. The order of the group is pq for two primes p and q
where q ą p. We couldn’t have the degree q and pq representation be-
cause q2 ą pq as well as ppqq2 ą pq. Thus it is enough to count the
number of the representation of degreee p and 1. Note that the number
of the 1 dimensional irreducible representation is same as the |G{rG,Gs|.
We will count the cardinality of rG,Gs. We shouldn’t have rG,Gs “ teu
because of the non-abelian hypothesis. So |G{rG,Gs| “ p, q, 1. We cannot
have 1, because let n be the number of the conjugation classes then the
dimension, group order formula of G gives 1 ` p2n “ pq.But since right
hand side is 0 modp but left side is 1. That cannnot be happen.
If |rG,Gs| “ p, then there is a normal subgroup rG,Gs of order q, also
notice by the Sylow’s theorem, there are unique normal sylow q group. By
the internal direct product theorem, it would be a internal direct product
between q´sylow subgroup Pp and rG,Gs. Both group is commutative, so
group would be a abelian.
Thus |rG,Gs| “ q and there are p different 1-dimensional irreducible rep-
resentation. There are q´1

p degree p irreducible characters. This also

indirectly shows that such a non-abelian pq group exist only if q|p´ 1.
Note that you can also use the fact strcture theorem of the non-abelian
pq group.

2023S #10 Let A be an artinian ring and let M be an A-module. Let B “ EndApMq.
Let f P B such that fpMq Ă JpAq¨M , where JpAq is the Jacobson radical.
Show that f P JpBq.

Solution: There are four steps.

(a) Show JpAq is nilpotent.

(b) I “ tf | fpMq Ă JpAq ¨Mu is an ideal.

(c) We want to show that 1 ´ hf is invertible for all h P EndApMq, but
hf P I because I is an ideal, so it suffices to show 1 ´ f is invertible
for all f P I.

(d) f is nilpotent. Then

p1 ` f ` f2 ` . . .` fN qp1 ´ fq “ 1 ´ fN`1 “ 1

so 1 ´ f is invertible.

Here once see step (a) and (b), rest is just following (c) and (d) so just
see a nontrivial claims of (a) and (b). Lemma. Jacobson radical JpAq of
Artinian ring A is nilpotent ideal.
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Proof. JpAq is an ideal of Artinian ring, so the chain J ipAq Ă J i`1pAq

would stablize. Let K be an ideal that stablize, I “ J ipAq “ J i`1pAq “

. . . . If I ‰ 0 then nothing to prove,

F “ tI Ă R|Kan ideal and IK ‰ 0u

F is not empty because I P F , and by Artinian condition there is an
minimal ideal, put it K. We will show that K is finitely generated. IK ‰

0 now choose element x P K such that Ix ‰ 0, such element x exist,
otherwise IK “

ř

Ix “ 0, so Ix “ 0 and indeed by the hypothesis of
being minimal of pxq “ K. This shows not just finitely generated, but K
is principally generated. Since K is finitely generated, IK “ K we can
use Nakayama’s lemma(Note I Ă JpAq.) So K “ 0. This means that
there is no notrivial element in the family so I “ 0.

Returning to the problem, consider the set

I “ tg P B | gpMq Ă JpAq ¨Mu

By construction, this is a left ideal. Moreover, for any g P I, we know g is
nilpotent. This is because for any n ě 1

fnpMq Ă fpJpAqn´1Mq Ă JpAqnM

16



5 Fall 2022

2022F #1 Find all the subfield of F “ Qp
3
?
2, 3

?
3q

Solution. Consider the normal closure N of F , denote their Galois group
G :“ GalpN{Qq.

Claim: G “ pZ{3Zq2 ⋊ Z{2Z.

Proof. x3 ´ 2 and x3 ´ 3. Since F does not contain 3rd root of unity ω,
F is not a splitiing field for x3 ´ 2 or x3 ´ 3. Notice F is totally real
field, so F X Qpωq “ Q. These polynomial split on Qp

3
?
2, 3

?
3, ωq. Since

rQp
3
?
2, 3

?
3, ωq, F s “ 2 there is no intermediate field between them, we can

see N “ Qp
3
?
2, 3

?
3, ωq. Consider the Galois group GalpN{F q – Z{2Z. It

is generated by an action ρ P G ρ : ω Ñ ω´1. Since 3
?
2 and 3

?
3 are

linearly disjoint, rN : Qs “ 18. Let σ, τ P G be elements permuting roots
of x3´3 and x3´2 respectively σ : 3

?
2 Ñ

3
?
2ω and τ : 3

?
3 Ñ

3
?
3. Notice,

F “ Qpω, 3
?
2qQpω, 3

?
3q, and Qpω, 3

?
3q XQpω, 3

?
2q “ Qpωq. So the Galois

group of GalpN{Qpωqq “ Z{3Z ˆ Z{3Z. By considering the actions of ω,
we can compute relation ρσρ´1 “ σ´1 and ρτρ´1 “ τ´1.

By the Galois correspondence, any intermediate field E such that Q ⊊
E ⊊ F Ă N correspond to the subgroup H such that teu Ă tρu ⊊ H ⊊ G.
As ρ is order 2 and G is order 18, the only possible order for H is 6. Since
xρy Ă H, H is semi-direct product between xρy and order 3 elements of
G.There are 6 order 3 elements in G,{σ, τ, στ, σ2τ2, σ2τ, στ2u. There are 4
different groups generated by these elements namely xσ, ρy, xτ, ρy, xστ, ρy “

xσ2τ2, ρy, xσ2τ, ρy “ xτσ2, ρy.
Counting xρy and G together, we see there are 6 subfields.

2022F #2 Let P pXq “ x6 ` 3

(a) Determine the splitting field over Q
(b) Determine the isomorphism type of the Galois group of P pXq over

Q.

Solution: (a) Let ζ “ e
2π
6 then the splitting field is Qpζ, 6

?
´3q for 1 ď

i ď 6 . Since ζ “ 1
2 ` i

?
3

2 P Qp 6
?

´3q thus indeed Qpζ, 6
?

´3q “

Qp6
?

´3q. This implies extension is generated by 6
?

´3. Qp 6
?

´3q is
6 dimensional over Q vector space, we have rQp 6

?
´3q : Qs “ 6.

(b) The group of order 6 is either Z{6Z or S3. The Galois correspond
says normal subgroup correspond normal subfield. Here Qp

3
?
3q is a

subfield but not Galois over Q so this is not abelian. Thus Galois
group is S3.
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2022F #4 List all conjugacy classes of GLp2, Fpq.

Solution: The matrix on the vector space has rational canonical form
ˆ

Cpf1q 0
0 Cpf2q

˙

with f1|f2 or Cpf1q. In the former case, f1 and f2 has both degree 1 so
that rational canonical form is a diagonal matrix so there are p´1 different
conjugacy classes. In the latter case, f1 “ x2 ` ax` b and

Cpf1q “

ˆ

0 b
1 a

˙

This matrix is invertible iff b ‰ 0 so that there are ppp ´ 1q different
conjugacy classes. To sum up, there are ppp´1q`p´1 “ p2 ´1 conjugacy
classes.

2022F #5 Let G be the group presented by

G “ xa, b|a4 “ 1, b2 “ a2, bab´1 “ a´1y

You may use that G has order 8. Compute the character table of G.

Solution: Since G has order 8 and is not abelian, as a´1 ‰ a (a is of
order 4), we know G is either D4 or the quaternion group. (If you are
familiar with the quaternions, you could see immediately that this is the
quaternion group presentation). We note that this assumption (along with
a ‰ b) gives us the 8 elements directly

G “ tab, ba, a, a´1, b, b´1, a2 “ b2, eu

(or alternatively) We have a unique presentations of the elements of group
by aibj so that we can easily figure out that xa2y is normal subgroup.
We can compute the commutator group by quotienting out by a2y so
that we have a presentation of G{xa2y – xa, b|a2 “ b2 “ 1, bab “ ay –

Z{2Z ˆ Z{2Z.
From the group presentation we have the following conjugacy classes
(which gives us the number of irreducible representations)

bab´1 “ a´1 (1)

aba´1 “ b´1 (2)

bbab´1 “ ba´1 (3)

We note that a2 “ b2 is its own conjugacy class, as this commutes with
both a and b so is in the center of the group. Since e is also its own
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conjugacy class, we have 5 conjugacy classes 2 containing one element
each and 3 containing 2 elements.

To compute the character table, we will start by noting that there must
be an identity character. We note that the sum of the dimensions of
the characters squared must equal the size of the group, and we note
that we must have a character for each conjugacy class. This means 8 “

1`1`1`1`22 is the only way to allocate dimensions. For 1-dimensional
characters, we can make a guess. Let’s compute the character that takes
a to ´1 and b to 1. We know that this is irreducible if it is well defined, as
it has dimension 1. This gives us a3 ÞÑ ´1, b3 ÞÑ 1 and ab, ba ÞÑ ´1, and
a2, b2, e ÞÑ 1, and thus is well defined. Similarly, we look at the character
that takes b ÞÑ ´1 and a ÞÑ 1. Finally, we take the characters b ÞÑ ´1 and
a ÞÑ ´1. All three of these are well-defined 1-dimensional characters (one
can compute that these are in fact linearly independent). So we have

teu ta2u ta, a´1u tb, b´1u tab, bau

E 1 1 1 1 1
R1 1 1 -1 1 -1
R2 1 1 1 -1 -1
R3 1 1 -1 -1 1
R4 2 x1 x2 x3 x4

To calculate the last row, we use the following orthogonality relation

0 “ xχα, χβy “
1

|G|

ÿ

gPG

αpgqβpgq

We can compute inner products:

xE,R4y “
1

8
p2 ` x1 ` 2x2 ` 2x3 ` 2x4q “ 0

xR1, R4y “
1

8
p2 ` x1 ´ 2x2 ` 2x3 ´ 2x4q “ 0

xR2, R4y “
1

8
p2 ` x1 ` 2x2 ´ 2x3 ´ 2x4q “ 0

xR3, R4y “
1

8
p2 ` x1 ´ 2x2 ´ 2x3 ` 2x4q “ 0

Adding all 4 of these equations, we get:

1 `
1

2
x1 “ 0 ùñ x1 “ ´2

Which tells us x1 “ ´2. Now, we use the normality condition: 1
|G|

xχα, χαy “

1

xR4, R4y “
1

8
p4 ` 4 ` 2|x2|2 ` 2|x3|2 ` 2|x4|2q “ 1
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This means:

1 `
1

4
p|x2|2 ` |x3|2 ` |x4|2q “ 1

Noting that the magnitudes need to be greater than or equal to 0, and
thus all three of them must be 0. The final character table is:

teu ta2u ta, a´1u tb, b´1u tab, bau

E 1 1 1 1 1
R1 1 1 -1 1 -1
R2 1 1 1 -1 -1
R3 1 1 -1 -1 1
R4 2 -2 0 0 0

2022F #6 Let G be a finite group, let V be a finite-dimensional complex vector space
and let π : G Ñ GLpV q an irreducible representation. Let H be an abelian
subgroup of G. Show that dimpV q ď rG : Hs .

Proof. Let ρ : G Ñ GLpV q be a irreducible representation. Then it defines
the restriction to the ρH . Let W be a irreducible representation of H,
which is one dimensional. Let V 1 be the subvector space of V such that
generated by the images of ‘gPGgW . Note that this V 1 is invariant undet
the action of G, so this is also a subrepresentation of V. However V is
irreducible, and V 1 ‰ 0 so V “ V 1. Given two different vector spaces
to be coincide g1W “ gW , this is equivalent g´1g1W “ W that means
g1´1g P H. In other words, there is some h P H such that g “ g1h. It
means the image under G is determined by the representative class of
G{H. Since the number of different images are atmost rG : Hs because it
is so the dimension of V is at most rG : Hs.
Alternatively let χH be a restriction of V to the subgroup H.

Claim. xχH , χHy ě χV p1q

Proof. The character restrict to H can be written as the direct sum of
irreducible representation λi of H, χH “

ř

miλi. Since χH is a just
restriction of H, we have χV p1q “ χHp1q. In particular the representation
of the abelian group is λi : G Ñ Cˆ. And order is finite, all χipgjqare root
of unity. χHp1q “ χV p1q “

ř

mi where mi are integers. Taking the inner
product, xχH , χHy “

ř

mimjxλi, λjy “ p
ř

m2
i q ě

ř

mi.

Since χV is irreducible character, we have
ř

gPG |χV pgq|2 “ |G| by the

orthogonalities. So the restriction to the H gives
ř

hPH |χV phq|2 ď |G|

Since xχH , χHy “
|χV |

2

|H|
we have χV p1q ď xχH , χHy ď

|G|

|H|
.
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2022F #7 Let S be a multiplicatively closed subset of a commutative ring R. Show
that for a prime ideal p in R disjoint from S, the ideal pRrS´1s in the
localization RrS´1s is prime. Show that this gives a one-to-one correspon-
dence between prime ideals in R that are disjoint from S and prime ideals
in RrS´1s.

Solution. Let π : R Ñ RrS´1s be the localization, defined by a Ñ a
1 .

Lemma 1. For any ideal J Ă RrS´1s, xπpπ´1pJqqy “ J .

Proof. It is clear xπpπ´1pJqqy Ă J . For the reverse inclusion, let a
s P J .

Then sas P J , with a P R, thus a P π´1J. This means a
1 P πpπ´1pJqq. So

that p 1
s qpa1 q “ a

s P xπpπ´1Jqy

Lemma 2. For any ideal I Ă R, π´1pxπpIqyq “ ta P R : Ds P S : sa P Iu.
Also xπpIqy “ RrS´1s Ø I X S ‰ H

Proof. Let I 1 “ ti P R : Ds P S : si P Iu. Suppose i P I 1, there exist s P S :
si “ a P I. Then i

1 “ a
s P πI. So i P π´1pπIq. Conversely, let i P π´1pπIq,

so that i
1 “ a

s for some a P I and s P S. Then Dt P S : tpsi ´ aq “ 0 so
tsi “ ta P I and we can find ts P S, so that its P I, which means i P I 1.
Now πI “ RrS´1s Ø 1

1 P πI Ø 1 P π´1pπIq In particular if I is any prime
ideal disjoint with S the p1 “ p

Returning to the original problem, pick an ideal q Ă RrS´1s then prove
π´1q is a prime ideal that is not intersecting with S. First of all this does
not intersect with S, otherwise contradicts with lemma 1. This is prime
ideal because preimage of prime ideal is prime.Suppose p Ă R is a prime,
such that p X S “ H. Let q “ πp. Suppose a

s
a1

s1 P q then aa1

ss1 “
p
u for

some p P p and u P S. Then there is some t P S : tpuaa1 ´ ss1pq “ 0 Since
p X S “ H and p is prime, we get aa1 P p so either a P p or a1 P p. This
shows bijective correspondences.

2022F #8 Let A be a commutative ring. Show that the following are equivalent.

(a) Every prime ideal of A is equal to an intersection of maximal ideals
of A.

(b) For every ideal I, the intersection of all prime ideals of A{I is equal
to the intersection of all maximal ideals of A{I.

Solution Sketch: (a) ùñ (b): the intersection of prime ideals of A{I
corresponds exactly to the intersection of all prime ideals of A that contain
I. Since every prime ideal of A (containing I) is equal to an intersection of
maximal ideals of A (containing I), this is exactly equal to the intersection
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of all maximal ideals of A that contain I (as maximal ideals are prime),
which then corresponds to the intersection of all maximal ideals of A{I.

(b) ùñ (a): Let I “ P Ă A be a prime ideal. Then, A{I is a domain,
so p0q is a prime ideal of A{I. Thus the intersection of all prime ideals
of A{I is p0q, and must be equal to the intersection of all maximal ideals
of A{I. This corresponds to saying the intersection of all maximal ideals
containing P is equal to P .

2022F #9 Let ϕ : Ab Ñ Gp be the inclusion/forgetful functor. Show that ϕ has a
left adjoint α. Does α have a left adjoint? Does ϕ have a right adjoint?

Solution Sketch α : Gp Ñ Ab the abelianization functor is left adjoint to
ϕ. ϕ has no right adjoint because it does not commute with colimits. As a
counterexample, consider the coproduct Z ˆ Z in the category of abelian
groups. Then, ϕpZ ˆ Zq “ Z ˆ Z remains abelian. However, taking the
coproduct last gives us ϕpZq ˚ ϕpZq “ Z ˚ Z which is not abelian.

Moreover, α does not have a left adjoint because it does not commute with
limits. Consider the inclusion f : A3 Ñ S3. Then, α does not preserve
this inclusion. αpfq : A3 Ñ Z{2Z is the trivial homomorphism. So in
particular, α does not preserve the fiber product of the diagram A3 Ñ S3

consisting of two f arrows. If we take the fiber product first, we get A3.
If we take the fiber product last, we get A3 ˆA3.

Note: any functor that preserves limits must preserve monomorphisms be-
cause of this. Similarly, any functor that preserves colimits must preserve
epimorphisms.

2022F #10 Compute the Jacobson radical JpRq for the following rings R.

(a) Let R “ EndRpV q, for a real vector space V of countably infinite
dimension. Compute JpRq.

(b) For any finite extension field F of Q, let R be the integral closure of
Z in F . Compute JpRq.

Solution. (a) (a)We claim JpRq “ 0. Pick x P JpRq, prove there exist
a P EndRpV q such that 1 ´ ax is not invertible. Let the basis of
vector space be te1 . . . u and x maps txpe1q . . . u to other basis. Define
a linear operator y such that ypxpe1qq “ e1 and ypxpeiqq “ xpeiq. In
particular, p1 ´ ypxqqe1 “ 0 so this is not injective, so it shouldn’t
have a left inverse. Note: even though the linear operator is not
injective, it could still have a right inverse. So Jacobson radical is 0
because it is asking only the left inverse.

(b) (b) Note that R is Dedekind domain, in particular all prime ideals
are maximal ideal.
Lemma: R has infinitely many prime ideals.
Proof: There are infinitely many nonzero primes of Z. Let p, q are
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distinct primes of Z, then pR ` qR “ R. This means pR and qR
are relatively primes, as being ideal of Dedekind ring, we have the
unique decomposition to product of prime ideals that means pR and
qR is contained in all distinct prime ideals.
If JpRq ‰ 0 then as a prime ideal decomposition of JpRq we can
decomposed into a product of finitely many prime ideals. That means
JpRq is contained in only finitely many maximal ideals. But we just
show that R has infinitely many prime ideals. Contradiction.
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6 Spring 2022

2022S #1 Let F be a field of characteristic not 2 and let the symmetric group Sn
act on the polynomial ring F rX1, . . . , Xns by permuting the variables, for
n ě 2. Let A “ pF rX1, . . . , XnsqAn and B “ pF rX1, . . . , XnsqSn be the
fixed subrings, where An ă Sn is the alternating group.

(a) Show that A is an integral extension of B.

(b) Show that A “ Brδs for some δ P A such that ∆ :“ δ2 belongs to B.

(c) For n “ 2 ,describe ∆ as a polynomial in e1 “ X1 ` X2 and e2 “

X1X2.

Solution: (a) We can show in general F rX1 . . . Xns is integral over F rX1 . . . XnsG

because for given polynomial p P F rX1 . . . Xns then
ś

gPGpy´g¨pq has

G´invariant coefficient. Note that F rX1 . . . XnsSn Ă F rX1 . . . XnsAn Ă

F rX1 . . . Xns.

(b) Claim. δ “
ś

iăjpxi ´ xjq
Let f P A. Then define g “ p1, 2qf . Note that we get same g for the
any permutation pi, jq because p1, 2qf “ p1, 2qp1, 2qpi, jqf “ pi, jqf .
We can decompose function as f “ 1

2 pf`gq` 1
2 pf´gq. We will prove

that f ` g is symmetric and f ´ g is divisible by δ. If we act π which
is product of even permutations, then πpf ` gq “ f ` πp1, 2qf . Since
the cycle length is preserved under the conjugacy, we can find some
2 cycle by πp1, 2qπ´1 “ pi, jq so we have πp1, 2qf “ pi, jqπf “ g. For
the similar argument, we see invariance of the odd cycle. On the other
hand, we can check f´g change sign under the action of the odd cycle,
and preserve sign under the even sign. Any polynomial whose action
by the transposition change the sign is divided by the δ. Because
hp. . . xi . . . xj . . . q “ ´hp. . . xj . . . xi . . . q implies hp. . . xi . . . xi . . . q “

0 and since polynomial is UFD that is divided all factors pxi ´ xjq
with i ă j.

Alternatively Lemma:We can use the fact that invariant ring and the
localization are commute, namely if we are given the R “ F rx1 . . . xns

domain(here we actually not need to be domain though) then FracpRGq “

FracpRqG according to Atiyah Macdonald Exercise 12, Chapter 5.

Take a
s P FracpAqG. Then

a
ś

σPG{1 σpsq
ś

σPG σpsq
“ a1

s1 . With this new expression,

denominator is G´invariant. Let the action of σ P G then a1

s1 “
σpa1

q

σps1q
.

Since this is integral domain we have a1 “ σpa1q so a
s “ a1

s1 P SGAG where
S “ R{t0u.

According to lemma we have FracpRAnq “ FracpRqAn and FracpRSnq “

FracpRqSn . By Galois correspondence rFracpRqAn : FracpRqSns “ rSn :
Ans. Degree 2 extensions, the elements to add is discrimnant δ. Since
δ P R we showed the statement.
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2022S #2 (Omit the text of the problem)

Solution: I guess it wouldn’t asked it again, idea is we can take left
derived functor Ñ TorpZ,Mq Ñ TorpZ,Nq Ñ. Since M is free so flat,
TorpZ,Mq “ 0. By hypothesis cokerpTorpZ,Mq Ñ TorpZ,Nqq “ 0 that
means TorpZ,Nq “ 0

2022S #3 Let G be a finite p-group and let H ă G be a proper subgroup. We write
as usual Hg “ g´1Hg for every g P G.

(a) Show that the normalizer NGpHq of H in G is strictly larger than H.

(b) Show that if H is not normal in G then there exists another proper
subgroup H ă K ă G and g P G such that Kg “ K but Hg ‰ H.

Solution: (a) Let H act on the right cosets G{H by right translation.
Since H is proper subgroup, the number of such cosets is divisible by
p. At least one of these is fixed by H, namely the coset H. By the
fixed point theorem the number of the different orbits fixed by H is
divisible by p. Hence there is some g P G{H such that Hgh “ Hg
for all h P H. This implie ghg´1 P H for all h P H so gHg´1 Ă H.
Since they have same cardinalities we have gHg´1 “ H. Hence
g P NGpHq{H and NGpHq ą H.
Alternative solution:(At least this solution feels me more natural)
Prove by induction, when G “ Z{pZ, there is only one proper sub-
group teu and in this case, normalizer is entire group, so statement is
true. Assume the case for pn´1 and prove for pn. There exist a group
H ă G such that NGpHq “ H. Note that p group has a nontrivial
center Z, and for any element of center z P Z, Hz “ H so Z Ă NGpHq

so Z Ă H. Thus H{Z Ă G{Z. By the induction hypothesis, the nor-
malizer of H{Z in G{Z properly contained in the normalizer. This
means there is x R H{Z such that xH{Zx´1 “ H{Z.
Let h P H we have xhZx´1 “ h1Z for some h1 P H. Therefore
xhx´1Z “ h1Z so xhx´1z “ h1z1 implies xhx´1 “ h1z1z´1 since
z1, z1 P H we have xhx´1 P H

(b) Take the normalizer, then G Ą NGpHq Ą H and since H is not
normal G ‰ NGpHq. Pick K “ NGpHq, Then NGpNGpHqq is strickly
contain NGpHq by (a). So pick g P NGpNGpHqq{NGpHq so statement
holds.

2022S #4 Let R be commutative, M P R ´Mod.

(a) Show HomRp´,Mq : pR´Modqop Ñ R´Mod admit a left adjoint.

(b) Show that for every R´module X,the module HomRpX,Mq is a di-
rect summand of HomR(HomR (HomRpX,Mq,Mq,Mq.
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We note

For HomRp´,Mq : R ´mod Ñ pR ´modqop So it is self adjoint functor.

(a) Consider the unit η and counit ϵ for the functor Homp´,Mq so that

ηX : HomRpX,Mq Ñ HomRoppM,HomRpX,Mqqq – HomRpHomRpX,Mq,Mq

ϵX : HomRpHomRpXq,Mq,Mq Ñ HomRpX,Mq

such that ϵ ˝ η “ Id.Thus there is an exact sequence

since this split, HomRpX,Mq is a direct summand.

2022S #5 Let R be a commutative ring and let G be a finite group. Prove that
R with trivial G action is a projective RG-module if and only if the
order of G is invertible in R.

Solution: There is a surjectiveRG-module homomorphism ϕ : RG Ñ

R where ϕp
ř

aigiq Ñ
ř

ai, so R is projective if and only if ϕ has a
injective right inverse.
If R is projective RrGs module then θ : R Ñ RG is a injective right
inverse, so that ϕθ “ idR. Since we have the trivial action for R to be
an homomorphism, θpg ¨ 1q “ θp1q for all g P G. As G act R trivially,
so θp1q contain all terms of gi because that is the only way to make
action g invariant, so θp1q “ b

ř

gi for some b P R. Note this is a
injective as a R´module, and to make ϕθp1q “ 1 b “ 1

|G|
which can

only occur when |G| is invertible in R.
Assume |G| is invertible in R then above θ is well defined, and we
can repeate above argument so that see θ has left inverse and splite,
this means R is projective RrGs module

2022S #7 LetK{F be a finite separable field extension, and let L{F be any field extension.
Show that K bF L is a product of fields.

Solution: Since K is a finite separable extension, we can find an element α P

K such that F pαq – F rxs{mα. Since mα is separable, we can use Chinese
remainder theorem to we can factorize into a product of irreducible polynomials.

F rxs{mα b L –
ź

α1

Lrxs{mα1

Since Lrxs is PID, all prime ideals are maximal ideals. So Lrxs{mα1 is a field.

2022S #9 Let A be a (unital) algebra of dimension n over a field F . Prove that there is a
(unital) F -algebra homomorphism from A bF A

op to the F -algebra of n ˆ n
matrices, where Aop is the opposite algebra.
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Solution. We have the morphism pa, bq P A bF A
op Ñ MnpF q – EndF pAq Q

ϕa,bpxq by ϕa,bpxq “ paxbq. This morphism is is F´algebra homomorphism
because pa b bq ¨ pc b dq “ pac b dbq. ϕc,d ˝ ϕa,bpxq “ acxdb “ ϕac,dbpxq. The
image of this homomorphism is not trivial, because if ϕa,bpxq “ axb “ x for all
x then for example ϕa,bp1q “ ab “ 1 so a is a left inverse of b. ϕa,bpaq “ a “ 1,
so a “ 1 similarly for b.

The explicit way of seeing map is we can take an basis as a F´vector spaces
ei, then multiplication of a “

ř

aijei and b “
ř

bijei can be written as aeib “
ř

Aijej . We can collect a data for Aij so that we can form a matrix.

When ring is simple so the morphism is isomorphism for the dimension rea-
son. (Note, this can be solved with Jacobson density theorem as well without
assuming tensor product of simple module is simple.)

2022S #10 Let F be a field characteristic not 2 and let K “ F p
?
a,

?
bq be a biquadratic

field extension (of degree 4) of F , for a, b P Fˆ not squares. Suppose that
b “ r2 ´ as2 for some r, s P F (i.e., b is a norm for the quadratic extension
F p

?
aq{F q. Prove that there is a field extension L of K that is Galois over F

with Galois group the dihedral group of order 8.

Solution: Consider the extension F r
a

r ´
?
ass, first we will see that F r

?
as ‰

F r
a

r ´
?
ass. That can be seen by the field norm as follows. Suppose not, then

we have
a

r ´
?
as “ c1 ` c2

?
a taking norm

NF p
?
a{F q

b

r ´
?
as “

?
b

But by the definition of norm that implies
?
b P F.That is contradiction. Few

words for why norm being
?
b, Take square for

a

r ´ s
?
a so that this will be

r ´ s
?
a, taking norm on this, we get b, so the norm should be the square root

of b

We can also use this method to prove F p
a

r ´ s
?
asq ‰ F p

a

r ´
?
as,

a

r `
?
asq.

Suppose otherwise, then we have
a

r ´
?
as “ c1 ` c2

a

r ` s
?
s for c1, c2 P

F p
?
aq. Taking field trace over F p

?
a,

a

r ´ s
?
aq{F p

?
aq then we figure out

c1 “ 0 Few words for why c1 should be 0, assumption is F p
a

r ´ s
?
asq “

F p
a

r ´
?
as,

a

r `
?
asq but hypothesis is both side field of degree 2, this

means since F p
a

r ´ s
?
aq is also degree 2 extensions. So the trace of

a

r ´
?
as

over F p
a

r ´ s
?
aq{F p

?
aq is 0. Similarly, trace of

a

r ` s
?
a over F p

a

r ` s
?
aq

is 0.

because they are basis of vector space. On the other hand, we can multiple
a

r ` s
?
a again, then we have

?
b P F p

?
aq again. That is a contradiction. We

figured out this as the Galois extension of order 8 with non-Galois intermediate
field(Which is F p

a

r ´ s
?
aq as being minimal polynomial T 4´2rT 2`b, as third

terms of polynomial vanishes because+- conjugation killing each other second
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terms are form of all sums of products of two roots combinations are products of
each ˘ conjugations and real conjugations. in case products of ˘ conjugations,
their sums are ´2r “ ´pr ` s

a

paqq ´ pr ´ s
?
aq In case of real conjugations

their sums are 0 “
?
b ´

?
b. For the case of 1st coefficient, it has to have

?
b

and just suming all the rest in different way so multiplication of 1st coefficient
so this is the polynomial.
Furthermore, we didn’t show the top field is not Galois, this is obviously the
splitting field, so enough to show this is a separable extensions. Notice, that
characteristic is not 2 so the derivative is not vanishing. The root is ˘

?
r and

0 and we can check r2 ´ 2r2 ` r2 ´ as2 ‰ 0 so separable extensions. That
implies the Galois group is order 8 with a nonnormal subgroup. Relying on the
classification of the group of order 8 that is a dihedral group.
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7 Fall 2021

Fall 2021 Question 2 Let K be a field, and consider the ring R “

Krxs{px2q. Show that every free submodule N of an R´module M is a
direct summand of M .

Solution Sketch krxs{px2q is injective module on its own. Any products
of injective module is injective, thus exact sequence splits.

Solution
Lemma 1: If R is PID, and I is nonzero proper ideal, then R{I is injective
left R{I module.
Proof: By Baer’s criterion, it suffice to extend a map f : J{I Ñ R{I to the
R{I Ñ R{I such that J is an ideal containing I. Since R is PID I “ Ra,
and I Ă J “ Rb thus we find c P R such that bc “ a. The R{I´module
R{I is generated by x “ 1 ` I and J{I is generated by bx.
Now let the homomorphism f be fpbxq “ sx for some s P R. Since
bcx “ ax “ 0 we have 0 “ cfpbxq “ csx. This implies cs P Ra. Therefore
cs “ ra “ rbc for some r P R. since R is domain cancelling c gives s “ rb
so that fpbxq “ sx “ rbx. Define g : R{I Ñ R{I to be multiplication by
r. Now g extend f for gpbxq “ rbx “ fpbxq. Thus R{I is self injective.

Lemma. Any direct sum of injective module over Noetherian ring is injec-
tive.
Proof: Show for family of injective module Ii and finitely generated mod-
ule M , we have HompM,‘Iiq – ‘HompM, Iiq. First notice in general
there is an injective ‘HompM, Iiq Ñ HompM,‘Iiq by coordinate wise
embedding. M is finitely generated, the image of a homomorphism from
M to ‘iNi is contained in the direct sum of finitely many Ii. Since Hom
commutes with forming finite direct sums, ϕ is surjective as well. For
Noetherian ring, ideal is finitely generated. HomRpR, Iiq Ñ HomRpa, Iiq
is surjective. Since a is finitely generated, the above isomorphism implies
that HompR,‘iq Ñ Hompa,‘Iiq is surjective as well. Baer’s criterion
now implies that ‘Ei is injective.
Here, the argument of finitely generatedness then preserve colimit is in-
deed rephrased as compact object preserve colimit as a hompM,´q. The
compact object is the object M such that HompM,´q preserve direct
sum.

Proof of the claim: N is free submodule of M . Since R is PID, N is
injective by above two claims. We have the exact sequence 0 Ñ N Ñ

M Ñ coker Ñ 0. Since N is injective the sequence split so N is direct
summand of M .

So injective module preserved by the product over any rings
Lemma. Any direct product of injective module is injective.
Proof: If Ii is injective, then given a morphism from a module A Ñ Ii and
injection A Ñ B. We have the unique lift of the morphism to B Ñ Ii.
Thus if A has morphism to the all Ii, it raise morphism to the A Ñ

ś

Ii.
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Then any injection A Ñ B lift into B Ñ
ś

Ii. So any product of injective
modules are injective.

Alternate Solution
Consider the family of R-submodules of L ď M with L X N “ 0. When
ordered by inclusion, these submodules. If we take the union of these
modules there are upper bound so this satisfy the conditions of Zorn’s
Lemma. There exists a maximal such submodule L0 ď M such that
L0 X N “ 0. Suppose for the sake of contradiction that M ‰ N ‘ L0.
Then we can pick m P M with m R N ‘ L0. If Rm X pN ‘ L0q “ H

then pRm` L0q XN “ H that contradict to the maximality of L0. Thus
pRm ` L0q X N ‰ H. In particular there is l1 P L0, n P N such that
pk2x` k1qm` l1 “ n.Here k1 “ 0 because otherwise xpk1m` l1 ´ nq “ 0
means m P N ‘L0. We have xm` l1 “ n. Annpnq “ x because if xn ‰ 0
then xl1 “ xn ‰ 0 contradict to L0 X N “ H. Thus we can find n P N
such that xn ‰ 0 and l P L0 such that xm “ xn` l so that xpm´nq P L0.
Claim: pRpm´ nq ` L0q XN “ H

Again since n R N ‘ L0, there is no k1 P k k1pm ´ nq ` l “ n1 for some
n1 P N . So if intersect it must be a form of k2xpm ´ nq ` l “ n1. But
since k2xpm´nq P L0 and L0 doesn’t intersect with N we have an empty
intersection with pRpm ´ nq ` L0q and N . Due to the maximality of N
we have Rpm´ nq Ă L0 but it contradict to the fact m R L0 ‘N .

Fall 2021 Question 3 Show that there are no simple groups of order
24p, where p is a prime number greater than 11.

Solution First of all, for p ą 23 there would be a unique sylow p group,
so it would be impossible. All prime p ą 11 and p ‰ 23 the matter is
same.So matter is when p “ 23. In this case, we can have n23 “ 1, 24
and prove n23 “ 24 is impossible. Assume n23 “ 24. In this case, rG :
NGpP23qs “ 24 for a Sylow 23 subgroup P23 of G. So P23 “ NGpP23q by
the order counting. There are 23 ¨24´22 ¨24 “ 24 elements whose order is
not 24. Let X be the set of elements whose order is not 23. Consider the
orbit stabilizer on this set by the conjugate action by the P23. This action
is well defined because action by the conjugation preserve the order.Then
|X| ” |XP23 |pmod23q. That is |XP23 | is either 1 or 24.

In case of 1, XP23 “ teu. Means that only fixed element by the conjugation
is 1, and by the orbit stablizer the orbit of X ´ e is single orbit. But it
will contradic to the Cauchy’s theorem where it claim there is an element
of order 2 or 3 and order is invariant under the conjugation map. That
means action by the conjugation fixes everything. But then for element
x P X, px “ xp for all p P P23 this means x P CGpP23q the centeralizer
of P23. That contradict for the fact we can take some x R P23 such that
x P NGpP23q.
Alternatively We can simplify this steps by computing the number of
Sylow 23 group which is 24, then consider the sylow 3 group, that can
have n3 “ 4, 46 and here n3 “ 4 is impossible because if so G permute
Sylow 4 subgroup by the conjugation action, and that yeilds nontrivial
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homomorphism ϕ : G Ñ S4 and that has a kernel as 4! “ 48 and |G| “

24 ˚ 23. If n3 “ 46 the order of the group is much bigger.

Fall 2021 Question 5 Consider a sequence of sets Si for i ě 0 and maps
ϕi : Si Ñ Si´1 for i ě 1. Suppose that there exists a positive integer N
such that the orders of the images of the maps ϕi are bounded above by
N . Show that lim

ÐÝ
Si is finite.

Solution

Let’s define Ti “ X8
m“0Impϕi ˝ . . . ϕi`mq. By the given hypothesis, we

have |Ti´1| ď |Ti| ď N , and ϕipTiq “ Ti´1. Let’s denote S “ lim
ÐÝ

Si and
T “ lim

ÐÝ
Ti We will now show S “ T . Let’s πi : S Ñ Si and π

1
i : T Ñ Ti

be a projection for the each component. Since Ti Ă Si, and the image of
πi will factor through Ti so there is a set of morphisms qi, qi : S Ñ Ti
such that πi “ pi ˝ qi that lift to the surjective morphism S Ñ T on to the
image. Conversely we have π1

i : T Ñ Ti we have pi : Ti Ñ Si is injective.
There is a morphism p : S Ñ T by the universal property of the limit
Claim: p is injective.
Limit is the right adjoint of the diagonal functor, so it is enough to prove
that any right adjoint functor preserve monomorphism. f : X Ñ Y is
a monomorphism if for every Z the hom-functor HompZ,´q takes it to
an injective function between hom-sets f˚ : HompZ,Xq Ñ HompZ, Y q.
Since lim

ÐÝ
is a right adjoint functor, Homp∆Z,´q – HompZ, lim

ÐÝ
´q. f :

Homp∆Z,Xq Ñ Homp∆Z, Y q is injective. So lim
ÐÝ

pfq : HompZ, lim
ÐÝ

Xq Ñ

HompZ, lim
ÐÝ

Y q is also a injective. Thus limit preserve a monomorphism(injective).
For the surjectivity, in the category of the set, limit can be written as the

S “ tpsiqiPN|ϕipsiq “ si´1u

so all elements of S is inside of the T , thus this is also surjection. For
proving the finiteness, we can observe that almost all of Ti are isomor-
phism (means that cardinalities of Ti are the same). That is because the
cardinalities of Ti are bounded by N . So we can identify isomorphic pair
of Ti’s. Under this identification,we can rename T 1

i . T
1
i are finite distinct

sets, think tT 1
iui as the finite sequences with cardinalities at most N . T

is subset of
ś

Ti so this is a finite set.

Alternatively Let Ti be given and for large n

Fall 2021 Question 7 Define commutative Q-algebras A “ Q, B “ Qrxs,
and C “ Qrxs{pxpx´1qq. Let A Ñ C and B Ñ C be the unique Q-algebra
homomorphisms such that x in B maps to x in C. Describe the pullback
(also called “fiber product”) R “ AˆC B in the category of commutative
Q-algebras, as the quotient by an explicit ideal of the polynomial ring over
Q on some set of generators. Is R noetherian?

Solution R “ tpa, bq P Q ˆ Qrxs|pa, bq, a ” bmodxpx ´ 1qu Ø tf P

Qrxs|fp0q “ fp1q “ au. Find out the generators by surjection

Qrxi,js{tpxi,jxk,l ´ xi`k,j`lq, pxi,j ´ xi`1,j´1 ´ xi,j´1qu Ñ R
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by mapping xi,j Ñ xipx ´ iqj . We can easily see this is a surjective mor-
phism and and well defined morphism because tpxi,jxk,l´xi`k,j`lq, pxi,j´

xi`1,j´1 ´ xi,j´1qu maps to 0 in R by chasing relations. We want to show
that there is no kernels hence isomorphism. Observe any term of degree
higher than 1, can reduce the degree by the first relation, so without loss
of generalities, we can put

ř ř

qijxij . Furthermore, using the second re-
lations, we can reduces indecies of j. So we can assume j “ 1. Mapping
ř

qjxj1 into R make relation px ´ 1qp
ř

qjx
jq “ 0 Ñ qj “ 0 thus there is

no kernel.
We haven’t figured out why this is a Noetherian.

Fall 2021 Question 8 Let A be a commutative ring and T an A´module.
Define a functor from A´ modules to A´modules by F pMq “ M bA T .
What is the right adjoint functor of F? Show that if F has a left adjoint,
then T must be a flat A-module, and also a finitely generated A-module.

Solution: By the Hom-tensor adjunction Hom is the right adjoint of the
tensor product HompM b T,Nq – HompM,HompT,Nqq If F has a left
adjoint then it is also left exact. As tensor products are already right
exact, this implies ´ bA T is an exact functor, thus T has to be a flat
module. As being right adjoint It must preserve a limit. Consider the
natural map

T bA

ź

iPI

A Ñ
ź

T bA A –
ź

iPI

T

For any index set I. Setting I “ T , the right hand side has a natural
elements

ś

tPT t which lists every elements T and by hypothesis this map
is an isomorphism so there must be elements

řn
j“1 tjbp

ś

iPT aijq mapping
to it. This element expresses every elements t P T as a linear combination
of a finite collection of elements tj , because

n
ÿ

j“1

tj b p
ź

iPT

aijq ÞÑ
ź

iPT

n
ÿ

j“1

aijtj “
ź

tPT

t.

It follows that T is finitely generated.

Appendix: Proof of the functor admit left adjoint is left exact
Prove F preserve zero object and equalizer. For proving preserve zero
object Z let G be their left adjoint η : HompGpAq, Zq – HompA,F pZqq

is a bijective, thus there is only a unique morphism from HompA,F pZqq.
Preserve equalizer for the morphsim ϕ1, ϕ2. Let f be a equalizer and there
is a morphism τ such that Gϕ1 ˝ τ “ Gϕ2 ˝ τ . By the naturality of η´1,
ϕ1 ˝ η´1τ “ ϕ2 ˝ η´1τ , so there is τ0 such that f ˝ τ0 “ η´1τ and we have
Gf ˝ ητ0 “ τ .

Fall 2021 Qustion 9 The outer automorphism group of a group H is the
quotient of the group of automorphisms of H by the subgroup of inner
automorphisms. It is known that the outer automorphism group of every
finite simple group is solvable. Using that, show that if G is a finite group
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with a normal subgroup N such that both N and G{N are nonabelian
simple groups, then G is isomorphic to the product group N ˆ pG{Nq.
Solution Note that left splite of the exact sequence implies group will be
decomposed into the product of the group, but right splite of the group
may implies group will splite as a semidirect product.

https://web.math.ucsb.edu/ atrisal/Group

We have the exact sequence 1 Ñ N Ñ G Ñ G{N Ñ 1. We will claim
this is left split. Since N is a subgroup, there is a injection i : N Ñ G.We
have the morphism f : G Ñ AutpNq by the conjugation action. The
inner automorphism ϕ : N Ñ InnpNq is injective as N is simple so
there is nonontrivial kernel so image is either identity or itself, and it
is not identity because N is nonabelian. Thus we can define the map
G{N Ñ AutpNq{InnpNq “ OutpNq. By the hypothesis OutpNq is solv-
able and G{N is simple. Note that the kernel of the map would be a
normal subgroup, and image must be teu or G{N . Note the image of
this map is trivial because if the kernel was teu, then G{N would be iso-
morphic to a subgroup of a solvable group, and so G{N solvable. But
nonabelian solvable group has to have a nontrivial normal subgroup such
that quotient by that is abelian. But since G{N is simple such an normal
subgroup doesn’t exist. Which means fpGq “ InnpNq by the conjugation.
Fix isomorphism k : fpGq – N we have an isomorphism pk ˝ fq ˝ f “ Id.
Left split of the group gives direct product, so we showed what we want.
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8 Spring 2021

Spring 2021 Problem 1 Prove that the direct sum
š

Z{pZ over all
prime integers p is not a direct summand of the product

ś

Z{pZ.
Solution Suppose it is the direct summand. Notice

ś

Z{pZ is an abelian
group. This means that all subgroup is normal. We can write

ś

Z{pZ “
š

Z{pZ ‘ K. Taking the quotient by the
š

Z{pZ, we would figure out
the module K –

ś

Z{pZ{
š

Z{pZ. We will prove K is not a subgroup.
Suppose this is a subgroup, then notice, every elements of K is divisible.
Pick pbiq P

ś

Z{pZ. For every n, we can pick paiq P
š

Z{pZ as the element
such that 0 everywhere for the prime nondivide p and 0 for prime dividing
n, we put p´bpq. So as the representative of K we can take pbi ´ aiq.
This is divisible by n. However, any elements of

ś

Z{pZ is divisible by
p because fix pbiq, if for all p there is elements pciq such that pbiq “ ppciq
then each entry of p part is 0. So it is impossible.

Spring 2021 Problem3 Prove that every group generated by two invo-
lutions (elements of order 2) is solvable.
solution Let group G is generated by x and y order 2.Consider xxyy. Note
that pxyq´1 “ yx. Therefore, xpxyqx´1 “ yx, yxyy´1 “ yx that implies
this is a normal subgroup. Let put that as N Since rx, ys “ xyxy P xxyy so
quotient is abelian. Also is generated by xN and yN . On the other hand,
if x P N then there exists n P Z such that x “ pxyqn, and since x has
order 2 we may assume n ą 0. Pick n, so pyxqn´1y “ 1. And pyxqn´1 ,
so ypxyqn´2x “ y. Therefore,pxyqn´2 “ x. Contradicting the minimality,
so n must be 1, 2. If n “ 1, then y “ pyxq0 “ 1, which contradicts the
assumption that y has order 2.. Therefore, n “ 2. But then yx “ y, so
x “ 1 , again a contradiction. Thus x R N . Symmetrically, y R N . Thus,
G{N is abelian, nontrivial, generated by two elements of order 2. But
since xN “ yN is cyclic of order 2. So show what we want.
Spring 2021 Problem 5 Let G be a finite group and let g P G. Suppose
for every irreducible complex character χ of G we have |χpgq| “ |χp1q|.
Prove that g is in the center of G.(Here I naturally interpret field has
characteristic 0)

Solution Let ρipgq be a irreducible representation of G. Let g P G be
|χρipgq| “ |χρip1q| for all irreducible representation ρi. ρpgq has a finite
order ρn “ I for some n P Z. In particular this implies that minimal
polynomial is separable polynomial. So the matrix is diagonalizable. Also
eigenvalues are root of unity because it is finite order. For the irreducible
representation χp1q is a dimension of the vector space. Let ξi be a distinct
eigenvalues, then |

ř

ξi| ď
ř

|ξi| “ dimV by triangle inequalities. Equal-
ity hold only if they are colinear. That is all ξi are same. In that case
ρipgq is diagonal matrix.
For that reason ρipghq “ ρiphgq for any element h in G. Let the reg-
ular representation be ρR. ρR can be decomposed into a direct sum
of irreducible representations ρR “

ř

aiρi. ρRpgq still commute with
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all elements h P G. Regular representation is faithful so in particular
ρpghq “ ρphgq implies gh “ hg. Thus g P ZpGq.

Solution 2: Pick element g P G such that |χipgq| “ |χip1q| for all irre-
ducible character χ. Using the column orthogonality, we have |CGpgq| “
ř

χi
|χipgq| “

ř

|χip1q| “ |G| means g commute all the element of G so it
is in the center.

Spring 2021 Problem 7 Let p be a prime number, k a field of char-
acteristic p and G be a (finite) p-group. Let M be a finitely generated
kG-module that admits a k-basis B such that G ¨ B Ă B Y ´B (i.e.
@g P G,@b P B, we have g ¨ b “ ˘b1 for b1 P B). Show that M admits a
k´basis B1 invariant under G (i.e. G ¨B1 Ă B1 without sign).

Solution: When p “ 2 then the statement is trivially true(because 1 “

´1) so assume p is a odd prime. Consider a cycle of the group action by g
to the basis. Then for any orbit of the action doesn’t map b to ´b. Because
otherwise, the group will be even order, which contradicts the hypothesis
of being p group. Thus B will be separated into the nonintersecting union
of the orbits BY ´B “ YbPBGbY YbPB ´Gb. In that case, YGb generate
the entire vector space.

Spring 2021 Problem 9 Let R be a commutative ring and A, B be two
(not necessarily commutative)R-algebras. Consider the functor HomR´AlgpAbR

B,´q : R ´ Alg Ñ Sets, from R-algebras to sets. Construct two homo-
morphisms f : A Ñ A bR B and g : B Ñ A bR B and show that they
induce an injection

ηC : HomR´AlgpAbR B,Cq Ñ HomR´AlgpA,Cq ˆ HomR´AlgpB,Cq

natural in C P R ´Alg. Identify the image of ηC explicitly.

Solution: Define fpaq “ ab 1 and gpbq “ 1b b. This induces a map h ÞÑ

ph˝f, h˝ gq. Suppose ph˝f, h˝ gq “ p0, 0q. Then, hpab1q “ hp1b bq “ 0.
Then, hpa b bq “ hppa b 1qp1 b bqq “ hpa b 1qhp1 b bq “ 0. As every
tensor is a sum of multiples of simple tensors, this implies h “ 0, thus ηC
is injective.

Suppose f1 : A Ñ C and f2 : B Ñ C are given. In order to define
h : AbRB Ñ C such that ηCphq “ pf1, f2q, we require hpab1q “ f1paq and
hp1bbq “ f2pbq. However, note that as pab1qp1bbq “ abb “ p1bbqpab1q,
in order for h to be well-defined, we also need f1paqf2pbq “ f2pbqf1paq. So
this is a necessary condition.

We then see this is sufficient as if we can define h on all simple tensors
ab b, then we can define h for any tensor in AbR B. Thus,

im ηC “ tpf1, f2q P HomR´AlgpA,CqˆHomR´AlgpB,Cq | f1paqf2pbq “ f2pbqf1paq for all , a P A, b P Bu.

Spring 2021 Problem 10 Let A be a ring. Let m,n ě 1 and P be a
right A-module such that Pn – Am. Show that S Ñ P bA S defines a
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bijection between the set of isomorphism classes of simple A-modules and
that of simple EndApP q-modules.

Solutions
Let S be a simple right Amodules, then prove PbS is simple left EndApP q

module. Prove the categorical equivalence between left EndApP q mod-
ule and right R-module. To do that functor P bA ´ has quasi-inverse,
HompP,Aq b ´. We will denote Q “ HomRpP,Aq. Which means given
any module left R moduleM , we need to show QbEndpAq bP bAM – M .
To do that we can show Qb P – A.
Let define trpP q “

ř

giP with g P HomRpP,Aq. We will claim trpP q “ A.
This is true because Pn – Am´1 ‘ A and this give a spliting exact se-
quence is a surjective morphisms

ř

gi : P
n Ñ A.

Define the pair of f P EndApP q, p P P, αfbp “ fppq this morphism define
a surjection. To show injecitivity, any element of Q b P can be written
as

ř

qi b pi. Suppose this maps to 0, then 0 “ αp
ř

q1
i b p1

iq “
ř

q1
ipp

1
iq.

Since we showed the surjection, we have
ř

qippiq “ 1, then
ř

q1
j b p1

j “
ř ř

pqippiqqq1
j b p1

j “
ř

qipq ¨ pi ˝ qj b pj . Using left EndRpP q strcture,
we have

ř

qi b pi ¨ qjpqpj “
ř

qi b pip0q “ 0. This shows one direction of
Morita equivalence(Actually you need to show the other direction, but it
is not appropriate problem in qual...
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9 Fall 2020

Fall 2020 Problem 6 Let K1 Ă K2 Ă K3 be fields with K3{K2 and
K2{K1 both Galois. Let L be a minimal Galois extension of K1 contain-
ing K3. Show that if the Galois groups GalpK3{K2q and GalpK2{K1q are
both p-groups, then so is the Galois group GalpL{K1q.

Solution
Define N3 “ GalpL{K3q, N2 “ GalpL{K2q, and N1 “ GalpL{K1q. By the
Galois correspondence, we have a chain or normal subgroups N3ŸN2ŸN1.
(Although we don’t know whether N3 ŸN1. In fact, if N3 is normal then
it must be trivial by the following claim.)

Claim: If H Ă N3 is a subgroup of N3 which is normal in N1, then
H “ teu.

SupposeH Ă N3 is normal inN1. Then there is a fixed fieldK3 Ă LH Ă L,
and because H Ÿ N1 is normal we know H is a normal extension of K1.
And since L is separable, the subfield LH is also separable. Therefore, LH

is a Galois extension of K1 containing K3, so by construction LH “ L and
H “ teu.

Claim: There is an injective homomorphisms φ : N1 ãÑ SN1{N3
. In par-

ticular, for any g P N1, the order of g is the least common multiple of all
cycles in the cycle decomposition of φpgq.

This comes because N1 acts on N1{N3. (Note that N1{N3 is not a group,
but just a set of cosets.) This group action defines a homomorphisms
N1 ãÑ SN1{N3

, and the kernel is contained in N3, because kernel mean
g P Ker Ø hN3 “ ghN3 for all h P G i.e h´1gh P N3, in particular h “ e
gives g P N3 . Since kernel is normal subgroup, and h´1gh is contained
in N3 for all h, we see ker Ă N3. It is trivial by the previous claim. The
second claim follows because an injective homomorphism preserves order.

Now for a given g P N1, we argue that the length of every cycle in the
cycle decomposition of φpgq is a power of p. Since the cycle decomposition
of φpgq partitions N1{N3, choose a coset hN3 for some h P N1. g acts on
hN3 by mapping to

hN3
g

ÝÑ ghN3
g

ÝÑ g2hN3
g

ÝÑ . . .
g

ÝÑ gkhN3 “ hN3

and eventually this cycle must end, so there is some k such that gkhN3 “

hN3. This is the length of the cycle containing hN3 in the cycle decom-
position of φpgq, and we show that k is a power of p.
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Claim: k is the minimal positive integer such that gk P hN3h
´1.

This just comes from rearranging gkhN3 “ hN3 to h´1gkhN3 “ N3, so
h´1gkh P N3, and g

k P hN3h
´1.

Also, note that because N2 is a normal subgroup of N1, we have hN3h
´1

a normal subgroup of N2, and N2{N3 – N2{hN3h
´1 by conjugating by h.

We will write N 1
3 “ hN3h

´1.

Now let n be the order of gN2 in N1{N2, and let m be the order of
gnN 1

3 in N2{N 1
3. Because N1{N2 “ GalpK2{K1q and N2{N 1

3 – N2{N3 “

GalpK3{K2q are p-groups, both n and m are powers of p.

Claim: k “ nm.

First, we see that gnm P N 1
3, because pgnN 1

3qm “ gnmN 1
3 “ N 1

3 in N2{N 1
3

by the definition of m.

Now suppose the gd P N 1
3. Because N

1
3 Ă N2, this means gdN2 “ N2, and

so n divides d by the definition of n. So we can write d “ n dn .

But this means that gdN 1
3 “ pgnN 1

3q
d
n “ N 1

3, so m divides d
n by the defi-

nition of m. So we see nm | d.

This exactly proves that k is the smallest positive integer such that gk P

N 1
3, and so we conclude that the length of the cycle that contains hN3 in

the cycle decomposition of φpgq is a power of p. Because this is true for
all g and all h P N1, we see that N1 is a p-group, as desired.

Alternatively(May be this is better and theoretically motivated)
Up to the point showing there is no normal subgroup H that is not con-
tained in N3 are same. We will show that using that fact, G is solvable
group.
Consider the commutator sequeuenceN1

1 :“ rN1, N1s, N i
1 :“ rN i´1

1 , N i´1
1 s,

first of all N1{N2 is a solvable group as being pgroup are solvable. Thus for
sufficiently large i we haveN i

1{N2 “ teu meansN i
1 ď N2. MoreoverN2{N3

is solvable by same argument, so there is j such that N i`j
1 ď N j

2 ď N3.

But since there is no normal subgroup of N3 is normal, but N i`j
1 is a char-

acteristic subgroup, so N i`j
1 is normal subgroup of N1 Ñ N i`j

1 “ teu. In
particular N1 is solvable group.
Then by Spring 2019 Problem 1, the minimal normal subgroup of finite
solvable group is a product of Z{qZ and there exist a normal subgroup of
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N1 such that contains N3, for example N2 is an example of normal sub-
group. Let N be a minimal normal subgroup contains N3. |N2{N3| “ pn

for some n as this is a p group. rN2 : N3s “ rN2 : N srN : N3s where
rN : N3s can only have a product of some prime q as qk “ rN : es “ rN :
N3srN3 : es and N ‰ N3 this means p “ q.

Fall 2020 Problem 7 Let R be a Dedekind domain with quotient field
K and I a nonzero ideal in R. Show both of the following.

(a) R{I is a principal ideal ring

(b) If J is a fractional ideal of R, then there exist x such that I`xJ “ R.
Solution a) We claim that if R is a Dedekind domain and p Ă R is a prime

ideal, then the ideals of R{pn take the form pk, 0 ď k ď n and are in fact
principal. Indeed, by the ideal correspondence theorem, any ideal of R{pn

corresponds to an ideal J of R that contains pn. But since R is Dedekind,
the prime factorization for J must divide the prime factorization for pn,
i.e. J “ pk for 0 ď k ď n.
First we show A{pn is Principal ideal ring. Note since A{pn has unique
maximal ideal p, so this is a local ring. Pick a P pzp2, this is possible if not
p “ p2. The ideal of Dedekind ring is finitely generated, so by Nakayama’s
lemma p “ 0, contradiction. So we can take a. Then a is proper ideal of
A{pn that is nonzero. Also it is not contained in p2. This shows A{pn is
principal ideal ring generated by paqk for 1 ě k ě n´ 1.
Moreover, by the Chinese Remainder Theorem, if I “ p1

n1 ...pk
nk Ă R,

then
R{I – R{p1

n1 ...ˆR{pk
n
k .

Thus, any ideal of R{I takes the form pa1qn1 ...ˆ pakqnk , where ai P pizp
2
i .

This shows that every ideal of R{I is generated by a single element, i.e.
R{I is a principal ideal ring.

b)Without loss of generalities, we can treat J as an ideal of R by multi-
plying x1 “ dx. Let a P J so we can find ideal c such that cJ “ aR.(This
is allowed for example Merkuriev’s note define a Dedekind ring as such we
can find c.) Moreover R{cI is a principal ideal ring so c{cI “ pbq. Thus
c “ cI ` bR. Multiplying J for bothside we have

Jc “ cJI ` bJR

aR “ aI ` bJ

divide by a we get

R “ I `
b

a
J

Comment: This is similar to the technique to prove that (fractional)ideal
of Dedekind domain is generated by at most two element. Proof is fol-
lowing, given an ideal I and element a P I, the ring O{a is principal ideal
ring, so the ideal I{a is generated by at most one element.
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Fall 2020 Problem9 Let G be a finite group, F a field, and V a fi-
nite dimensional F -vector space with G Ñ GLpV q a faithful irreducible
representation. Show that the center ZpGq of G is cyclic.

Solution When F is algebraically closed, then due to the Schur’s lemma,
ZpGq map to a scaler multiplication, and the group is finite so image of
ZpGq will be a root of unity of Fˆ. For every integer m there are at
most m distinct elements of order m because they are roots of xm ´1 and
because F rxs is UFD.

We will prove the subgroup generated by root of unity of the Fˆ is cyclic.
Note Fˆ is abelian, so we can apply the structure theorem of finitely
generated abelian group so that it can be written as the

ś

Z{pkii for primes

and the subgroup generated by m´th roots of unity be µm “
ś

Z{pkii . It
is enough to prove these primes are distinct so that group will be cyclic.
Let q1 . . . qn be distinct primes appear on pi’s and li be a largest exponents

among same primes, then any elements g P µm, g
ś

q
li
i “ 1 and this is the

smallest number that makes possible, so
ś

qlii “ m. However, the |µ| ě m
and since there are at most m´th root of unities to be exist, so all primes
are the same. In particular, if ρ is faithful, ZpGq is embedded as a cyclic
subgroup.

If the non-closed case, still by the Schur’s lemma, we can embed ZpGq to
the a division algebra EndF pF rGsq contains F .
We will prove following claim, finite abelian subgroup of multplicative
group of the division algebra is cyclic. Let D be a division ring with
the center Z. Let A be a finite abelian subgroup of Dˆ and put k “
ř

gPA Zg. Center of division ring is field, so k is Z algebra as well as A is
a commutative domain and A Ă k. k is a finite dimensional vector space
over Z and thus every element of H is algebraic over Z. Let 0 ‰ c P k and
suppose that qpxq “ xm ` . . .`a1x`a0 P Zrxs is the minimal polynomial
of c over Z. Then a0 ‰ 0 and so cpcm´1`. . .`a1qp´a´1

0 q “ 1. This means
every element c has multiplicative inverse, therefore F is a field. As we
show the case of field, every finite abelian subgroup of multiplicative group
of field is cyclic. In particular A Ă Fˆ.

Fall 2020: Problem 10 Let C,D be categories, where C admits co-
equalizers. Let F : C Ñ D be a functor that preserves coequalizers. F
also satisfies if h an arrow such that F phq is an isomorphism, then h is an
isomorphism. Show F is faithful.

Solution Suppose F is not faithful. Then there exists f ‰ g : X Ñ Y
such that F pfq “ F pgq : F pXq Ñ F pY q.

Recall that the coequalizer of two arrows is the object resulting from taking
Y and identifying tfpxq „ gpxq,@x P Xu. Let π : Y Ñ coeqpf, gq be the
projection onto the coequalizer. Since f ‰ g, coeqpf, gq must be strictly
smaller than Y . So, π is not an isomorphism.

Since F preserves coequalizers, F pπq : F pY q Ñ coeqpF pfq, F pgqq. And,
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since F pfq “ F pgq, the coequalizer is exactly F pY q. Thus F pπq is an
isomorphism. This is a contradiction, as π is not an isomorphism.

So, F is faithful.

41



10 Spring 2020

Spring 2020: Problem 2Let G be a finite group of order n ą 1 and
consider its group algebra ZrGs embedded in QrGs. Let A “ ZrGs{a for
the ideal a generated by g ´ 1 for all g P G.
(a) Prove that the algebra QrGs is the product of Q and Q ¨ a, where Q ¨ a
is the Q´span of a in QrGs.
(b) Let B be the projected image of ZrGs inQ¨a. Prove that AbZrGsB – G
as groups if and only if G is a cyclic group.

Solution

(a)We need to cook up isomorphism as a ring, so for the (central) idem-
potent e1 “ 1

|G|

ř

gPG g and e2 :“ 1´ e1 define a projection to the subring

QrGs to Q and Q ¨ a. We can easily check e1 is idempotent. We have
gx “ x so the image of e1QrGs – Qx. – Q.
On the other hand, gp1 ´ eq “ g ´ e. Since g ´ e and as augpg ´ eq “ 0,
g ´ e P Qa. On the other hand pg ´ 1qe2 “ g ´ 1, so e2 is central idempo-
tent. We have a decomposition as a ring of QrGs – Q ˆ Qa.
(b) There is an natural isomorphism of the ring defined by ZrGs{⅁ bZrGs

B – B{a by by sending rasbb Ñ rabs. Furthermore, we have ZrGs Ñ B Ñ

B{a where the first surjection is the multiplication map by e2. Let π be
the composition of these surjective ring homomorphisms, π : ZrGs Ñ B{a,
defined on elements by πplq “ re¨ls. Since ZrGs is generated as a Z module
by g for g P G, let us consider the image of g for g P ZrGs. We have:

πpgq “ rg ´ es “ r1 ´ es

Therefore, πpgq “ πphq for all g, h P G, and since π is surjective, B{aZ
is cyclic as an abelian group and is thus isomorphic to Z{nZ for some n.
Furthermore, πp|G|q “ r

ř

1 ´ gis “ 0, so n divides |G|. We have that
n is exactly equal to |G|, since res, r2es, . . . , r|G|es are all distinct modulo
aZ as the difference are element of group ring with rational coefficient.
Therefore, A bZrGs B – Z{|G|Z as a group and is thus congruent to G if
and only if G is cyclic.

Spring 2020: Problem 4 Compute the dimension of the tensor products
of two algebras Qr

?
2s bQr

?
2s over Q and Qr

?
2s bZR over R. Is RbZR

finite dimensional over R?
solution

Spring 2020: Problem 7 Let G be a p´group and N be a non-trivial
normal subgroup.
(a) Show that N contains a non-trivial element of the center ZpGq of G.
(b) Give an example where ZpNq Ć ZpGq.
solution (a) Consider the G conjugate action of N . Then the fixed point
of NG is the intersection of ZpGq and N , as they commute with the all
the element of G. e P NG and see if there is nontrivial element. By the
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orbit stabilizer for the action of p group, |N | ” |NG|pmodpq but since
|N | ” 0pmodpq so |NG| ě p ą 1.

(b) For given p, we can construct examples, when p2 it is abelian so p3 is
the minimum examples of such a group exist. Consider pCp ˆ Cpq ⋉ Cp
or pCp2q ⋉ Cp both works. Where ⋉ are nontrivial semi direct product.
Nontrivial semidirect product exist, because AutpCpˆCpq “ pp2 ´1qpp2 ´

pq and AutpCp2q “ p2´p so both are multiplication of p and the nontrivial
multiplication exist. This product is noncommutative and in particular as
being nontrivial homomorphism Cp Q r Ñ ϕ P AutpCp ˆ Cpq there is an
a P Cp ˆ Cp (or similarly on Cp2 cases) ϕpaq “ b ‰ a. So multiplication
of pa, rkqp0, rq “ pb, rk`1q but p0, rqpa, rkq “ pa, rk`1q. So p0, rq R ZpGq.
But p0, rq P ZpNq as being Cp cyclic.

Spring 2020: Problem 8Let R be a ring.
(a) Show that an R´module X is indecomposable if EndRpXq is local.
(Recall that a ring is local if the sum of non-invertible elements remains
non-invertible).
(b) Suppose that every finitely generated R-module M is isomorphic to
X1 ‘ ¨ ¨ ¨ ‘Xm with all EndRpXiq local. Show that such a decomposition
is unique: If X1 ‘ ¨ ¨ ¨ ‘ Xm – Y1 ‘ ¨ ¨ ¨ ‘ Yn then m “ n and there is a
bijection σ P Sn and isomorphisms Xi – Yσpiq.
(c) Give an example of an isomorphism X1 ‘X2 – Y1 ‘Y2 with EndpXiq

and EndpYiq local that is not the direct sum of any isomorphisms Xi – Yi,
even up to renumbering the Yi.

Solution
(a) Prove if R-moduleX is decomposable then EndRpXq is not local. Sup-
pose X “ X1‘X2 for proper submodule Xi. Then consider the projection
πi : X Ñ Xi, so they are not invertible. However, π1 ` π2 is invertible, as
being identity. This means EndRpXq is not local.
(b) Consider mapping from Homp‘Xi,‘Yjq “ ‘ijHompXi, Yjq. So the
isomorphism from ‘Xi – ‘Yj can be written in the form of matrices.

A “

¨

˚

˚

˝

α11 . . . α1,n

α21 . . . α2,n

. . . . . . . . .
αm1 . . . αnm

˛

‹

‹

‚

and B “

¨

˚

˚

˝

β11 . . . β1,m
β21 . . . β2,m
. . . . . . . . .
βn1 . . . βmn

˛

‹

‹

‚

Since each i BA “ I

so for each i we have 1 “
ř

βjiαij. This is an invertible endomorphism
from Xi to Xi, By the (a) and assumption one of the element has to be
invertible, Let denote that βjiαij is invertible then it means there is an
exact sequence 0 Ñ kerβji Ñ Yj Ñ Xi Ñ 0 which is splite. By hypothesis
we can assume to take Yi is indecomposable so αij induces isomorphism
of Xi – Yj . Let permute the modules and without loss of generalities put
X1 maps Y1.
Prove by induction, since αij has inverse,we can define a automorphism
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A1 “

¨

˚

˚

˝

1 0 . . . 0
´α21 ˝ α´1

11 1 . . . 0
. . . . . . . . . 0

´αn1 ˝ α´1
11 0 . . . 1

˛

‹

‹

‚

So we have A1A has as a first row,

mapping identitcally on X1 to Y1. We have module decomposition of
X2 ‘ ¨ ¨ ¨ ‘ Xn – Y2 ‘ ¨ ¨ ¨ ‘ Ym. This gives by induction, isomorphism of
the modules.
(c) Think about the decomposition of the vector space as X “ e1 ‘e2 and

same decomposition as Y . Then the matrix

ˆ

1 1
0 1

˙

gives isomorphism

between X but it doesn’t give componentwise isomorphism.

Spring 2020: Problem 9 Let R be a commutative ring, let S Ă R be a
multiplicative subset. Construct a natural transformation (in either direc-
tion) between the functorsHomS´1RpS´1M,S´1Nq and S´1HomrpM,Nq,
considered as functors of R-modules M and N , and prove it is an isomor-
phism if M is finitely presented.

Solution Sketch:

We define the following natural transformation

αM,N : S´1HomrpM,Nq Ñ HomS´1RpS´1M,S´1Nq

f

s1
ÞÑ

ˆ

m

s
ÞÑ

fpmq

s1s

˙

If M is finitely presented, then there exists m,n P N such that

Rm Ñ Rn Ñ M Ñ 0

is an exact sequence. The contravariant Hom functor is a right adjoint
and thus preserves left exact sequences. Also, localization is exact, so we
get the following exact sequence

0 Ñ S´1HompM,Nq Ñ S´1HompRn, Nq Ñ S´1HompRm, Nq

Since α is a natural transformation, it preserves exact sequences, and
applying it we get

0 Ñ HompS´1M,S´1Nq Ñ HompS´1Rn, S´1Nq Ñ HompS´1Rm, S´1Nq

By the five lemma, it suffices to show α is an isomorphism for the last two
terms. Thus we have been reduced to the case of M “ Rm.

α is injective, as fprq

ss 0 ðñ fprq “ 0 for all r P Rm. Then, f “ 0 and in

particular f
s “ 0.

For surjectivity, let g : S´1Rm Ñ S´1N and let e1, . . . , em be the standard
basis for Rm. Then gpeiq “ ni

si
for each i P rms. Let s “ s1 ¨ ¨ ¨ sm and
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define

f : Rn Ñ N

ei ÞÑ nis1 ¨ ¨ ¨ ŝi ¨ ¨ ¨ sm

Then, fs maps via α to g. So, this is an isomorphism.
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Fall 2019 Problem 4 Find all isomorphism classes of simple (i.e., ir-
reducible) left modules over the ring MnpZq of n-by-n matrices with
Z´entries with n ě 1.

SolutionAppeal to the Morita equivalence:According to the Morita equiv-
alence, there is a bijection between simple Z-module and simpleMnZmod-
ule by the tensor product Zn b ´. Simple module over Z is of the form
Z{pZ, as any simple module can be represented by Zx as there is no sub-
module, equivalently Zx – Z{Annx, and by existence of the maximal ideal
m contain ideal Annx so if Annx is not maximal, there is a submodule in
Z{Annx by m{Annx. Thus all simple submodule is ZnbZ{pZ – pZ{pZqn.

Fall 2019: Problem 5 Let R ‰ 0 be a commutative ring. Let tB :
R ´Mod Ñ R ´Mod be the functor that sends tBpMq “ M bB.

(a) Show that tB commutes with colimits

(b) Construct an R-module B for every R such that tB doesn’t commute
with limits in R ´Mod.

Solution

(a) HompB, q is right adjoint to tB , with a natural isomorphismHompMb

B,Nq – HompM,HompB,Nqq.

So, tB is a left adjoint, and thus commutes with colimits.

(b) (This solution secretely assume R is not a field, indeed when R is
a field this is most difficult because any R module will be a flat so
tensor is preserved)Since R ‰ 0, let a P R be a nonzero element.
Then, B “ R{aR. Consider the map

f : R Ñ R

r ÞÑ ar

Consider the fiber product of two instances of f : R Ñ R. Since
a ‰ 0, f ‰ 0, so the fiber product is not direct product ‰ R ˆ R.
On the other hand, if we apply tB we get

tBpfq : R bR{aR Ñ R bR{aR

bb c ÞÑ apbb cq “ bb ac ” 0

Since tBpfq is the trivial map, the fiber product after applying tB
becomes

tBpRqˆf tBpRq “ tpa1, a2q|ai P RbB, fpa1q “ fpa2qu “ RbR{aRˆRbR{aR “ pRˆRqbR{aR

So, tB does not commute with the fiber product.
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(seems like assuming R “ Z) Alternative examples: Direct product
and direct sum is same concept in the finite cases, so if we want to
construct the examples of noncommuting with direct product and
tensor product, we have to do with infinite.
Show infinite direct products p

ś

Z{pnZq b Q ≇
ś

pZ{pnZ b Qq.
Because right hand side is 0. Left hand side, there is a nontorsion
element, for example, p1, 1, . . . q. Suppose this is torsion there is n
such that np1, 1, 1, . . . q “ 0. But since n is finite, it doesn’t kill
all entries. Thus this is not a torsion. (otherway of saying, this
is element of order infinite). This means as a equivalent classes
p1, 1 . . . q b 1 ‰ 0 so as a module this doesn’t commute with infinite
direct product.

(genuine alternative example): Pick B as non-finitely generated
A module, then if it commute with direct product then it pre-
serve

ś

AI b B – BI for any indices I. In particular we have
an isomorphism ϕ : A|B| b B – BB Considering the identity map
id : B Ñ B as an element of the product BB by putting same
index as an same element. Pick an Id P HompB,Bq “ BB then
there is an element

ř

fi b mi P A|B| b B “ HompA,Bq b B. Thus
Id “ ϕp

ř

mi b fiq “
ř

fimi for some finite collection of elements
mi P B and fi : B Ñ A. Evaluating both sides of this equation
at an element m P M we find m “

ř

mifipmq. This implies B is
finitely generated by mi as A-module, contradict with the fact B is
not finitely generated as A module.

Fall 2019 Problem 6 Classify all finite subgroups of GLp2,Rq up to
conjugacy.
Solution Let G be a finite subgroup of GLp2,Rq,take g P G so that
gn “ I. Take the determinant, so detgn “ 1 Ø pdetgqn “ 1. Since g
is a matrix of real component, detg “ ˘1. So we have two cases, either
G Ă SOp2q or G Ă Op2q. The case of SOp2q, consider the finite subgroup
of G Ă SOp2q. This is cyclic group Cn. The simplest way is claim any
finite subgroup of mulitplicative group of the field is cyclic. More directly,
G is generated by some finite elements te2πiθj u In particular θ are rational
number as being finite order. Indeed we can reduce generators, for example
let θj “

pj
qj
, iθk “

pk
qk

be two different generators where pj , qk and pk, qk are

relatively prime, then by Bezout theorem we can find some m,n such that
mppkqjq`nppjqkq

qjqk
“

gcdppkqj ,pjqkq

qjqk
. Obviously

gcdppkqj ,pjqkq

qjqk
generate both of

elements, θj , θk cyclically. So all finite subgroup of S0p2q is Cn.
Since SOp2q is a kernel of the determinant map from Op2q, so there is an
isomorphism Op2q – SOp2q ⋊ϕ Z{2Z so that same as semi direct product
of dihedral group.

Fall 2019 Problem 8 Let M be a finitely generated module over an
integral domain R. Show that there is a nonzero element u P R such that
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the localization M r1{us is a free module over Rr1{us.
Solutions Let K “ FracpRq so that M bK is a finite dimensional vector
space. Thus we can choose the bases for the vector space M b K as
m1 b 1 . . .mn b 1. Due to the finitely generatedness we have the map
ϕ : Rn Ñ M by ϕpeiq “ mi.

0 Ñ kerϕ Ñ Rn Ñ M Ñ cokerϕ Ñ 0

Since the fractionalization is exact, bK is an exact functor, so

0 Ñ kerϕbK Ñ Kn Ñ M bK Ñ cokerϕbK Ñ 0

is still exact. Since by the choice of mi, middle is an isomorphism. This
impliesKerϕbK and cokerϕbK is 0 so thatKerϕ and cokerϕ are torsion
modules. Here since Kerϕ is a submodule of the free module, so torsion
free and kerϕ “ 0. On the other hand, cokerϕ is also finitely generated
module because they are quotient of finitely generated module. Let the
generators be tn1 . . . nku and since they are torsion, there exist fi P R{t0u

such that fini “ 0. Let u “
ś

fi then localization at f will garunteed
to vanish cokerϕ, as each f are units so ni “

f
f u “ 0 then these image is

always vanishing. Thus M r1{us is free Rr1{us module.

Fall 2019 Problem 9 Let A be a unique factorization domain which
is a Q-algebra. Let K be the fraction field of A. Let L be a quadratic
extension field of K. Show that the integral closure of A in L is a finitely
generated free A-module.

Solution: Let B be a integral closure of A in L. Since A isQ-algebra,K is
characteristic 0. Then by the quadratic formula(alternatively, since ´1 P

K we can use Hilbert theorem 90) we can find a square free element b P K
such that L “ Kp

?
bq. Furthermore since A is UFD, b can be uniquely

represented as a fraction p
q , we can multilply appropriate elements so that

we can claim b P A. We claim B – A‘A
?
b.

Consider the A-module map A‘A
?
b Ñ B sending px, y

?
bq to x` y

?
b.

This map really lands in B, since if x, y P A then the trace ´2x and norm
x2 ´ by2 which both lie in A, so that the minimal polynomial of this has
coefficients in A that is

t2 ´ 2xt` x2 ´ by2 “ 0

The map is clearly injective if not px` y
?
bq “ x1 ` y1

?
b for x1 ‰ x and

y1 ‰ y. But
?
b and 1 is linearly independent so this map is injective.

To show an isomorphism of module, we will show the morphism is sur-
jective. Let x ` y

?
b P B for x, y P K. Then we will show α “ x ` y

?
b

is a solution of a monic polynomial of coefficient A then in fact x, y P A.
We will prove the minimal polynomial over field K will be same things as
irreducible polynomial over A. Let mα be a minimal monic polynomial
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over K and kα be a monic polynomial of minimal degree which has a root
as α. We have mα|kα We can multiply appropriate number d so that we
can make dmα P Arxs and their contents 1. dmα is irreducible as Krxs so
irreducible as Arxs.By the Gauss lemma state A is a UFD K is a fraction
field,. Then a non-constant polynomial mα is irreducible if and only if it
is irreducible in Arxs and contents 1. Thus kα|dmα. So they have same
degree. By the choice of m we chose mα is monic so indeed kα “ mα.
If the minimal polynomial polynomial of α has degree 1 then since A is
integrally closed in K then x ` y

?
b P A. If the The minimal polynomial

of x` y
?
b is fptq “ t2 ´ 2xt` px2 ´ by2q. Since x` y

?
b is integral over

A there is a irreducible polynomial m such that x `
?
by is a root of m.

its trace and norm lie in A. The trace is ´2x, which of course lands in
A whenever x “ a

2 for some a P A.A is a Q-algebra, so if a P A then
a
2 P A also, and we conclude x P A. To show y P A , we look at the norm
x2 ´by2, which must lie in A as well. Since we already know x P A, we get
that by2 P A. Then y2 “ c

b for c P A. But b is squarefree, so by looking at
irreducible factorizations we see that b has to divide a, so since y P K but
there is no denominator y P A that A‘A

?
b Ñ B is surjective, hence an

isomorphism.

Fall 2019 Problem 10 Compute the Galois groups of the Galois closures
of the following field extensions:
a. Cpxq{Cpx4 ` 1q,
b. Cpxq{Cpx4 `x2 ` 1q, where Cpyq denotes the field of rational functions
over C in a variable y.

Solution: a. Compute the minimal polynomial respect to the x. That
is t4 ` 1 ´ px4 ` 1q “ t4 ´ x4. That is clearly irreducible over Cpx4 ` 1q.
Cpxq has all roots of t4 ´ x4, i.e ˘x,˘ix. This means Cpxq is a split
field of t4 ´ x4 thus normal. Cpx4 ` 1q is characteristic 0, so perfect
and any extension separable. Sum both we have a Galois extension.The
Galois group is generate to permute among roots that is σ : x Ñ ix
and σi transitively maps between roots of C. σ generate Galois group so
GalpCpxq{Cpx4 ` 1qq “ Z{4Z
b. Compute the minmal polynomial, that is t4 ` t2 ` 1 ´ px4 ` x2 ` 1q “

t4´x4`t2´x2 “ pt´xqpt`xqpt´i
?
x2 ` 1qpt`i

?
x2 ` 1q.

?
x2 ` 1 R Cpxq

because if so
a

x2 ` 1 “ ax` b

x2 ` 1 “ a2x2 ` 2abx` b2

a “ ˘1, b “ ˘1 both case 2ab ‰ 0.(or we can see that x2`1 “ px´iqpx`iq
and since UFD, we can see this is square free) Thus the normal closure over
Cpxq is Cpx,

?
x2 ` 1q. Cpx,

?
x2 ` 1q{Cpxq is a degree 2 extension with

the minimal polynomial t2 ´x2 `1. Then Cpx,
?
x2 ` 1q{Cpx4 `x2 `1q is

49



a degree 8 extension. So here there are few ways to see what is the Galois
group of this extension.
1st way: Since Cpxq{Cpx4 ` x2 ` 1q is not Galois so the corresponding
Galois group is nonabelian. The nonabelian group of order 8 is eitherD4 or
quaternion group. But in particular since there is non Galois intermidiate
extension, there is a nonnormal subgroup and all subgroup of quaternion
group is normal. By the classification of the group of order 8 with a
nonnormal subgroup is D8

OK I am not sure this is actually working. (2nd way: There is a Galois
action on Cpx,

a

x2 ` 1q{Cpxq such that

σ :
a

x2 ` 1 Ñ ´
a

x2 ` 1

σ : x Ñ x

Extend this action to Cp
?
x2 ` 1, xq{Cpx4 ` x2 ` 1q. Since Galois group

permute roots of minimal polynomial, we can map of order 4

τ : x Ñ i
a

x2 ` 1

under this map τ : ´x Ñ ´i
?
x2 ` 1 and

τpi
a

x2 ` 1q2 “ ´τpx2 ` 1q “ ´pτpxq2q ´ 1 “ x2

so τpi
?
x2 ` 1q “ ˘x. If τpi

?
x2 ` 1q “ x. Then there is also a automor-

phism ρpxq “ ´x and κpxq “ ´i
?
x2 ` 1

, τpi
?
x2 ` 1q “ ´x.

σ ‰ τ2, and check if στσ “ τ3

στσpxq “ ´x “ τ3pxq

στσp
a

x2 ` 1q “ στp´
a

x2 ` 1q “ σpxq “ x

and
τ3p

?
x` 1q “ τ2p´xq “ τp´i

a

x2 ` 1q “ x

This is a relation of dihedral group, so D4)
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Spring 2019 Problem 1 Let G be a finite solvable group and 1 ‰ N Ă G
be a minimal normal subgroup. Prove that there exists a prime p such
that N is either cyclic of order p or a direct product of cyclic groups of
order p
Solution First see N is an abelian group: The commutator group rN,N s

is a characteristic subgroup ofN , let ϕ P AutpNq then aba´1b´1 P N,ϕpaba´1b´1q “

ϕpaqϕpbqϕpaq´1ϕpbq´1 P rN,N s. The characteristic subgroup of a normal
subgroup is normal, as there is an embedding into ψ : G Ñ AutpNq by
the conjugation, and by the conjugation, characteristic subgroup are pre-
served. So rN,N s is normal in G. Since N is the minimal normal subgroup
rN,N s is either N or teu. If teu then N is abelian and showed what we
want. If rN,N s “ N , then as subgroup of solvable group is solvable,
there is a proper normal subgroup N1 in N such that N{N1 is normal,
but by the universality of the abelian quotient N “ rN,N s ď N1 shows
N{N1 “ teu, contradiction for the properness of N1.
Let p be the prime order dividing N , then by Cauchy’s theorem, there is
an element x P N such that xp “ e. Let N 1 be a subgroup of N such that
tx P N |xp “ eu. Note N 1 is a subgroup because N is abelian group. Then
N 1 is a characteristic subgroup, because for ϕ P AutpNq, x P N 1, ϕpxq has
order 1 or p. This means N 1 is a nontrivial normal subgroup of G that
contained in N . By the minimality of N , N “ N 1. By the structure the-
orem of the abelian finite abelian group this is cyclic of order p or direct
product of cyclic groups of order p.

Spring 2019 Problem 2 An additive group (abelian group written ad-
ditively) Q is called divisible if any equation nx “ y with 0 ‰ n P Z, y P Q
has a solution x P Q. Let Q be a divisible group and A is a subgroup of
an abelian group B. Give a complete proof of the following: every group
homomorphism f : A Ñ Q can be extended to a group homomorphism
B Ñ Q.
Solution We use Zorn’s Lemma. Consider the partially ordered set P of
all pairs pC, gq where C is a subgroup of B containing A and g : C Ñ G
is an extension of f . Let pC, gq ď pD,hq if C ď D and g “ h|C. The set
P is nonempty since it contains pA, fq. Also any tower pCα, gαq in P has
an upper bound pYCα,Ygαq P P . By Zorn’s Lemma, P has a maximal
element, say pC, gq. We claim that C “ B and g is the desired extension
of f to B. Suppose C ă B. Then there exists an x P B so that x R C.
Either x` C has finite order in B{C or it has infinite order.
In the second case, ăC, xą “ C ‘ xxy so g : C Ñ G can be extended to
g ‘ 0 : C ‘ xxy Ñ G contradicting the maximality of pC, gq.
In the first case, let n be the order of x`C in B{C, i.e., n ą 0 is smallest
positive integer so that nx P C. Since G is divisible there is a z P G so
that nz “ gpnxq. We can linearly extend g : C Ñ G by homomorphism
g ` h : C ` xxy Ñ G where h : xxy Ñ G is given by hpxq “ z(This ` sign
means not addition but nondisjoint sum as a set). This contradicts the
maximality of pC, gq. They can extend to a morphism.
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Spring 2019 Problem 7 Let F be a field and let R be the ring of 3 ˆ 3

matrices over F with p3, 1q and p3, 2q entry equal to 0. Thus

¨

˝

F F F
F F F
0 0 F

˛

‚

(a) Determine the Jacobson radical J of R.
(b) Is J a minimal left (respectively, right) ideal?

Solution (a) First way(?): The element of R preserve spante1, e2u. If
the first 2 ˆ 2 block matrix of x P JpRq 2 ˆ 2 block of matrix is not zero
matrix, then either Ae1, Ae2 ‰ 0. Without loss of generalities, Ae1 ‰ 0
then we can find the matrix B P R such that BAe1 “ e1. So 1 ´ BA is
not invertible matrix as there is a kernel.
Also p3, 3q component a33 has to be 0 as well, because if not we can find
the matrix with whose p3, 3q component is 1

a33
so mapping e3 to e3. So

has to be

¨

˝

0 0 a13
0 0 a23
0 0 0

˛

‚

(b) J is the minimal left ideal but not minimal right ideal. Pick x “
¨

˝

0 0 1
0 0 1
0 0 0

˛

‚ Claim: J “ Rx. Pick any element in

¨

˝

0 0 a13
0 0 a23
0 0 0

˛

‚ P J .

Then

¨

˝

0 0 a13
0 0 a23
0 0 0

˛

‚ “

¨

˝

a13 0 0
0 a23 0
0 0 0

˛

‚

¨

˝

0 0 1
0 0 1
0 0 0

˛

‚

So J is generated by

¨

˝

0 0 1
0 0 1
0 0 0

˛

‚on the other hand,

¨

˝

0 0 1
0 0 1
0 0 0

˛

‚=

¨

˝

a´1
13 0 0
0 a´1

23 0
0 0 0

˛

‚

¨

˝

0 0 a13
0 0 a23
0 0 0

˛

‚

so J is minimal ideal.

thus minimal. On the other hand this is not minimal right ideal, as
¨

˝

0 0 a13
0 0 0
0 0 0

˛

‚ is a proper right ideal contained in J i.e

¨

˝

0 0 a13
0 0 0
0 0 0

˛

‚

¨

˝

a11 a12 a13
a21 a22 a23
0 0 a33

˛

‚ “

¨

˝

0 0 a13a33
0 0 0
0 0 0

˛

‚

Spring 2019 Problem 8 Prove that every finite group of order n is iso-
morphic to a subgroup of GLn´1pCq.
Solution Let G be a group of order n, then this group can be embedded
into Sn. Then Sn can be embedded into GLnpCq by the regular rep-
resentation. Regular representation can be decomposed into the n ´ 1
dimensional tautological representations and trivial representation. Then
restrict representations to the tautological subspace, we define a represen-
tations of Sn to GLn´1pCq. Show this representation is a faithful represen-
tation i.e define an embedding. Suppose there is an element mapped into
identity in res : x P GLnpCq Ñ GLn´1pCq, I “ respxq P GLn´1pCq.

52



Then the restriction of x to the one dimensional complement is also
mapped to identity, as one dimensional complement is a trivial repre-
sentation. As x P GLnpCq it is a identity matrix. Thus all the map from
G Ñ Sn Ñ GLnpCq Ñ GLn´1pCq are embedding so by composing it G is
embedded into the GLn´1pCq

Spring 2019 Problem 9 a) Find a domain R and two nonzero elements
a, b P R such that R is equal to the intersection of the localizations Rr1{as

and Rr1{bs (in the quotient field of R) and aR ` bR ‰ R.
b) Let C be the category of commutative rings. Prove that the functor
C Ñ Sets taking a commutative ring R to the set of all pairs pa, bq P R2

such that aR ` bR “ R is not representable
Solutions (a) Lemma: We pickR “ Zrx, ys, a “ x, b “ y then Zrx, y, y´1sX

Zrx, x´1, ys “ Zrx, ys. But xZrx, ys`yZrx, ys ‰ Zrx, ys. The second state-
ment is obvious: we can take 1 P Zrx, ys but not in xZrx, ys ` yZrx, ys.For
the first statement, we have krx, ys Ă krx, y, x´1s X krx, y, y´1s. Con-
versely, pick anything p P krx, y, x´1s X krx, y, y´1s, then we can wrote
p “

f
xn “

g
ym . That means fym “ gxn so y divides g, so g

ym “ p P krx, ys.

(b) Observe, the statement (a), then consider the fiber product

krx, ys krx, y, y´1s

krx, y, x´1s kpx, yq

Now prove by the contradiction, suppose F is representable. Then repre-
sentable functor preserves limit and moreover F preserve inclusions so in
particular the following diagram is also a fiber product,

F pkrx, ysq F pkrx, y, y´1sq

F pkrx, y, x´1sq F pkpx, yqq

By assumption, as the fiber product over sets of inclusion map is intersec-
tion, we have F pkrx, ysq “ F pkrx, y, x´1sq X F pkrx, y, y´1sq. We see from
(a) px, yq R F pkrx, ysq But we have px, yq P F px, y, y´1q X F pkrx, y, y´1sq

because xkrx, y, y´1s ` ykrx, y, y´1s “ krx, y, y´1s and xkrx, y, x´1s `

ykrx, y, x´1s “ krx, y, y´1s

Spring 2019 Problem 10 Let C be an abelian category. Prove that
TFAE:
(1) Every object of C is projective.
(2) Every object of C is injective.

solution Suppose all objects are projective, let there be a monomorphism
ϕ : M Ñ N and morphism i : M Ñ I.Construct morphism φ : N Ñ I
such that i “ φ ˝ϕ. Since all objects are projective, exact sequence splits,
so N “ M ‘ cokerϕ so define φ “ ϕ|M and 0 for cokerϕ. Then any
morphism lift so I is injective.

53



Fall 2018 Problem5 Let R be a commutative ring. Show the following:
(a) Let S be a non-empty saturated multiplicative set in R, i.e. if a, b P R,
then ab P S if and only if a, b P S. Show that R ´ S is a union of prime
ideals.
(b) (Kaplansky’s Theorem for UFDs): If R is a domain, show that R is
a UFD if and only if every nonzero prime ideal in R contains a non-zero
principal prime ideal.

Solution: One direction R ´ S Ą YpXS“Hp is true. On the other hand,
Let x R S . We want x to be in the union of prime ideals. We want to
find a p prime ideal not meeting S such that x P p. Now, consider

A “ tI|x P IandI X S “ Hu

with the partial order Ď.
Claim: pxq P A. Proof. We need to check pxq X S “ H. If not; let
rx P pxq be such that rx P S. Then, since S is saturated, x P S, which
contradicts that x R S. So A ‰ H. We can apply Zorn’s lemma to
A to find a maximal element. Let tIαuαPΛ be a chain of ideals in A.
Thus, by Zorn’s lemma, A has a maximal element m P A. This m is a
prime ideal. Let a, b R m show ab R m. Then, m ⊊ m ` paq,m ` pbq, so
pm`paqq, pm`pbqqXS ‰ H. Choose s P pm`paqqXS and t P pm`pbqqXS.
Then, st P pm` paqqpm` pbqq Ă m` pabq. If ab P m, then st P m` pabq “ a
and st P S. It contradict to the S X m “ H

(b) ùñ If R is a UFD and P is a prime containing a nonzero r “

pe11 p
e2
2 . . . pekk , then at least one pi belongs to P . ðù Show that if

every prime ideal contains principal prime ideal, then UFD. Let S “

Rˆ Y tp1p2 . . . pk|pi are primes elements u. S is a set of all elements of R
that can be uniquely factorlizeable

This is also the satured multiplicative subset generated by primes and
units. We want to show that R ´ S “ p0q. 0 is prime which doesn’t
intersect with S, we have R´ S Ą t0u. Suppose R´ S contains an r ‰ 0.
Then, by part a), there exists a prime ideal p Ă R´S such that r P p.But
then, p contains a principal prime ppq Ď p. The principal prime ideal
is generated by a prime element, so p P S, contradicting the fact that
H ‰ ppq X S Ď p X S “ H. Therefore, every non-zero non-unit a R has a
factorization into a finite product of prime and, thus, irreducible elements.
Since an irreducible element will be a product of prime elements, it must
be a product of one prime element. Irreducible elements of R are prime
so R is a UFD, as quoting the following theorem. Theorem R is a UFD
if and only if every irreducible element is prime.

(The idea of last part is the existence of the element r guaranteed the
existence of the prime ideal that disjoint with R ´ S. But by hypothesis
such a prime ideal associate with the prime element p P S.)
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Fall 2018: Problem 7 Let F : C Ñ D be a functor with right adjoint
G : D Ñ C. Show that F is fully faithful iff the unit η : IdC Ñ GF is an
isomorphism

Solution Suppose ηY : Y Ñ GF pY q is an isomorphism for Y P C. Then,
as functors preserve isomorphisms,

RXpηY q : HompX,Y q Ñ HompX,GF pY qq

gives an isomorphism by precomposition of ηY . By adjunctness, we have

HompX,Y q – HompX,GF pY qq – HompF pXq, F pY qq

for all X,Y . Moreover, if ϕ is the adjunction isomorphism, we know by
naturality of the unit that ϕ ˝F pfq “ η ˝ f . So, the above isomorphism is
exactly by the functor F . Thus, F is fully faithful.

Conversely, if F is fully faithful, then we have

HompX,Y q – HompF pXq, F pY qq – HompX,GF pY qq

for all X P C. By (contravariant) Yoneda’s Lemma, this implies that the
map ηY : Y Ñ GF pY q inducing this isomorphism is an isomorphism.

Fall 2018 Question 10 Consider the real algebraA “ Rrx, ys “ RrX,Y s{pX2`

Y 2 ´ 1q where x and y are the classes of X and Y respectively. Let
M “ Ap1`xq `Ay be the ideal generated by 1`x and y. (This is the M
obius band.)
(1) Show that there is an A-linear isomorphism A2 – M ‘ M mapping
the canonical basis to p1 ` x, yq and p´y, 1 ` xq.
(2) Show that there is an A-linear isomorphism A – M bAM mapping 1
to pp1 ` xq b p1 ` xqq ` py b yq.

(a) Consider the linear transformation Q “

ˆ

1 ` x ´y
y 1 ` x

˙

Q : A2 Ñ

M‘M . That map canonical basis of e1, e2 toM by p1, 0q Ñ p1`x, yq Ă M
and p0, 1q Ñ p´y, 1 ` xq Ă M .
Injectivity: Since x2 ` y2 ´ 1 is a prime ideal, so A is integral domain.
So the quotient field exist, let denote it as F . Let pa, bq P KerQ b F for
a, b P F . Which satisfies

ap1 ` xq ´ by “ 0

ay ` bp1 ` xq “ 0

Thus a “
by
1`x substitute the equation by2

1`x ` bp1`xq “ 0 multiple p1`xq

for both side then by2 ` bp1 ` xq2 “ 0 making equation easier we have
2bpx` 1q “ 0 so b “ 0 so as a “ 0 since there is no solution on F , so there
is no solution on A as well. Thus injective.
For surjective, we have Qp1 ´ x, 0q “ py2, yp1 ´ xqq, Qp0, yq “ p´y2, yp1 `
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xqq. so Qp1 ´ x, 0q ` Qp0, yq “ p0, 2yq.p0, yq P ImpQq, similarly Qp0, 1 ´

xq ` Qp´y, 0q “ p2y, 0q P ImpQq, Qp1 ` x, 0q ` Qp0,´yq “ p2 ` 2x, 0q P

ImpQq, Qp0, 1 ` xq `Qpy, 0q P p0, 2x` 2q P ImpQq

Alternatively, we can show by the inverses: It is obvious thatQmaps A2 to

M‘M , conversely construct the inverse matrixQ´1 “ 1
2p1`xq

ˆ

1 ` x y
´y 1 ` x

˙

show

that Q´1pM ‘Mq Ă A2 the general elements of M ‘M can be written as
ˆ

p1px, yqp1 ` xq ` q1px, yqy
p2px, yqp1 ` xq ` q2px, yqy

˙

for pi, qi P Rrx, ys. When it acts Q we have

1
2p1`xq

ˆ

1 ` x y
´y 1 ` x

˙ˆ

p1px, yqp1 ` xq ` q1px, yqy
p2px, yqp1 ` xq ` q2px, yqy

˙

= 1
2p1`xq

ˆ

p1p1 ` xq2 ` q1p1 ` xqy ` p2p1 ` xqy ` q2y
2

´p1p1 ` xqy ´ q1y
2 ` p2p1 ` xq2 ` q2p1 ` xqy

˙

since y2 “ 1´x2

so y2 is divisible by p1 ` xq so the image is on A2. Since Q and Q´1 is
well defined inverse map each other, they are isomorphism.

(b) Construct the inverse image as the composition of

M bM
µ

ÝÑ F
ˆ 1

2p1`xq

ÝÝÝÝÝÑ F

where µ is a multiplication maps abb Ñ ab. Denote g as the compositions
of µ and multiplication map 1

2px`1q
.

The generators ofMbM are p1`xqby, p1`xqbp1`xq, pyqbp1`xq, yby.
The reason is, M is a projective A module, so the tensor by M preserve
inclsuion. First we need to check g is in the image of A. gpp1 ` xq b yq “

1
2p1`xq

pyp1 ` xqq “ 1
2 pyq P A, same for y b p1 ` xq. gpp1 ` xq b p1 ` xqq “

1
2p1`xq

pp1`xqp1`xqq “ 1
2 p1`xq P A, gpyb yq “ 1

2p1`xq
y2 “ 1

2 p1´xq. Let

f be the given map,
Show gfp1q “ 1: gpp1 ` xq b p1 ` xq ` y b yq “ 1

2 p1 ` xq ` 1
2 p1 ´ xq “ 1

Show fg “ Id there are 2 cases: fp
y
2 q “

y
2 pp1 ` xq b p1 ` xq ` y b yq “

1
2 pp1`xqbyp1`xq`y2byq “ 1

2 pp1`2x`x2qby`p1´x2qbyq “ p1`xqby
fp 1˘x

2 q “ 1
2 ppp1`xqbp1`xqq`pybyqq˘ x

2 ppp1`xqbp1`xqq`pybyqq “
1
2 ppp1 ` 2x` x2q b p1 ˘ xq ` py2q b p1 ˘ xqq “ 1

2 p1 ` 2x` x2 ` p1 ´ x2qq b

p1 ˘ xq “ p1 ` xqp1 ˘ xq when ` it is p1 ` xq b p1 ` xq when ´ it is
p1 ` xq b p1 ´ xq “ p1 ´ x2q b 1 “ y2 b 1 “ y b y.
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Spring 2018: Problem 3 Let Zn, pn ą 1q be column vectors with inte-
ger coefficients. Prove that for every non-zero left ideal I of MnpZq, IZn
(the subgroup generated by products αv with α P I and v P Znq has finite
index in Zn.
Solution Let A P I since A is a nonzero matrix, there is a vector Av ‰ 0.
Then there is a matrix Bi P MnpQq such that BipAvq “ ei. Since Bi
are n ˆ n matrices, so there is an integer bi such that biBi P MnpZq

and biBiAv “ biei. Since I is ideal, biBiA P I, so we saw each biei P

IZn. We have spanxb1ei . . . bneny Ă IZn. We have finite index rZn :
xb1e1 . . . bnenys “ b1 . . . bn as well as we have a projection(surjection) from
Zn{xb1e1 . . . bneny to Zn{IZn by 3rd isomorphism theorem
pZn{xb1e1 . . . bnenyq{pIZn{xb1e1 . . . bnenyq – Zn{IZn. Thus the index rZn :
IZns is bounded above by b1 . . . bn
Alert You may also think naively try to pick an element f P I where fZn
is full dimensional sublattics, and compare the index(which is a covolume)
by compare the determinant. However, in this case index is detf . How-

ever for example ideal generated by

ˆ

0 1
0 0

˙

may not have a element with

nonzero determinant.

Spring 2018: Problem 4 Let p be a prime number, and let D be a
central simple division algebra of dimension p2 over a field k. Pick α P D
not in the center and write K for the subfield of D generated by α. Prove
that D bk K – MppKq.

Solution: Note there is a two fact: ZpAbkBq “ ZpAqbkZpBq and tensor
of simple algebra and central simple algebra is simple(in the note).Since
K is a field extension of k, D bk K is a central simple algebra over K.
Moreover, dimK D bk K “ dimkD “ p2. So, it must be of the form

D bk K – MspD
1q

for some finite dimensional division ring D1 over K. Let the dimension of
D1 over K be n. Then, dimD1 MspD

1q “ s2 so dimKMspD
1q “ s2n “ p2.

Thus, n must be a square i.e n “ m2 and sm “ p. As p is prime, either
s “ 1 or m “ 1.

If m “ 1, then n “ 1 so D1 – K and we have D bk K – MppKq, which is
what we want.

Otherwise, s “ 1, and DbkK – D1 is a division ring. Note since K is free
k module, the tensor product bkK is exact functor. Thus this preserve
inclusion, K bk K Ă D bk K

We show that this is a contradiction by showing the existence of nonzero
zero divisors in K bk K Ă D bk K.

K bk K –
krxs

pmαq
bk K –

Krxs

pmαq
–

Krxs

pf1 ¨ ¨ ¨ fℓq
–
Krxs

pf1q
ˆ ¨ ¨ ¨ ˆ

Krxs

pfℓq
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The second line comes from the fact that mα is no longer irreducible
over K, as α P K. Then, since K is a field, Krxs is a PID and any
two irreducibles are coprime. So, by Chinese Remainder Theorem, we can
decompose into a product of quotients in the last line. In particular, ℓ ě 2,
so e1e2 “ 0 are nonzero zero divisors. So, D bk K cannot be a division
ring and s ‰ 1.

Spring 2018: Problem 7 Let B be a commutative Noetherian ring, and
let A be a Noetherian subring of B. Let I be the nilradical of B. If B{I
is finitely generated as an A-module, show that B is finitely generated as
an A-module

Solution: Since B is commutative, I is actually a nilpotent ideal. Let
n P N be the smallest such that In “ 0. Then consider the filtration

I Ą I2 Ą ¨ ¨ ¨ Ą In

I –
I

I2
‘ I2

–
I

I2
‘ ¨ ¨ ¨ ‘

In´1

In

So, it suffices to show that Ik

Ik`1 is finitely generated over A. Then I is
finitely generated over A, and B – B{I ‘ I is finitely generated over A.

Notice that since B is Noetherian, every ideal is finitely generated. So, I is
finitely generated over B. Let tx1, . . . , xsu generate I over B. Then, I{I2

is finitely generated by the same generators over B{I. Similarly, these

generators yield finite generators for Ik

Ik`1 over B{I. So, Ik

Ik`1 is finitely

generated over B{I, which is finitely generated over A. So, Ik

Ik`1 is finitely
generated over A and we are done.
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Fall 2017: Question 2 Let G be a finite group of order a power of a
prime number p. Let ΦpGq be the subgroup of G generated by elements
of the form gp for g P G and ghg´1h´1 for g, h P G. Show that ΦpGq is
the intersection of the maximal proper subgroups of G.

Solution Let Hi are all maximal proper subgroup of G.
Show ΦpGq Ă XiHi. First, show all maximal subgroup Hi are normal.
When |G| “ p then statement is trivial, so assume |G| “ pm all maximal
proper subgroup are normal then prove it for |G| “ pm`1. Note all the in-
dex p subgroup is normal for index p subgroup Hi, rG : NGpHiqsrNGpHiq :
His “ p. Well known fact: subgroup of smallest prime index is normal.

Also apply the well known fact: A normal subgroup of p-group H intersect
nontrivially to the center ZpGq. This can be seen by the conjugation action
to G to H, so

|H| “ |HG| ` rG : stabpxqs

and HG “ H X ZpGq. By the fixed point theorem for p-group HG ‰ teu.

Thus there is an intersection with ZpGq. Apply Cauchy’s theorem, pick
order pelements x P ZpGq X Hi, H{x Ă G{xxy is a maximal subgroup
of Gxxy then by the induction hypothesis |H{xxy| “ pm´1 so |H| “ pm.
Quotient G{Hi – Z{pZ means any Hi contains commutator rG,Gs as
Z{pZ being abelian. Any p-th power of G contained in Hi. ΦpGq Ă XiHi.

On the other hand, prove XiHi Ă ΦpGq. Suppose x R ΦpGq. Note ΦpGq

is a characteristic subgroup as all bijection of the group preserve the form
gp and ghg´1h´1. Then G{ΦpGq –

ś

Z{pZ, as ΦpGq contains all p-th
powers. Then as a right hand side isomorphism xΦpGq is represented
by px1, x2 . . . xnq and at least one of the coordinate xj ‰ 0. Let Cj “
śn
i“1,i‰j Z{pZ are maximal proper subgroup of G{ΦpGq. So xΦpGq is

not contained in Cj . Let π : G Ñ G{ΦpGq be a projection, due to the
the subgroup correspondence preimage of the proper maximal subgroup
is maximal, so x R π´1pCjq this shows x R ΦpGq.

Fall 2017 Question 3 Let k be a field and A a finite dimensional
k´algebra. Denote by JpAq the Jacobson radical of A. Let t : A Ñ k
be a morphism of k´vector space such that tpabq “ tpbaq for all a, b P A.
Assume kerptq contains no nonzero left ideal. LetM be the set of elements
a in A such that tpxaq “ 0 for all x P JpAq. Show that M is the largest
semi-simple left A-submodule of A.

SolutionSince kerptq contains no-nozero left ideal ofA, it is either kerptq “

A or 0. In case of kerptq “ A then A doesn’t have a nontrivial left ideal so
A is a simple ring. So A itself is the largest semisimple submodule of A.

A is simple so JpAq “ 0.

In case kerptq “ 0 in this case t is injective morphism of vector space,
so this is isomorphism.(As a vector space A – kn so injection has to be
k Ñ k). So M “ A because JpAq.Thus JpAq “ 0 and A is Artinian
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because finite dimensional k´algebra. A is semisimple so M is largest
semisimple left A module.

(Otherway of showing JpAq)Then M “ A because otherwise there is an
b P A such that tpxbq “ k1 for some k1 P k, k1 ‰ 0. We have tp1´x b

k1
q “ 0

implies 1 ´ x b
k1

is noninvertible.

Fall 2017: Question 5 Let A be a ring and M an A´module that
is a finite direct sum of simple A´module. Let f P EndZpMq. Assume
f ˝ g “ g ˝ f for all g P EndApMq

(a) Show that the map fn : Mn Ñ Mn defined by fnpm1 . . .mnq “

pfpm1q . . . fpmnqq commutes with all elemets of EndApMnq.
(b) Deduce that given any family pm1 . . .mnq P Mn there exists a P A
such that fnpm1 . . .mnq “ apm1 . . .mnq.

Solution (a)Since g P EndApMnq “ Homp‘iM,‘jMq “ ‘jHompMn,Mq

so any morphism from j-th entry gj P HompMn,Mq – HompM,Mqn so
gpm1 . . .mnq “

ř

i gijpmiq for each gij P HompM,Mq “ EndApMq so can
be identify as the n ˆ n matrix with the A coefficient. In particular fix
each entry i we have n different ways to map to theM of codomain. Thus
once I apply the matrix we get

gpfnpm1, . . . ,mnqq “ pg1p

n
ÿ

i“1

fpmiqq, . . . , gnp

n
ÿ

i“1

fpmiqqq

“

˜

ÿ

i“1

gi1pfpmiqq, . . . ,
n

ÿ

i“1

ginpfpmiqq

¸

“

˜

ÿ

i“1

fpgi1pmiqq, . . . ,
n

ÿ

i“1

fpginpmiqq

¸

“ fn

˜

ÿ

i“1

gi1pmiq, . . . ,
n

ÿ

i“1

ginpmiq

¸

“ fnpgpm1, . . . ,mnqq.

Therefore, f commutes with all elements of EndApMnq. so it commute.
(b) Let denotem “ pm1 . . .mnq. Mn is semi-simple, and Am is a submod-
ule. Since any semisimple module is projective, we can find a complement
B to make a direct sum Am ‘ B – M . Let πm be a projection, to the
Mn Ñ Mn where pa, bq ÞÑ pa, 0q. Note that πm is identity on Am. Then
fnpmq “ fnpπmmq “ πfnpmq P Am.

Fall 2017 Question 8Let F be a field and f, g P F rxs be a noncon-
stant relatively prime elements with d “ maxtf, gu. Prove the degree of
extension rF pxq : F p

f
g qs “ d.

solution It is clear that minimal polynomial has degree ď d as ppxq “
f
g gpT q´fpT q Lemma: Suppose we have

ř

P pxqif
igd´i “ 0 and degpP pxqq ă

d then Pipxq “ 0.

60



Proof: Without loss of generalities, degpgq “ d. Then
ři“1 NPif

d´igi

can be divisible by g. So PN cannot be divisible by g by degree. Hence
by induction, we have the statement.

Given a minimal polynomial of x over F p
f
g q “

ř Pip
f
g q

Qip
f
g q
xi. Kill off de-

nominators so we can write with
ř ˜
Pip

f
g qxi. Moreover we can kill off the

denominator g so that we will have
ř ř

paijkx
kqf igd´i. Note the degree

of x is at most d ´ 1 so it satisfies hypothesis of lemma so all coefficient
aijk “ 0 and so polynomial itself is also 0 minimal polynomial has to have
degree d.

Spring 2017: Question 2 Let G be a group with representations G :“
tx, y|x4 “ y5 “ e, xyx´1 “ y2u with order 2. Compute the character
table.
solution Compute the number of 1-dimensional representation by seeing
commutator group. xyy is an normal subgroup. The quotient of G by xyy

is group of order 4 thus abelian. Since group of order 5 is cyclic, so xy5y

has to be the commutator subgroup.
One conjugacy class is xy, y2, y3, y4y.Also notice by the conjugation by
x, the number of x factor will not change, i.e y´1xy “ y2x. Moreover
y´1y2xy “ yxy “ y3x, y´1y3xy “ y2xy “ y4x etcetc we figure out all
conjugacy classes so that using orthogonalities, we will see the character
table.

Spring 2017: Question 3 Find the number of subgroups on index 3 in
the free group F2 “ xu, vy on two generators

Solution I just copypast a personal dialogue with Harahm Park Thanks
for sharing the solutions!
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Spring 2017: Question 8 Let M be an abelian group. Prove

F : Ringsop Ñ Sets

R ÞÑ tleft R ´Mod structures on Mu

is a functor. Is F representable?

Solution Need to define what F takes morphisms to, and check F pf ˝gq “

63



F pgq ˝ F pfq and F pIdq “ Id.

If f : R1 Ñ R, then

F pfq : F pRq Ñ F pR1q

γ ÞÑ r1 ¨F pfqpγq m “ fprq ¨γ m

gives an R1- Mod structure.

If we also have g : R2 Ñ R1,

F pgq ˝ F pfq : F pRq Ñ F pR2q

γ ÞÑ r2 ¨F pgq˝F pfqpγq m “ gpr2q ¨F pfqpγq m “ f ˝ gpr2q ¨γ m

so F pgq ˝ F pfq “ F pf ˝ gq.

Finally, F pIdRq : F pRq Ñ F pRq simply takes an R-module structure γ to
one that acts by applying IR, giving γ. So, F pIdRq “ IdF pRq, and this is
a contravariant functor.

F is corepresented by EndpMq. Let α : F Ñ REndpMq.

αR : F pRq Ñ HompR,EndpMqq

γ ÞÑ pr ÞÑ frq

where fr :M Ñ M is left multiplication by r.

Spring 2017 Question 9: Let R be a ring. Prove that if the left free
R-modules Rn and Rm are isomorphic for some positive integers n and
m, then Rn and Rm are isomorphic as right R-modules.

Solution: Let ϕ : Rn Ñ Rm be a left R-module isomorphism.

Claim: Homp´, Rq : Left ´RMod Ñ Right ´RMod is a functor.

Proof of claim: Let M be a left R-module, we first show that HompM,Rq

is a right R-module. As the category of left R-modules is an abelian
category, HompM,Rq is an abelian group. We then see, with the group
action pψ ¨ rqpmq “ ψprmq, HompM,Rq is a right R-module as

ppψ1`ψ2q¨rqpmq “ pψ1`ψ2qprmq “ ψ1prmq`ψ2prmq “ pψ1¨rqpmq`pψ2¨rqpmq

and

pψ¨pr1`r2qqpmq “ ψppr1`r2qmq “ ψpr1m`r2mq “ ψpr1mq`ψpr2mq “ pψ¨r1qpmq`pψ¨r2qpmq

and

pψ¨pr1r2qqpmq “ ψppr1r2qmq “ ψpr1pr2mqq “ pψ¨r1qpr2mq “ ppψ¨r1q¨r2qpmq

and
pψ ¨ 1Rqpmq “ ψp1Rmq “ ψpmq.
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We now show that, for any f : M Ñ N , where M,N are left R-modules,
the map Hompf,Rq : HompN,Rq Ñ HompM,Rq where g ÞÑ g ˝f is a right
R-module homomorphism. However, we see that

ppg1`g2q˝fqpmq “ pg1`g2qpfpmqq “ g1pfpmqq`g2pfpmqq “ pg1˝fqpmq`pg2˝fqpmq

and

ppg ˝ fq ¨ rqpmq “ pgpfprmqq “ gpr ¨ fpmqq “ pg ¨ rqpfpmqq.

Thus, Hompf,Rq is a right R-module homomorphism.

As Hom is additive, we note that Homp‘iMi, Rq “ ‘iHompMi, Rq. We
then see that HompR,Rq – R via the map ψ ÞÑ ψp1q and its inverse a ÞÑ ℓa
given by ℓaprq “ ar and by additivity of Hom, we have HompRn, Rq “ Rn

and HompRm, Rq “ Rm. As functors send isomorphisms to isomorphisms,
we have that Hompϕ,Rq : Rm Ñ Rn is an isomorphism of Rn and Rm as
right R-modules.
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Fall 2016: Problem 5 Let f P F rXs be an irreducible separable poly-
nomial of prime degree over a field F and let K{F be a splitting field of
f . Prove that there is an element in the Galois group of K{F permuting
cyclically all roots of f in K.

Solution: Consider GalpK{F q Ă Sp where p is prime. Note that, letting
α be a root of f , p “ rF pαq : F s, and F pαq Ă K. So by the tower
lemma, p | rK : F s “ |GalpK{F q|. Thus, by Cauchy’s theorem, there
exists an element σ of order p in GalpK{F q. However as p is prime, the
only elements of order p are exactly p-cycles. Thus, σ permutes the roots
of f cyclically.

Fall 2016: Problem 6 Let F be a field of characteristic p ą 0. Prove
that for every a P F , the polynomial xp ´ a is either irreducible or split
into a product of linear factors.

Solution: There are two cases. Let α be a root of xp ´ a in some field
extension L of F . Then, fpxq “ xp ´ αp “ px ´ αqp P F rXs. Suppose
that f is not irreducible. Then, f “ gh for some non-unital g, h P F rXs.
However as F rXs Ă LrXs, we also have f “ gh as a factorization in LrXs.
Thus, as fpxq “ px´αqp, we have g “ px´αqr “ xr´rαxr´1`¨ ¨ ¨ P F rXs.
In particular, rα P F but as g and h are non-unital, 1 ď r ď p ´ 1, thus
r´1rα “ α P F , which implies x´α P F rXs, and as f “ px´αqp, f splits
into a product of linear factors over F rXs.

Fall 2016: Problem 7 Let f P QrXs and ξ P C a root of unity. Show
that fpξq ‰ 21{4.

Solution: Suppose fpξq “ 21{4. This implies that 21{4 P Qpξq, and
thus Qp21{4q Ă Qpξq. As ξ is a root of unity, Qpξq is a cyclotomic (and
thus cyclic) extension. Thus, GalpQpξq{Qq is cyclic, and thus abelian. As
Qp21{4q is a subfield of Qpξq, by assumption, GalpQp21{4q{Qq is a subgroup
of GalpQpξq{Qq. As GalpQpξq{Qq is abelian, GalpQp21{4q{Qq must be a
normal subgroup, implying Qp21{4q{Q is a normal extension.

However, note that the minimal polynomial of 21{4 over Q is x4 ´ 2 (by
Eisenstein), which has complex roots, but Qp21{4q Ă R. Thus, Qp21{4q is
not a normal extension, which is a contradiction.

Fall 2016: Problem 9 F a field, a P F . Define the functor

G : Comm F -Alg Ñ Sets

R ÞÑ

ˆ

Rrxs

px2 ´ aq

˙ˆ

Show G is representable.

Solution G is represented by

A :“
F rx1, x2, y1, y2s

px1y1 ` ax2y2 ´ 1, x2y1 ` x1y2q
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Let α : G Ñ RA be the natural isomorphism.

αR : GpRq ÞÑ HompA,Rq

b1 ` b2x ÞÑ f : A Ñ R

where if c1 ` c2x is the inverse to b1 ` b2x,

f : A Ñ R

x1 ÞÑ b1

x2 ÞÑ b2

y1 ÞÑ c1

y2 ÞÑ c2

The motivation behind this comes from representing Rrxs{px2 ´ aq –

R ˆR. Notice that

Rrxs

px2 ´ aq
“ tb1 ` b2x : b1, b2 P Ru – R ˆR

Then, pb1, b2q and pc1, c2q correspond to a unit pair in Rrxs{px2 ´ aq iff

pb1 ` b2xqpc1 ` c2xq “ b1c1 ` ab2c2 ` xpb2c1 ` b1c2q “ 1

This induces exactly two relations on the pairs: b1c1 ` ab2c2 “ 1, b2c1 `

b1c2 “ 0.

Thus, an element of GpRq corresponds exactly to some homomorphism
from A to R which maps x1, x2 to the unit pb1, b2q and y1, y2 to the inverse
pc1, c2q.

Notice that F can map to any F -algebra. In adding these variables and
inducing restrictions on where they can map to, we are limiting our ho-
momorphisms precisely up to a choice of unit.

Spring 2016 Show that if G is a finite group acting transitively on a set
X with at least two elements, then there exists g P G which fixes no points
of X

Solution Suppose any elements g P G fixes some elements of X then
given g P G we can find x P X such that g P Stabpxq. Since identity fixes
x so that means

ř

xPX |stabpxq| ą |G|. However by the orbit stabilizer

|stabpxq| “
|G|

orbpxq
“

|G|

|X|
. We have

ř

xPA
|G|

|A|
“ |G| that is contradiction to

our hypothesis.
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Spring 2015 problem 3 Let R be the unital ring, prove that R is division
ring iff all R module is free

Solution
I will provide two solutions of if all R module is free then R is a division
ring. R be a unital ring such that all R module is projective, R is a semi-
simple ring. By the Artin Wedderburn theorem, R is a direct product
of the matrices R –

ś

MipDiq for some division algebra Di. Regard
MipDq itself as a R module. If R is decomposed into the product of
more than 2 matrix ring. Note free module is torsion free, so there is no
element r P R such that such that rMipDq “ 0. But here we can chose
r “ pr1 . . . ri´1, 0, ri`1 . . . rnq is an anihilator. So we have R – MnpDq

for just one division ring Di. We will also show n “ 1 so that we can
claim actually it is a division ring. Claim when n ‰ 1, Dn is a MnpDq

module which is not free, if Dn is a free then Dn – MnpDqm for some
m P Z. Compare the dimension of both side over D. We have n dimension
over D for the left hand side, but as a D module right hand side is pn2qm

dimension, they have wrong dimensions.
The second solution: Let I be a maximal left ideal of R and putM “ R{I.
Then M is a simple left R-module: it has no nonzero proper submodules.
By assumption M is free: there is a basis txiu. M has to be isomorphic
to Rx1 if not, M – ‘Rxi then because M is simple, if i ě 2 then module
wouldn’t be simple. Moreover, since x1 is a basis element, we have Rx1 –

R as R-modules. This means R is a simple also left R-module. This means
it has no nonzero proper left ideals and is thus a division ring.

Spring 2015: Problem 7Determine the ring endomorphisms of F2rt, t´1s,
where t is an indeterminate.

Solution:

The ring endomorphisms must send 1 ÞÑ 1 and 0 ÞÑ 0. The only restriction
is that t must map to a unit of the ring, as t´1 must map to its inverse.
So, it suffices to find all the units of the ring.

If two Laurent polynomials are inverses, then their leading terms will
multiply to give the leading term of the product. Since this is equal to
1, the sum of their degrees is equal to 0. Similarly, their last terms will
multiply to give the last term of the product, which must also be 1. Thus,
the sum of their smallest exponents is also 0. So, pptq can actually only
have one term tn. So, the set of units of R is just ttn : n P Zu. This
determines all ring homomorphisms.
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Spring 2015: Problem 9 Let G be a finite group of order pn. Show
that FprGs has a unique maximal 2-sided ideal.

Solution Sketch: First we find a maximal 2-sided ideal. An ideal is
maximal iff R{I is a field. Since Fp is a field, we can take the augmentation
map

ϵ : FprGs Ñ Fp
ÿ

g

ag ¨ g ÞÑ
ÿ

g

ag

which is clearly surjective. Then IG :“ kerpϵq is a 2-sided maximal ideal.
For the uniquness, since I is two sided maximal ideal, for a Jacobson
radical JpRq we have I Ą JpRq. We will prove I is nilpotent ideal so that
I is contained in JpRq.
We can prove the fact by an induction. If |G| “ pn then augemented
ideal will be vanish by the pn power. When n “ 1 then G is cyclic, in
particular commutative. I is generated by pe ´ gq for all g P G. As
ř

agg P I Ñ
ř

agpg ´ eq as
ř

ag “ 0. And since

pe´ gqp “ e´ gp “ 0

so Ip “ 0, and I is nilpotent. Assume the statement is true for n´ 1 and
prove the statement for n. For a p-group G, there are non-trivial center
C exist. C is also a p-group. Thus by the Cauchy theorem there is an
element x P C of order p. Let Z be a group generated by x.We will define
a map FprGs Ñ FprG{Zs induced by the morphism G Ñ G{Z.
lemma: There is a canonical morphism π : FprGs Ñ FprG{Zs and the
kernel is IZFprGs “ FprGsIZ where IZ is unique maximal two sided ideal
for FprZs.
Proof: Surjectivity and the equality are obvious because Z is normal
subgroup. We will prove kerπ “ IG{Z , let Z “ tziu and tkju “ G{Z.
Any elements of G can be uniquely representable with zikj “ gij . Let
ξ P Kerπ, then ξ “

ř

ri,jgi,j for ri P Fp. Then ϕpξq “
ř

jp
ř

i ri,jqzj “ 0
so

ř

i ri,j “ 0 therefore ξ “
ř

jp
ř

i rijziqkj P IZFprGs. Other inclusion is
obvious.

Since Z is the center of G, any ideal I Ă FprZs will be commute with the
ideal in FprZs. Now IZ is generated by pg´ eq, so πpIGq Ñ IG{Z is surjec-

tive. By the induction hypothesis πpIGqp
n´1

“ 0 this means Ip
n´1

G Ă kerπ.
Again by the hypothesis and the they are center Kerpπqp “ IpZFprGsp “ 0

so I is nilpotent ideal. Thus Ip
n

G “ 0
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Spring 2014 Problem 5 Let G be a finite group acting transitively on
a finite set X. Let x P X and P be a Sylow subgroup of the stabilizer of
x in G. Show that NGpP q acts transitively on XP .

Solution Let S :“ stabpxq. Then pick y P XP , stabpyq “ gSg´1. Since
P acts y trivially, P ď Stabpyq “ gSg´1. Means g´1Pg ď S, g pre-
serve P in S. Take by Sylow’s theorem we can take g1 P S such that
g1Pg1´1 “ g´1Pg, so that g1´1g´1 normalize P . Since normalizer is a
group pg1´1g´1q´1 P NGpP q and gg1x “ y.

Fall 2014: Problem 1 Let G be a finite group. Let ZrGs be the group al-
gebra with augmentation ideal A. Show that A{A2 – G{rG,Gs as abelian
groups.

Solution Sketch: Define the following group homomorphism

f :
G

rG,Gs
Ñ

A

A2
rgs ÞÑ re´ gs

ź

g

gag ÐSS
ÿ

g

´ag ¨ g

Just check that each are well defined, and is a group homomorphism. And,
that they are inverses of course.

Fall 2014: Problem 2 Let Fp denote the field of p elements. Consider the
covariant functor F from the category of commutative Fp-algebras with a
multiplicative identity to abelian groups sending a ring R to F pRq “ tζ P

R : ζp “ 1u.

(a) Give an example of a finite local ring R such that F pRq has p2

elements

(b) Let AutpF q be the set of natural transformations of F to itself in-
ducing a group automorphism of F pAq for all commutative rings A
with identity. Prove F is representable and compute the order of
AutpF q using Yoneda’s Lemma

Solution Sketch

(a) For p ě 3, take R “
Fprxs

px3q
. For p “ 2, take R “

Fprxs

px4q

(b)

F pRq – Hom

ˆ

Fprxs

pxp ´ 1q
, R

˙

Let A “
Fprxs

pxp´1q
. By Yoneda’s Lemma, NatpF, F q “ NatpRA, RAq –

HompA,Aq. Moreover, A ÞÑ RA is a fully faithful functor, so it
preserves and reflects isomorphisms.
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Since AutpF q is the set of natural isomorphisms α : F Ñ F , the
order of AutpF q is exactly the number of automorphisms of A (by
Yoneda’s isomorphism).

Notice that
Fprxs

pxp ´ 1q
–

Fprxs

ppx´ 1qpq
–

Fprxs

pxpq

So, it suffices to find the number of automorphisms of A1 “
Fprxs

pxpq
.

Let f : A1 Ñ A1, and let

y “ fpxq “ ap´1x
p´1 ` ¨ ¨ ¨ ` a1x` a0

f is an automorphism iff there exists an inverse f´1 that will send
f´1pyq “ bp´1y

p´1 ` ¨ ¨ ¨ ` b1y ` b0 “ x. Notice that x is of order
p, and automorphisms preserve order, so y must be of order p as
well. So, we must have a0 “ 0. Moreover, if we look at the linear
term of f´1pyq, we get the coefficient b1a1 “ 1, so a1 ‰ 0. Now we
show these conditions are sufficient. Each polynomial term gives us
a condition, where the quadratic term gives b1a2 ` b2a

2
1 “ 0. The

expression for the xi coefficient uniquely determines the value of bi.
By induction, this system can be solved for each bi if a1 ‰ 0 and
a0 “ 0.

So, there are exactly pp´ 1qpp´2 automorphisms in AutpF q.

Fall 2014: Problem 8 Let A be a ring. Assume there is an infinite chain
of left ideals I0 Ă I1 Ă ¨ ¨ ¨ Ă A such that Ii ‰ Ii`1 for all i ě 0. Show
that A has a left ideal that is not finitely generated as a left A-module.

Solution Sketch:

Let I “
Ť8

i“0 Ii. This is a left ideal of A, and it is nontrivial, otherwise
1 P I, which means 1 P In for some n, which would stop the ascending
chain.

Moreover, it cannot be finitely generated, otherwise it suffice to let I be
only a finite union of the In ideals in the chain, again contradicting the
infinite ascending chain.

Spring 2013 Problem 7Let F “ F2 be the field with 2 elements. Show
that there is a ring homomorphism F rGL2pF qs Ñ M2pF q that sends the
element g in the group ring to the matrix g P M2pF q. Show that this
homomorphism is surjective. Let K be the kernel; since it is a left ideal, it
is a (left) GL2pF q´module. Is this module indecomposable? (Reminder:
a module is indecomposable if it is not the direct sum of two proper
submodules.) Describe the simple modules in its composition series.

solution Surjection can be proved by observing there are 6 elements for

F rGL2pF qs such that e1 “

ˆ

1 0
0 1

˙

e2 “

ˆ

1 1
0 1

˙

e3 “

ˆ

1 0
1 1

˙

e4 “

ˆ

0 1
1 0

˙
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e5 “

ˆ

0 1
1 1

˙

e6 “

ˆ

1 1
1 0

˙

as a vector space, and mapping to a 4dimensional

vector space spanned by the elementary matrices. For example, e1 ´ e2,
e1 ´ e3, e4 ´ e5, e4 ´ e6 are basis. The Kernel is v1 :“ e1 ` e5 ` e6, v2 :“
e2 ` e3 ` e4 easily check linearly independent, and by rank nullity kernel
has to be 2´dimension.

GL2pF q permute among the vectors

ˆ

1
0

˙ ˆ

0
1

˙ ˆ

1
1

˙

so there is an isomor-

phism between GL2pF q and S3. So without loss of generalities, we regard
it as a S3 representation on F 2 v1 `v2 is invariant under the all the repre-
sentation, and we can show that there is no invariant space outside of the
kernel. For arbitrary elements in kernel can be written as av1 ` bv2. If we
permute v1 and v2 then would be bv1 ` av2 adding each other then would
be in the kernel. So there is only one S3 module inside of the K. Quotient
of K by v1 ` v2 we have some 1dimensional S3 module represented by
v1(or v2). 1dimensional representation of S3 are trivial or sign, but since
this is F2 these are coincide.
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